旋转作图课件
合集下载
北师大版八年级下册数学图形的旋转作图课件
新知讲授
练习2:如图所示,四边形ABCD绕点O按顺时针方向旋转 后,顶点A旋转到了点A’处,请画出旋转后的四边形.
解:如图所示, 四边形A’B’C’D’就 是旋转后的四边形.
新知讲授
说一说:画旋转图形的一般步骤. (1)确定旋转 中心 、 旋转方向 和 旋转角 ; (2)将原图形中的 关键点 与旋转中心连接起来,然后按 旋转方向 分别将它们旋转一个角度,得到 关键点 的对应点; (3)按照原图形的顺序连接这些对应点,所得到的图形就是旋转 后的图形.
作业布置
基础作业-教材第79页习题3.5第1、2题 能力作业-教材第80页习题3.5第3、4题
最有价值的学习就是方法的收获!
A.点D B.点C C.点B D.点A
中考链接
(202X)如图,点A、B、C、D、O都在方格纸的格点上,
若△COD是由△AOB绕点O按顺时针方向旋转而得到的,则旋转的
角度为____9_0_°______.
课堂总结
说一说画旋转图形的一般步骤?
(1)确定旋转中心、旋转方向和旋转角; (2)将图形中的关键点与旋转中心连接起来,然后按旋转 方向分别将它们旋转一个角度,得到关键点的对应点; (3)按照原图形的顺序连接这些对应点,所得到的图形就 是旋转后的图形.
新知讲授
做一做:如图所示,你能对甲图案进行适当的运动变化,
使它与乙图案重合吗?写出你的操作过程.
乙
甲
还可以用
什么方法把
甲图案变成
乙图案?
B
A
答:先从点A到点B的方向平移线段AB的长度,再将甲图
案绕点A逆时针旋转70° ,即可与图案乙重合.
课堂练习
1.如图,在4×4的正方形网格中,△MNP绕某点旋转一 定的角度,得到△M1N1P1,则其旋转中心是( C )
人教版数学九年级上册23.1.2 旋转作图课件(共19张PPT)
分析:
①将正方形ABCD绕点C顺时针旋转90°后能与正方形CDFE重合; ②将正方形ABCD绕点D逆时针旋转90°后能与正方形CDFE重合; ③将正方形ABCD绕CD的中点旋转180°后能与正方形CDFE重合,
4.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以 格点(网格线的交点)为端点的线段AB.将线段AB向右平移2个单位长度, 再向下平移1个单位长度,得到线段A1B1;
温馨提示
为了避免作图混乱,应先对一个关键点连、转、截,找到其对应 点后再进行下一个关键点的旋转.
问题2:旋转三要素对游戏有什么影响? 下面有两种情况:
第一组:
B′ A′
A
D
C
B
O C′ D′
A
D
C
B
O
B′
C′
D′
A′
_旋_转__中__心___不变,旋__转__角__改变,产生不同的旋转效果.
第二组:
A2 A1
A3 B1
B2
课堂小结
旋转图形步骤
旋 转 作 图
旋转中心的确定
1.连:连接图形中每一个关键点与旋转中心; 2.转:把连线绕旋转中心按旋转方向旋转相 同的角度(作旋转角); 3.截:把角的另一边上截取与关键点到旋转 中心的距离相等的线段,得到各点的对应点; 4.连:连接所得到的各对应点; 5.写:写出结论,说明作出的图形.
A1 B1
(1)将线段AB绕点B1逆时针旋转90°得到线段A2B2,画出旋转后的线段
A2B2,并说明线段A1B1通过怎样的变化可以得到线段A2B2.
解:如图,线段A2B2即为所
求.线段A1B1绕点B1逆时针旋转
A1
90°,再向下平移2个单位长度,
①将正方形ABCD绕点C顺时针旋转90°后能与正方形CDFE重合; ②将正方形ABCD绕点D逆时针旋转90°后能与正方形CDFE重合; ③将正方形ABCD绕CD的中点旋转180°后能与正方形CDFE重合,
4.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以 格点(网格线的交点)为端点的线段AB.将线段AB向右平移2个单位长度, 再向下平移1个单位长度,得到线段A1B1;
温馨提示
为了避免作图混乱,应先对一个关键点连、转、截,找到其对应 点后再进行下一个关键点的旋转.
问题2:旋转三要素对游戏有什么影响? 下面有两种情况:
第一组:
B′ A′
A
D
C
B
O C′ D′
A
D
C
B
O
B′
C′
D′
A′
_旋_转__中__心___不变,旋__转__角__改变,产生不同的旋转效果.
第二组:
A2 A1
A3 B1
B2
课堂小结
旋转图形步骤
旋 转 作 图
旋转中心的确定
1.连:连接图形中每一个关键点与旋转中心; 2.转:把连线绕旋转中心按旋转方向旋转相 同的角度(作旋转角); 3.截:把角的另一边上截取与关键点到旋转 中心的距离相等的线段,得到各点的对应点; 4.连:连接所得到的各对应点; 5.写:写出结论,说明作出的图形.
A1 B1
(1)将线段AB绕点B1逆时针旋转90°得到线段A2B2,画出旋转后的线段
A2B2,并说明线段A1B1通过怎样的变化可以得到线段A2B2.
解:如图,线段A2B2即为所
求.线段A1B1绕点B1逆时针旋转
A1
90°,再向下平移2个单位长度,
人教版九年级上册23.旋转作图课件
• (3)作旋转后的对应点,方法如下: •①连:连接图形的每个关键点与旋转中心; • ②转:把连线绕旋转中心按旋转方向旋转相同的角 度(作旋转角); • ③截:在作得的角的另一边截取与关键点到旋转中 心的距离相等的线段,得到各个关键点的对应点.
• (4)按原图形的顺序连接这些对应点,所得到的图形就 是旋转后的图形.
①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的 对应点为点B′,点C的对应点为点C′.连接BB′. 解:如图①,△AB′C′即为所求.
②在①中所画图形中,∠AB′B=___4_5____°.
(2)【问题解决】 如图②,在Rt△ABC中,BC=1,∠C=90°,延长CA到点 D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接 DE,求∠ADE的度数.
B.(2,-2)
C.(3,-2) D.(-1,4)
4.把一个图案进行旋转变换,选择不同的旋转中心、不同 的旋转方向、不同的__旋__转__角__度_____,会有不同的效果.
5.(202X·赤峰)下列图形绕某一点旋转一定角度都能与原图形 重合,其中旋转角度最··小的是( C )
6.(202X·鄂尔多斯)(1)【操作发现】 如图①,在边长为1个单位长度的小正方形组成的网格中, △ABC的三个顶点均在格点上.
2.把图中的交通标志图案绕着它的中心旋转一定角度后与 自身重合,则这个旋转角度至少为( C ) A.30° B.90° C.120° D.180°
3.(202X·青岛)如图,将△ABC先向上平移1个单位长度,再
绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对
应点A′的坐标是( D)
A.(0,4)
(1)旋转中心不变,改变旋转角(如图).
课件简单的旋转作图
点A得对应点为点D. 试确定顶点B对
应点的位置以及旋转后的三角形.
E
A
D
作法一:
项目 源图形 源位置 旋转中心 旋转方向
旋转角度 目标图形 目标位置
已知 ● ● ●
●
未知
● ● ●
备注
△ABC △ABC 点C 根据A与D的对应 关系判断为顺时 针
∠ACD 三角形
△DEC (求作)
B
C 1. 连接CD;
2. 旋转中心、旋转方向与旋转角度有时需要根据旋转 的性质化未知为已知;
3. 点和线段的旋转根据旋转的定义与性质实现作图; 4. 一般图形的旋转首先通过选取若干个控制点化归为
点和线段的旋转;然后运用旋转的性质进行作图.
§4 简单的旋转作图
P.84 习题3.5
第1题
作图工具:尺、规、笔. 基本作图技能: ➢ 作一条直线平行于已知直线;
➢ 作一线段等于已知线段; ➢ 作一角等于已知角.
§4 简单的旋转作图
旋转中心,用点表示;旋转方向分为顺时针方 向和逆时针方向.
角度,用量角器度量,或通过画角度等于已知 角.
点的旋转作法:以旋转中心为圆心,旋 转 中心到待旋转点的距离为 半径画圆,连接旋转中心 到待旋转点的半径,过旋 转中心按指定方向作另一 半径,使与前一半径的夹 角等于已知角,该半径交 于圆上的点即为所求作.
2. 以CB为一边,作∠BCE,使得∠BCE=∠ACD ;
3. 在射线CB上截取CE,使得CE=CB;
4. 连接DE,则△DEC即为所求作.
§4 简单的旋转作图
练习1
将下图中大写字母N绕它右下侧的顶点按顺时针方向旋 转90˚,作出旋转后的图案.
§4 简单的旋转作图
图形的旋转ppt课件
钟表的指针在不停地转动,从3 时到5时,时针转动了多少度?
风车风轮的每个叶片在风的吹 动下转动到新的位置。
O
O
60°
图23.1-1
图23.1-2
以上这些现象有什么共同特点呢?
以上这些现象有什么不同特点呢?
旋转中心
O
O
60°
旋转 三要素
图23.1-1
图23.1-2
旋转方向
旋转角
像这样,把一个平面图形绕着平面内某一点O转动一个角度,
(2)旋转了60°
(3)AC中点M
2.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转45° 而成的。
(1) 若AB=4,则S正方形A′B′C′D′=
;
(2) ∠BAB ′= ,
∠B′AD= 。
(3) 若连接BB′,
则∠ABB′=
。
3. 如图,已知正方形 ABCD 的边长为 3,E、F 分别是 AB、BC 边上
的点,且∠EDF = 45°,将△DAE 绕点 D 按逆时针方向旋转 9;
证明:∵△DAE 绕点 D 逆时针旋转 90° 得到△DCM,
∴DE = DM,∠EDM = 90°.
A
D
∵∠EDF = 45°,∴∠FDM = 45°.
∴∠EDF =∠FDM.
B
实践操作,再探新知
探究二
平面中三角形的旋转
改变旋转中心的位置旋转的性质是否仍然成立?
O
C
O
A
B
三角形边上
C
O
A
B
三角形内部
C
A
B
三角形外部
1组和2组
3组和4组
5组和6组
小组合作探究(时间5分钟)
人教版九年级数学课件-旋转作图
ao
o
(2)兩個旋轉中,旋轉角不變,旋__轉__中__心____改變了,產生了
_不__同____的旋轉效果.
2.我們可以借助旋轉可以設計出許多美麗的圖案.
當堂練習
1.如圖,四邊形ABCD繞O點旋轉後,頂點A的對應點為E,試 確定B、C、D對應的點的位置,以及旋轉後的四邊形.
解:(1)連接OA、OB、OC、OD、OE; (2)分別以OB、OC、OD為一邊作∠BOF, ∠COG, ∠DOH,使∠BOF= ∠COG= ∠DOH= ∠AOE; (3)分別在射線OF,OG,OH上,截取OF=OB, OG=OC,OH=OD; (4)連接EF,FG,GH,HE,
甲
還可以用 什麼方法把甲 圖案變成乙圖 案?
可以先將甲圖案繞圖上的
A點旋轉,使得圖案被
B 乙
A
“扶直”,然後,再沿AB
方向將所得圖案平移到B
甲 點位置,即可得到乙圖案
B
A
二、旋轉設計作圖
合作探究
1.選擇不同的___旋__轉__中__心_、不同的_旋__轉__角_旋轉同一個圖案,會出 現不同的效果. (1)兩個旋轉中,旋轉中心不變, 旋__轉__角__ 改變了,產生了 __不__同___的旋轉效果.
∴∠ABE′=∠ADE= 90 ° ,
BE′= DE ,
E′
B
C
因此在CB的延長線上截取點E′,使BE. ′=DE
則△ABE′為旋轉後的圖形.
想一想:
A
D
還有其他方法確定點E的
對應點E′嗎?
E
答:延長CB,以點A為圓心,AE 的
長為半徑畫弧,交CB的延長線於E', B
C
連接AE',則△ABE'為旋轉後的圖形.
上册第二十三章 图形的旋转作图-新人教版九级数学全一册精品PPT
(4)如图,点P即为所求,点P的坐标为(2,0).
●
1. 选项与题干的关系 完全的 陈述句 组成, 所以选 项应能 够直接 回答问 题或者 将不完 全陈述 句补充 完整, 构成完 整语句 。
●
2.运用排除法,如果正确答案不能一 眼看出 ,应首 先排除 明显是 荒诞、 拙劣或 不正确 的答案 。尽可 能多排 除一些 选择项 ,就可 以提高 选对答 案而得 分的概 率。
A2B2C2,请画出△A2B2C2 的图形;
(3)线段 BB2 的长度为
.
解:(1)△A1B1C1的图形如图所示.
三级检测练
一级基础巩固练 6. 如图,正方形网格中的每个小正方形的边长都是 1,每
个小正方形的顶点叫做格点.△ABC 的三个顶点 A,B,C 都在格点上,将△ABC 绕点 A 逆时针方向旋转 90°得 到△AB′C′,在正方形网格中,画出△AB′C′,并分 别画出旋转过程中,点 B,点 C 经过的路径.
C. (0,-1)
D. (1,0)
三级拓展延伸练
10. 如图,△ABC 三个顶点的坐标分别为 A(1,1),B (4,2),C(3,4). (1)请画出将△ABC 向左平
移 4 个单位长度后得到的图
形△A1B1C1; (2)将△ABC 绕着点(1,0)
旋转 180°,画出旋转后得
到的△A2B2C2;
●
6.获取和解读地理信息是高考四项基 本能力 之一, 也是基 础能力 要求。 近几年 的高考 地理试 题材料 阅读量 有所增 加,表 明对学 生获取 和解读 地理信 息能力 要求提 高,准 确答题 需要全 面获取 材料中 的信息 ,理解 问题情 境,进 而全面 把握设 问实质 。
●
7.高考地理选择题常以社会热点、科 研成果 为材料 设置试 题情境 ,材料 和问题 中常出 现很多 地理概 念,很 多学生 对某些 地理概 念的内 涵和外 延理解 不深入 ,相似 的地理 概念混 淆,做 选择题 时,受 错误选 项干扰 极大, 导致错 误率很 高。
●
1. 选项与题干的关系 完全的 陈述句 组成, 所以选 项应能 够直接 回答问 题或者 将不完 全陈述 句补充 完整, 构成完 整语句 。
●
2.运用排除法,如果正确答案不能一 眼看出 ,应首 先排除 明显是 荒诞、 拙劣或 不正确 的答案 。尽可 能多排 除一些 选择项 ,就可 以提高 选对答 案而得 分的概 率。
A2B2C2,请画出△A2B2C2 的图形;
(3)线段 BB2 的长度为
.
解:(1)△A1B1C1的图形如图所示.
三级检测练
一级基础巩固练 6. 如图,正方形网格中的每个小正方形的边长都是 1,每
个小正方形的顶点叫做格点.△ABC 的三个顶点 A,B,C 都在格点上,将△ABC 绕点 A 逆时针方向旋转 90°得 到△AB′C′,在正方形网格中,画出△AB′C′,并分 别画出旋转过程中,点 B,点 C 经过的路径.
C. (0,-1)
D. (1,0)
三级拓展延伸练
10. 如图,△ABC 三个顶点的坐标分别为 A(1,1),B (4,2),C(3,4). (1)请画出将△ABC 向左平
移 4 个单位长度后得到的图
形△A1B1C1; (2)将△ABC 绕着点(1,0)
旋转 180°,画出旋转后得
到的△A2B2C2;
●
6.获取和解读地理信息是高考四项基 本能力 之一, 也是基 础能力 要求。 近几年 的高考 地理试 题材料 阅读量 有所增 加,表 明对学 生获取 和解读 地理信 息能力 要求提 高,准 确答题 需要全 面获取 材料中 的信息 ,理解 问题情 境,进 而全面 把握设 问实质 。
●
7.高考地理选择题常以社会热点、科 研成果 为材料 设置试 题情境 ,材料 和问题 中常出 现很多 地理概 念,很 多学生 对某些 地理概 念的内 涵和外 延理解 不深入 ,相似 的地理 概念混 淆,做 选择题 时,受 错误选 项干扰 极大, 导致错 误率很 高。
3.旋转作图课件
知1-讲
导引:抓住“关键点”A,B,C,D,旋转中心O,旋转 角∠AOD这些要素,按步骤“连——转——截— —连”即可得出所求作的三角形.
解:作法:(1)连接OA,OB,OC,OD; (2)分别以OB,OC为边作 ∠BOM=∠CON=∠AOD; (3)分别在OM,ON上截取 OE=OB,OF=OC; (4)依次连接DE,EF,FD; 则△DEF就是所求作的三角形,如图所示.
知1-讲
3.简单旋转作图的一般步骤: (1)找出图形的关键点; (2)确定旋转中心、旋转方向和旋转角; (3)将关键点与旋转中心连接起来,然后按旋转方向
分别将它们旋转一个角度,得到关键点的对应点; (4)按照原图形的顺序连接这些对应点,所得到的图
形就是旋转后的图形.
知1-讲
例1 在图1中,画出线段AB绕点A按顺时针方向旋转 60°后的线段.
取等于对应线段长度的线段; 五画:顺次连接所得的点,从而画出旋转得到的图形.
1.必做: 完成教材习题3.5T1-4. 2.补充: 请完成练习册剩余部分习题.
知2-讲
导引:根据图形可知∠BAE=120°,AB边绕点A顺时 针旋转120°得到AE边,所以菱形AEFG可以看 成是把菱形ABCD以A为旋转中心顺时针旋转120° 得到的.
知2-练
1 将如图所示的五边形绕点O按顺时针方向旋转90°, 画出旋转后的图形
知2-练
2 如图所示的4个图案,能通过基本图形旋转得到的 有( )
知1-练
1 在图中画出线段AB绕点O按顺时针方向旋转50° 后的线段.
知1-练
2 如图,将线段AB绕点O顺时针旋转 90°得到线段A′B′,那么点A(-2,5)的对应点 A′的坐标是________.
九年级数学上册教学课件《旋转作图与坐标系中的旋转变换》
旋转中心 旋转方向 旋转角
顺时针 逆时针
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
01
找
找出旋转中心、旋转方向、旋转角以 及表示图形的关键点(如顶点)
02 连 连接图形的每一个关键点与旋转中心
03
转
把连线绕旋转中心按旋转方向旋转相 同的角度(旋转角的度数)
举例: 画出旋 转后的 三角形.
04
截
在旋转后所得的射线上截取与关键点到旋转中 心距离相等的线段,得到各关键点的对应点
05
作
按原图顺次连接各关键点的对应点,并标上 相应字母,写出结论
知识点一 用旋转的知识作图
例 如图,E是正方形ABCD中CD边上任意
一点,以点A为中心,把△ADE顺时针旋转90°,
画出旋转后的图形.
A
D
想一想:本题中作图
E
的关键是什么?
确定点E的对应点E' B
C
解:因为点A是旋转中心,所以它的对应点是 点A .
正方形ABCD中,AD=AB,∠DAB=90°,所以旋
逆时针旋转,画出旋转后的图形.【教材P62习题23.1 第3题】
A
A
P'
BP
C
BP
C
解:如图所示,△ACP'即为所求作的图形.
3. 分别画出△ABC绕点O逆时针旋转90°和
180°后的图形. 【教材P62习题23.1 第4题】
B'' A''
解: 旋转90° 后的图形 如图所示.
C' C''
OC
B'
转后点D与点 B 重合.
设点E的对应点为点E'. 因为旋转后的图形与旋转前的
旋转作图九年级数学上册教学课件
旋转的 作图
课堂小结(1分钟)
作旋转 图形
作图基本步骤五步
确定旋转 中心
找两条对应点连 线段的垂直平分 线的交点
利用旋转的性质设计出美丽图案: 1.选择不同的旋转中心、旋转角,设计出美丽的图案. 2.作几个复合图形组成的图案,要先求出图中的关键点 ——线的端点、角的顶点、圆的圆心等。
旋转的作图(3分钟)
探 1.将点A绕点O逆时针旋转30º; 究 2.将线段AB绕点O顺时针旋转60º;
归 3.将△ABC绕点O顺时针旋转45º 纳 4将四边形ABCD绕点O逆时针旋转60º。
精O 讲
精 练A
O
O
C
BB A
A
O
C D
A
B
旋转作图的基本步骤(3分钟)
探 (1)明确旋转三要素:旋转中心、旋转方向和旋转角度; 究 (2)找出关键点;
九年级数学(上)教学课件
第二十三章 旋转
23.1.2 旋转作图
温故知新
知识讲解
典例解析
当ห้องสมุดไป่ตู้训练
温故知新(2分钟)
导 1.将△ABC平移使点A与点D重合, 入 2.将△ABC按箭头所示的方向平移2cm.
新
A
D
授
小 结B
双
清
C
01
OPTION
目录
考点 1:简单的旋转作图 考点2:多种图形的变换综合 考点3:利用旋转设计美丽的图案 考点4:课堂小结
练
求证:EF=DE+BF.
旋转的作图(3分钟)
探 把点P(x,y)绕原点分别顺时针旋转90º,180º,270º,360º,点P 究 的对应点的坐标分别是什么?将结果填入下表.
人教版数学九年级上册旋转作图完美课件
演讲完毕,谢谢观看!
7学习这篇 课文, 应该重 点引导 学生运 用探究 式的学 习方式 ,注意 激发学 生了解 植物知 识、探 究大自 然奥秘 的兴趣 ,把向 书本学 习和向 大自然 学习结 合起来 ,引导 学生养 成留心 身边的 事物、 认真观 察的好 习惯。
∵ △A′B′C′是由△ABC 逆时针旋转60°而来
B’ ∴ OA=OA′,OB=OB′,OC=OC′
C' ∴ ∠AOA′ =∠BOB′=∠COC′=60°
∴ △ABC≌△A′B′C′
人教版数学九年级上册23.1旋转作图 课件
练习
如图,正方形ABCD,E是CD边上一点,以A为中心, 把△ADE顺时针旋转90°,画出旋转后的图形
练习
如图,将△ACD,△AEB都是等腰三角形, ∠CAD=∠EAB=90°,在图中做出△ACE以点A为旋转 中心、逆时针方向旋转90°后的三角形。
EA DB NhomakorabeaC
人教版数学九年级上册23.1旋转作图 课件
人教版数学九年级上册23.1旋转作图 课件
练习
如图,将△OAB绕点O逆时针旋转至△OA′B′。使点B恰 好落在边A′B′上,已知AB=4cm,BB′=1cm,则A′B 的长为
旋转中心
O
旋转方向 旋转角
旋转角度
A
对应点 B 需要上面三个信息来刻画旋转
人教版数学九年级上册23.1旋转作图 课件
将点A绕点O逆时针旋转60°
旋转中心 点O 旋转方向 逆时针 旋转角度 60°
A
先定角度,再定长度
O 60°
A'
人教版数学九年级上册23.1旋转作图 课件
人教版数学九年级上册23.1旋转作图 课件
简单的旋转作图(共10张PPT)
同的方向转动了相同的角度;
(3)任意一对对应点与旋转中心的连线所成的角都
是旋转角,对应点到旋转中心的距离相等。
范例讲解
1.如图,△ABC绕点O旋转后,顶点 A的对应点为点D。试确定
顶点B的对应点的位置,以及 旋转后的三角形。
A
分析
D
1、“旋转”作图的步骤 :
如图,△ABC绕点O旋转后,顶点 A的对应点为点D。
转角. 在旋转过程中,确定一个三角形旋转后的位置,除需要此三角形原来的位置外,还需要什么条件?
根据旋转的性质知道:旋转角相等,(即作∠BOE=∠COF=∠AOD)
对应点到旋转中心的距离相等,则,OE=OB,OF=OC,
通过以上两个限制条件点E、F被确定。
4
解:
E
(1)连接OA,OD,OB,OC.
(2)如下图,分别以OB、OC为一边
2、能根据旋转作图步骤进行简单地旋转作图
一般作图题,在分析如何求 (2)经过旋转,图形上的每一点都绕旋转中心沿相
弄清旋转中心、方向和角度;
沿(作3)一分时定别的在,方射向线都和O角M要、度O分先N别上假作截出取设已经把所
求作的图形作出来,然后再 (1)经过旋转,图形的形状和大小不变;
沿一定的方向和角度分别作出
(2)分析所作图形: 找出构成图形的关键点; (3)旋转关键点: 沿一定的方向和角度分别作出
各关键点; (4)作出新图形: 顺次连接各关键点; (5)写出结论: 说明所作出的图形。
2、“旋转”作图的条件 :
(1)三角形原来的位置 (2)旋转中心 (3)旋转方向
(4)旋转角度
根据性质,确定如何操作 个方向转动一个角度,这样的图形运动称为旋
弄清旋转中心、方向和角度;
(3)任意一对对应点与旋转中心的连线所成的角都
是旋转角,对应点到旋转中心的距离相等。
范例讲解
1.如图,△ABC绕点O旋转后,顶点 A的对应点为点D。试确定
顶点B的对应点的位置,以及 旋转后的三角形。
A
分析
D
1、“旋转”作图的步骤 :
如图,△ABC绕点O旋转后,顶点 A的对应点为点D。
转角. 在旋转过程中,确定一个三角形旋转后的位置,除需要此三角形原来的位置外,还需要什么条件?
根据旋转的性质知道:旋转角相等,(即作∠BOE=∠COF=∠AOD)
对应点到旋转中心的距离相等,则,OE=OB,OF=OC,
通过以上两个限制条件点E、F被确定。
4
解:
E
(1)连接OA,OD,OB,OC.
(2)如下图,分别以OB、OC为一边
2、能根据旋转作图步骤进行简单地旋转作图
一般作图题,在分析如何求 (2)经过旋转,图形上的每一点都绕旋转中心沿相
弄清旋转中心、方向和角度;
沿(作3)一分时定别的在,方射向线都和O角M要、度O分先N别上假作截出取设已经把所
求作的图形作出来,然后再 (1)经过旋转,图形的形状和大小不变;
沿一定的方向和角度分别作出
(2)分析所作图形: 找出构成图形的关键点; (3)旋转关键点: 沿一定的方向和角度分别作出
各关键点; (4)作出新图形: 顺次连接各关键点; (5)写出结论: 说明所作出的图形。
2、“旋转”作图的条件 :
(1)三角形原来的位置 (2)旋转中心 (3)旋转方向
(4)旋转角度
根据性质,确定如何操作 个方向转动一个角度,这样的图形运动称为旋
弄清旋转中心、方向和角度;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则△DEF就是所求作的三角形, 如图所示.
A
1、点的旋转
试着找一找如图A点绕 O点顺时针旋转30°后 所在的位置A . O A B B' A'
A'
2、线段的旋转
试着画一画线段AB绕 O点逆时针旋转90° 后所得的线段(O点 在线段外).
O
C’ C B’
3、图形的旋转
试着画△ABC绕O点逆时针 旋转60°后所得的三角形.
是旋转中心;若不在图形上,对应点连线的垂直平
分线的交点就是旋转中心,旋转角等于对应点与旋 转中心所连线段的夹角.
知1-练
1
在图中画出线段AB绕点O按顺时针方向旋转50° 后的线段.
知1-练
2 如图,在4×4的正方形网格中,△MNP绕某点旋转 一定的角度,得到△M1N1P1,则其旋转中心是( A.点A B.点B C.点C D.点D )
A O
知1-讲
总 结
在旋转作图时,要紧扣以下三点:
(1)对应点到旋转中心的距离相等;
(2)旋转的角度相等; (3)旋转的方向相同.
知1-讲
总 结
确定旋转中心与旋转角的方法:
在图形的旋转过程中,判断谁是旋转中心,要
看旋转中心是在图形上还是不在图形上;若在图形 上,哪一点在旋转过程中位置没有改变,这一点就
旋转作图的一般步骤:
一连:连接已知点与旋转中心; 二定:确定旋转方向; 三量:测量旋转角度; 四截:在旋转角的另一条边上以旋转中心为一端点截
取等于对应线段长度的线段;
五画:顺次连接所得的点,“旋转”的定义: 在平面内,将一个图形绕着一个定点沿某 个方向转动一个角度,这样的图形运动称为旋 转(变换) .
2、“旋转”的基本性质: (1)经过旋转,图形的形状和大小不变;
(2)经过旋转,图形上的每一点都绕旋转中心沿相 同的方向转动了相同的角度;
(3)任意一对对应点与旋转中心的连线所成的角都 是旋转角,对应点到旋转中心的距离相等.
做一做: 如图, 你能对甲图案进行适当的运动变化,使它 乙 与乙图案重合吗?写出你的操作过程. 甲
还可以用 可以先将甲图案绕图 什么方法把 上的 A点旋转,使得
乙 B
A
甲
甲图案变成 图案被“扶直”,然
得图案平移到B点位
乙图案? 后,再沿AB方向将所
置,即可得到乙图案
B
A
知2-练
将如图所示的五边形绕点O按顺时针方向旋转90°, 画出旋转后的图形
知1-讲
知识点
1
旋转作图
1.作一个图形的旋转图形的依据是旋转的性质: 对应点到旋转中心的距离相等,每组对应点都旋 转相同的角度. 2.画旋转图形时,已知条件必须满足以下几点: (1)基本图形;(2)旋转中心;(3)旋转角; (4)旋转方向.
知1-讲
3.简单旋转作图的一般步骤: (1)找出图形的关键点;
(2)确定旋转中心、旋转方向和旋转角;
(3)将关键点与旋转中心连接起来,然后按旋转方向 分别将它们旋转一个角度,得到关键点的对应点; (4)按照原图形的顺序连接这些对应点,所得到的图 形就是旋转后的图形.
知1-讲
例1 在图1中,画出线段AB绕点A按顺时针方向旋转
60°后的线段.
图1
讲授新课
讲授新课
知1-讲
抓住“关键点”A,B,C,D,旋转中心O,旋转
角∠AOD这些要素,按步骤“连——转——截—
—连”即可得出所求作的三角形.
解:作法:(1)连接OA,OB,OC,OD;
(2)分别以OB,OC为边作 ∠BOM=∠CON=∠AOD; (3)分别在OM,ON上截取 OE=OB,OF=OC;
(4)依次连接DE,EF,FD;
A
1、点的旋转
试着找一找如图A点绕 O点顺时针旋转30°后 所在的位置A . O A B B' A'
A'
2、线段的旋转
试着画一画线段AB绕 O点逆时针旋转90° 后所得的线段(O点 在线段外).
O
C’ C B’
3、图形的旋转
试着画△ABC绕O点逆时针 旋转60°后所得的三角形.
是旋转中心;若不在图形上,对应点连线的垂直平
分线的交点就是旋转中心,旋转角等于对应点与旋 转中心所连线段的夹角.
知1-练
1
在图中画出线段AB绕点O按顺时针方向旋转50° 后的线段.
知1-练
2 如图,在4×4的正方形网格中,△MNP绕某点旋转 一定的角度,得到△M1N1P1,则其旋转中心是( A.点A B.点B C.点C D.点D )
A O
知1-讲
总 结
在旋转作图时,要紧扣以下三点:
(1)对应点到旋转中心的距离相等;
(2)旋转的角度相等; (3)旋转的方向相同.
知1-讲
总 结
确定旋转中心与旋转角的方法:
在图形的旋转过程中,判断谁是旋转中心,要
看旋转中心是在图形上还是不在图形上;若在图形 上,哪一点在旋转过程中位置没有改变,这一点就
旋转作图的一般步骤:
一连:连接已知点与旋转中心; 二定:确定旋转方向; 三量:测量旋转角度; 四截:在旋转角的另一条边上以旋转中心为一端点截
取等于对应线段长度的线段;
五画:顺次连接所得的点,“旋转”的定义: 在平面内,将一个图形绕着一个定点沿某 个方向转动一个角度,这样的图形运动称为旋 转(变换) .
2、“旋转”的基本性质: (1)经过旋转,图形的形状和大小不变;
(2)经过旋转,图形上的每一点都绕旋转中心沿相 同的方向转动了相同的角度;
(3)任意一对对应点与旋转中心的连线所成的角都 是旋转角,对应点到旋转中心的距离相等.
做一做: 如图, 你能对甲图案进行适当的运动变化,使它 乙 与乙图案重合吗?写出你的操作过程. 甲
还可以用 可以先将甲图案绕图 什么方法把 上的 A点旋转,使得
乙 B
A
甲
甲图案变成 图案被“扶直”,然
得图案平移到B点位
乙图案? 后,再沿AB方向将所
置,即可得到乙图案
B
A
知2-练
将如图所示的五边形绕点O按顺时针方向旋转90°, 画出旋转后的图形
知1-讲
知识点
1
旋转作图
1.作一个图形的旋转图形的依据是旋转的性质: 对应点到旋转中心的距离相等,每组对应点都旋 转相同的角度. 2.画旋转图形时,已知条件必须满足以下几点: (1)基本图形;(2)旋转中心;(3)旋转角; (4)旋转方向.
知1-讲
3.简单旋转作图的一般步骤: (1)找出图形的关键点;
(2)确定旋转中心、旋转方向和旋转角;
(3)将关键点与旋转中心连接起来,然后按旋转方向 分别将它们旋转一个角度,得到关键点的对应点; (4)按照原图形的顺序连接这些对应点,所得到的图 形就是旋转后的图形.
知1-讲
例1 在图1中,画出线段AB绕点A按顺时针方向旋转
60°后的线段.
图1
讲授新课
讲授新课
知1-讲
抓住“关键点”A,B,C,D,旋转中心O,旋转
角∠AOD这些要素,按步骤“连——转——截—
—连”即可得出所求作的三角形.
解:作法:(1)连接OA,OB,OC,OD;
(2)分别以OB,OC为边作 ∠BOM=∠CON=∠AOD; (3)分别在OM,ON上截取 OE=OB,OF=OC;
(4)依次连接DE,EF,FD;