非线性力学和混沌简介

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非线性力学和混沌简介

非线性科学是一门研究非线性现象共性的基础学科。它是自本世纪六十年代以来,在各门以非线性为特征的分支学科的基础上逐步发展起来的综合性学科,被誉为本世纪自然科学的“第三次革命”。非线性科学几乎涉及了自然科学和社会科学的各个领域,并正在改变人们对现实世界的传统看法。科学界认为:非线性科学的研究不仅具有重大的科学意义,而且对国计民生的决策和人类生存环境的利用也具有实际意义。由非线性科学所引起的对确定论和随机论、有序与无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻地影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。

一线性与非线性的意义

线性”与“非线性”是两个数学名词。所谓“线性”是指两个量之间所存在的正比关系。若在直角坐标系上画出来,则是一条直线。由线性函数关系描述的系统叫线性系统。在线性系统中,部分之和等于整体。描述线性系统的方程遵从叠加原理,即方程的不同解加起来仍然是原方程的解。这是线性系统最本质的特征之一。“非线性”是指两个量之间的关系不是“直线”关系,在直角坐标系中呈一条曲。

最简单的非线性函数是一元二次方程即抛物线方程。简单地说,一切不是一次的函数关系,如一切高于一次方的多项式函数关系,

都是非线性的。由非线性函数关系描述的系统称为非线性系统。

线性与非线性的区别

定性地说,线性关系只有一种,而非线性关系则千变万化,不胜枚举。线性是非线性的特例,它是简单的比例关系,各部分的贡献是相互独立的;而非线性是对这种简单关系的偏离,各部分之间彼此影响,发生偶合作用,这是产生非线性问题的复杂性和多样性的根本原因。正因为如此,非线性系统中各种因素的独立性就丧失了:整体不等于部分之和,叠加原理失效,非线性方程的两个解之和不再是原方程的解。因此,对于非线性问题只能具体问题具体分析。

线性与非线性现象的区别一般还有以下特征:

(1)在运动形式上,线性现象一般表现为时空中的平滑运动,并可

用性能良好的函数关系表示,而非线性现象则表现为从规则运动向不规则运动的转化和跃变;

(2)线性系统对外界影响的响应平缓、光滑,而非线性系统中参数的极微小变动,在一些关节点上,可以引起系统运动形式的定性改变。在自然界和人类社会中大量存在的相互作用都是非线性的,线性作用只不过是非线性作用在一定条件下的近似。

非线性问题研究的历史概况

非线性问题的“个性”很强,处理起来十分棘手。历史上曾有过一些解非线性方程的“精品”,但与大量存在的非线性方程相比,只能算是“凤毛麟角”。因此,长期以来,对非线性问题的研究一直分散在自然科学和技术科学的各个领域。本世纪六十年代以来,情况发生了变化。人们几乎同时从非线性系统的两个极端方向取得了突破:

(1)一方面从可积系统的一端,即从研究多自由度的非线性偏微分方程的一端获得重大进展。如在浅水波方程中发现了“孤子”,发展起一套系统的数学方法,如反散射法,贝克隆变换等,对一些类型的非线性方程给出了解法;

(2)另一方面,从不可积系统的极端,如在天文学、生态学等领域对一些看起来相当简单的不可积系统的研究,都发现了确定性系统中存在着对初值极为敏感的复杂运动。促成这种变化的一个重要原因十计算机的出现和广泛应用。科学家们以计算机为手段,勇敢地探索那些过去不能用解析方法处理的非线性问题,从中发掘出规律性的认识,并打破了原有的学科界限,从共性、普适性方面来探讨非线性系统的行为。

非线性科学研究的范围

非线性科学的研究范围究竟有多大?目前尚无定论。有人主张,非线性科学应包括那些可以定量分析、精确计算、有数学理论或实验研究的领域。也有人认为,耗散结构、协同学、突变论等应划归非线性科学,因为这“三论”中的许多定量分析,有些概念和方法

(如分岔、自组织、图形、分维等——是和非线性科学相同的。值

得注意的是,这“三论”中有些内容是带有哲理性或思辩色彩的。

但非线性科学的主体是明确的,这就是混沌(Chaos)、分形(Fractral)、孤子(Soliton)。)——孤立波与孤立子孤子或孤波为一种特殊的相

干结构,是由于系统中的色散与非线性两种作用相互平衡的结果。

事实上,虽然孤立子或孤立波一词常在广泛的范围内被引用,但无一般形式的定义,因为它还在发展中,给它下个严格的定义比

较困难,且为时尚早。通常孤立波也叫定域行波,也就是“前无古人,后无来着”,一个孤零零的波在传播。而在应用数学和工程中,孤立子被理解为非线性演化方程局部化的行波解,经过互相碰撞后

不改变波形和速度(或许相位发生变化)。在粒子物理等领域内,孤立子被看做是具有某个“安全系数”的特殊孤立波,在相互作用时,波形与速度只有微弱改变的孤立波,或被理解为:非线性演化方程

能量有限的解,这些能量集中在空间有限区域,不随时间扩散到无

限区域中去。可见,不是所有的孤立波都是孤立子,但有时人们并

不严格区分二者。

孤立子的特点是,有出奇的稳定性,如同刚性粒子一样。

在空间上局域,在时间上长寿。除孤立子外,自然界还存在大量的

其他相干结构。它们与孤立子的不同之处在于,它们在相互作用时

并不严格保持形状不变,而是汇合、分裂。最引人注目的是各种尺

度的涡旋。几个流体涡旋可集合成一个大斡,一个大涡可被强大的

外力作用打碎。对这些结构形成机理的认识和它们之间的相互作用

的研究仍是非线性科学的前沿。

混沌

混沌是确定性系统中由于内禀随机性而产生的一种外在复杂的、貌似无规的运动。混沌并不是无序和紊乱,更像是没有周期的秩序。在理想模型中,它可能包含着无穷的内在层次,层次间存在着“自相似性”。混沌的行为归宿就是奇怪吸引子,即分形。

对混沌的研究是从对微分方程求解开始的。二十世纪初,著名的法国数学家和理论天文学家庞加莱发现某些特殊的微分方程的可解性与解值对其初始条件极为敏感,初始条件的细微差别可导致其解值的巨大偏差,甚至产生无解现象。但他的发现没有引起数学家和物理学家的重视。1963年,美国气象学家洛仑兹在计算机上用他建立的微分方程模拟气象变化的时候,偶然发现输入的初始条件的极细微的差别,可以引起模拟结果的巨大变化。洛仑兹打了个比喻说,在南半球某地一只蝴蝶的翅膀的偶然扇动所引起的微小气流几星期后可能变成席卷北半球某地的一场龙卷风,这就是天气的“蝴蝶效应”。它的本质仍然是非现性耦合。洛仑兹的发现意味着混沌理论的诞生。

分形

分形是不能用通常的长度、面积、体积表示的几何形体,其内部存在着无穷层次,具有见微知著、由点及面的自相似结构。自相似即局部与整体的相似性。适当放大或缩小几何尺寸,分形的真个结

相关文档
最新文档