透射电子显微镜的结构及成像(精选.)
透射电子显微镜(材料分析方法)
第九章透射电子显微镜一、透射电子显微镜的结构与成像原理透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨本领、高放大倍数的电子光学仪器。
它由电子光学系统、电源与控制系统及真空系统三部分组成。
电子光学系统通常称为镜筒,是透射电子显微镜的核心,它与光路原理与透射光学显微镜十分相似,如图1(书上图9-1)所示。
它分为三部分,即照明系统、成像系统和观察记录系统。
图1 透射显微镜构造原理和光路(a)透射电子显微镜b)透射光学显微镜)(1、照明源2、阳极3、光阑4、聚光镜5、样品6、物镜7、物镜光阑8、选区光阑9、中间镜10、投影镜11、荧光屏或照相底片)(一)照明系统照明系统由电子枪、聚光镜和相应的平移对中、倾斜调节装置组成。
其作用是提供一束亮度高、照明孔径角小、平行度好、束流稳定的照明源。
为满足明场和暗场成像需要、照明束可在2°~3°范围内倾斜。
电子枪是电镜的照明源,必须有很高的亮度,高分辨率要求电子枪的高压要高度稳定,以减小色差的影响。
1、电子枪电子枪是透射电子显微镜的电子源,是发射电子的照明源。
常用的是热阴极三极电子枪,它由发夹形钨丝阴极、栅极帽和阳极组成,如图2(书上图9-2)所示。
(发射电子的阴极灯丝通常用0.03~0.1mm的钨丝,做成“V”形。
电子枪的第二个电极是栅极,它可以控制电子束形状和发射强度。
故有称为控制极。
第三个极是阳极,它使阴极发射的电子获得较高的动能,形成定向高速的电子流。
阳极又称加速极,一般电镜的加速电压在35~300kV之间。
为了安全,使阳极接地,而阴极处于负的加速电位。
由于热阴极发射电子的电流密度随阴极温度变化而波动,阴极电压不稳定会影响加速电压的稳定度。
为了稳定电子束电流,减小电压的波动,在电镜中采用自偏压电子枪。
)图a为电子枪的自偏压回路,负的高压直接加在栅极上,而阴极和负高压之间因加上一个偏压电阻,使栅极和阴极之间有一个数百伏的电位差。
电子显微镜第二章透射电子显微镜的主要结构与成像
阴极 栅极 阳极 聚光镜
试样室 物镜 中间镜 投影镜 观察屏
照相机
计算机 7
照明系统
阴极(接负高压) 控制极(比阴极 负100~1000伏)
阳极 电子束
聚光镜
试样
完整版课件ppt
8
1.电子枪
阴极 栅极 帽
阳极i0Biblioteka AT2 expb T 完整版课件ppt
9
(a)自偏压回路 (b完)电整版子课件枪ppt 内的等电位面
完整版课件ppt
31
2. 放大倍数测定 透射电子显微镜的放大倍数随样品平面高度、加 速电压、透镜电流而变化。为了保持仪器放大倍 数的精度,必须定期进行标定。
最常用的方法是用衍射光栅复型作为标样,在一 定的条件(加速电压、透镜电流等)下,拍摄标 样的放大象。然后从底片上测量光栅条纹象的平 均间距,与实际光栅条纹间距之比即为仪器相应 条件下的放大倍数。这种方法适用于5万倍以下。
15
2. 物镜系统
物镜是用来形成第 一幅高分辨电子显微 图象或电子衍射花样 的透镜。物镜是电镜 最关键的部分,透射 电镜的分辨本领主要 取决于物镜。
完整版课件ppt
16
物镜光阑(Objective aperture )
完整版课件ppt
17
减小像差
α
样品
物镜 物镜光阑
物镜像平面
完整版课件ppt
完整版课件ppt
32
也可在样品表面上放少量尺寸均匀,并精确 已知球径的塑料小球作为内标准测定放大倍 数。 在高放大倍数如10万倍以上的情况下,可以
采用用来测定晶格分辨本领的晶体样品作标 样,拍摄晶格条纹像,然后测量晶格像条纹 间距,与实际晶面间距的比值即为相应条件 下仪器的放大倍数。
电子显微3-透射电子显微镜的结构
聚光镜
试样 图1-11 照明部分示意图
(3)聚光镜光阑 作用:挡掉发散的电子,保证电子束的相干性和照 射区域。 聚光镜光阑:限制照明孔径角。 物镜光阑(衬度光阑):安放于物镜后焦面,限制物镜孔径
角,增加图象反差。另:在后焦面套取衍射束斑点成暗场像。
衍射光阑:第一中间镜也叫衍射镜。
选区光阑(视场光阑) :放于物镜像平面位置,限制样品参
(3)望远镜——放大5-10倍,观察更小细节和精确聚焦
二、真空系统
镜筒内:10-4~10-6Torr(1mmHg)
若电子枪中存在气体,会产生气体电离和放电 避免炽热阴极灯丝受到氧化而烧断 避免电子与气体分子相碰撞而散射及污染样品
三、电气系统
电子枪高压稳压电源(恒压)
磁透镜稳压稳流电源(稳流)
投影到屏或底片上;短焦距、高放大倍数(100倍) 的强中放大倍数成像;(C)低放大倍数成像
物 物镜 衍射谱 选区光阑 一次象 中间镜
二次象 投影镜
三次象 (荧光屏) (a)高放大率
(b)衍射
(c)低放大率
消像散器 类似于用散光镜来矫正人眼的散光缺陷
是产生附加弱磁场的装置,用来校正透镜磁场的非
相当于阴极(发叉式热钨丝) 、栅极(控制极)和阳极组成的静电透镜
阴极加负高压(-50~200KV) 阳极接地(0电位) 控制栅极加比阴极负几百~几千伏的偏压
(其电位大小决定了阴极和阳极之间等电位面的分布 和形状,从而控制阴极的电子发射电流)
电子枪交叉点:由阴极发射的发散电子 束受到电场径向分量的作用,会聚,通 过一最小截面,此处电子密度最高,称 交叉点,定义为电镜的实际电子源。
与衍射的区域
样品台——承载样品(铜网)
透射电子显微镜原理及结构课件
观察与记录系统
荧光屏
将投影镜输出的像投影在荧光屏 上,便于观察。
摄像机
将荧光屏上的图像拍摄下来,记录 并传输至计算机进行后续处理。
图像处理软件
对摄像机拍摄的图像进行数字化处 理,如调整亮度、对比度、色彩平 衡等,以便更好地观察和分析样品 结构。
04
透射电子显微镜的操作 与维护
透射电镜的操作步骤
衍射是指波遇到障碍物或孔洞时,会沿着障碍物边缘弯曲传播的现象。 在透射电子显微镜中,电子波的衍射使得电子能够散射并形成明暗相间 的斑点或条纹。
电子的干涉与衍射
当电子通过透镜系统时,会受到电场和磁场的作用,从而改 变它们的波函数。透镜系统的设计使得电子在到达样品时具 有相同的相位,从而形成干涉现象。干涉使得电子在样品上 散射并重新聚焦,形成明暗相间的图像。
放置样品
将需要观察的样品放置在电镜 的样品台上,确保样品稳定不 动。
调节亮度与对比度
根据观察的需要,适当调节电 镜的亮度与对比度旋钮,使图 像更加清晰。
打开电源
首先打开透射电镜的电源开关, 确保电源正常。
调整焦距
通过调节焦距旋钮,使电镜的 物镜逐渐接近样品,直到清晰 看到样品的图像。
观察与记录
观察并记录样品的图像,可以 通过电镜的摄像系统或记录仪 进行记录。
衍射是指电子在遇到样品时,会沿着样品的晶格结构散射。 散射的角度取决于样品的晶格常数和电子的波长。通过测量 衍射斑点的位置和强度,可以获得样品的晶体结构和相信息 。
透射电镜成像原理
透射电镜的成像原理是将电子束通过 样品,然后使用透镜系统将散射的电 子聚焦并成像在荧光屏幕上。由于电 子的波长比可见光的波长要短得多, 因此透射电镜能够获得比光学显微镜 更高的分辨率。
《透射电子显微镜》课件
限制照明区域,减小成像的视场,提高成像的分辨率 。
光路调节器
调节光路中的光束方向和大小,确保光束正确投射到 样品上。
成像系统
Hale Waihona Puke 物镜将样品上的图像第一次放 大并投影到中间镜上。
中间镜
将物镜放大的图像进一步 放大并投影到投影镜上。
投影镜
将中间镜放大的图像最终 放大并投影到荧光屏或成
像设备上。
真空系统
谢谢您的聆听
THANKS
透射电子显微镜技术不断改进,分辨率和放大倍数得到显著提 高。
透射电子显微镜技术不断创新,出现了许多新型的透射电子显 微镜,如高分辨透射电子显微镜、冷冻透射电子显微镜等。
透射电子显微镜的应用领域
生物学
观察细胞、蛋白质、核酸等生物大分子的 结构和功能。
医学
研究病毒、细菌、癌症等疾病的发生、发 展和治疗。
真空泵
01
通过抽气作用维持透射电子显微镜内部的高真空状态。
真空阀门
02
控制真空泵的工作时间和进气流量,以保持透射电子显微镜内
部真空度的稳定。
真空检测器
03
监测透射电子显微镜内部的真空度,当真空度不足时提醒操作
人员进行处理。
03
透射电子显微镜的操作与维护
透射电子显微镜的操作步骤
打开电源
确保实验室电源稳定,打开透射电子显微镜 的电源开关。
记录
对透射电子显微镜的使用和维护情况进行 记录,方便日后追踪和管理。
04
透射电子显微镜的样品制备技术
金属样品的制备技术
电解抛光
通过电解抛光液对金属样品进行抛光 ,去除表面杂质和氧化层,使样品表 面光滑、平整。
离子减薄
透射电子显微镜的结构与功能
化学成分分析
01 通过能谱仪(EDS)等附件,对样品进行化学成 分分析。
02 可以检测样品中的元素组成、元素分布和含量。 03 对材料科学、生物学等领域的研究具有重要价值
。
动态过程观察
01
透射电子显微镜可以观察样品的动态过程,例如相变、化学 反应等。
02
通过拍摄连续的显微图像,观察样品在时间尺度上的变化。
中间镜
用于进一步放大实像或改 变成像性质。
投影镜
将最终的放大实像投射到 荧光屏或成像设备上。
真空系统
真空泵
维持透射电子显微镜内部的高真空环境,以减少电子束在空气中散射和吸收。
真空阀
压电源
为电子枪提供加速电压,使电子束具有足够的能量穿 过样品。
高成本
透射电子显微镜的制造成本较高,维 护和运行成本也相对较高。
06
CATALOGUE
透射电子显微镜的发展趋势与展望
高分辨技术
原子像分辨率
01
通过提高电子枪的亮度和像差矫正技术,实现原子级别的分辨
率,观察更细微的结构细节。
动态范围
02
提高成像系统的动态范围,以适应不同样品厚度的观察,更好
地展示样品的层次结构。
样品
样品是透射电子显微镜中的观察对象,通常为薄片或薄膜 。样品需要足够薄,以便让电子束穿透并观察到内部的细 节。
为了保证观察结果的准确性和可靠性,样品需要经过精心 制备和处理,如脱水、染色、切片等。同时,样品的稳定 性也至关重要,以确保在观察过程中不会发生形变或损坏 。
物镜
物镜是透射电子显微镜中的重要元件之一,它对电子束进行放大并传递给下级透 镜。物镜的放大倍数决定了显微镜的总放大倍数。
透射电子显微镜的 结构与功能
透射电子显微镜实验报告
透射电子显微镜实验报告透射电子显微镜的基本结构及成像原理认知实验一、实验目的1.理解透射电子显微镜(TEM : transmission electron microscope)的成像原理。
2.观察透射电子显微镜基本部件的名称,了解其用途;二、实验仪器仪器:JEM-2100UHR 透射电子显微镜(JEOL)透射电子显微镜用高能电子束作为照明源。
利用从样品下表面透出的电子束来成像。
原理及结构与透射式光学显微镜一样。
世界第一台透射电子显微镜是德国人鲁斯卡1936年发明的。
他与发明扫描隧道显微镜的学者一起获得1982年的诺贝尔物理奖。
目前透射电子显微镜的生产厂家有日本的日立(HITACHI)、日本电子(JEOL)、美国FEI、德国LEO。
透射电子显微镜的功能:主要应用于材料的形貌、内部组织结构和晶体缺陷的观察;物相鉴定,包括晶胞参数的电子衍射测定;高分辨晶格和结构像观察;纳米微粒和微区的形态、大小及化学成分的点、线和面元素定性定量和分布分析。
样品要求为非磁性的稳定样品。
可观察的试样种类:复型样品,金属薄膜和粉末试样,玻璃薄膜和粉末试样,陶瓷薄膜和粉末试样。
三、实验内容(一)透射电镜成像原理透射电子显微镜电子光学系统的工作原理可以用普通光学成像原理进行描述,也就是:平行光照射到一个光栅或周期物样上时,将产生各级衍射,在透镜的后焦面上出现各级衍射分布,得到与光栅或周期物样结构密切相关的衍射谱;这些衍射又作为次级波源,产生的次级波在高斯像面上发生干涉叠加,得到光栅或周期物样倒立的实像。
图1示意地画出了平行光照射到光栅后,在衍射角为θ的方向发生的衍射以及透射光线的光路图。
如果没有透镜,则这些平行的衍射光和透射光将在无穷远处出现夫琅和费衍射花样,形成衍射斑D和透射斑T。
插入透镜的作用就是把无穷远处的夫琅和费衍射花样前移到透镜的后焦面上。
后焦面上的衍射斑(透射斑视为零级衍射斑)作为光源产生次波干涉,在透镜的像平面上出现一个倒立的实像。
透射电子显微镜结构PPT课件
TEM
一个理想 物点P
透镜像散
一个半径为 ΔrA漫散圆斑
用ΔrA表示像散,得 rA f A
ΔfA—像散系数,是透镜磁场出现椭圆度时的焦距差。
像散是可以消除的,通过引入一个强度和方位可 调的矫正磁场来进行补偿。
TEM
5.4.3 色差
色差——由于成像电子的能量不同或变化,从而 在透镜磁场中运动轨迹不同,不能在一点聚焦而 形成的像差。
TEM
5.4.2 像散
像散——由于透镜磁场的非旋转对称引起的像差。 极靴内孔不圆、上下极靴轴线错位、极靴材质不 均匀以及周围的局部污染都会导致透镜的磁场产 生椭圆度,使电子在不同方向上的聚焦能力出现 差异。
TEM
一个理想物点P经透镜折射后在像平面上形成散 焦圆斑,前后移动像平面得到一个最小散焦圆斑 2RA ,折算到物平面上得到一漫散圆斑2ΔrA。
当电子速度较低时,m接近电子静止质量m0;当 电子速度较高时,电子质量需要经过相对论校正, 即
m m0 1 v 2 c
TEM
不同加速电压下的电子波波长见表5-1。目前 TEM常用加速电压在100kV~1000kV,电子波波 长范围在0.00371nm ~ 0.00087nm。比可见光短了 约5个数量级。
TEM
一般,人眼分辨率为0.2mm,光学显微镜使人眼分 辨率提高了1000倍,称为有效放大倍数。所以光学 显微镜放大倍数在1000 ~1500,再高的放大倍数对 提高分辨率没有实际贡献(仅仅是放大图像的轮廓, 对图像细节没有作用)。
问题:如何再次提高分辨率?
由 r0 波长。
2
知,提高分辨率的关键是降低照明源的
H-7650
T20e0ckVn场a发i 射F透3射0
透射电子显微镜原理及结构
3.2 透射电镜主要性能指标
(1)分辨率 是透射电镜的最主要的性能指标,它反应了电镜显示亚
显微组织、结构细节的能力。用两种指标表示: ❖点分辨率:表示电镜所能分辨的两个点之间的最小距离。 ❖线分辨率:表示电镜所能分辨的两条线之间的最小距离。
在实际制作塑料-碳二级复型时,往往把第一、 二次的塑料复型弃去不要,以清洁表面。而萃取复 型则有意识的通过选择适当的侵蚀剂侵蚀试块表面, 形成浮雕,用复型膜把需要观察的相(一般是指第 二相)萃取下来。
3.3 透射电镜样品制备方法
3..3.1 间接样品的制备
3、复型像及复型衬度的改善
有些材料不能直接制成薄膜样品,往往采用复型技术 把材料表面复制下来,制成复型膜,在电镜上观察。这 种用复型膜形成的电子图象可称为复型像。
July 2021
2、Our destiny offers not only the cup of d of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四
d L R K R
直到50年代,才随着电子显微镜的发展,把成像和 衍射有机地联系起来后,为物相分析和晶体结构分析研 究开拓了新的途径。
许多材料和粘土矿物中的晶粒只有几十微米大小,有 时甚至小到几百纳米,不能用X射线进行单个晶体的衍 射,但却可以用电子显微镜在放大几万倍的情况下,用 选区电子衍射和微束电子衍射来确定其物相或研究这些 微晶的晶体结构。
将待观察的试样按预定取向切割成薄片,再经机 械减薄抛光等过程预减薄至30~40um的薄膜。把薄 膜钻取或切取成尺寸为2.5~3mm的小片。装入离子 轰击减薄装置进行离子轰击减薄和离子抛光。
透射电子显微镜基本结构及功能
透射电子显微镜部分结构及功能在光学显微镜下无法看清小于0.2µm的细微结构,这些结构称为亚显微结构(s ubmicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructu res)。
要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。
1 932年Ruska发明了以电子束为光源的透射电子显微镜(transmission electron mi croscope,TEM),电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。
目前TEM的分辨力可达0.2nm。
电子显微镜与光学显微镜的成像原理基本一样,所不同的是前者用电子束作光源,用电磁场作透镜。
另外,由于电子束的穿透力很弱,因此用于电镜的标本须制成厚度约50nm左右的超薄切片。
这种切片需要用超薄切片机(ultramicrotome)制作。
电子显微镜的放大倍数最高可达近百万倍、由电子照明系统、电磁透镜成像系统、真空系统、记录系统、电源系统等5部分构成,如果细分的话:主体部分是电子透镜和显像记录系统,由置于真空中的电子枪、聚光镜、物样室、物镜、衍射镜、中间镜、投影镜、荧光屏和照相机。
电子显微镜是使用电子来展示物件的内部或表面的显微镜。
高速的电子的波长比可见光的波长短(波粒二象性),而显微镜的分辨率受其使用的波长的限制,因此电子显微镜的分辨率(约0.1纳米)远高于光学显微镜的分辨率(约200纳米)。
透射式显微镜的结构与原理透射式电子显微镜(TEM)与投射式光学显微镜的原理很相近,它们的光源、透镜虽不相同,但照放大和成像的方式却完全一致。
在实际情况下无论是光镜还是电镜,其内部结构都要比图示复杂得多,图中的聚光镜(condonser lens)、物镜(object lens)和投影镜(projection lens)为光路中的主要透镜,实际制作中它们往往各是一组(多块透镜构成),在设计电镜时为达到所需的放大率、减少畸变和降低像差,又常在投影镜之上增加一至两级中间镜(i ntemediate lens)。
透射电子显微镜的结构与成像原理
透射电子显微镜的结构与成像原理
透射电子显微镜的结构与成像原理
透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨率、高放大倍数的电子光学仪器。
There are four main components to a transmission electron microscope:
(1) an electron opTIcal column
(2) a vacuum system
(3) the necessary electronics (lens supplies for focusing and deflecTIng the beam and the high voltage generator for the electron source)
(4) software
电子光学系统(镜筒)(an electron opTIcal column)是其核心,它的光路图与透射光学显微镜相似,如图所示,包括:照明系统,成像系统,观察记录系统。
图2-1 投射显微电镜构造原理和光路
照明系统
组成:由电子枪、聚光镜(1、2级)和相应的平移对中、倾斜调节装置组。
第二章透射电子显微镜ppt课件
透 射 电 镜 主 体 剖 面 图
三级放大成像示意图
2.1.3 观察记录系统
❖ 观察和记录系统包括荧光屏和照相机构。
❖ 荧光屏涂有在暗室操作条件下,人眼较敏感、发绿 光的荧光物质,有利于高放大倍数、低亮度图像的 聚集和观察。
❖ 照相机构是一个装在荧光屏下面,可以自动换片的 照相暗盒。胶片是一种对电子束曝光敏感、颗粒度 很小的溴化物乳胶底片,为红色盲片,曝光时间很 短,一般只需几秒钟。
的导磁体来吸引部分磁场。
❖电磁式:通过电磁极间 的吸引和排斥来校正磁场。 通过改变两组电磁体的励 磁强度和磁场的方向实现 校正磁场。
消像散器一般安装在透镜的上、 下极靴之间
电磁式消像散示意图
聚光镜消像散调整
2.2.4 光阑(Diaphragm holders and choice of diaphragms)
❖ 新型电镜均采用电磁快门,与荧光屏联动。有的装 有自动曝光装置。现代电镜已开始装有电子数码照 相装置,即CCD相机。
真空系统
❖ 在电子显微镜中,凡是电子运行的 区域都要求有尽可能高的真空度。
电源与控制系统
❖ 电子显微镜需要两个独立的电源,即使电 子加速的小电流高压电源和使电子束聚焦 与成像的大电流低压磁透镜电源。
1. 电子枪
❖ 电子枪是透射电子显微镜的电子源。
❖ 常用的是热阴极三极电子枪,由发夹形钨丝阴极、栅
源电子极帽枪和的阳极组成。
,形阴成极自:阴偏 极灯丝通常用0.03和阴0.极1毫之米栅间的极钨:栅丝极作是成控V制形电。子束 电位差形。状电和发射强度的(也称
为控制极、韦氏圆筒)。
阳极间会阳聚极:阳极使从阴极发射 交叉点的形,电成通子 定获 向得 高较 速高电的子动流能,,也
透射电子显微镜-TEM
1. 塑料一级复型 2. 碳一级复型 3. 塑料-碳二级复型 4. 抽取复型
透射电子显微镜样品制备
塑料一级复型
样品上滴浓度为1%的火棉 胶醋酸戍酯溶液或醋酸纤维 素丙酮溶液,溶液在样品表 面展平,多余的用滤纸吸掉, 溶剂蒸发后样品表面留下一 层100nm左右的塑料薄膜。 印模表面与样品表面特征相反。
透射电镜实现了工厂化生产。 上世纪50年代,英国剑桥大学卡文迪许实验室的Hirsch和
Howie等人建立电子衍射衬度理论并用于直接观察薄晶体缺陷和 结构。 1965年,扫描电子显微镜实现商品化。 70年代初,美国阿利桑那州立大学J.M. Cowley提出相位衬度理 论的多层次方法模型,发展了高分辨电子显微象的理论与技术。 饭岛获得原子尺度高分辨像(1970) 。 80年代,晶体缺陷理论和成像模拟得到进一步发展,透射电镜和 扫描电镜开始相互融合,并开始对小于5埃的尺度范围进行研究。 90年代至今,设备的改进和周边技术的应用。
re 人眼分辨本领 r0 显微镜分辨本领
有效放大倍数
光学显微镜的有效放大倍数
人眼的分辨率( 0.2mm) 光学显微镜分辨率( 200 nm)
透射电镜的有效放大倍数
人眼的分辨率( 0.2mm) 透射电子显微镜分辨率 (0.1nm)
由上面公式可以直接得出,光学显微镜的有效放 大倍数远小于透射电镜。
透射电子显微镜-TEM
Transmission electron microscope
内容
简介 结构原理 样品制备 透射电子显微像 选区电子衍射分析
TEM 简介
1898年J.J. Thomson发现电子 1924年de Broglie 提出物质粒子波动性假说和1927年实验的
证实。 1926年轴对称磁场对电子束汇聚作用的提出。 1932年,1935年,透射电镜和扫描电镜相继出现,1936年,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
透射电子显微镜的结构及成像
913000730018鲁皓辰一、实验目的
1)了解透射电子显微镜的基本结构;
2)熟悉透射电子显微镜的成像原理;
3)了解基本操作步骤。
二、实验内容
1)了解透射电子显微镜的结构;
2)了解电子显微镜面板上各个按钮的位置与作用;
3)无试样时检测像散,如存在则进行消像散处理;
4)加装试样,分别进行衍射操作、成像操作,观察衍射花样和图像;
5)进行明场、暗场和中心暗场操作,分别观察明场像、暗场像和中心暗场像。
三、实验仪器设备与材料
JEM-2100F型TEM透射电子显微镜
四、实验原理
图1 JEM-2100F型透射电子显微镜
一)透射电镜的基本结构
透射电镜主要由电子光学系统、电源控制系统和真空系统三大部分组成,其中电子光学系统为电镜的核心部分,它包括照明系统、成像系统和观察记录系统组成。
1)照明系统
照明系统主要由电子枪和聚光镜组成,电子枪发射电子形成照明光源,聚光
镜是将电子枪发射的电子会聚成亮度高、相干性好、束流稳定的电子束照射样品。
2)成像系统
成像系统由物镜、中间镜和投影镜组成。
3)观察记录系统
观察记录系统主要由荧光屏和照相机构组成。
二)主要附件
1)样品倾斜装置(样品台)
样品台是位于物镜的上下极靴之间承载样品的重要部件,见图2,并使样品在极靴孔内平移、倾斜、旋转,以便找到合适的区域或位向,进行有效观察和分析。
2)电子束的平移和倾斜装置
电镜中是靠电磁偏转器来实现电子束的平移和倾斜的。
图3为电磁偏转器的工作原理图,电磁偏转器由上下两个偏置线圈组成,通过调节线圈电流的大小和
方向可改变电子束偏转的程度和方向。
图3电磁偏转器的工作原理图
3)消像散器
像散是由于电磁透镜的磁场非旋转对称导致的,直接影响透镜的分辨率,为此,在透镜的上下极靴之间安装消像散器,就可基本消除像散。
图4 为电磁式消像散器的原理图及像散对电子束斑形状的影响。
从图4b 和4c 可知未装消像散器时,电子束斑为椭圆形,加装消像散器后,电子束斑为圆形,基本上消除了聚光镜的像散对电子束的影响。
4)光栏
光栏是为挡掉发散电子,保证电子束的相干性和电子束照射所选区域而设计的带孔小片。
根据安装在电镜中的位置不同,光栏可分为聚光镜光栏、物镜光栏和中间镜光栏三种。
三)成像原理
(a )磁极分布 (b )有像散时的电子束斑 (c )无像散时的电子束斑
图4 电磁式消像散器示意图及像散对电子束斑形状的影响 N
N N N N
N
N N
S
S
S
S S S S S
O
O * L
f 0
r O '
试样
入射电子束
g ϖ
s ρ- R
R A ' 磁透镜
k 'ρ k ρ
B ' A
B
C
C '
由图5中得几何关系并推导后得:R '= K 'g
式中的L ' 和K '分别称为有效相机长度和有效相机常数。
但需注意的是式中的L '并不直接对应于样品至照相底片间的实际距离,因为有效相机长度随着物镜、中间镜、投影镜的励磁电流改变而变化,而样品到底片间的距离却保持不变,但由于透镜的焦长大,这并不会妨碍电镜成清晰图像。
因此,实际上我们可不加区分K 与K '、L 与L '和R 与R '了,并用K 直接取代K '。
1)成像操作与衍射操作:
调整励磁电流即改变中间镜的焦距,从而改变中间镜物平面与物镜后焦面之间的相对位置。
当中间镜的物平面与物镜的像平面重合时,投影屏上将出现微区组织的形貌像,这样的操作称为成像操作;当中间镜的物平面与物镜的后焦面重合时,投影屏上将出现所选区域的衍射花样,这样的操作称为衍射操作。
2)明场操作、暗场操作及中心暗场操作:
通过平移物镜光栏,分别让透射束或衍射束通过所进行的操作。
仅让透射束通过的操作称为明场操作,所成的像为明场像,见图7a ;反之,仅让某一衍射束通过的操作称为暗场操作,所成的像为暗场像,见图7b 。
通过调整偏置线圈,使入射电子束倾斜2θB 角,如图7c 所示,晶粒B 中的(l k h )晶面组完全满足衍
物镜
中间镜 投影镜
荧光屏(物像)
(a )成像操作 (b )衍射操作
图6 中间镜的成像操作与衍射操作
射条件,产生强烈衍射,此时的衍射斑点移到了中心位置,衍射束与透镜的中心轴重合,孔径半角大大减小,所成像比暗场像更加清晰,成像质量得到明显改善。
我们称这种成像操作为中心暗场操作,所成像为中心暗场像。
五、实验方法和步骤
明暗场像是透射电镜最基本的技术方法,以下仅对暗场像操作成像及其要点简述如下:
1)明场像下寻找感兴趣的视场; 2)插入选区光栏围住所选的视场;
3)按“衍射”按钮转入衍射操作方式,取出物镜光栏,此时荧光屏上显示选区内晶体产生的衍射花样;
4)倾斜入射电子束方向,使用于成像的衍射束与电镜光轴平行,此时衍射斑点位于荧光屏的中心;
5)插入物镜光栏,套住衍射斑点的中心斑点,转入成像操作,取出选区光栏,此时荧光屏上的图像即为该衍射束形成的暗场像。
六、实验注意事项
1)严格按规范操作,避免误操作; 2)保证高真空的要求(1.33×10-
6Pa )
3)注意选区光栏的合理选择与应用。
七、实验结果
(a )明场像 (b )暗场像 (c )中心暗场 图7 衍射衬度产生原理图
I A ≈0
I B ≈l k h I
I A ≈I 0
I B ≈I 0
-I hkl
I A ≈0
I B ≈I hkl
八、实验思考题
1)如何消除像散?
像散是由于形成透镜的磁场非旋转对称引起的,取决于磁场的椭圆度和孔径半角,而椭圆度可以通过配置对称磁场校正,从而基本消除像散。
最新文件仅供参考已改成word文本。
方便更改。