2019年北京二中新高一分班考试数学试题-真题-含详细解析
北京二中分班考试数学真题-精选
![北京二中分班考试数学真题-精选](https://img.taocdn.com/s3/m/82d5bcf3fd0a79563c1e725b.png)
二中分校高一分班数学试题一、选择题(每小题3分,共10各小题,共30分)1、如图,线段AB 、CD 相交于E 点,AD//EF//BC ,若AE:EB=1:2,ADE S V =1,则AEF S V 等于( )A. 4B.23 C. 2 D. 432、如图所示,AB 为O e 的一条固定直径,它把O e 分成上、下两个半圆,自上半圆上一点C 做弦CD ⊥AB ,OCD ∠的平分线交O e 于点P ,当点C 在上半圆(不包括A 、B 两点)上移动时,点P ( )A.位置不变B. 等分»BDC.到CD 的距离保持不变D. 随点C 的移动而移动 3、已知二次函数y=ax 2+bx+c (0a ≠)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c >0;④(a+c )2<b 2.其中正确的结论是( )A. ①②B. ①③C.①③④D. ①②③④4、已知点P 是O e 内一点,O e 的半径为5,OP=3,在过点P 的所有O e 的弦中,弦长为整数的弦的条数为( )A. 3B. 4C. 5D. 无数条5、如图,已知ABC ∆中,BC=8,BC 边上的高h=4,D 为BC 上一点,做EF//BC ,交AB 于E (点E 不与点A 、B 重合),交AC 于点F 。
设E 到BC 的距离为x ,则DEF ∆的面积y 关于x 的函数的图像大致为( )6、一次函数()y ax b a 0=+≠、二次函数2y ax bx =+和反比例函数()ky k 0x=≠在同一直角坐标系中图象如图,A 点的坐标为(-2,0)。
则下列结论中,正确的( )A .a k 0>>B .a b k =+C .a b 0>>D .b 2a k =+7、在矩形ABCD 中,AB=6,BC=4,有一个半径为1的硬币与边AB 、AD 相切,硬币从如图所示的位置开始,在矩形内沿着边AB 、BC 、CD 、DA 滚动到开始的位置为止,硬币自身滚动的圈数大约是( )A. 1圈B. 2圈C. 3圈D. 4圈8、如图,在正方形ABCD 中,点P 是AB 上一动点(不与A 、B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N 。
2019年重点高中高一新生分班考试数学卷含答案(汇编)
![2019年重点高中高一新生分班考试数学卷含答案(汇编)](https://img.taocdn.com/s3/m/44f55293910ef12d2af9e7e0.png)
2019年重点高中高一新生分班考试数学卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一个数的倒数的绝对值是3,这个数是()A.3 B. C.3或﹣3 D.或﹣2.如图,已知∠1=120°,则∠2的度数是( )A.120° B.90° C.60° D.30°3.的值是()A.±16 B.±4 C.16 D.−164.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为( )A.35°B.45°C.55°D.65°5.已知等边三角形的边长为,则它面积与边长之间的关系用图象大致可表示为()A.B. C.D.6.现有2cm,5cm长的两根木棒,再从下列长度的四根木棒中选取一根,可以围成一个三角形的是()A.2cm B.3cm C.5cm D.7cm7.若多项式-6ab+18abx+24aby的一个因式是-6ab,那么另一个因式是()A.1-3x-4y B.-1-3x-4y C.1+3x-4y D.-1-3x+4y8.函数y=与y=x+1的图象的交点坐标为(a,b),则a2+b2的值为()A.1 B.11 C.25 D.无法求解9.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.10 B.20 C.10π D.20π10.如图,在菱形纸片ABCD中,,P为AB中点折叠该纸片使点C落在点处且点P在上,折痕为DE,则的大小为A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.已知是整数,则n是自然数的值是_____.12.用反证法证明∠A>60°时,应先假设_____.13.如果不等式组有解,那么m的范围是______.14.已知点,轴,且,则点N的坐标为______.15.如图,矩形的顶点在坐标原点,,分别在轴,轴的正半轴上,点的坐标为,点的坐标为,当此矩形绕点旋转到如图位置时的坐标为________.16.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=3︰4.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.三、解答题(本大题共8小题,共66分)17.(本题8分)解方程组和分式方程:(1)解方程组(2)解分式方程.18.(本题8分)平面上有3个点的坐标:,,在A,B,C三个点中任取一个点,这个点既在直线上又在抛物线上上的概率是多少?从A,B,C三个点中任取两个点,求两点都落在抛物线上的概率.19.(本题10分)某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元?20.(本题8分)周末,小亮一家人去水库游玩,他在大坝上的点A处看到一棵大树的影子刚好落在坝底的BE处点A与大树及其影子在同一平面内,此时太阳光与地面夹角为,在A处测得树顶D的仰角为如图所示,已知背水坡AB的坡度:3,AB的长为10米,请你帮助小亮算一算这颗大树的高度结果精确到米,参考数据:,注:坡度是指坡面的铅直高度与水平宽度的比21.(本题10分)据统计,某小区2011年底拥有私家车125辆,2013年底私家车的拥有量达到180辆.(1)若该小区2011年底到2014年底私家车拥有量的年平均增长率相同,则该小区到2014年底私家车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1 000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.22.(本题10分)已知:如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y轴交于点C,该抛物线的顶点为M.(1)求点A、B、C的坐标.(2)求直线BM的函数解析式.(3)试说明:∠CBM+∠CMB=90°.(4)在抛物线上是否存在点P,使直线CP把△BCM分成面积相等的两部分?若存在,请求出点P的坐标;若不存在,请说明理由.23.(本题12分)如图1,正方形ABCD中,F为AB中点,连接DF,CE⊥DF于E,连接BE.(1)作出△ADF关于F成中心对称的图形,并探究BE和BC数量关系;(2)如图2,BM平分∠ABE交CE延长线于M,连接MD,试探究DM、CM、BM线段关系并给出证明;(3)若点F在线段AB上运动(不与端点重合),AB=4,写出BE长度的取值范围.答案分析一、选择题(本大题共10小题,每小题3分,共30分。
2019年重点高中高一新生分班考试数学卷含答案
![2019年重点高中高一新生分班考试数学卷含答案](https://img.taocdn.com/s3/m/be7e59a0172ded630a1cb600.png)
2019年重点高中高一新生分班考试数学 试题卷考生须知:1.全卷满分120分,考试时间120分钟,试题卷共6页,有三大题,共24小题.2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效.卷 Ⅰ一.选择题(本题10小题,共30分.选出各题中唯一正确选项,不选、多选、错选,均不得分)1.﹣8的绝对值等于( )A .B .﹣8C .8D . 2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )A .3.386×108B .0.3386×109C .33.86×107D .3.386×1093.下面图案,从几何图形的角度看,这些图案既是中心对称图形又是轴对称图形的是( )A .B .C .D .4.如图是一个正方体,则它的表面展开图可以是( )5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A .B .C .D . 6.如图,BD 是⊙O 的直径,点A 、C 在⊙O 上,,∠AOB=60°,则∠BDC 的度数是( )A .60°B .45°C .35°D .30°7.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A .①,②B .①,④C .③,④D .②,③8.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.9.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.1010.如图,已知∠AOB=30°,以O为圆心、a为半径画弧交OA、OB于A1、B1,再分别以A1、B1为圆心、a为半径画弧交于点C1,以上称为一次操作.再以C1为圆心a为半径重新操作,得到C2.重复以上步骤操作,记最后一个两弧的交点(离点O最远)为C K,则点C K到射线OB的距离为()A. B.C.a D.卷Ⅱ二.填空题(本题有6小题,每题4分,共24分)11.数据1,2,3,5,5的众数是,平均数是.12.因式分解:4m3﹣m = .13.如图所示:用一个半径为60cm,圆心角为150°的扇形围成一个圆锥,则这个圆锥的底面半径为 cm.14.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.15.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元以上一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.16.如图在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度,按照这种移动规律移动下去,第n次移动到点A n,到达点A如果点A n与原点的距离不小于50,那么n的最小值是,n取最小值时A n表示的数是三.解答题(本题有8小题,第17~19题每题6分,第20、21题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:(2)解方程:18.(6分)为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.七年级参加社会实践活动天数的频数分布表七年级参加社会实践活动天数的条形统计图根据以上信息,解答下列问题;(1)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20000人,请估计该市七年级学生参加社会实践活动不少于5天的人数.19.(6分)根据卫生防疫部门要求,游泳池必须定期换水,清洗.游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.20.(8分)如图,矩形纸片ABCD中,AD=5,S ABCD=15,在边BC上取一点F,使BF=4,剪下△ABF,将它平移至△DCE的位置,拼成四边形AFED.①求证四边形AFED是菱形;②求四边形AFED两条对角线的长.21.(8分) 某市需要新建一批公交车候车亭,设计师设计了如图1所示产品.产品示意图的侧面如图2,其中支柱长DC 为2.1m ,且支柱DC 垂直于地面DG ,顶棚横梁AE 为长1.5m ,BC 为镶接柱,点B 是顶棚的镶接点,镶接柱与支柱的夹角∠BCD=150°,与顶棚横梁的夹角∠ABC=135°,要求使得横梁一端点E 在支柱DC 的延长线上,此时经测量得镶接点B与点E 的距离为0.35m .( , ,精确到0.01m .)(1)求E 到BC 的距离和EC 长度;(2)求点A 到地面的距离.22.(10分)如图,已知反比例函数(x >0,k 是常数)的图象经过点A (1,4),点 B (m ,n ),其中m >1,AM⊥x 轴,垂足为M ,BN⊥y 轴,垂足为N ,AM 与BN 的交点为C .(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB 与△NOM 的相似比为2,求出B 点的坐标.23.(10分)《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线 经过原点O ,与x 轴的另一个交点为A ,则a= .【操作】将图①中抛物线在x 轴下方的部分沿x 轴折叠到x 轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G ,如图②.直接写出图象G 对应的函数解析式.【探究】图②中过点B (0,1)作直线l 平行x 轴,与图象G 的交点从左至右依次为点C ,D ,E ,F ,如图③.求图象G 在直线l 上方的部分对应的函数y 随x 增大而增大时x 的取值范围.【应用】P 是图③中图象G 上一点,其横坐标为m ,连接PD ,PE .直接写出△PDE 的面积不小于1时m 的取值范围.24.(12分)如图,在每一个四边形ABCD 中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.G(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,P在四边形ABCD的边AD上运动,作出使∠BPC最大的点P,说明此时∠BPC最大的理由;并求出cos∠BPC的值;。
北京二中分班考试数学真题[优质版]
![北京二中分班考试数学真题[优质版]](https://img.taocdn.com/s3/m/16e7c7e2d1f34693daef3e54.png)
二中分校高一分班数学试题一、选择题(每小题3分,共10各小题,共30分)1、如图,线段AB 、CD 相交于E 点,AD//EF//BC ,若AE:EB=1:2,ADE S V =1,则AEF S V 等于( )A. 4B.23 C. 2 D. 432、如图所示,AB 为O e 的一条固定直径,它把O e 分成上、下两个半圆,自上半圆上一点C 做弦CD ⊥AB ,OCD ∠的平分线交O e 于点P ,当点C 在上半圆(不包括A 、B 两点)上移动时,点P ( )A.位置不变B. 等分»BDC.到CD 的距离保持不变D. 随点C 的移动而移动 3、已知二次函数y=ax 2+bx+c (0a ≠)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c >0;④(a+c )2<b 2.其中正确的结论是( )A. ①②B. ①③C.①③④D. ①②③④4、已知点P 是O e 内一点,O e 的半径为5,OP=3,在过点P 的所有O e 的弦中,弦长为整数的弦的条数为( )A. 3B. 4C. 5D. 无数条5、如图,已知ABC ∆中,BC=8,BC 边上的高h=4,D 为BC 上一点,做EF//BC ,交AB 于E (点E 不与点A 、B 重合),交AC 于点F 。
设E 到BC 的距离为x ,则DEF ∆的面积y 关于x 的函数的图像大致为( )6、一次函数()y ax b a 0=+≠、二次函数2y ax bx =+和反比例函数()ky k 0x=≠在同一直角坐标系中图象如图,A 点的坐标为(-2,0)。
则下列结论中,正确的( )A .a k 0>>B .a b k =+C .a b 0>>D .b 2a k =+7、在矩形ABCD 中,AB=6,BC=4,有一个半径为1的硬币与边AB 、AD 相切,硬币从如图所示的位置开始,在矩形内沿着边AB 、BC 、CD 、DA 滚动到开始的位置为止,硬币自身滚动的圈数大约是( )A. 1圈B. 2圈C. 3圈D. 4圈8、如图,在正方形ABCD 中,点P 是AB 上一动点(不与A 、B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N 。
2019-2020学年北京二中高一(上)期中数学试卷(含答案解析)
![2019-2020学年北京二中高一(上)期中数学试卷(含答案解析)](https://img.taocdn.com/s3/m/9a746ace162ded630b1c59eef8c75fbfc77d9488.png)
2019-2020学年北京二中高一(上)期中数学试卷(含答案解析)2019-2020学年北京二中高一(上)期中数学试卷一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|xA. ?B. {x|?1<x<1}< p="">C. {x|x<?1}D. {x|x<1}2.下列函数是奇函数的是()A. B.C. D. y=e x+e?x3.已知集合A={x|x2?5x+4<0,x∈Z},B={m,2},若A?B,则m=()A. 1B. 2C. 3D. 54.若函数g(x)=f(x)+x3是偶函数且f(?1)=2,则f(1)=()A. 0B. 1C. 2D. 35.已知集合A={0,1,2},B={?1,2,0,5},则A∩B=()A. {0,1}B. {0,2}C. {0,?1}D. {0}6.设全集U=R,集合A={x|?1<xA. {x|?1<x≤0}< p="">B. {x|1<x<2}< p="">C. {x|0<x<1}< p="">D. {x|0≤x<1}7.已知函数y=f(x)是R上的偶函数,且在(?∞,0]上是减函数,若f(a)>f(2),则实数a的取值范围是()A. a≤2B. a2C. a≥?2D. ?2≤a≤28.定义:区间[a,b],(a,b],(a,b),[a,b)的长度均为b?a,若不等式1x?1+2x?2≥m(m≠0)的解集是互不相交区间的并集,则该不等式的解集中所有区间的长度之和为l,则()A. 当m>0时,l=√m2+2m+9mB. 当m>0时,l=3mC. 当m<0时,l=?√m2+2m+9mD. 当m<0时,l=?3m9.函数y=|a|x?1|a|(a≠0且a≠1)的图像可能是()A.B.D.10. 下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1f (x 2)的是( )A. f (x )=1x B. f (x )=(x ?1)2 C. f (x )=e xD. f (x )=ln (x +1)11. 在交通工程学中,常作如下定义:交通流量Q(辆/小时):单位时间内通过道路上某一横断面的车辆数;车流速度V(千米/小时):单位时间内车流平均行驶过的距离;车流密度K(辆/千米):单位长度道路上某一瞬间所存在的车辆数.一般的,V 和K 满足一个线性关系,即V =v 0(1?Kk 0)(其中v 0,k 0是正数),则以下说法正确的是( )A. 随着车流密度增大,车流速度增大B. 随着车流密度增大,交通流量增大C. 随着车流密度增大,交通流量先减小,后增大D. 随着车流密度增大,交通流量先增大,后减小12. 定义在R 上的偶函数f(x)满足f (1+x)=f (1?x),当x ∈[0,1]时,f(x)=?x +1,设函数g(x)=e ?|x?1|(?1<=""A. 3B. 4C. 5D. 6二、填空题(本大题共6小题,共30.0分)13. 已知函数g (x )=x 2?2x (x ∈[2,4]),则g (x )的最小值_______14. 已知函数f (x )={2x ,x ≤0?x 2+1?,x >0,若f (a )=12,则实数a 的值为___________.______ .16. 若函数f(x)=x(2x+1)(x?a)为奇函数,则 a =_________.17. 函数f(x)=x 2+2x ?3,x ∈[1,3]的值域为_____________.18. 设x ∈R ,若函数f(x)为单调递增函数,且对任意实数x ,都有f[f(x)?e x ]=e +1成立,则f(2)的值为______ .三、解答题(本大题共4小题,共60.0分)19.已知集合A={x|x2?2x?3<9?x2<6?2x},求A∩B.20.已知函数f(x)=a?4x?a?2x+1+1?b,(a>0)在区间[1,2]上有最大值9和最小值1(1)求a,b的值;(2)若使关于x的方程f(x)?k?4x=0在x∈[?1,1]上有解,求实数k 的取值范围.21.已知二次函数f(x)=ax2+bx+c的图象经过点(0,1),对称轴为直线x=1.(1)若函数f(x)的值域为[0,+∞),求函数f(x)的解析式;(2)若函数g(x)=f(x)+(1?a)x2+2x在区间[?3,1]上是单调函数,求实数a的取值范围;(3)若函数?(x)=f(x),且函数?(x)在区间[1,2]上是增函数,求实数a的取值范围.x22.已知集合A={a1,a2,a3,…,a k}(k≥2),若对于任意的a∈A,总有?a?A,则称集合A具有性质P.由A中的元素构成一个相应的集合:T={(a,b)|a∈A,b∈A,a?b∈A},其中(a,b)是有序实数对.检验集合{0,1,2,3}与{?1,2,3}是否具有性质P,并求出其中具有性质P的集合所对应的集合T.-------- 答案与解析 --------1.答案:D解析:【分析】本题考查了并集及其运算.利用并集的运算计算得结论.【解答】解:因为集合A={x|x<1},所以A∪B={x|x<1}.故选D.2.答案:C解析:【分析】本题考查了函数的奇偶性,根据奇函数和偶函数的性质进行求解即可.【解答】解:易知选项A为非奇非偶函数,B,D为偶函数,故选C.3.答案:C解析:【分析】本题主要考查集合的知识,解答本题的关键是知道真子集的计算方法.【解答】解:∵A={x|x2?5x+4<0,x∈Z}={x|1<x< p="">又∵B={m,2},A?B,∴m=3,故选C.4.答案:A解析:【分析】本题考查函数的奇偶性,属于基础题.由函数g(x)=f(x)+x3是偶函数,则g(?1)=g(1),又f(?1)=2,可得f(1).【解答】解:∵g(?1)=f(?1)+(?1)3=f(?1)?1,g(1)=f(1)+13=f(1)+1由函数g(x)=f(x)+x3是偶函数且f(?1)=2,∴g(?1)=g(1),即f(?1)?1=f(1)+1,∴f(1)=f(?1)?2=0,故选A.5.答案:B解析:【分析】本题主要考查了交集及其运算,元素与集合的关系的应用,解题的关键是熟练掌握交集及其运算,元素与集合的关系的计算,根据已知及交集及其运算,元素与集合的关系的计算,求出A∩B 的值.【解答】解:∵A={0,1,2},B={?1,2,0,5},∴A∩B={0,2}.故选B.6.答案:A解析:【分析】本题考查了集合的补集、交集运算.利用一元二次不等式的解法化简集合B,利用补集的定义求出C U B,由交集的定义可得结果.【解答】解:因为B={x|x(x?2)<0}={x|0<x<2},< p="">所以C U B={x|x≤0或x≥2},结合集合A={x|?1<x<1},< p="">所以可得A∩(C U B)={x|?1<x≤0},故选a.< p="">7.答案:B解析:【分析】本题考查函数奇偶性以及单调性,属于简单题,由题意得|a|>2,即可求得结果【解答】解:∵y=f(x)是R上的偶函数,且在(?∞,0]上是减函数∴y=f(x)在[0,+∞)是增函数∵f(a)>f(2),∴|a|>2∴a2故选B8.答案:B解析:【分析】本题考查分式不等式的解法,涉及对新定义区间长度的理解,属于难题.当m>0时,∵1x?1+2x?2≥m?mx2?(3+3m)x+2m+4(x?1)(x?2)≤0,令f(x)=mx2?(3+3m)x+2m+4=0的两根为x1,x2,且x1<x2,根据韦达定理以及f(1),f(2)的符号,判断x1,x2与1和2的大小可得不等式的解集,再根据区间长度的定义可得,同理可判断m<0的情况.< p="">【解答】解:当m>0时,∵1x?1+2x?2≥m?mx2?(3+3m)x+2m+4(x?1)(x?2)≤0,令f(x)=mx2?(3+3m)x+2m+4=0的两根为x1,x2,且x1<x2,< p="">则m(x?x1)(x?x2)(x?1)(x?2)≤0,且x1+x2=3+3mm=3+3m,∵f(1)=m?3?3m+2m+4=1>0,f(2)=4m?6?6m+2m+4=?2<0,且f(x)图象的对称轴为3+3m2m =32+32m>1,∴1<x1<2<x2,< p="">所以不等式的解集为(1,x1]∪(2,x2],∴l=x1?1+x2?2=x1+x2?3=3+3m ?3=3m,当m<0时,结合穿针引线法可知l为无限大,故选:B.解析:【分析】本题考查指数函数图像,基础题;根据指数函数图象特点即可知选D.【解答】解:因为由题意|a|>0,且|a|≠1,只需考虑a>0,且a≠1的情况.函数y=a x?(a>0,a≠1)的图象可以看成把函数y=a x的图象向下平移个单位得到的.当a>1时,函数y=a x?在R上是增函数,且图象过点(?1,0),故排除A,B,当1>a>0时,函数y=a x?在R上是减函数,且图象过点(?1,0),故排除C.故选D.10.答案:A解析:【分析】本题主要考查函数的单调性,属于基础题.【解答】解:“对任意x1,x2∈(0,+∞),当x1f(x2)”说明函数f(x)在(0,+∞)上是减函数,只有f(x)=1符合题意.x故选A.11.答案:D)(其中v0,k0是正数),则随着车流密度增大,流速度减小,交通流量解析:解:因为V=v0(1?K k先增大,后减小,故A、B、C错误,D正确,故选:D.先阅读题意,再结合简单的合情推理判断即可得解.本题考查了阅读能力及简单的合情推理,属简单题.12.答案:B解析:本题主要考查了函数图象的性质及函数图象的作法,属中档题.由函数图象的性质得:f(x)的图象关于直线x=1对称且关于y轴对称,函数g(x)=e??|x?1|(?1<x< p="">函数图象的作法可知两个图象有四个交点,且两两关于直线x=1对称,则f(x)与g(x)的图象所有交点的横坐标之和为4,得解.【解答】解:由偶函数f(x)满足(1+x)=f(1?x)可得f(x)的图象关于直线x=1对称且关于y轴对称,函数g(x)=e??|x?1|(?1<x< p=""> 函数y=f(x)的图象与函数g(x)=e??|x?1|(?1<x<3)的图象的位置关系如图所示,< p="">可知两个图象有四个交点,且两两关于直线x=1对称,则f(x)与g(x)的图象所有交点的横坐标之和为4.故选B.13.答案:0解析:【分析】本题主要考查二次函数在区间上的最值,考查学生计算能力,属于基础题.解题关键是利用二次函数性质,求出单调区间,即可计算最值.【解答】解:g(x)=x2?2x=(x?1)2?1,所以二次函数对称轴为x=1,开口向上;因为x∈[2,4],所以g(x)在[2,4]单调递增,所以g(x)的最小值g(2)=0;故答案为0.14.答案:?1或√22解析:【分析】本题考查分段函数的应用,函数值的求法,考查计算能力.【解答】解:当a ≤0时,f(a)=12,即2a =12,解得a =?1,当a >0时,f(a)=12,即?a 2+1=12,解得a =√22,故答案为?1或√22.15.答案:lg6+12解析:【分析】利用对数的运算性质即可得出.本题考查了对数的运算性质,考查了推理能力与计算能力,属于基础题.【解答】解:原式.故答案为:.16.答案:12解析:【分析】本题主要考查了函数的奇偶性,属于基础题.根据函数的奇偶性的定义进行解答即可;【解答】解:函数f(x)的定义域为{x |x ≠?12且x ≠a}.又f(x)为奇函数,定义域应关于原点对称,∴a =12.17.答案:[0,12]解析:【分析】本题考查函数的最值,解题的关键是配方,确定函数的单调性,属于中档题.配方可得,f(x)=x2+2x?3=(x+1)2?4,函数的对称轴为直线x=?1,确定函数在[1,3]单调递增,从而可求函数值域.【解答】解:f(x)=x2+2x?3=(x+1)2?4的对称轴方程为x=?1,则在[1,3]为增函数,且f(1)=0,f(3)=12,所以函数f(x)=x2+2x?3,x∈[1,3]的值域为[0,12],故答案为[0,12].18.答案:e2+1解析:【分析】本题考查函数的解析式的求法,函数的单调性,属于中档题.利用已知条件求出函数的解析式,然后求解函数值即可.【解答】解:设t=f(x)?e x,则f(x)=e x+t,则条件f[f(x)?e x]=e+1等价为f(t)=e+1,令x=t,则f(t)=e t+t=e+1,∵函数f(x)为单调递增函数,则t=1是e t+t=e+1的唯一解,代入f(x)=e x+t,得f(x)=e x+1,即f(2)=e2+1.故答案为:e2+1.19.答案:解:∵x2?2x?3<?3(x?1),解得?3<x<x<2}.由0<9?x2<6?2x,解得?3<x<?1},< p="">∴A∩B=(?3,?1).解析:解一元二次不等式,求得A和B,利用两个集合的交集的定义,求出A∩B.本题考查集合的表示方法,两个集合的交集的定义和求法,一元二次不等式的解法,求出A和B,是解题的关键.20.答案:解:(1)设t=2x,当x∈[1,2]时,t∈[2,4];函数f(x)=a?4x?a?2x+1+1?b,(a>0)在区间[1,2]上有最大值9和最小值1即g(t)=at2?2at+1?b在t∈[2,4]时有最大值9和最小值1(a>0);g(t)=at2?2at+1?b开口向上,对称轴方程为t=1,则g(t)在[2,4]上单调递增;g(2)=4a?4a+1?b=1,g(4)=16a?8a+1?b=9;所以a=1,b=0;(2)方程f(x)?k?4x=0在x∈[?1,1]上有解;即4x?2x+1+1=k?4x在x∈[?1,1]上有解;∴k=14x ?22x+1在x∈[?1,1]上有解;设?(x)=14x ?22x+1,令12x=m∈[12,2];所以y=m2?2m+1=(m?1)2,(m∈[12,2]);则0≤m2?2m+1≤1;所以?(x)∈[0,1];故实数k的取值范围[0,1];解析:(1)设t=2x,g(t)=at2?2at+1?b在t∈[2,4]时有最大值9和最小值1(a>0),求二次函数在闭区间上的最值问题;(2)分离参数得k=14x ?22x+1在x∈[?1,1]上有解;即求函数?(x)=14x2x+1在[?1,1]上的值域;本题考查二次型函数的值域问题,考查换元思想,分离参数的思想,属于中档题.21.答案:解:(1)因为f(x)的图象经过点(0,1),对称轴为直线x=1.所以c=1,?b2a=1,即b=?2a,所以f(x)=ax2?2ax+1,又f(x)的值域为[0,+∞)所以(?2a)2?4a=0,解得a=1或a=0(舍去).所求函数f(x)的解析式为f(x)=x2?2x+1.(2)函数g(x)=f(x)+(1?a)x2+2x,由(1)得f(x)=ax2?2ax+1,所以g(x)=x2+2(1?a)x+1,因为函数g(x)在区间[?3,1]上是单调函数,所以a?1≥1或a?1≤?3,得a≥2或a≤?2,即所求实数a的取值范围为(?∞,?2]∪[2,+∞).(3)由函数?(x)=f(x)x =ax2?2ax+1x=ax+1x2a,设1≤x1<x2≤2,< p="">(x1)??(x2)=ax1+1x1?(ax2+1x2)=(x1?x2)(a?1x1x2因为1≤x1<x2≤2,函数?(x)在区间[1,2]上是增函数,< p="">所以?(x1)??(x2)<0,所以a?1x1x2>0,即a>1x1x2对一切1≤x1<x2≤2恒成立,,< p="">所以a≥1,即所求实数a的取值范围为[1,+∞).解析:本题考查二次函数及函数的单调性.(1)由已知得c=1,?b2a=1,即b=?2a,然后利用值域为[0,+∞),得Δ=0,求得a即可求解;(2)利用二次函数的对称轴与区间的关系即可求解;(3)利用单调性的定义即可求解.22.答案:解:对于集合{0,1,2,3},0∈{0,1,2,3},?0∈{0,1,2,3},所以{0,1,2,3}不具有性质P.由题意知{?1,2,3}具有性质P.由?1,2,3可以组成六对有序实数对,分别是(?1,2),(?1,3),(2,3),(2,?1),(3,?1),(3,2).根据集合T的定义一一检验,可知(2,?1),(2,3)是集合T中的元素,所以与{?1,2,3}对应的集合T 是{(2,?1),(2,3)}.解析:【分析】利用性质P的定义判断出具有性质P的集合,利用集合T的定义写出T.</x2≤2恒成立,,<></x2≤2,函数?(x)在区间[1,2]上是增函数,<></x2≤2,<></x<?1},<></x<3)的图象的位置关系如图所示,<></x<></x<></x1<2<x2,<></x2,<></x2,根据韦达定理以及f(1),f(2)的符号,判断x1,x2与1和2的大小可得不等式的解集,再根据区间长度的定义可得,同理可判断m<0的情况.<></x≤0},故选a.<></x<1},<></x<2},<></x<></x<1}<></x<2}<></x≤0}<></x</x<1}<>。
2019年北大附中新高一分班考试数学试题-真题-含详细解析
![2019年北大附中新高一分班考试数学试题-真题-含详细解析](https://img.taocdn.com/s3/m/8f599dea767f5acfa1c7cdf1.png)
2019年北大附中新高一分班考试数学试题-真题一、选择题(本大题共8小题,共24分)1.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A. 200tan70°米B. 200tan70∘米 C. 200sin 70°米 D. 200sin70∘米2.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−1,n),其部分图象如图所示.以下结论错误的是()A. abc>0B. 4ac−b2<0C. 3a+c>0D. 关于x的方程ax2+bx+c=n+1无实数根3.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A. 1个B. 2个C. 3个D. 4个4.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A. 160B. 128C. 80D. 485.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A. √5B. 3√5 C. 2√5 D. 4√526.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度ℎ(cm)与注水时间t(min)的函数图象大致为图中的()A. B.C. D.7.在平面直角坐标系中,点O为坐标原点,抛物线y=x2−2x−3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O′A′B′,且点O′,A′落在抛物线的对称轴上,点B′落在抛物线上,则直线A′B′的表达式为()D. y=x+2A. y=xB. y=x+1C. y=x+128.已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2−2ax上的点,下列命题正确的是()A. 若|x1−1|>|x2−1|,则y1>y2B. 若|x1−1|>|x2−1|,则y1<y2C. 若|x1−1|=|x2−1|,则y1=y2D. 若y1=y2,则x1=x2二、填空题(本大题共8小题,共24分)9.如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.DE的同样长为半径作弧,两弧交于点F.②分别以点D、E为圆心,大于12③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为______.10.如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为______.得DF=1411.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=−4;②若点C(−5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a−b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是______(填写序号).12.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是______.第12题图第13题图13.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=⏜的长为π,则图中阴影部分的面积为______.120°,AB+AC=16,MN14.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A′处,展平后得到折痕BE,同时得到线段BA′,EA′,不再添加其它线段.当图中存在30°角时,AE的长为______厘米.第14题图第15题图15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=______度.16.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是______.(写出所有正确结论的序号)三、计算题(本大题共1小题,共6分)17.某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?四、解答题(本大题共12小题,共46分)18. 如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下: 李阿姨:我记得甲商品进价比乙商品进价每件高50%. 王师傅:甲商品比乙商品的数量多40件. 请你求出乙商品的进价,并帮助他们补全进货单.19. 阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题: 已知实数x 、y 满足3x −y =5①,2x +3y =7②,求x −4y 和7x +5y 的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①−②可得x −4y =−2,由①+②×2可得7x +5y =19.这样的解题思想就是通常所说的“整体思想”. 解决问题:(1)已知二元一次方程组{2x +y =7,x +2y =8,则x −y =______,x +y =______;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x 、y ,定义新运算:x ∗y =ax +by +c ,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3∗5=15,4∗7=28,那么1∗1=______.20.如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=kx(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”(1)当n=1时.①求线段AB所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.21.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG =ABAD=23,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.22.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.23.某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).24.实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有______种不同的结果.25.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)26.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…−2−1012…y…m0−3n−3…(1)根据以上信息,可知抛物线开口向______,对称轴为______;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P′,描出相应的点P′,再把相应的点P′用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>−2)与抛物线及(3)中的点P′所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系______.27.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为______;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2√3,DE=2,点P在AE上,∠ABP=30°,PE=√2,求五边形ABCDE的面积.28.已知直线l1:y=−2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=−2时,l2//l1;(3)E为线段BC上不与端点重合的点,直线l3:y=−2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.答案和解析1.【答案】B【解析】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°−70°=20°,∴∠PTQ=70°,∴tan70°=PQPT,∴PT=PQtan70∘=200tan70∘,即河宽200tan70∘米,故选:B.在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.此题考查了解直角三角形的应用−方向角问题,掌握方向角与正切函数的定义是解题的关键.2.【答案】C【解析】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2−4ac>0,即4ac−b2<0,故B正确;C.∵抛物线的对称轴为直线x=−1,抛物线与x轴的一个交点在(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(−1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B 进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c与直线y=n+1无交点,可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3.【答案】C【解析】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD//BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB=ABBE =612=12,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.4.【答案】A【解析】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.此题考查了规律型:图形的变化类,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.5.【答案】C【解析】解:∵矩形ABCD,∴AD//BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB=√52−32=4,在Rt△ABC中,AC=√42+82=4√5,∴OA =OC =2√5,故选:C .由矩形的性质,折叠轴对称的性质,可求出AF =FC =AE =5,由勾股定理求出AB ,AC ,进而求出OA 即可. 本题考查矩形的性质、折叠轴对称的性质,勾股定理等知识,根据图形直观,求出线段的长是得出答案的前提. 6.【答案】B【解析】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A 、D 一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h 随t 的增大而增大,当水注满小杯后,小杯内水面的高度h 不再变化.故选:B .根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度ℎ(cm)与注水时间t(min)的函数图象.本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.7.【答案】B【解析】解:如图,∵抛物线y =x 2−2x −3与y 轴交于点A ,与x 轴正半轴交于点B ,令y =0,解得x =−1或3,令x =0,求得y =−3,∴A(3,0),B(0,−3),∵抛物线y =x 2−2x −3的对称轴为直线x =−−22×1=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n +3),∵点B′落在抛物线上,∴n +3=16−8−3,解得n =2,∴A′(1,2),B′(4,5),设直线A′B′的表达式为y =kx +b ,∴{k +b =24k +b =5, 解得{k =1b =1∴直线A′B′的表达式为y =x +1,故选:B.求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A′B′的表达式.本题考查了抛物线与x轴的交点,坐标和图形变换−平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.8.【答案】C【解析】解:∵抛物线y=ax2−2ax=a(x−1)2−a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1−1|>|x2−1|,则y1>y2,故选项B错误;当a<0时,若|x1−1|>|x2−1|,则y1<y2,故选项A错误;若|x1−1|=|x2−1|,则y1=y2,故选项C正确;若y1=y2,则|x1−1|=|x2−1|,故选项D错误;故选:C.根据题目中的抛物线和二次函数的性质,利用分类讨论的方法可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查二次函数的性质,命题与定理,解答本题的关键是明确题意,利用二次函数的性质解答.9.【答案】27【解析】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴1×AB×GM=18,2∴4GM=18,∴GM=9,2∴△CBG的面积为:12×BC×GN=12×12×92=27.故答案为:27.过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM的长,进而可得△CBG的面积.本题考查了作图−基本作图、角平分线的性质,解决本题的关键是掌握角平分线的性质.10.【答案】9√3【解析】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4√3,∵四边形ECGF是平行四边形,∴EF//CG,∴△EOD∽△GOC,∴EOGO =DOOC=EDGC,∵DF=14DE,∴DEEF =45,∴EDGC =45,∴EOGO =45,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4√3,∴GO=5√3,∴EG的最小值是9√3,故答案为:9√3.根据题意和平行四边形的性质,可以得到BD和EF的比值,再根据三角形相似和最短距离,即可得到EG的最小值,本题得以解决.本题考查平行四边形的性质、三角形的相似、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】①③【解析】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=−4,故①正确;该抛物线的对称轴为直线x=2+(−4)2=−1,函数图象开口向下,若点C(−5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=−1时,函数取得最大值y=a−b+c,故对于任意实数t,总有at2+bt+c≤a−b+c,即对于任意实数t,总有at2+bt≤a−b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为−3和1或−2和0或−1和−1,故p的值有三个,故④错误;故答案为:①③.根据题目中的抛物线和二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质解答.12.【答案】14t2−14t+1【解析】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,∵AE2+AM2=EM2,∴(2−x)2+t2=x2,解得x=t24+1,∴DE=t24+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=AMAD =t2=FG1,∴FG=t2,∵CG=DE=t24+1,∴CF=t24−t2+1,∴S四边形CDEF =12(CF+DE)×1=14t2−14t+1.故答案为:14t2−14t+1.连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,由勾股定理得出(2−x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.本题考查了矩形的性质,折叠的性质,勾股定理,锐角三角函数,熟练掌握折叠的性质及方程的思想是解题的关键.13.【答案】3(8−√3−π)【解析】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵MN⏜的长为π,∴60πr180=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=√3,∴AM=AN=√3,∴BM+CN=AB+AC−(AM+AN)=16−2√3,∴S阴影=S△OBM+S△OCN−(S扇形MOE+S扇形NOF)=12×3×(BM+CN)−(120π×32360)=32(16−2√3)−3π=24−3√3−3π=3(8−√3−π).故答案为:3(8−√3−π).连接OM、ON,根据半圆分别与AB,AC相切于点M,N.可得OM⊥AB,ON⊥AC,由∠BAC=120°,可得∠MON=60°,得∠MOB+∠NOC=120°,再根据MN⏜的长为π,可得OM=ON=r=3,连接OA,根据Rt△AON中,∠AON=30°,ON=3,可得AM=AN=√3,进而可求图中阴影部分的面积.本题考查了切线的性质、弧长的计算、扇形面积的计算,解决本题的关键是掌握弧长和扇形面积的计算公式.14.【答案】4√33厘米或4√3厘米或8−4√3【解析】解:①当∠ABE=30°时,AE=AB×tan30°=4√33;②当∠AEB=30°时,AE=ABtan30∘=4√33=4√3;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=xsin60∘=2√3x3,∵AF=AE+EF=ABtan30°=4√33,∴x+2√3x3=4√33,∴x=8−4√3,∴AE=8−4√3.故答案为:4√33厘米或4√3厘米或8−4√3厘米.根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.15.【答案】30=120°,【解析】解:正六边形的每个内角的度数为:(6−2)⋅180°6所以∠ABC=120°−90°=30°,故答案为:30.由于六边形花环是用六个全等的直角三角形拼成的,所以这个六边形是正六边形,先算出正六边形每个内角的度数,即可求出∠ABC的度数.本题考查了多边形内角和定理.解题的关键是会计算正六边形的每个内角的度数.16.【答案】①④【解析】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.证明四边形ABCD是平行四边形即可解决问题.本题考查反比例函数的性质,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH−OH=4−3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式y=kx2+1,把点D(2,0)代入,得k=−14,∴该抛物线的函数表达式为:y=−14x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=34,∴N(1,34),∴MN=34,∴S矩形MNFG =MN⋅GM=34×2=32,∴每个B型活动板房的成本是:425+32×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n−500)[100+20(650−n)10]=−2(n−600)2+20000,∵每月最多能生产160个B型活动板房,∴100+20(650−n)10≤160,解得n≥620,∵−2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有增大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.【解析】(1)根据图形和直角坐标系可得点D和点E的坐标,代入y=kx2+m,即可求解;(2)根据M和N的横坐标相等,求出N点坐标,再求出矩形FGMN的面积,即可求解;(3)根据题意得到w关于n的二次函数,根据二次函数的性质即可求解.本题考查了二次函数的应用,解决本题的关键是掌握二次函数的性质.18.【答案】解:设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,依题意,得:7200(1+50%)x −3200x=40,解得:x =40,经检验,x =40是原方程的解,且符合题意,∴(1+50%)x =60,3200x =80,7200(1+50%)x =120. 答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.【解析】设乙商品的进价为x 元/件,则甲商品的进价为(1+50%)x 元/件,根据数量=总价÷单价结合购进的甲商品比乙商品多40件,即可得出关于x 的分式方程,解之经检验后即可得出x 的值,再将其分别代入(1+50%)x ,3200x ,7200(1+50%)x 中即可得出结论. 本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.【答案】−1 5 −11【解析】解:(1){2x +y =7 ①x +2y =8 ②. 由①−②可得:x −y =−1,由13(①+②)可得:x +y =5.故答案为:−1;5.(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元,依题意,得:{20m +3n +2p =32 ①39m +5n +3p =58 ②, 由2×①−②可得m +n +p =6,∴5m +5n +5p =5×6=30.答:购买5支铅笔、5块橡皮、5本日记本共需30元.(3)依题意,得:{3a +5b +c =15 ①4a +7b +c =28 ②, 由3×①−2×②可得:a +b +c =−11,即1∗1=−11.故答案为:−11.(1)利用①−②可得出x −y 的值,利用13(①+②)可得出x +y 的值;(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元”,即可得出关于m ,n ,p 的三元一次方程组,由2×①−②可得除m +n +p 的值,再乘5即可求出结论;(3)根据新运算的定义可得出关于a ,b ,c 的三元一次方程组,由3×①−2×②可得出a +b +c 的值,即1∗1的值.。
2019年重点高中高一新生分班考试数学卷含答案
![2019年重点高中高一新生分班考试数学卷含答案](https://img.taocdn.com/s3/m/7da4cebd9e31433238689324.png)
2019年重点高中高一新生分班考试数学卷班级: 姓名: 成绩: 一.选择题(本大题10小题,每小题3分,共30分) 1. 16的算术平方根是( )A. ±4B.4C.-4D.±22. 2018年广东省经济保持平稳健康发展,国家统计局核定,其实现地区生产总值(CDP)973000000元将数据973000000000用科学记数法表示为( ) A.9.73×1011 B.97.3×1011 C.9.73×1012 D.0.973×1033. 下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B C D 4. 下列计算中,正确的是( )A. 0(5)0-=B. 347x x x +=C. 23246()a b a b -=- D. 1222a a a -∙=5. 若一个多边形的内角和是1080°,则这个多边形的边数为( ) A.6 B.7 C.8 D.106. 在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球摸到绿球的概率为( )A.1B. 14C. 12D. 347. 如图,在△ABC 中,点D,E 分别在边AB,AC 上,下列条件中不能判断△ABC △AED 的是( )A .∠AED=∠B B .∠ADE=∠C C .D .8. 下列一元二次方程中,没有实数根的是( )A.x 2-2x=0B.x 2+4x-1=0C.2x 2-4x+3=0D.3x 2=5x-2 9. 等腰三角形的周长为11cm,一边长为3cm,则另两边长为( )A. 3cm,5cmB. 4cm,4cmC.3cm,5cm 或4cm,4cmD.以上都不对 10.如图,过点A(4、5)分别作x 轴、y 轴的平行线,交直线y=-x+6于B,C 两点,若函数(0)ky x x=>的图象与△ABC 的边有公共点,则A 的取值范围是( ) A. 5≤k ≤20 B. 8≤k ≤20 C. 5≤k ≤8 D. 9≤k ≤20二.填空题(本大題6小题,每小题4分,共24分)11.一组数据-3、2、2、0、2、1的众数是 。
高一新生分班考试数学试卷含答案
![高一新生分班考试数学试卷含答案](https://img.taocdn.com/s3/m/cce1c16af111f18583d05ab3.png)
CB高一新生分班考试数学试卷(含答案)(满分150分,考试时间120分钟)一、选择题(每题5分,共40分) 1.化简=-2aa ( )A .aB .a -C .aD .2a2.分式1||22---x x x 的值为0,则x 的值为 ( )A .21或-B .2C .1-D .2-3.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点。
若EF =2,BC =5,CD =3, 则tan C 等于 ( )A .43 B .35 C .34 D .45 4.如图,P A 、PB 是⊙O 切线,A 、B 为切点,AC 是直径,∠P = 40°,则∠BAC =( )A .040 B .080 C .020 D .0105.在两个袋内,分别装着写有1、2、3、4四个数字的4张卡片,今从每个袋中各任取一张卡片,则所取两卡片上数字之积为偶数的概率是 ( )A .21 B .165 C .167 D .436.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A . 6B.4C .5D . 37.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动B CD CB A 路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是 ( )8.若直角坐标系内两点P 、Q 满足条件①P 、Q 都在函数y 的图象上②P 、Q 关于原点对称,则称点对(P ,Q )是函数y 的一个“友好点对”(点对(P ,Q )与(Q ,P )看作同一个“友好点对”)。
已知函数⎪⎩⎪⎨⎧>≤++=02101422x xx x x y ,,,则函数y 的“友好点对”有( )个A .0 B.1 C. 2 D.3注意:请将选择题的答案填入表格中。
2019年北京市第二次普通高中学业水平合格性考试数学试题(解析版)
![2019年北京市第二次普通高中学业水平合格性考试数学试题(解析版)](https://img.taocdn.com/s3/m/40bfee6aa300a6c30d229f4b.png)
2019年北京市第二次普通高中学业水平合格性考试数学试题一、单选题1.已知集合{}1,2M =,{}2,3N =,那么M N ⋂等于( ) A.φ B.{}1C.{}2D.{}3【答案】C【解析】根据交集运算直接写出结果. 【详解】因为{}1,2M =,{}2,3N =,所以{}2M N =,故选:C. 【点睛】本题考查集合的交集运算,难度较易.2.已知向量()2,1a =r,()0,2b =- ,那么a b + 等于( )A.()2,3B.()21,C.()20,D.()2,1-【答案】D【解析】根据向量加法的坐标运算直接写出结果. 【详解】因为()2,1a =r,()0,2b =-,所以()()()20,122,1a b +=++-=-,故选:D. 【点睛】本题考查向量加法的坐标表示,难度较易.3.2019年中国北京世界园艺博览会于4月29日至10月7日在北京市延庆区举办.如果小明从中国馆、国际馆、植物馆、生活体验馆四个展馆中随机选择一个进行参观,那么他选择的展馆恰为中国馆的概率为( ) A.12B.14C.18D.116【答案】B【解析】根据随机事件的概率计算完成求解. 【详解】可能出现的选择有4种,满足条件要求的种数为1种,则14P =, 故选:B. 【点睛】本题考查利用古典概型完成随机事件的概率的求解,难度较易.古典概型的概率计算公式:(目标事件的数量)÷(基本事件的总数). 4.圆心为()2,3A -,半径等于5的圆的方程是( ) A.22(2)(3)5x y -++= B.22(2)(3)5x y ++-= C.22(2)(3)25x y -++= D.22(2)(3)25x y ++-=【答案】C【解析】对比圆的标准方程:()()222x a y b r -+-=进行判断即可. 【详解】因为圆心(),a b 即为()2,3-,半径=5r ,所以圆的标准方程为:()()222325x y -++=,故选:C. 【点睛】本题考查根据圆心和半径写出圆的标准方程,难度较易.5.已知向量()2,1a =-r,()1,b m =,且a b ⊥,那么m 等于( )A.0B.1C.2D.3【答案】C【解析】根据向量垂直对应的坐标关系计算出m 的值. 【详解】因为a b ⊥,所以()2110m -⨯+⨯=,所以2m =, 故选:C. 【点睛】本题考查向量垂直对应的坐标表示,难度较易.已知()11,a x y =r ,()22,b x y =r,若a b ⊥,则有:12120x x y y +=.6.直线30x y +-=与直线10x y -+=的交点坐标是( ) A.()2,2 B.()2,2-C.()1,3-D.()1,2【答案】D【解析】联立二元一次方程组求解交点坐标. 【详解】据题意有:31x y x y +=⎧⎨-=-⎩,解得:12x y =⎧⎨=⎩,所以交点坐标为()1,2,故选:D. 【点睛】本题考查利用直线方程求解直线交点坐标,难度较易.直线的方程可认为是二元一次方程,两直线的交点坐标即为二元一次方程组的解对应的坐标形式.7.已知平面向量,a b 满足1a b ==r r,且a 与b 夹角为60°,那么a b ⋅等于( )A.14B.13C.12D.1【答案】C【解析】根据数量积公式完成计算. 【详解】因为11cos 1122a b a b θ⋅=⋅⋅=⨯⨯=, 故选:C. 【点睛】本题考查向量数量积的计算,难度较易. 8.函数()()lg 1f x x =-的定义域为( ) A.R B.()1,+∞C.()0,∞+D.(),1-∞【答案】B【解析】根据真数大于零计算出的x 范围即为定义域. 【详解】因为10x ->,所以1x >,即定义域为()1,+∞, 故选:B. 【点睛】本题考查对数型函数的定义域,难度较易.对数型函数计算定义域,注意对应的真数大于零.9.已知点()1,1A -,()2,4B ,那么直线AB 的斜率为( )A.1B.2C.3D.4【答案】A【解析】根据斜率的计算公式直接计算出斜率. 【详解】因为()1,1A -,()2,4B ,所以()41121AB k -==--,故选:A. 【点睛】本题考查根据两点坐标计算出两点构成的直线的斜率,难度较易.已知()11,A x y ,()22,B x y ,则2121AB y y k x x -=-.10.为庆祝中华人民共和国成立70周年,某学院欲从A ,B 两个专业共600名学生中,采用分层抽样的方法抽取120人组成国庆宣传团队,已知A 专业有200名学生,那么在该专业抽取的学生人数为( ) A.20 B.30C.40D.50【答案】C【解析】先计算出抽样比,然后根据(A 专业人数)乘以(抽样比)即可得到应抽取的人数. 【详解】据题意可知:抽样比为12016005=,则A 专业抽取人数为1200405⨯=人, 故选:C. 【点睛】本题考查分层抽样的应用,难度较易.若要计算分层抽样的每一层应抽取数量,先要计算抽样比,利用每一层数量乘以抽样比得到该层应抽取的数量. 11.()cos αβ-等于( ) A.cos cos sin sin αβαβ+ B.cos cos sin sin αβαβ- C.sin cos cos sin αβαβ+ D.sin cos cos sin αβαβ-【答案】A【解析】根据两角差的余弦公式直接得到结果. 【详解】因为()cos cos cos sin sin αβαβαβ-=+, 故选:A. 【点睛】本题考查两角差的余弦公式的记忆,难度较易.12.已知函数()f x 是定义域为R 的奇函数,且()12f -=-,那么()1f 的值为( ) A.0 B.12C.1D.2【答案】D【解析】根据奇函数找到()1f 与()1f -的关系即可计算出()1f 的值. 【详解】因为()f x 是定义域为R 的奇函数,所以()()112f f -=-=-,所以()12f =, 故选:D. 【点睛】本题考查根据奇函数的特性求值,难度较易.若()f x 是定义域内的奇函数,则有:()()f x f x -=-.13.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,如果3AB =,1AC =,12AA =,那么直三棱柱111ABC A B C -的体积为( )A.2B.3C.4D.6【答案】B【解析】根据棱柱的体积公式求解直三棱柱的体积. 【详解】因为AB AC ⊥,所以322ABCAB AC S ⋅==; 所以11113232ABC A B C ABC V S AA -=⨯=⨯=,故选:B.【点睛】本题考查棱柱的体积计算公式,难度较易.棱柱体积计算公式:V S h =⋅,其中S 是棱柱的底面积,h 是棱柱的高. 14.13sin6π的值为( )A.12【答案】A 【解析】先将136π变形为[]2,,0,2k k Z απαπ+∈∈,然后根据诱导公式一计算结果. 【详解】 因为13266πππ=+,所以131sin sin sin 66226ππππ⎛⎫=== ⎪+⎝⎭, 故选:A. 【点睛】本题考查诱导公式的运用,难度较易.注意诱导公式一:()()sin 2sin k k Z απα+=∈,()()cos 2cos k k Z απα+=∈.15.函数()3f x x x =-的零点的个数是( )A.0B.1C.2D.3【答案】D【解析】将()f x 因式分解后即可判断零点的个数. 【详解】因为()()()311f x x x x x x =-=+-,所以令()0f x =则有:1x =-或0或1,即零点有3个, 故选:D. 【点睛】本题考查函数的零点个数,难度较易.对于可直接进行因式分解的函数,可通过因式分解判断每个因式为零的情况,然后确定零点个数. 16.要得到函数2sin 3y x π⎛⎫=+ ⎪⎝⎭的图象.只需将函数2sin y x =的图象( ) A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位 【答案】A【解析】根据三角函数的图像变换中的相位变换确定结果. 【详解】根据相位变换的左加右减有:2sin y x =向左移动3π个单位得到2sin 3y x π⎛⎫=+ ⎪⎝⎭,故选:A. 【点睛】本题考查三角函数的图象变换中的相位变换,难度较易.相位变换时注意一个原则:左加右减.17.直线l 经过点()1,1A ,且与直线230x y --=平行,则l 的方程为( ) A.21y x =+ B.112y x =+ C.112y x =-- D.21y x =-【答案】D【解析】根据平行关系设出直线的一般式方程,代入坐标求解出一般式方程并转化为斜截式方程. 【详解】设l 方程为:()203x y C C -+=≠-,代入()1,1A 有:210C -+=,所以1C =-, 所以l 方程为:210x y --=,即21y x =-, 故选:D. 【点睛】本题考查根据直线间的平行关系求解直线的方程,难度较易.已知直线方程为:10Ax By C ++=,与其平行的直线方程可设为:()2120Ax By C C C ++=≠.18.如果函数()log a f x x =(0a >且1a ≠)的图象经过点()4,2,那么a 的值为( ) A.14B.12C.2D.4【答案】C【解析】将点代入函数解析式中计算出a 的值即可. 【详解】因为()log a f x x =图象经过点()4,2,所以log 42a =,所以24a =且0a >且1a ≠,解得:2a =, 故选:C. 【点睛】本题考查根据对数函数图象所过点求解函数解析式,难度较易.通过函数图象所过点求解函数解析式的问题,可考虑直接将点代入函数解析式中求解参数值. 19.已知0.32=a ,32b =,12c -=,那么a ,b ,c 的大小关系为( ) A.a b c >> B.b a c >> C.c a b >> D.c b a >>【答案】B【解析】根据指数函数单调性比较大小. 【详解】因为2xy =在R 上是增函数,又10.33-<<,所以10.33222-<<,所以b a c >>, 故选:B. 【点睛】本题考查利用指数函数单调性比较指数幂的大小,难度较易.对于指数函数()xf x a=(0a >且1a ≠):若1a >,则()xf x a =是R 上增函数;若01a <<,则()xf x a =是R 上减函数.20.函数()sin cos f x x x =的最小正周期是( ) A.4πB.2π C.πD.2π【答案】C【解析】利用二倍角公式先化简,然后根据周期计算公式计算最小正周期. 【详解】因为()1sin cos sin 22f x x x x ==,所以222T πππω===, 故选:C. 【点睛】本题考查二倍角公式、周期公式的应用,难度较易.常见的二倍角公式有:2222sin 22sin cos ,cos 2cos sin 2cos 112sin x x x x x x x x ==-=-=-.21.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,如果30A =︒,45B =︒,2b =,那么a 等于( )D.3【答案】A【解析】根据正弦定理得到边角对应关系,然后计算a 的值. 【详解】由正弦定理可知:sin sin a b A B=,所以2sin 30sin 45a =︒︒,解得:a =故选:A. 【点睛】本题考查利用正弦定理解三角形,难度较易.正弦定理对应的等式:2sin sin sin a b cR A B C===(R 是三角形外接圆的半径). 22.已知4sin 5α=,0,2πα⎛⎫∈ ⎪⎝⎭,那么()cos πα-等于( ) A.45-B.35-C.35D.45【答案】B【解析】先根据诱导公式将待求式子化简,然后根据平方和为1去计算相应结果. 【详解】因为()cos cos παα-=-;又因为22sin cos 1αα+=且0,2πα⎛⎫∈ ⎪⎝⎭,所以3cos 5α==, 所以()3cos 5πα-=-, 故选:B. 【点睛】本题考查根据诱导公式求解给值求值问题,难度较易.利用平方和为1去计算相应三角函数值时,注意根据角度的范围去判断相应的三角形函数值的正负号.23.已知圆C :2260x y x +-=与直线l :10x y -+=,那么圆心C 到直线l 的距离为( )A. B.D.1【答案】B【解析】先确定圆心,根据点到直线的距离公式求解圆心到直线的距离.【详解】圆的方程可变形为:()2239x y -+=,所以圆心C 为()3,0,所以圆心C 到l 的距离为:d ==故选:B. 【点睛】本题考查圆心的确定以及点到直线的距离公式,难度较易.圆的标准方程为:()()()2220x a y b r r -+-=>,其中圆心为(),a b ,半径为r .24.已知幂函数()nf x x =,它的图象过点()2,8,那么12f ⎛⎫ ⎪⎝⎭的值为( ) A.18B.14C.12D.1【答案】A【解析】先通过函数图象过点()2,8,计算出n 的值,然后再计算12f ⎛⎫⎪⎝⎭的值. 【详解】因为()nf x x =过点()2,8,所以28n =,所以3n =,所以()3f x x =,则3111228f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 故选:A. 【点睛】本题考查幂函数的解析式求解以及根据幂函数解析式求值,难度较易.25.生态环境部环境规划院研究表明,京津冀区域PM2.5主要来自工业和民用污染,其中冬季民用污染占比超过50%,最主要的源头是散煤燃烧.因此,推进煤改清洁能源成为三地协同治理大气污染的重要举措.2018年是北京市压减燃煤收官年,450个平原村完成了煤改清洁能源,全市集中供热清洁化比例达到99%以上,平原地区基本实现“无煤化”,为了解“煤改气”后居民在采暖季里每月用气量的情况,现从某村随机抽取100户居民进行调查,发现每户的用气量都在150立方米到450立方米之间,得到如图所示的频率分布直方图.在这些用户中,用气量在区间[)300,350的户数为( )A.5B.15C.20D.25【答案】D【解析】计算出[)300,350的频率,用抽取的总数量乘以对应的频率即可得到对应段的户数. 【详解】根据频率分布直方图可知:[)300,350的频率为0.005500.25⨯=,所以用气量在[)300,350的户数为:0.2510025⨯=户,故选:D. 【点睛】本题考查根据频率分布直方图完成相应计算,难度较易,观察频率分布直方图时,注意纵轴并不表示频率,而是频率除以组距,因此每一段区间对应的小长方形的面积即为该段的频率.26.在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,如果60A =︒,3b =,ABC ∆的面积S =a 等于( )B.7D.17【答案】A【解析】先根据面积公式计算出c 的值,然后利用60A =︒以及余弦定理求解a 的值. 【详解】因为1sin 242S bc A ===,所以2c =;又因为222cos 2b c a A bc+-=,所以2194212a +-=,所以a =故选:A. 【点睛】本题考查三角形面积公式的应用以及利用余弦定理解三角形,难度较易.解三角形时常用的面积公式有三个,解答问题时要根据题意进行选择.27.设m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列四个命题: ①如果//m α,n ⊂α,那么//m n ;②如果m α⊥,n α⊥,那么//m n ; ③如果//αβ,m α⊂,那么//m β;④如果αβ⊥,m α⊂,那么m β⊥. 其中正确的命题是( ) A.①② B.②③C.③④D.①④【答案】B【解析】通过判定定理、性质定理、定义、举例的方式逐项分析. 【详解】①如图所示长方体,11A C ∥平面ABCD ,BD ⊂平面ABCD ,但是11A C 不平行BD ,故错误;②根据垂直于同一平面的两条直线互相平行,可知正确;③根据两个平面平行时,其中一个平面内的任意直线平行于另一个平面,可知正确;④如图所示长方体,平面ABCD ⊥平面11BCC B 且1BC ⊂平面11BCC B ,但此时1BC 显然不垂直于平面ABCD ,故错误;综上:②③正确. 故选:B. 【点睛】本题考查符号语言下的空间中的点、线、面的位置关系的命题的真假判断,难度一般.处理符号语言表示的命题真假的问题,常用的方法有:根据判定、性质定理直接判断;根据定义判断;根据示意图、举例判断.二、解答题28.某同学解答一道三角函数题:“已知函数()()2sin 22f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭,且()0f =(Ⅰ)求ϕ的值;(Ⅱ)求函数()f x 在区间5,63ππ⎡⎤-⎢⎥⎣⎦上的最大值及相应x 的值.” 该同学解答过程如下:解答:(Ⅰ)因为()02sin f ϕ==sin 2ϕ=.因为22ππϕ-<<,所以3πϕ=.(Ⅱ)因为563x ππ-≤≤,所以2233x πππ-≤+≤.令3t x π=+,则223t ππ-≤≤.画出函数2sin y t =在2,23ππ⎡⎤-⎢⎥⎣⎦上的图象, 由图象可知,当2t π=,即6x π=时,函数()f x 的最大值为()max 2f x =.下表列出了某些数学知识:请写出该同学在解答过程中用到了此表中的哪些数学知识.【答案】任意角的概念,弧度制的概念,任意角的正弦的定义,函数sin y x =的图象,三角函数的周期性,正弦函数在区间[]0,2π上的性质,参数A ,ω,ϕ对函数()sin y A ωx φ=+图象变化的影响.【解析】根据解答过程逐步推导所用的数学知识. 【详解】 首先22ππϕ-<<,这里出现了负角和弧度表示角,涉及的是任意角的概念和弧度制的概念;由sin ϕ=ϕ的范围解出3πϕ=,这里涉及的是任意角的正弦的定义;解题时所画的图象涉及的是函数sin y x =的图象;作出图象后可根据周期性以及单调性计算出最大值,这里涉及的是三角函数的周期性,正弦函数在区间[]0,2π上的性质;用换元法构造正弦函数的图象其实利用的是平移的思想,这里涉及的是参数A ,ω,ϕ对函数()sin y A ωx φ=+图象变化的影响. 【点睛】本题考查三角函数章节内容的综合应用,难度一般.由解答的过程分析其中涉及的知识点,这种题型比较灵活,需要注意到每一步是根据什么得到的,这就要保证对每一块的知识点都很熟悉.29.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,点D ,E ,F 分别为PC ,AB ,AC 的中点.(Ⅰ)求证://BC 平面DEF ; (Ⅱ)求证:DF BC ⊥.阅读下面给出的解答过程及思路分析.解答:(Ⅰ)证明:在ABC ∆中,因为E ,F 分别为AB ,AC 的中点,所以①. 因为BC ⊄平面DEF ,EF ⊂平面DEF ,所以//BC 平面DEF . (Ⅱ)证明:因为PA ⊥平面ABC ,BC ⊂平面ABC ,所以②. 因为D ,F 分别为PC ,AC 的中点,所以//DF PA .所以DF BC ⊥. 思路分析:第(Ⅰ)问是先证③,再证“线面平行”; 第(Ⅱ)问是先证④,再证⑤,最后证“线线垂直”.以上证明过程及思路分析中,设置了①~⑤五个空格,如下的表格中为每个空格给出了三个选项,其中只有一个正确,请选出你认为正确的选项,并填写在答题卡的指定位置.【答案】①A ;②B ;③C ;④A ;⑤B .【解析】①:由中位线分析;②线面垂直的性质分析;③由线线推导线面;④由线面垂直推导线线垂直;⑤由线线平行推导线线垂直.【详解】①因为EF 是中位线,所以//EF BC ,故选A ;②PA ⊥平面ABC ,BC ⊂平面ABC ,可通过线面垂直得到线线垂直,故选B ;③通过中位线,先证线线平行,再证线面平行,故选C ;④根据PA BC ⊥可知:先证明线线垂直,故选A ;⑤由//DF PA 可知:再证线线平行,故选B. 【点睛】本题考查线线、线面平行以及线线、线面垂直的证明和理解,难度较易.证明线线平行多数情况可根据中位线或者证明平行四边形来解决问题,有时候也可以根据线面平行的性质定理去证明线线平行.30.某同学解答一道解析几何题:“已知直线l :24y x =+与x 轴的交点为A ,圆O :()2220x y r r +=>经过点A .(Ⅰ)求r 的值;(Ⅱ)若点B 为圆O 上一点,且直线AB 垂直于直线l ,求AB .” 该同学解答过程如下:解答:(Ⅰ)令0y =,即240x +=,解得2x =-,所以点A 的坐标为()2,0-. 因为圆O :()2220x y rr +=>经过点A ,所以2r =.(Ⅱ)因为AB l ⊥.所以直线AB 的斜率为2-.所以直线AB 的方程为()022y x -=-+,即24y x =--. 代入224x y +=消去y 整理得2516120x x ++=, 解得12x =-,265x =-.当265x =-时,285y =-.所以点B 的坐标为68,55⎛⎫-- ⎪⎝⎭.所以||AB ==指出上述解答过程中的错误之处,并写出正确的解答过程. 【答案】直线AB 的斜率为2-不对,见解析【解析】根据:两直线垂直(直线斜率都存在),对应的直线斜率乘积为1-,判断出AB 对应的直线方程的斜率错误. 【详解】因为AB l ⊥,所以直线AB 的解率为12.所以直线AB 的方程为()1022y x -=-+,即22x y =--. 代入224x y +=消去x 整理得2580y y +=,解得10y =,285y =-. 当285y =-时,265x =.所以B 的坐标为68,55⎛⎫- ⎪⎝⎭.所以||AB ==.【点睛】本题考查直线与圆的综合应用以及两直线垂直时对应的斜率关系的判断,难度一般.当两条直线12l l 、 的斜率都存在且为12k k 、时,若12l l ⊥,则有121k k ?-.31.土壤重金属污染已经成为快速工业化和经济高速增长地区的一个严重问题,污染土壤中的某些重金属易被农作物吸收,并转入食物链影响大众健康.A ,B 两种重金属作为潜在的致癌物质,应引起特别关注.某中学科技小组对由A ,B 两种重金属组成的1000克混合物进行研究,测得其体积为100立方厘米(不考虑物理及化学变化),已知重金属A 的密度大于311g /cm ,小于312g /cm ,重金属B 的密度为38.65g /cm .试计算此混合物中重金属A 的克数的范围.【答案】大于3948367克,小于4363147克. 【解析】根据题意设未知数x y 、,根据条件构建新的方程从而找到y 与x 的关系,利用函数的单调性来分析混合物中重金属A 的克数的范围. 【详解】设重金属A 的密度为3g /cm x ,此混合物中含重金属A 为y 克. 由题意可知,重金属B 为()1000y -克,且10001008.65y y x -+=.解得()13511128.65xy x x =<<-.因为1358.6513518.658.65x y x x ⎛⎫==+ ⎪--⎝⎭,所以当8.65x >时,y 随x 的增大而减小,因为1112x <<, 所以8.658.658.65135113511351128.658.65118.65y x ⎛⎫⎛⎫⎛⎫⨯+<=+<⨯+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.解得39434836316747y <<.故此混合物中重金属A 的克数的范围是大于3948367克,小于43 63147克.【点睛】本题考查函数的实际应用,难度一般.首先对于未给出函数的实际问题,第一步需要设未知数,第二步需要根据条件所给等量关系构建新函数(注意定义域),第三步就是根据函数知识求解相应问题.。
区高一新生入学分班考试数学试题及答案
![区高一新生入学分班考试数学试题及答案](https://img.taocdn.com/s3/m/18d3306a3a3567ec102de2bd960590c69ec3d881.png)
区高一新生入学分班考试数学试题及答案高一新生入学分班考试数学试题总分:150分,时长:120分钟第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列运算正确的是()。
A。
a·a=aB。
a÷a4=a2C。
a3+a3=2a6D。
(a3)2=a62.一元二次方程2x2-7x+k=0的一个根是x1=2,则另一个根和k的值是()A。
x2=1,k=4B。
x2=-1,k=-4C。
x2=2/3,k=6D。
x2=-2/3,k=-63.如果关于x的一元二次方程x-kx+2=0中,k是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率P=()A。
2/3B。
1/2C。
1/3D。
1/64.二次函数y=-x2-4x+2的顶点坐标、对称轴分别是()A。
(-2,6),x=-2B。
(2,6),x=2C。
(2,-6),x=-2D。
(-2,-6),x=25.已知关于x的方程5x-4+a=0无解,4x-3+b=0有两个解,3x-2+c=0只有一个解,则化简a-c+c-b-a-b的结果是()A。
2aB。
2bC。
2cD。
06.在物理实验课上,XXX用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()见原图)7.下列图中阴影部分的面积与算式|3/1|+(4/2)+2-1的结果相同的是(见原图)8.已知四边形S1的两条对角线相等,但不垂直,顺次连结S1各边中点得四边形S2,顺次连结S2各边中点得四边形S3,以此类推,则S2006为()A。
是矩形但不是菱形;B。
是菱形但不是矩形;C。
既是菱形又是矩形;D。
既非矩形又非菱形。
9.如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β。
2019年重点高中高一新生分班考试数学卷含答案
![2019年重点高中高一新生分班考试数学卷含答案](https://img.taocdn.com/s3/m/ebd88206e518964bcf847c83.png)
2019年重点高中高一新生分班考试数学卷一.选择题(共12小题,满分48分,每小题4分)1.﹣的倒数是( )A .B .2C .﹣D .﹣22.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是( )A .B .C .D .3.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )A .4.995×1011B .49.95×1010C .0.4995×1011D .4.995×1010 4.下列运算正确的是( )A .5ab ﹣4ab =4B . +=C .a 6÷a 2=a 4D .(a 2b )3=a 5b 35.在下列计算中,正确的是( )A .b 3•b 3=b 6B .x 4•x 4=x 16C .(﹣2x 2)2=﹣4x 4D .3x 2•4x 2=12x 26.下列各数中,能使有意义的是( ) A .0 B .2 C .4 D .6 7.化简(a ﹣1)÷(﹣1)•a 的结果是( )A .﹣a 2B .1C .a 2D .﹣18.小明在解方程x 2﹣4x ﹣15=0时,他是这样求解的:移项得x 2﹣4x =15,两边同时加4得x 2﹣4x +4=19,∴(x ﹣2)2=19,∴x ﹣2=±,∴x ﹣2=±,∴x 1=2+,x 2=2﹣,这种解方程的方法称为()A.待定系数法B.配方法C.公式法D.因式分解法9.如图,AB是圆锥的母线,BC为底面直径,已知BC=6cm,圆锥的侧面积为15πcm2,则sin∠ABC 的值为()A.B.C.D.10.已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6B.8C.10D.8或1011.用棋子摆出下列一组“口”字,按照这种方法摆下去,则第n个“口”字需要用棋子()A.(4n﹣4)枚B.4n枚C.(4n+4)枚D.n2枚12.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是()A.50(1+x)2=182B.50+50(1+x)2=182C.50+50(1+x)+50(1+2x)=182D.50+50(1+x)+50(1+x)2=182二.填空题(共6小题,满分24分,每小题4分)13.(π﹣3.14)0+tan60°=.14.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是.15.在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为.16.关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是.17.如图,在菱形ABCD中,AE⊥BC,E为垂足,若cos B=,EC=2,P是AB边上的一个动点,则线段PE的长度的最小值是.18.设a1,a2,a3……是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数).已知a1=1,4a n=(a n+1﹣1)2﹣(a n﹣1)2,则a2018=.三.解答题(共7小题,满分78分)19.(8分)(1)计算:+(π﹣3)0|+2cos45°.(2)先化简,再求值:÷,其中a=﹣2.20.(10分)(1)计算:|﹣2|﹣4sin45°+(3﹣π)0﹣()﹣2;(2)解不等式组:,并在数轴上表示它的解集.21.(10分)某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.22.(12分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=100千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地要走多少千米?(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)23.(12分)阅读解答:题目:已知方程x2+3x+1=0的两根为a,b,求+的值.解:①∵△=b2﹣4ac=32﹣4×1×1=5>0∴a≠b②由一元二次方程根与系数关系得:a+b=﹣3,ab=1;③∴+=+===﹣3问题:上面的解题过程是否正确?若不正确,指出错在哪一步?写出正确的解题过程.24.(12分)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?25.(14分)为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】根据乘积为1的两个数互为倒数,直接解答即可.【解答】解:∵﹣×(﹣2)=1,∴﹣的倒数是﹣2,故选:D.【点评】本题主要考查倒数的定义,解决此类题目时,只要找到一个数与这个数的积为1,那么此数就是这个数的倒数,特别要注意:正数的倒数也一定是正数,负数的倒数也一定是负数.2.【分析】俯视图就是从物体的上面看物体,从而得到的图形.【解答】解:由立体图形可得其俯视图为:.故选:C.【点评】此题主要考查了简单组合体的三视图,正确把握三视图的观察角度是解题关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将499.5亿用科学记数法表示为:4.995×1010.故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】由合并同类项得出选项A错误;由分式的加法法则得出选项B错误;由同底数幂的除法法则得出选项C正确;由积的乘方法则和幂的乘方法则得出选项D错误.【解答】解:∵5ab﹣4ab=ab,∴选项A错误;∵=,∴选项B错误;∵a6÷a2=a4,∴选项C正确;∵(a2b)3=a6b3,∴选项D错误.【点评】本题考查了分式的加减法法则、合并同类项、同底数幂的除法法则、积的乘方法则和幂的乘方法则;熟练掌握有关法则是解决问题的关键.5.【分析】根据单项式乘单项式、同底数幂的乘法和积的乘方进行解答.【解答】解:A、b3•b3=b6,正确;B、x4•x4=x8,错误;C、(﹣2x2)2=4x4,错误;D、3x2•4x2=12x4,错误;故选:A.【点评】此题考查单项式乘单项式、同底数幂的乘法和积的乘方,关键是根据单项式乘单项式、同底数幂的乘法和积的乘方法则解答.6.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:若有意义,则x﹣5≥0,所以x≥5,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.7.【分析】根据分式的混合运算顺序和运算法则计算可得.【解答】解:原式=(a﹣1)÷•a=(a﹣1)••a=﹣a2,故选:A.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.8.【分析】根据配方法解方程的步骤即可得.【解答】解:根据题意知这种解方程的方法称为配方法,故选:B.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法是解题的关键.9.【分析】先根据扇形的面积公式S=L•R求出母线长,再根据锐角三角函数的定义解答即可.【解答】解:设圆锥的母线长为R,由题意得15π=π×3×R,∴圆锥的高为4,∴sin∠ABC==,故选:C.【点评】本题考查圆锥侧面积公式的运用,注意一个角的正弦值等于这个角的对边与斜边之比.10.【分析】先利用一元二次方程解的定义把x=2代入方程x2﹣(m+4)x+4m=0得m=2,则方程化为x2﹣6x+8=0,然后解方程后利用三角形三边的关系确定三角形的三边,最后就是三角形的周长.【解答】解:把x=2代入方程x2﹣(m+4)x+4m=0得4﹣2(m+4)+4m=0,解得m=2,方程化为x2﹣6x+8=0,解得x1=4,x2=2,因为2+2=4,所以三角形三边为4、4、2,所以△ABC的周长为10.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.11.【分析】首先根据图形得到规律是:每增加一个数就增加四个棋子,然后根据规律解题即可.【解答】解:n=1时,棋子个数为4=1×4;n=2时,棋子个数为8=2×4;n=3时,棋子个数为12=3×4;…;n=n时,棋子个数为n×4=4n.故选:B.【点评】本题考查了图形的变化类问题,主要培养学生的观察能力和空间想象能力,找出其中的规律是解题的关键.12.【分析】设该厂八、九月份平均每月生产零件的增长率均为x,根据该机械厂七月份及整个第三季度生产零件的数量,即可得出关于x的一元二次方程,此题得解.【解答】解:设该厂八、九月份平均每月生产零件的增长率均为x,根据题意得:50+50(1+x)+50(1+x)2=182.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共6小题,满分24分,每小题4分)13.【分析】直接利用零指数幂的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式=1+.故答案为:1+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.14.【分析】根据正方体的展开图面的特点,两个面隔一个面是对面,可得答案.【解答】解:正方体中与“建”字所在的面相对的面上标的字是棱.故答案为:棱.【点评】本题考查了正方体相对面上的文字,正方体展开图的面中,两个面相隔一个面,这两隔面是对面.15.【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出△ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出结论.【解答】解:∵关于x的方程x2﹣4x+b=0有两个相等的实数根,∴△=16﹣4b=0,∴AC=b=4,∵BC=2,AB=2,∴BC2+AB2=AC2,∴△ABC是直角三角形,AC是斜边,∴AC边上的中线长=AC=2;故答案为:2.【点评】本题考查了根的判别式,勾股定理的逆定理,直角三角形斜边上的中线性质;证明△ABC 是直角三角形是解决问题的关键.16.【分析】若一元二次方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为0.【解答】解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,∴△=4﹣8(m﹣5)≥0,且m﹣5≠0,解得m≤5.5,且m≠5,则m的最大整数解是m=4.故答案为:m=4.【点评】考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.【分析】设菱形ABCD的边长为x,则AB=BC=x,又EC=2,所以BE=x﹣2,解直角△ABE 即可求得x的值,即可求得BE、AE的值,根据AB、PE的值和△ABE的面积,即可求得PE的最小值.【解答】解:设菱形ABCD的边长为x,则AB=BC=x,又EC=2,所以BE=x﹣2,因为AE⊥BC于E,所以在Rt△ABE中,cos B=,又cos B=,于是,解得x=10,即AB=10.所以易求BE=8,AE=6,当EP⊥AB时,PE取得最小值.故由三角形面积公式有:AB•PE=BE•AE,求得PE的最小值为4.8.故答案为4.8.【点评】本题考查了余弦函数在直角三角形中的运用、三角形面积的计算和最小值的求值问题,求PE的值是解题的关键.18.【分析】由4a n=(a n+1﹣1)2﹣(a n﹣1)2,可得(a n+1﹣1)2=(a n﹣1)2+4a n=(a n+1)2,根据a1,a2,a3……是一列正整数,得出a n+1=a n+2,根据a1=1,分别求出a2=3,a3=5,a4=7,a5=9,进而发现规律a n=2n﹣1,即可求出a2018=4035.【解答】解:∵4a n=(a n+1﹣1)2﹣(a n﹣1)2,∴(a n+1﹣1)2=(a n﹣1)2+4a n=(a n+1)2,∵a1,a2,a3……是一列正整数,∴a n+1﹣1=a n+1,∴a n+1=a n+2,∵a1=1,∴a2=3,a3=5,a4=7,a5=9,…,∴a n=2n﹣1,∴a2018=4035.故答案为4035.【点评】本题是一道找规律的题目,要求学生通过计算,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出式子a n+1=a n+2.三.解答题(共7小题,满分78分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=﹣4+1+2﹣2+=﹣1﹣;(2)原式=•=,∵a=﹣2,∴原式==﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.【分析】(1)先计算绝对值、代入三角函数值、计算零指数幂和负整数指数幂,再依次计算乘法和加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=2﹣4×+1﹣9=2﹣2﹣8=﹣8;(2)解不等式x﹣3(x﹣2)≥4,得:x≤1,解不等式<,得:x>﹣1,则不等式组的解集为﹣1<x≤1,将解集表示在数轴上如下:【点评】本题考查的是实数的混合运算与解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【分析】(1)设第一次购书的进价为x元/本,根据“第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本”列出方程,求出方程的解即可得到结果;(2)根据题意列出关于m与n的方程,由m与n为正整数,且n的范围确定出m与n的值即可.【解答】解:(1)设第一次购书的进价为x元/本,根据题意得:+100=,解得:x=5,经检验x=5是分式方程的解,且符合题意,∴15000÷(5×1.2)=2500(本),则第一次购书的进价为5元/本,且第二次买了2500本;(2)第二次购书的进价为5×1.2=6(元),根据题意得:2000×(7﹣6)+(2500﹣2000)×(﹣6)=100m,整理得:7n=2m+20,即2m=7n﹣20,∴m=,∵m,n为正整数,且1≤n≤9,∴当n=4时,m=4;当n=6时,m=11;当n=8时,m=18.【点评】此题考查了分式方程的应用,以及二元一次方程的应用,找出题中的等量关系是解本题的关键.22.【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出答案.【解答】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=100千米,∴CD=BC•sin30°=100×=50(千米),AC==50(千米),AC+BC=(100+50)千米,答:开通隧道前,汽车从A地到B地要走(100+50)千米;(2)∵cos30°=,BC=100(千米),∴BD=BC•cos30°=100×=50(千米),CD=BC=50(千米),∵tan45°=,∴AD==50(千米),∴AB=AD+BD=(50+50)千米,∴AC+BC﹣AB=100+50﹣(50+50)=(50+50﹣50)千米答:开通隧道后,汽车从A地到B地可以少走(50+50﹣50)千米.【点评】本题考查了解直角三角形的应用,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.【分析】由②中a+b=﹣3、ab=1可得出a<0、b<0,进而即可得出+=+=,再代入a+b=﹣3、ab=1即可得出结论.【解答】解:上面的解题过程不正确,错在③,正确的解题过程如下:①∵△=b2﹣4ac=32﹣4×1×1=5>0,∴a≠b;②由一元二次方程根与系数关系得:a+b=﹣3,ab=1,∴a<0,b<0;③∴+=+===3.【点评】本题考查了根的判别式以及根与系数的关系,由两根之和、两根之积的符号确定a<0、b<0是解题的关键.24.【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【解答】解:(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据题意,得:,解得:,答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据题意,得:,解得:18≤m<20,∵m为整数,∴m=18或m=19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.【点评】本题主要考查二元一次方程组和一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程或不等式组.25.【分析】根据题意先判断出参加的人数在30人以上,设共有x名同学参加了研学游活动,再根据等量关系:(100﹣在30人基础上降低的人数×2)×参加人数=3150,列出方程,然后求解即可得出答案.【解答】解:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设共有x名同学参加了研学游活动,由题意得:x[100﹣2(x﹣30)]=3150,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意;当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.答:共有35名同学参加了研学游活动.【点评】此题考查一元二次方程的应用;得到人均付费是解决本题的易错点,得到总费用的等量关系是解决本题的关键.。
2019-2020年高一文理科分班考试数学试题 含答案
![2019-2020年高一文理科分班考试数学试题 含答案](https://img.taocdn.com/s3/m/a6c7c2cb0722192e4436f6b8.png)
2019-2020年高一文理科分班考试数学试题 含答案一、选择题(每小题5分,12小题,共60分)1.设集合{}{}2|02,|20A x x B x x x =<<=+-≥,则( )A. B. C. D.2.下列四组函数中,表示同一函数的是( ) A., B., C., D., 3.已知函数,则( )A .4B .3C .2D .14.过点,且在轴上的截距是在轴上截距2倍的直线方程是( ) A. B.或 C. D.或5.设是三条不同的直线,是三个不同的平面,则下列判断正确的是( ) A .若,则 B .若,则 C .若,则 D .若,则 6.函数y=的图象可能是 A. B. C. D.7.已知a=2log 20.3,b=20.1,c=0.21.3,则a ,b ,c 的大小关系是( ) A.c >b >a B.c >a >b C.a >b >c D.b >c >a8.已知某几何体的正(主)视图,侧(左)视图和俯视图均为斜边长为的等腰直角三角形(如图),若该几何体的顶点都在同一球面上,则此球的表面积为( ) A . B . C . D .9.设是上的偶函数,且在上单调递增,则,,的大小顺序是( ). A. B.C. D.10.如图,一竖立在水平对面上的圆锥形物体的母线长为,一只小虫从圆锥的底面圆上的点出发,绕圆锥表面爬行一周后回到点处,则该小虫爬行的最短路程为,则圆锥底面圆的半径等于( ) A . B . C . D .11.若函数有两个零点,则实数的取值范围是( ) A . B . C . D .12.如图,△ABC 和△DEF 是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B 、C 、E 、F 在同一直线上.现从点C 、E 重合的位置出发,让△ABC 在直线EF 上向右作匀速运动,而△DEF 的位置不动.设两个三角形重合部分的面积为,运动的距离为.下面表示与的函数关系式的图象大致是( )二、填空题(每小题5分,4小题,共20分)13.已知函数y=f (x+1)的定义域是[-2,3],则y=f (2x-1)的定义域是 14.函数的单调增区间是 .15.如图,一个底面半径为的圆柱形量杯中装有适量的水,若放入一个半径为的实心铁球,水面高度恰好升高,则____________.16.关于函数f (x )=lg (x 不为0,x ∈R ),下列命题正确的是________.(填序号)①函数y =f (x )的图象关于y 轴对称;②在区间(-∞,0)上,函数y =f (x )是减函数; ③函数y =f (x )的最小值为lg2;④在区间(1,+∞)上,函数y =f (x )是增函数. 三、解答题(17题10分,18-22题每题12分,共70分) 17.(本小题满分10分)计算:ABCD18.(本小题满分12分)已知函数的定义域为集合,.(1)求;(2)若,,求实数的取值范围.19.(本小题满分12分)已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点。
2019年重点高中高一新生分班考试数学卷含答案
![2019年重点高中高一新生分班考试数学卷含答案](https://img.taocdn.com/s3/m/95b40614c8d376eeafaa316e.png)
2019年重点高中高一新生分班考试数学卷含答案(共23页)-本页仅作为预览文档封面,使用时请删除本页-2019年重点高中高一新生分班考试数学卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一个数的倒数的绝对值是3,这个数是()A.3 B. C.3或﹣3 D.或﹣2.如图,已知∠1=120°,则∠2的度数是( )A.120° B.90° C.60° D.30°3.的值是()A.±16 B.±4 C.16 D.−164.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为( )A.35°B.45°C.55°D.65°5.已知等边三角形的边长为,则它面积与边长之间的关系用图象大致可表示为()A.B.C.D.6.现有2cm,5cm长的两根木棒,再从下列长度的四根木棒中选取一根,可以围成一个三角形的是()A.2cm B.3cm C.5cm D.7cm 7.若多项式-6ab+18abx+24aby的一个因式是-6ab,那么另一个因式是()A.1-3x-4y B.-1-3x-4y C.1+3x-4y D.-1-3x+4y8.函数y=与y=x+1的图象的交点坐标为(a,b),则a2+b2的值为()A.1 B.11 C.25 D.无法求解9.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.10 B.20 C.10π D.20π10.如图,在菱形纸片ABCD中,,P为AB中点折叠该纸片使点C落在点处且点P在上,折痕为DE,则的大小为A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.已知是整数,则n是自然数的值是_____.12.用反证法证明∠A>60°时,应先假设_____.13.如果不等式组有解,那么m的范围是______.14.已知点,轴,且,则点N的坐标为______.15.如图,矩形的顶点在坐标原点,,分别在轴,轴的正半轴上,点的坐标为,点的坐标为,当此矩形绕点旋转到如图位置时的坐标为________.16.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=3︰4.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.三、解答题(本大题共8小题,共66分)17.(本题8分)解方程组和分式方程:(1)解方程组(2)解分式方程.18.(本题8分)平面上有3个点的坐标:,,在A,B,C三个点中任取一个点,这个点既在直线上又在抛物线上上的概率是多少?从A,B,C三个点中任取两个点,求两点都落在抛物线上的概率.19.(本题10分)某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元?20.(本题8分)周末,小亮一家人去水库游玩,他在大坝上的点A处看到一棵大树的影子刚好落在坝底的BE处点A与大树及其影子在同一平面内,此时太阳光与地面夹角为,在A处测得树顶D的仰角为如图所示,已知背水坡AB的坡度:3,AB的长为10米,请你帮助小亮算一算这颗大树的高度结果精确到米,参考数据:,注:坡度是指坡面的铅直高度与水平宽度的比21.(本题10分)据统计,某小区2011年底拥有私家车125辆,2013年底私家车的拥有量达到180辆.(1)若该小区2011年底到2014年底私家车拥有量的年平均增长率相同,则该小区到2014年底私家车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1 000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.22.(本题10分)已知:如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y轴交于点C,该抛物线的顶点为M.(1)求点A、B、C的坐标.(2)求直线BM的函数解析式.(3)试说明:∠CBM+∠CMB=90°.(4)在抛物线上是否存在点P,使直线CP把△BCM分成面积相等的两部分?若存在,请求出点P的坐标;若不存在,请说明理由.23.(本题12分)如图1,正方形ABCD中,F为AB中点,连接DF,CE⊥DF于E,连接BE.(1)作出△ADF关于F成中心对称的图形,并探究BE和BC数量关系;(2)如图2,BM平分∠ABE交CE延长线于M,连接MD,试探究DM、CM、BM线段关系并给出证明;(3)若点F在线段AB上运动(不与端点重合),AB=4,写出BE长度的取值范围.答案分析一、选择题(本大题共10小题,每小题3分,共30分。
分班考试数学(4)试题-真题
![分班考试数学(4)试题-真题](https://img.taocdn.com/s3/m/88e4d2f5b8f3f90f76c66137ee06eff9aff84955.png)
2019年北京二中新高一分班考试数学试题-真题一、选择题(本大题共10小题,共30分)1.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则( )A.y>z>xB.x>z>yC.y>x>zD.z>y>x2.在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,( )A.若M1=2,M2=2,则M3=0B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0D.若M1=0,M2=0,则M3=03.如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为( )A.25B.5C.45D.10第3题图第5题图第6题图4.若关于x的一元一次不等式组{2x-1≤3(x-2),x-a2>1的解集为x≥5,且关于y的分式方程y y-2+a2-y=-1有非负整数解,则符合条件的所有整数a的和为( )A.-1B.-2C.-3D.05.如图,在△ABC中,AC=22,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为( )A.6B.3C.23D.46.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为( )A.55B.255C.455D.4337.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF//BC,交AD于点F,过点E作EG//AB,交BC于点G,则下列式子一定正确的是( )A.AE EC=EF CDB.EF CD=EG ABC.AF FD=BG GCD.CG BC=AF AD第7题图第8题图第9题图8.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是( )A.(9,2)B.(9,3)C.(10,2)D.(10,3)9.如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(-2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为( )A.(32,2)B.(2,2)C.(114,2)D.(4,2)10.已知抛物线y=a x2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=12.有下列结论:①abc>0;②关于x的方程a x2+bx+c=a有两个不等的实数根;③a<-1 2.其中,正确结论的个数是( )A.0B.1C.2D.3二、填空题(本大题共10小题,共30分)11.如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=______,BE=______.12.如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为______.第12题图第13题图13.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚______分钟到达B地.14.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为______元.15.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么井深AC为______米.第15题图第16题图16.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为______.17.如图,在边长为2c m的正六边形ABCDEF中,点P在BC上,则△PEF的面积为______c m2.第17题图第18题图18.下列关于二次函数y=-(x-m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=-x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是______.19.如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交⏜BC于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为______.20.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上,且AB=5 3.(Ⅰ)线段AC的长等于______.(Ⅱ)以BC为直径的半圆与边AC相交于点D,若P,Q分别为边AC,BC上的动点,当BP+PQ取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P,Q,并简要说明点P,Q的位置是如何找到的(不要求证明)______.三、解答题(本大题共9小题,共40分)21.在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=a x2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(1r,0).(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.22.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=-12x2+2的图象并探究该函数的性质.x…-4-3-2-101234…y…-23a-2-4b-4-2-1211-23…(1)列表,写出表中a,b的值:a=______,b=______;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=-12x2+2的图象关于y轴对称;②当x=0时,函数y=-12x2+2有最小值,最小值为-6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=-23x-103的图象如图所示,结合你所画的函数图象,直接写出不等式-12x2+2<-23x-103的解集.23.如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长交边AC于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.24.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数--“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14÷5=2…4,14÷3=4…2,所以14是“差一数”;19÷5=3…4,但19÷3=6…1,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.25.如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,ADAB=A'D'A'B'.(1)当CDC'D'=ACA'C'=ABA'B'时,求证△ABC∽△A'B'C.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当CDC'D'=ACA'C'=BCB'C'时,判断△ABC与△A'B'C'是否相似,并说明理由.26.如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC'+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.27.问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是______.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是⏜AB上一点,且⏜PB=2⏜PA,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.28.如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?。
北京高一新生入学分班考试数学(2)
![北京高一新生入学分班考试数学(2)](https://img.taocdn.com/s3/m/5bd65953cf84b9d528ea7ae2.png)
A BC 北京高一新生入学分班考试数学(2)一. 选择题1.下列运算正确的是( )。
A 、a 2·a 3=a 6B 、a 8÷a 4=a 2C 、a 3+a 3=2a 6D 、(a 3)2=a 62.一元二次方程2x 2-7x+k=0的一个根是x 1=2,则另一个根和k 的值是 ( )A .x 2=1 ,k=4B .x 2= - 1, k= -4C .x 2=32,k=6 D .x 2= 32-,k=-6 3.如果关于x 的一元二次方程220x kx -+=中,k 是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率P= ( ) A .23B .12C .13D .164.二次函数y=-x 2-4x+2的顶点坐标、对称轴分别是( )A.(-2,6),x=-2B.(2,6),x=2C.(2,6),x=-2D.(-2,6),x=25.已知关于023,034,045=+-=+-=+-c x b x a x x 有两个解无解的方程只有一个解,则化简b a bc c a ---+-的结果是 ( )A 、2aB 、2bC 、2cD 、06. 在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是 ( )7. 下列图中阴影部分的面积与算式122)21(|43|-++-的结果相同的是( )8.如图为由一些边长为1cm 正方体堆积在桌面形成的立方体的三视图,则该立方体露在外面部分的表面积是________ cm 2。
A . 11B .15C .18D .22 二. 填空题9.函数21--=x x y 中,自变量x 的取值范围是. 10.在Rt △ABC 中,∠ACB =90°,CD AB D ⊥于,AC =10, CD =6,则sinB 的值为_____。
2023北京二中高一(上)第一次段考数学试卷和答案
![2023北京二中高一(上)第一次段考数学试卷和答案](https://img.taocdn.com/s3/m/c462ccda8662caaedd3383c4bb4cf7ec4bfeb616.png)
2023北京二中高一(上)第一次段考数 学一、选择题(每小题5分,共60分)1.设命题:p “x ∀∈R ,||20x +>”,则p ⌝为A .,20x R x ∃∈+>B .,20x R x ∃∈+≤C .,20x R x ∃∈+<D .,20x R x ∀∈+≤2.若函数()f x 的定义域为[2,3]-,则()y f x =的图象与直线2x =的交点个数为A .0 B. 1 C. 2 D. 不确定3.已知集合{|}A x x a =>,{1,0,1}B =-,若{0,1}A B = ,则实数a 的取值范围是A .{|10}a a -≤<B .{|10}a a -<≤C .{|10}a a -<<D .{|10}a a -≤≤4.若,ab ∈R ,则“2()0a b a -<”是“a b <”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用.后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若R a b c ∈,,,则下列命题正确的是A .若0ab ≠且a b <,则11a b >B .若01a <<,则2a a >C .若0a b >>,c d >,则ac bd >D .若0a b <<,则22a b >6.已知集合[1,3]A =-,(,1]B m m =+,若R A B ⋃=ðR ,那么实数m 的取值范围是A .12m -<<B .12m -≤≤C .12m -≤<D .12m -<≤7.“不等式22530x x --<成立”的一个充分不必要的条件是A .132x -<<B .102x -<<C .16x -<<D .132x -<<8.已知集合12{N |N}2A a a =∈∈-,{3,4}B =,集合C 满足B C A ⊆⊆,则所有满足条件的集合C 的个数为A. 8B. 15C. 16D. 329.若一元二次不等式()20,,R ax bx c a b c ++>∈的解集为{}12x x -<<,则4b c a-+的最大值为 A .-4B .-2C .2D .410.若关于x 的不等式2242ax x ax -<-只有一个整数解,则实数a 的取值范围是A .112a <≤B .12a <<C .12a ≤<D .11a -<<11.若集合A 同时具有以下三个性质:①0A ∈,1A ∈;②若,x y A ∈,则x y A -∈;③若x A ∈且0x ≠,则1A x∈.则称A 为“好集”.已知命题:①集合{1,0,1}-是好集;②对任意一个“好集”A ,若,x y A ∈,则x y A +∈.则以下判断正确的是A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题12.用()Card A 表示非空集合A 中的元素的个数,定义*|()()|A B Card A Card B =-,若{1,1}A =-,{22|(3)(2)0}B x ax x x ax =+++=,若*1A B =,设实数a 的所有可能取值构成集合S .则()Card S =A. 3B. 4C. 5D. 6二、填空题(每小题5分,共30分)13.函数1()f x x=+的定义域为__________.14.若集合{}|21|3A x x =-<,2103x B x x ⎧+⎫=>⎨⎬-⎩⎭,则A B ⋂=__________.15.设2{|8150}A x x x =-+=,{|10}B x ax =-=,若A B B = ,则实数a 的值可以为 .(将你认为正确的序号都填上,若填写有一个错误选项,此题得零分) ①15② 0③3④1316.不等式(1)(2)04x x x +-≥+的解集为__________.17.若不等式2(1)3a x x +≤+对于[0,)x ∈+∞恒成立,则实数a 的取值范围是 .18.定义集合{|}P x a x b =……的“长度”是b a -,其中a ,b ∈R .已如集合1{|}2M x m x m =+……,3{|}5N x n x n =-……,且M ,N 都是集合{|12}x x ……的子集,则集合M N 的“长度”的最小值是 ;若65m =,集合M N 的“长度”大于35,则n 的取值范围是__________.三、解答题(每小题15分,共60分)19.已知集合{|25}A x x =-≤≤,集合{|121}B x m x m =+≤≤-.(1)若B A ⊆,求实数m 的取值范围;(2)若A B ≠∅ ,求实数m 的取值范围.20.已知关于x 的不等式2320ax x -+>的解集为{1x x <或}(1)x b b >>.(1)求实数,a b 的值;(2)若0x >,0y >,且满足1abx y +=时,有222x y k k +≥++恒成立,求实数k 的取值范围.21.(1)若命题“x ∃∈R ,2220x ax a +++≤”是真命题,求实数a 的取值范围;(2)求关于x 的不等式2(2)20(R)ax a x a +++≥∈的解集.22.对于正整数集合A ,记{}{|,}A a x x A x a -=∈≠且,记集合A 所有元素之和为()S A ,规定()0S ∅=.若x A ∃∈,存在非空集合1A ,2A ,满足:①12A A =∅ ;②12{}A A A x =- ;③12()()S A S A =,则称A 存在“双拆”.若x A ∀∈,A 均存在“双拆”,则称A 可以“任意双拆”.(1)判断集合{1,2,3,4}和{1,3,5,7,9,11}是否存在“双拆”?如果是,继续判断可否“任意双拆”?(不必写过程);(2)若12345{,,,,}A a a a a a =,证明:A 不能“任意双拆”;(3)若A 可以“任意双拆”,求A 中元素个数的最小值.参考答案一、选择题(每小题5分,共60分)1.【答案】B【解析】根据题意,由函数的定义知,函数在定义域内具有单值对应,所以当x =2时,()f x 有唯一值与之对应.3.【答案】A【解析】∵A ∩B ={0,1},∴0∈A ,1∈A ,−1∉A .∴a ∈{a |−1≤a <0 }.4.【答案】A【解析】由不等式2()0a b a -<,因为20a >,则0a b -<,可得a b <,即充分性成立;反之:由a b <,可得0a b -<,又因为20a ≥,所以2()0a b a -≤,所以必要性不成立,所以2()0a b a -<是a b <的充分不必要条件.5.【答案】D【解析】因为[1,3]A =-,(,1],B m m =+所以{|1R B x x m =>+ð或}x m …,若R A B R ⋃=ð,则131m m +⎧⎨-⎩……,解得1 2.m -……7.【答案】B【解析】解22530x x --<,解得132x -<<.由此可得:选项A ,132x -<<是不等式成立的充要条件;选项B ,102x -<<是不等式成立的一个充分不必要条件;选项C ,16x -<<是不等式成立的一个必要不充分条件;选项D ,132x -<<是不等式成立的一个既不充分也不必要条件.8.【答案】C【解析】 122N a ∈-,a N ∈,则21,2,3,4,6,12a -=±±±±±±,{3,4,5,6,8,14}A ∴=.又{3,4}{3,4,5,6,8,14}C ⊆⊆,{3,4}C ∴=或{3,4,5},{3,4,6},{3,4,8},{3,4,14},或{3,4,5,6},{3,4,5,8},{3,4,5,14},{3,4,6,8},{3,4,6,14},{3,4,8,14},或{3,4,5,6,8},{3,4,5,6,14},{3,4,5,8,14},{3,4,6,8,14},或{3,4,5,6,8,14}.故满足条件的集合C 有16个.或25=16.9.【答案】A【解析】因为一元二次不等式()20,,R ax bx c a b c ++>∈的解集为{}12x x -<<,所以,01212a b a c a ⎧⎪<⎪⎪-+=-⎨⎪⎪-⨯=⎪⎩,则02a b a c a <⎧⎪=-⎨⎪=-⎩,所以,()444424b c a a a a a a a a ⎡⎤-+=-++=+=--+≤-=-⎢⎥-⎣⎦,当且仅当()40a a a -=-<时,即当2a =-时,等号成立.因此,4b c a-+的最大值为4-.10.【答案】C 【解析】不等式2242ax x ax -<-化为()22420ax a x -++<,即()()2120x ax --<,当0a =时,不等式化为()()2120x --<,得12x >,有无数个整数解,不符合题意;当0a >时,由关于x 的不等式2242ax x ax -<-只有一个整数解,可知122a<,不等式()()2120x ax --<的解为122x a <<,由题意,212a<≤,解得12a ≤<;当0a<时,不等式()()2120x ax --<的解为12x >或2x a <,有无数个整数解,不符合题意.综上,实数a 的取值范围是12a ≤<.11.【答案】D 【解析】对于①,因为1∈{1,0,−1},−1∈{1,0,−1},而−1−1=−2∉{1,0,−1},所以集合{1,0,−1}不是好集,故①错误;对于②,因为集合A 为“好集”,所以0∈A,0−y =−y ∈A ,所以x−(−y )=x +y ∈A ,故②正确,综上,①为假命题,②为真命题.12.【答案】C【解析】由于22(3)(2)0ax x x ax +++=,等价于230ax x +=,①或220x ax ++=,②又由{1,1}A =-,且*1A B =,∴集合B 要么是单元素集合,要么是三元素集合.(1)集合B 是单元素集合,则方程①有一个实根,②无实数根,0a ∴=;此时{0}B =,符合条件;(2)集合B 是三元素集合,则方程①有两不相等实根,②有两个相等且异于①的实数根,即2080a a ≠⎧⎨∆=-=⎩,解得a =±,当a =时,{0,B =;当a =-时,B =;符合条件;(3)集合B 是三元素集合,则方程①有两不相等实根,方程②有一个与①的相同的实根,以及一个异于①的实根,此时0a ≠,则方程①的两个实根为0x =,3x a=-,0x =不可能是方程②的实根,则3x a =-是方程②的实根,将3x a=-代入方程②,可得29320a a a ⎛⎫+⋅-+= ⎪⎝⎭,解得3a =±,当3a =时,{0,1,2}B =--;当3a =-时,{0,1,2}B =;符合条件;综上所述0a =或a =±或3a =±,() 5.Card S ∴=二.填空题(本大题共6小题,共30分)13.【答案】 [1,0)(0,2]-⋃【解析】由题意得:2200x x x ⎧-++⎨≠⎩… ,解得: 120x x -⎧⎨≠⎩…… , [1,0)(0,2]x ∴∈-⋃ .14. 【答案】11,2⎛⎫-- ⎪⎝⎭ 【解析】根据已知 |21|3x -< 可得: 3213x -<-< 解得: {|12}A x x =-<< ,210(21)(3)03x x x x +>⇔+->- ,解得: {3B x x => 或 12x ⎫<-⎬⎭.∴ 11,2A B ⎛⎫⋂=-- ⎪⎝⎭ .15. 【答案】①②④【解析】集合2{|8150}{3,5}A x x x =-+==,由A B B = 可得B A ⊆,则分B =∅和{3}=B 或{5}或{3,5},当B =∅时,满足0a =即可;.【答案】或【解析】原不等式等价于(1)(2)(4)0x x x +-+≤,且 4.x ≠-分别令各个因式为0,可得根依次为1-,2, 4.-则不等式的解集为{|4x x <-或12}x -≤≤.17.【答案】(,2]-∞【解析】原不等式可化为,设4 ,,且,即因为恒成立,所以.18.【答案】110; 8179,,25105⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦ 【解析】集合1{|}2M x m x m =+……,3{|}5N x n x n =-……,且M ,N 都是集合{|12}x x ……的子集,由1122m m ⎧⎪⎨+⎪⎩…,可得312m ……,由3152n n ⎧-⎪⎨⎪⎩…,可得825n …….要使M N ⋂的“长度”最小,只有当m 取最小值、n 取最大或m 取最大、n 取最小时才成立.当1m =,2n =,7352M N x x ⎧⎫⋂=⎨⎬⎩⎭……,“长度”为3712510-=,当32m =,85n =,3825M N x x ⎧⎫⋂=⎨⎬⎩⎭……,“长度”为8315210-=,故集合M N ⋂的“长度”的最小值是110;若65m =,617510M x x ⎧⎫=⎨⎬⎩⎭……,要使集合M N ⋃的“长度”大于35,故31735105n -<-或63,55n >+即1710n <或9,5n >又825n ……,故8179,,25105n ⎡⎫⎛⎤∈⋃⎪ ⎢⎥⎣⎭⎝⎦.三、解答题(本大题共4小题,共60分)19.【解析】(1)①当B =∅时,B ⊆A ,此时m +1>2m−1,解得m <2,②当B ≠∅时,2m ≥,为使B ⊆A ,m 需满足21m -≤+,且215m -≤,解得23m ≤≤.综上所述,实数m 的取值范围为{|3}m m ≤.(2)先求A ∩B =∅时,实数m 的取值范围,再求其补集,当B =∅时,由(1)知m <2,当B ≠∅时,2m ≥,为使A ∩B =∅,m 需满足15m +>或212m -<-,解得m >4,综上知,当m <2或m >4时,A ∩B =∅,所以若A ∩B ≠∅,则实数m 的取值范围是{|24}mm ≤≤.20.【解析】(1)因为不等式2320ax x -+>的解集为{1x x <或}(1)x b b >>,所以1和b 是方程2320ax x -+=的两个实数根且0a >,所以31,21b a b a ⎧+=⎪⎪⎨⎪⨯=⎪⎩,解得12a b =⎧⎨=⎩.(2)由(1)知12a b =⎧⎨=⎩,于是有121x y +=,故()12422448y x x y x y x y x y ⎛⎫+=++=+++= ⎪⎝⎭,当且仅当4y x x y =,121x y +=时,即24x y =⎧⎨=⎩时,等号成立.依题意有2min (2)2x y k k +≥++,即282k k ≥++,得260k k +-≤,解得32k -≤≤,所以k 的取值范围为[]3,2-.21.【解析】∵x ∃∈R ,2220x ax a +++≤为真命题,则函数222y x ax a =+++与x 轴有交点,∴()24420a a ∆=-+≥,即220a a --≥,解得1a ≤-或2a ≥.∴实数a 的取值范围是1a ≤-或2a ≥.(2)求关于x 的不等式2(2)20(R )ax a x a +++≥∈的解集.【解析】当0a =时,不等式等价于220x +≥,即1x ≥-;12且1+2=3,所以,集合{1,2,3,4}可双拆,若在集合中去掉元素1,因为2+3≠4,2+4≠3,3+4≠2,故集合{1,2,3,4}不可“任意分拆”;若集合{1,3,5,7,9,11}可以“双拆”,则在集合{1,3,5,7,9,11}去除任意一个元素形成新集合B,若存在集合B1、B2使得B1∩B2=⌀,B1∪B2=B,S(B1)=S(B2),则S(B)=S(B1)+S(B2)=2S(B1),即集合B中所有元素之和为偶数,事实上,集合B中的元素为5个奇数,这5个奇数的和为奇数,不合乎题意,故集合{1,3,5,7,9,11}不可“双拆”.(2)证明:不妨设a1<a2<a3<a4<a5.反证法:如果集合A可以“任意双拆”,若去掉的元素为a1,将集合{a2,a3,a4,a5}分成两个交集为空集的子集,且两个子集元素之和相等,则有a2+a5=a3+a4,①,或a5=a2+a3+a4,②,若去掉的元素为a2,将集合{a1,a3,a4,a5}分成两个交集为空集的子集,且两个子集元素之和相等,则有a1+a5=a3+a4,③,或a5=a1+a3+a4,④,由①−③可得a1=a2,矛盾;由②−③可得a1=−a2,矛盾;由①−④可得a1=−a2,矛盾;由②−④可得a1=a2,矛盾.因此,当n=5时,集合A一定不能“任意双拆”.(3)解:设集合A={a1,a2,⋯,a n}.由题意可知S(A)−a i(i=1,2,⋯,n)均为偶数,因此a i(i=1,2,⋯,n)均为奇数或偶数.如果S(A)为奇数,则a i(i=1,2,⋯,n)也均为奇数,由于S(A)=a1+a2+⋯+a n,则n为奇数;如果S(A)为偶数,则a i(i=1,2,⋯,n)也均为偶数.此时设a i=2b i,则{b1,b2,⋯,b n}也是可“任意分拆”的,重复上述操作有限次,便可得各项均为奇数的“任意分拆”集,此时各项之和也为奇数,则集合A中元素个数n为奇数,综上所述,集合A中的元素个数为奇数,当n=3时,显然集合A={a1,a2,a3}不可“任意分拆”;当n=5时,由(2)可知,A={a1,a2,a3,a4,a5}不可“任意分拆”,故n≥7.当n=7时,取集合A={1,3,5,7,9,11,13},因为3+5+7+9=11+13,1+9+13=5+7+11,1+3+5+11=7+13,1+3+7+11=9+13,1+9+11=3+5+13,3+7+9=1+5+13,1+3+5+9=7+11,则集合A可“任意分拆”,所以,集合A中元素个数n的最小值为7.高中11。
2019年北大附中新高一分班考试数学试题-真题-含详细解析
![2019年北大附中新高一分班考试数学试题-真题-含详细解析](https://img.taocdn.com/s3/m/8f599dea767f5acfa1c7cdf1.png)
2019年北大附中新高一分班考试数学试题-真题一、选择题(本大题共8小题,共24分)1.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A. 200tan70°米B. 200tan70∘米 C. 200sin 70°米 D. 200sin70∘米2.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−1,n),其部分图象如图所示.以下结论错误的是()A. abc>0B. 4ac−b2<0C. 3a+c>0D. 关于x的方程ax2+bx+c=n+1无实数根3.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A. 1个B. 2个C. 3个D. 4个4.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A. 160B. 128C. 80D. 485.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A. √5B. 3√5 C. 2√5 D. 4√526.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度ℎ(cm)与注水时间t(min)的函数图象大致为图中的()A. B.C. D.7.在平面直角坐标系中,点O为坐标原点,抛物线y=x2−2x−3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O′A′B′,且点O′,A′落在抛物线的对称轴上,点B′落在抛物线上,则直线A′B′的表达式为()D. y=x+2A. y=xB. y=x+1C. y=x+128.已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2−2ax上的点,下列命题正确的是()A. 若|x1−1|>|x2−1|,则y1>y2B. 若|x1−1|>|x2−1|,则y1<y2C. 若|x1−1|=|x2−1|,则y1=y2D. 若y1=y2,则x1=x2二、填空题(本大题共8小题,共24分)9.如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.DE的同样长为半径作弧,两弧交于点F.②分别以点D、E为圆心,大于12③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为______.10.如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为______.得DF=1411.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=−4;②若点C(−5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a−b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是______(填写序号).12.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是______.第12题图第13题图13.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=⏜的长为π,则图中阴影部分的面积为______.120°,AB+AC=16,MN14.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A′处,展平后得到折痕BE,同时得到线段BA′,EA′,不再添加其它线段.当图中存在30°角时,AE的长为______厘米.第14题图第15题图15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=______度.16.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是______.(写出所有正确结论的序号)三、计算题(本大题共1小题,共6分)17.某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?四、解答题(本大题共12小题,共46分)18. 如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下: 李阿姨:我记得甲商品进价比乙商品进价每件高50%. 王师傅:甲商品比乙商品的数量多40件. 请你求出乙商品的进价,并帮助他们补全进货单.19. 阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题: 已知实数x 、y 满足3x −y =5①,2x +3y =7②,求x −4y 和7x +5y 的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①−②可得x −4y =−2,由①+②×2可得7x +5y =19.这样的解题思想就是通常所说的“整体思想”. 解决问题:(1)已知二元一次方程组{2x +y =7,x +2y =8,则x −y =______,x +y =______;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x 、y ,定义新运算:x ∗y =ax +by +c ,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3∗5=15,4∗7=28,那么1∗1=______.20.如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=kx(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”(1)当n=1时.①求线段AB所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.21.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG =ABAD=23,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.22.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.23.某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).24.实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有______种不同的结果.25.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)26.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…−2−1012…y…m0−3n−3…(1)根据以上信息,可知抛物线开口向______,对称轴为______;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P′,描出相应的点P′,再把相应的点P′用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>−2)与抛物线及(3)中的点P′所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系______.27.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为______;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2√3,DE=2,点P在AE上,∠ABP=30°,PE=√2,求五边形ABCDE的面积.28.已知直线l1:y=−2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=−2时,l2//l1;(3)E为线段BC上不与端点重合的点,直线l3:y=−2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.答案和解析1.【答案】B【解析】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°−70°=20°,∴∠PTQ=70°,∴tan70°=PQPT,∴PT=PQtan70∘=200tan70∘,即河宽200tan70∘米,故选:B.在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.此题考查了解直角三角形的应用−方向角问题,掌握方向角与正切函数的定义是解题的关键.2.【答案】C【解析】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2−4ac>0,即4ac−b2<0,故B正确;C.∵抛物线的对称轴为直线x=−1,抛物线与x轴的一个交点在(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(−1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B 进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c与直线y=n+1无交点,可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3.【答案】C【解析】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD//BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB=ABBE =612=12,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.4.【答案】A【解析】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.此题考查了规律型:图形的变化类,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.5.【答案】C【解析】解:∵矩形ABCD,∴AD//BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB=√52−32=4,在Rt△ABC中,AC=√42+82=4√5,∴OA =OC =2√5,故选:C .由矩形的性质,折叠轴对称的性质,可求出AF =FC =AE =5,由勾股定理求出AB ,AC ,进而求出OA 即可. 本题考查矩形的性质、折叠轴对称的性质,勾股定理等知识,根据图形直观,求出线段的长是得出答案的前提. 6.【答案】B【解析】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A 、D 一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h 随t 的增大而增大,当水注满小杯后,小杯内水面的高度h 不再变化.故选:B .根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度ℎ(cm)与注水时间t(min)的函数图象.本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.7.【答案】B【解析】解:如图,∵抛物线y =x 2−2x −3与y 轴交于点A ,与x 轴正半轴交于点B ,令y =0,解得x =−1或3,令x =0,求得y =−3,∴A(3,0),B(0,−3),∵抛物线y =x 2−2x −3的对称轴为直线x =−−22×1=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n +3),∵点B′落在抛物线上,∴n +3=16−8−3,解得n =2,∴A′(1,2),B′(4,5),设直线A′B′的表达式为y =kx +b ,∴{k +b =24k +b =5, 解得{k =1b =1∴直线A′B′的表达式为y =x +1,故选:B.求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A′B′的表达式.本题考查了抛物线与x轴的交点,坐标和图形变换−平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.8.【答案】C【解析】解:∵抛物线y=ax2−2ax=a(x−1)2−a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1−1|>|x2−1|,则y1>y2,故选项B错误;当a<0时,若|x1−1|>|x2−1|,则y1<y2,故选项A错误;若|x1−1|=|x2−1|,则y1=y2,故选项C正确;若y1=y2,则|x1−1|=|x2−1|,故选项D错误;故选:C.根据题目中的抛物线和二次函数的性质,利用分类讨论的方法可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查二次函数的性质,命题与定理,解答本题的关键是明确题意,利用二次函数的性质解答.9.【答案】27【解析】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴1×AB×GM=18,2∴4GM=18,∴GM=9,2∴△CBG的面积为:12×BC×GN=12×12×92=27.故答案为:27.过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM的长,进而可得△CBG的面积.本题考查了作图−基本作图、角平分线的性质,解决本题的关键是掌握角平分线的性质.10.【答案】9√3【解析】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4√3,∵四边形ECGF是平行四边形,∴EF//CG,∴△EOD∽△GOC,∴EOGO =DOOC=EDGC,∵DF=14DE,∴DEEF =45,∴EDGC =45,∴EOGO =45,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4√3,∴GO=5√3,∴EG的最小值是9√3,故答案为:9√3.根据题意和平行四边形的性质,可以得到BD和EF的比值,再根据三角形相似和最短距离,即可得到EG的最小值,本题得以解决.本题考查平行四边形的性质、三角形的相似、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】①③【解析】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=−4,故①正确;该抛物线的对称轴为直线x=2+(−4)2=−1,函数图象开口向下,若点C(−5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=−1时,函数取得最大值y=a−b+c,故对于任意实数t,总有at2+bt+c≤a−b+c,即对于任意实数t,总有at2+bt≤a−b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为−3和1或−2和0或−1和−1,故p的值有三个,故④错误;故答案为:①③.根据题目中的抛物线和二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质解答.12.【答案】14t2−14t+1【解析】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,∵AE2+AM2=EM2,∴(2−x)2+t2=x2,解得x=t24+1,∴DE=t24+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=AMAD =t2=FG1,∴FG=t2,∵CG=DE=t24+1,∴CF=t24−t2+1,∴S四边形CDEF =12(CF+DE)×1=14t2−14t+1.故答案为:14t2−14t+1.连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,由勾股定理得出(2−x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.本题考查了矩形的性质,折叠的性质,勾股定理,锐角三角函数,熟练掌握折叠的性质及方程的思想是解题的关键.13.【答案】3(8−√3−π)【解析】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵MN⏜的长为π,∴60πr180=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=√3,∴AM=AN=√3,∴BM+CN=AB+AC−(AM+AN)=16−2√3,∴S阴影=S△OBM+S△OCN−(S扇形MOE+S扇形NOF)=12×3×(BM+CN)−(120π×32360)=32(16−2√3)−3π=24−3√3−3π=3(8−√3−π).故答案为:3(8−√3−π).连接OM、ON,根据半圆分别与AB,AC相切于点M,N.可得OM⊥AB,ON⊥AC,由∠BAC=120°,可得∠MON=60°,得∠MOB+∠NOC=120°,再根据MN⏜的长为π,可得OM=ON=r=3,连接OA,根据Rt△AON中,∠AON=30°,ON=3,可得AM=AN=√3,进而可求图中阴影部分的面积.本题考查了切线的性质、弧长的计算、扇形面积的计算,解决本题的关键是掌握弧长和扇形面积的计算公式.14.【答案】4√33厘米或4√3厘米或8−4√3【解析】解:①当∠ABE=30°时,AE=AB×tan30°=4√33;②当∠AEB=30°时,AE=ABtan30∘=4√33=4√3;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=xsin60∘=2√3x3,∵AF=AE+EF=ABtan30°=4√33,∴x+2√3x3=4√33,∴x=8−4√3,∴AE=8−4√3.故答案为:4√33厘米或4√3厘米或8−4√3厘米.根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.15.【答案】30=120°,【解析】解:正六边形的每个内角的度数为:(6−2)⋅180°6所以∠ABC=120°−90°=30°,故答案为:30.由于六边形花环是用六个全等的直角三角形拼成的,所以这个六边形是正六边形,先算出正六边形每个内角的度数,即可求出∠ABC的度数.本题考查了多边形内角和定理.解题的关键是会计算正六边形的每个内角的度数.16.【答案】①④【解析】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.证明四边形ABCD是平行四边形即可解决问题.本题考查反比例函数的性质,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH−OH=4−3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式y=kx2+1,把点D(2,0)代入,得k=−14,∴该抛物线的函数表达式为:y=−14x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=34,∴N(1,34),∴MN=34,∴S矩形MNFG =MN⋅GM=34×2=32,∴每个B型活动板房的成本是:425+32×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n−500)[100+20(650−n)10]=−2(n−600)2+20000,∵每月最多能生产160个B型活动板房,∴100+20(650−n)10≤160,解得n≥620,∵−2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有增大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.【解析】(1)根据图形和直角坐标系可得点D和点E的坐标,代入y=kx2+m,即可求解;(2)根据M和N的横坐标相等,求出N点坐标,再求出矩形FGMN的面积,即可求解;(3)根据题意得到w关于n的二次函数,根据二次函数的性质即可求解.本题考查了二次函数的应用,解决本题的关键是掌握二次函数的性质.18.【答案】解:设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,依题意,得:7200(1+50%)x −3200x=40,解得:x =40,经检验,x =40是原方程的解,且符合题意,∴(1+50%)x =60,3200x =80,7200(1+50%)x =120. 答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.【解析】设乙商品的进价为x 元/件,则甲商品的进价为(1+50%)x 元/件,根据数量=总价÷单价结合购进的甲商品比乙商品多40件,即可得出关于x 的分式方程,解之经检验后即可得出x 的值,再将其分别代入(1+50%)x ,3200x ,7200(1+50%)x 中即可得出结论. 本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.【答案】−1 5 −11【解析】解:(1){2x +y =7 ①x +2y =8 ②. 由①−②可得:x −y =−1,由13(①+②)可得:x +y =5.故答案为:−1;5.(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元,依题意,得:{20m +3n +2p =32 ①39m +5n +3p =58 ②, 由2×①−②可得m +n +p =6,∴5m +5n +5p =5×6=30.答:购买5支铅笔、5块橡皮、5本日记本共需30元.(3)依题意,得:{3a +5b +c =15 ①4a +7b +c =28 ②, 由3×①−2×②可得:a +b +c =−11,即1∗1=−11.故答案为:−11.(1)利用①−②可得出x −y 的值,利用13(①+②)可得出x +y 的值;(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元”,即可得出关于m ,n ,p 的三元一次方程组,由2×①−②可得除m +n +p 的值,再乘5即可求出结论;(3)根据新运算的定义可得出关于a ,b ,c 的三元一次方程组,由3×①−2×②可得出a +b +c 的值,即1∗1的值.。
2019年北大附中新高一分班考试数学试题-真题-含详细解析
![2019年北大附中新高一分班考试数学试题-真题-含详细解析](https://img.taocdn.com/s3/m/1232e5e2e53a580216fcfe96.png)
t a n70∘米si n70∘米2019年北大附中新高一分班考试数学试题-真题一、选择题(本大题共8小题,共24分)1.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.200C.200sin70°米D.2002.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac−b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根3.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK△和GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个4.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()B. 若|x − 1| > |x − 1|,则y < yD. 若y = y ,则x = xA. 160B. 128C. 80D. 485.如图,将矩形 ABCD 折叠,使点 C 和点 A 重合,折痕为 EF ,EF 与 AC 交于点O.若AE = 5,BF = 3,则 AO的长为( )A. √5B. 3 √52C. 2√5D. 4√56.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度ℎ(cm)与注水时间t (mi n )的函数图象大致为图中的()A.B.C. D.7.在平面直角坐标系中,点 O 为坐标原点,抛物线y = x 2 − 2x − 3与 y 轴交于点 A ,与 x 轴正半轴交于点 B ,连接 AB ,将Rt △ OAB 向右上方平移,得到Rt △ O′A′B′,且点O′,A′落在抛物线的对称轴上,点B′落在抛物线上,则直线A′B′的表达式为()A. y = xB. y = x + 1C. y = x + 1D. y = x + 228.已知P 1(x 1, y 1),P 2(x 2, y 2)是抛物线y = ax 2 − 2ax 上的点,下列命题正确的是()A. 若|x 1 − 1| > |x 2 − 1|,则y 1 > y 2 C. 若|x 1 − 1| = |x 2 − 1|,则y 1 = y 21 2 1 21 2 1 2⏜二、填空题(本大题共 8 小题,共 24 分)9.如图,在△ ABC 中,按以下步骤作图:①以点 B 为圆心,任意长为半径作弧,分别交 AB 、BC 于点 D 、E .②分别以点 D 、E 为圆心,大于1 DE 的同样长为半径作弧,两弧交于点 F .2③作射线 BF 交 AC 于点 G .如果AB = 8,BC = 12△,ABG 的面积为 18△,则 CBG 的面积为______.10. 如图,在▱ABCD 中,∠B = 60°,AB = 10,BC = 8,点 E 为边 AB 上的一个动点,连接 ED 并延长至点 F ,使得DF = 1 DE ,以 EC 、EF 为邻边构造▱EFGC ,连接 EG ,则 EG 的最小值为______.411. 抛物线y = ax 2 + bx + c(a,b ,c 为常数,a < 0)经过A(2,0),B(−4,0)两点,下列四个结论:①一元二次方程ax 2 + bx + c = 0的根为x 1 = 2,x 2 = −4; ②若点C(−5, y 1),D(π, y 2)在该抛物线上,则y 1 < y 2;③对于任意实数 t ,总有a t 2 + bt ≤ a − b ;④对于 a 的每一个确定值,若一元二次方程ax 2 + bx + c = p(p 为常数,p > 0)的根为整数,则 p 的值只有两个.其中正确的结论是______(填写序号).12. 如图,折叠矩形纸片 ABCD ,使点 D 落在 AB 边的点 M 处,EF 为折痕,AB = 1,AD = 2.设 AM 的长为 t ,用含有 t 的式子表示四边形 CDEF 的面积是______.第 12 题图第 13 题图13. 如图,在△ ABC 中,O 为 BC 边上的一点,以 O 为圆心的半圆分别与 AB ,AC 相切于点 M ,N.已知∠BAC =120°,AB + AC = 16,MN 的长为π,则图中阴影部分的面积为______.14.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A′处,展平后得到折痕BE,同时得到线段BA′,EA′,不再添加其它线段.当图中存在30°角时,AE的长为______厘米.第14题图第15题图15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=______度.16.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是______.(写出所有正确结论的序号)三、计算题(本大题共1小题,共6分)17.某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?(1)已知二元一次方程组{四、解答题(本大题共 12 小题,共 46 分)18. 如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品甲乙进价(元/件) 数量(件) 总金额(元)72003200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多 40 件.请你求出乙商品的进价,并帮助他们补全进货单.19. 阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数 x 、y 满足3x − y = 5①,2x + 3y = 7②,求x − 4y 和7x + 5y 的值.本题常规思路是将①②两式联立组成方程组,解得 x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由① − ②可得x − 4y = −2,由① + ② × 2可得7x + 5y = 19.这样的解题思想就是通常所说的“整体思想”.解决问题:2x + y = 7,x + 2y = 8,则x − y =______,x + y =______;(2)某班级组织活动购买小奖品,买 20 支铅笔、3 块橡皮、2 本日记本共需 32 元,买 39 支铅笔、5 块橡皮、3本日记本共需 58 元,则购买 5 支铅笔、5 块橡皮、5 本日记本共需多少元?(3)对于实数 x 、y ,定义新运算:x ∗ y = ax + by + c ,其中 a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3 ∗ 5 = 15,4 ∗ 7 = 28,那么1 ∗ 1 =______.20.如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=k(x>0)的图象经过点x P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”(1)当n=1时.①求线段AB所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.21.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AE=AB=2,AE=4,AB=8,将矩形AEFGAG AD3绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.22.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.23.某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).24.实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①所取的2个整数2个整数之和1,231,342,35如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②所取的2个整数2个整数之和1,231,341,452,352,463,47如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有______种不同的结果.25.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)26. 已知抛物线y = ax 2 + bx + c(a,b ,c 是常数,a ≠ 0)的自变量 x 与函数值 y 的部分对应值如下表:x …−2−1 01 2… y… m−3n−3…(1)根据以上信息,可知抛物线开口向______,对称轴为______;(2)求抛物线的表达式及 m ,n 的值;(3)请在图 1 中画出所求的抛物线.设点 P 为抛物线上的动点,OP 的中点为P′,描出相应的点P′,再把相应的点P′用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y = m(m > −2)与抛物线及(3)中的点P′所在曲线都有两个交点,交点从左到右依次为A 1,A 2,A 3,A 4,请根据图象直接写出线段A 1A 2,A 3A 4之间的数量关系______.27. 某数学课外活动小组在学习了勾股定理之后,针对图 1 中所示的“由直角三角形三边向外侧作多边形,它们的面积S 1,S 2,S 3之间的关系问题”进行了以下探究:类比探究(1)如图 2,在Rt △ ABC 中,BC 为斜边,分别以 AB ,AC ,BC 为斜边向外侧作Rt △ ABD ,Rt △ ACE ,Rt △BCF ,若∠1 = ∠2 = ∠3,则面积S 1,S 2,S 3之间的关系式为______;推广验证(2)如图 3,在Rt △ ABC 中,BC 为斜边,分别以 AB ,AC ,BC 为边向外侧作任意△ ABD △, ACE △, BCF ,满足∠1 = ∠2 = ∠3,∠D = ∠E = ∠F ,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图 4,在五边形 ABCDE 中,∠A = ∠E = ∠C = 105°,∠ABC = 90°,AB = 2√3,DE = 2,点 P 在 AE上,∠ABP = 30°,PE = √2,求五边形 ABCDE 的面积.28. 已知直线l 1:y = −2x + 10交 y 轴于点 A ,交 x 轴于点 B ,二次函数的图象过 A ,B 两点,交 x 轴于另一点 C ,BC = 4,且对于该二次函数图象上的任意两点P 1(x 1, y 1 ),P 2(x 2, y 2 ),当x 1 > x 2 ≥ 5时,总有y 1 > y 2.(1)求二次函数的表达式;(2)若直线l 2:y = mx + n(n ≠ 10),求证:当m = −2时,l 2//l 1;(3)E 为线段 BC 上不与端点重合的点,直线l 3:y = −2x + q 过点 C 且交直线 AE 于点 F △,求ABE △与 CEF 面积之和的最小值.t a n70∘=t a n70∘,即河宽t a n70∘米,2a =−1,答案和解析1.【答案】B【解析】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°−70°=20°,∴∠PTQ=70°,∴tan70°=PQ,PT∴PT=PQ200200故选:B.在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.此题考查了解直角三角形的应用−方向角问题,掌握方向角与正切函数的定义是解题的关键.2.【答案】C【解析】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2−4ac>0,即4ac−b2<0,故B正确;C.∵抛物线的对称轴为直线x=−1,抛物线与x轴的一个交点在(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(−1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B 进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c与直线y=n+1无交点,可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3.【答案】C【解析】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD//BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,12=1,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB=AB=BE 62∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK△和GKH的面积相等,故③错误;故选:C.连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK△和GKH的面积相等,即可求解.本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.4.【答案】A【解析】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.此题考查了规律型:图形的变化类,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.5.【答案】C【解析】解:∵矩形ABCD,∴AD//BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB=√52−32=4,2×1 = 1, 解得{ ∴ OA = OC = 2√5,故选:C .由矩形的性质,折叠轴对称的性质,可求出AF = FC = AE = 5,由勾股定理求出 AB ,AC ,进而求出 OA 即可.本题考查矩形的性质、折叠轴对称的性质,勾股定理等知识,根据图形直观,求出线段的长是得出答案的前提.6.【答案】B【解析】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于 0,则可以判断 A 、D 一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间 h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h 随 t 的增大而增大,当水注满小杯后,小杯内水面的高度 h 不再变化.故选:B .根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度ℎ(cm)与注水时间t (mi n )的函数图象.本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.7.【答案】B【解析】解:如图,∵抛物线y = x 2 − 2x − 3与 y 轴交于点 A ,与 x 轴正半轴交于点 B ,令y = 0,解得x = −1或 3,令x = 0,求得y = −3,∴ A(3,0),B(0, −3),∵抛物线y = x 2 − 2x − 3的对称轴为直线x = −∴ A′的横坐标为 1,设A ′(1, n),则B′(4, n + 3),∵点B′落在抛物线上,∴ n + 3 = 16 − 8 − 3,解得n = 2,∴ A′(1,2),B′(4,5),设直线A′B′的表达式为y = kx + b ,∴{ k + b = 2 , 4k + b = 5k = 1−2故选:B.求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A′B′的表达式.本题考查了抛物线与x轴的交点,坐标和图形变换−平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.8.【答案】C【解析】解:∵抛物线y=ax2−2ax=a(x−1)2−a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1−1|>|x2−1|,则y1>y2,故选项B错误;当a<0时,若|x1−1|>|x2−1|,则y1<y2,故选项A错误;若|x1−1|=|x2−1|,则y1=y2,故选项C正确;若y1=y2,则|x1−1|=|x2−1|,故选项D错误;故选:C.根据题目中的抛物线和二次函数的性质,利用分类讨论的方法可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查二次函数的性质,命题与定理,解答本题的关键是明确题意,利用二次函数的性质解答.9.【答案】27【解析】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴1×AB×GM=18,2∴4GM=18,∴△CBG的面积为:1×BC×GN=1×12×9=27.222故答案为:27.过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM的长,进而可得△CBG的面积.本题考查了作图−基本作图、角平分线的性质,解决本题的关键是掌握角平分线的性质.10.【答案】9√3【解析】解:作CH⊥AB于点H,∵在ABCD中,∠B=60°,BC=8,∴CH=4√3,∵四边形ECGF是平行四边形,∴EF//CG,∴△EOD∽△GOC,∴EO=DO=ED,GO OC GC∵DF=1DE,4∴DE=4,EF5∴ED=4,GC5∴EO=4,GO5∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4√3,∴GO=5√3,∴EG的最小值是9√3,故答案为:9√3.根据题意和平行四边形的性质,可以得到BD和EF的比值,再根据三角形相似和最短距离,即可得到EG的最小值,本题得以解决.本题考查平行四边形的性质、三角形的相似、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】①③【解析】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=−4,故①正确;该抛物线的对称轴为直线x=2+(−4)=−1,函数图象开口向下,若点C(−5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=−1时,函数取得最大值y=a−b+c,故对于任意实数t,总有a t2+b t+c≤a−b+c,即对于任意实数t,总有at2+b t≤a−b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为−3和1或−2和0或−1和−1,故p的值有三个,故④错误;故答案为:①③.根据题目中的抛物线和二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质解答.12.【答案】1t2−1t+144【解析】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,∵AE2+AM2=EM2,∴(2−x)2+t2=x2,解得x=t 2+1,4∴DE=t2+1,4∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,211⏜∴FG=t,2∵CG=DE=t2+1,4∴CF=t2−t+1,42∴S四边形CDEF=1(CF+DE)×1=4t2−4t+1.故答案为:1t2−1t+1.44连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,由勾股定理得出(2−x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.本题考查了矩形的性质,折叠的性质,勾股定理,锐角三角函数,熟练掌握折叠的性质及方程的思想是解题的关键.13.【答案】3(8−√3−π)【解析】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵MN的长为π,∴60πr=π,180∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=√3,∴AM=AN=√3,∴BM+CN=AB+AC−(AM+AN)=16−2√3,⏜②当∠AEB=30°时,AE=t a n30∘=si n60∘=2√3x,1120π×32=×3×(BM+CN)−()23603=(16−2√3)−3π2=24−3√3−3π=3(8−√3−π).故答案为:3(8−√3−π).连接OM、ON,根据半圆分别与AB,AC相切于点M,N.可得OM⊥AB,ON⊥AC,由∠BAC=120°,可得∠MON=60°,得∠MOB+∠NOC=120°,再根据MN的长为π,可得OM=ON=r=3,连接OA,根据Rt△AON中,∠AON=30°,ON=3,可得AM=AN=√3,进而可求图中阴影部分的面积.本题考查了切线的性质、弧长的计算、扇形面积的计算,解决本题的关键是掌握弧长和扇形面积的计算公式.14.【答案】4√3厘米或4√3厘米或8−4√33【解析】解:①当∠ABE=30°时,AE=AB×tan30°=4√3;3AB4√3=4√3;3③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=x3∵AF=AE+EF=ABtan30°=4√3,3∴x+2√3x=4√3,33∴x=8−4√3,∴AE=8−4√3.故答案为:4√3厘米或4√3厘米或8−4√3厘米.3根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.15.【答案】30【解析】解:正六边形的每个内角的度数为:(62)⋅180°=120°,6所以∠ABC=120°90°=30°,故答案为:30.由于六边形花环是用六个全等的直角三角形拼成的,所以这个六边形是正六边形,先算出正六边形每个内角的度数,即可求出∠ABC的度数.本题考查了多边形内角和定理.解题的关键是会计算正六边形的每个内角的度数.16.【答案】①④【解析】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.证明四边形ABCD是平行四边形即可解决问题.本题考查反比例函数的性质,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH OH=43=1,∴E(0,1),D(2,0),32依题意,得:∴该抛物线的函数表达式y = kx 2 + 1,把点D(2,0)代入,得k = − 1,4∴该抛物线的函数表达式为:y = − 1 x 2 + 1;4(2) ∵ GM = 2,∴ OM = OG = 1,∴当x = 1时,y = 3,4∴ N(1, 3),4∴ MN = 3,4矩形MNFG = MN ⋅ GM = 4 × 2 = 3,∴ S∴每个 B 型活动板房的成本是:425 + 3 × 50 = 500(元).2答:每个 B 型活动板房的成本是 500 元;(3)根据题意,得w = (n − 500)[100 +20(650 − n)10]= −2(n − 600)2 + 20000,∵每月最多能生产 160 个 B 型活动板房,∴ 100 + 20(650−n) ≤ 160,10解得n ≥ 620,∵ −2 < 0,∴ n ≥ 620时,w 随 n 的增大而减小,∴当n = 620时,w 有增大值为 19200 元.答:公司将销售单价n(元)定为 620 元时,每月销售 B 型活动板房所获利润w(元)最大,最大利润是 19200 元.【解析】(1)根据图形和直角坐标系可得点 D 和点 E 的坐标,代入y = kx 2 + m ,即可求解;(2)根据 M 和 N 的横坐标相等,求出 N 点坐标,再求出矩形 FGMN 的面积,即可求解;(3)根据题意得到 w 关于 n 的二次函数,根据二次函数的性质即可求解.本题考查了二次函数的应用,解决本题的关键是掌握二次函数的性质.18.【答案】解:设乙商品的进价为 x 元/件,则甲商品的进价为(1 + 50%)x 元/件,7200(1+50%)x− 3200 = 40,x第23页,共36页∴(1+50%)x=60,3200=80,(1+50%)x=120.x ,(1+50%)x中即可得出结论.解得:x=40,经检验,x=40是原方程的解,且符合题意,7200x答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.【解析】设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,根据数量=总价÷单价结合购进的甲商品比乙商品多40件,即可得出关于x的分式方程,解之经检验后即可得出x的值,再将其分别代入(1+50%)x,32007200本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.【答案】−15−112x+y=7 ①【解析】解:(1){.x+2y=8 ②由①−②可得:x−y=−1,由1(①+②)可得:x+y=5.3故答案为:−1;5.(2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,依题意,得:{20m+3n+2p=32 ①,39m+5n+3p=58 ②由2×①−②可得m+n+p=6,∴5m+5n+5p=5×6=30.答:购买5支铅笔、5块橡皮、5本日记本共需30元.(3)依题意,得:{3a+5b+c=15 ①,4a+7b+c=28 ②由3×①−2×②可得:a+b+c=−11,即1∗1=−11.故答案为:−11.(1)利用①−②可得出x−y的值,利用1(①+②)可得出x+y的值;3(2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元”,即可得出关于m,n,p的三元一次方程组,由2×①−②可得除m+n+p的值,再乘5即可求出结论;(3)根据新运算的定义可得出关于a,b,c的三元一次方程组,由3×①−2×②可得出a+b+c的值,即1∗1的值.。
北京二中分班考试数学真题
![北京二中分班考试数学真题](https://img.taocdn.com/s3/m/0cefb1b908a1284ac85043b3.png)
二中分校高一分班数学试题一、选择题(每小题3分,共10各小题,共30分)1、如图,线段AB 、CD 相交于E 点,AD//EF//BC ,若AE:EB=1:2,ADE S V =1,则AEF S V 等于( )A. 4B.23 C. 2 D. 432、如图所示,AB 为O e 的一条固定直径,它把O e 分成上、下两个半圆,自上半圆上一点C 做弦CD ⊥AB ,OCD ∠的平分线交O e 于点P ,当点C 在上半圆(不包括A 、B 两点)上移动时,点P ( )A.位置不变B. 等分»BDC.到CD 的距离保持不变D. 随点C 的移动而移动 3、已知二次函数y=ax 2+bx+c (0a ≠)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c >0;④(a+c )2<b 2.其中正确的结论是( )A. ①②B. ①③C.①③④D. ①②③④4、已知点P 是O e 内一点,O e 的半径为5,OP=3,在过点P 的所有O e 的弦中,弦长为整数的弦的条数为( )A. 3B. 4C. 5D. 无数条5、如图,已知ABC ∆中,BC=8,BC 边上的高h=4,D 为BC 上一点,做EF//BC ,交AB 于E (点E 不与点A 、B 重合),交AC 于点F 。
设E 到BC 的距离为x ,则DEF ∆的面积y 关于x 的函数的图像大致为( )6、一次函数()y ax b a 0=+≠、二次函数2y ax bx =+和反比例函数()ky k 0x=≠在同一直角坐标系中图象如图,A 点的坐标为(-2,0)。
则下列结论中,正确的( )A .a k 0>>B .a b k =+C .a b 0>>D .b 2a k =+7、在矩形ABCD 中,AB=6,BC=4,有一个半径为1的硬币与边AB 、AD 相切,硬币从如图所示的位置开始,在矩形内沿着边AB 、BC 、CD 、DA 滚动到开始的位置为止,硬币自身滚动的圈数大约是( )A. 1圈B. 2圈C. 3圈D. 4圈8、如图,在正方形ABCD 中,点P 是AB 上一动点(不与A 、B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N 。