特殊四边形存在性问题-二次函数特殊四边形存在性问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊四边形存在性问题

平行四边形:如果已知三个定点,则形成三条定线段,把每条定线段看成对角线,利用对角形互相平分解决。 如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.

菱形:通常转化为等腰三角形存在问题。

矩形:通常转化为直角三角形存在问题。

正方形:通常转化为等腰直角三角形存在问题。

针对训练

1.如图,已知抛物线y =-x 2-2x +3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为P .若以A 、C 、P 、M 为顶点的四边形是平行四边形,求点M 的坐标.

2.如图,在平面直角坐标系xOy 中,已知抛物线y =-x 2+2x +3与x 轴交于A 、B 两点,点M 在这条抛物线上,点P 在y 轴上,如果以点P 、M 、A 、B 为顶点的四边形是平行四边形,求点M 的坐标.

3.如图(1),抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(﹣2,0).(1)求此抛物线的解析式;

(2)①若点D 是第一象限内抛物线上的一个动点,过点D 作DE ⊥x 轴于E ,连接CD ,以OE 为直径作⊙M ,如图(2),试求当CD 与⊙M 相切时D 点的坐标;

②点F 是x 轴上的动点,在抛物线上是否存在一点G ,使A 、C 、G 、F 四点为顶点的四边形是平行四边形?若存在,求出点G 的坐标;若不存在,请说明理由.

21y x x c 4

=-+

+

4.如图1,在平面直角坐标系中,抛物线y =ax 2

+bx -3a 经过A (-1,0)、B (0,3)两点,与x 轴交于另一点C ,顶点为D .

(1)求该抛物线的解析式及点C 、D 的坐标;

(2)经过点B 、D 两点的直线与x 轴交于点E ,若点F 是抛物线上一点,以A 、B 、E 、F 为顶点的四边形是平行四边形,求点F 的坐标;

(3)如图2,P (2,3)是抛物线上的点,Q 是直线AP 上方的抛物线上一动点,求△APQ 的最大面积和此时Q 点的坐标.

5.如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A ,B ,直线CD 与x 轴、y 轴分别交于点C ,D ,AB 与CD 相交于点E ,线段OA ,OC 的长是一元二次方程x 2

﹣18x+72=0的两根(OA >OC ),BE=5,tan ∠ABO=.(1)求点A ,C 的坐标;(2)若反比例函数y=的图象经过点E ,求k 的值; (3)若点P 在坐标轴上,在平面内是否存在一点Q ,使以点C ,E ,P ,Q 为顶点的四边形是矩形?若存在,请写出满足条件的点Q 的个数,并直接写出位于x 轴下方的点Q 的坐标;若不存在,请说明理由.

43k

x

6.将抛物线c 1:2y =x 轴翻折,得到抛物线c 2,如图所示.

现将抛物线c 1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.

7.已知平面直角坐标系xOy (如图),一次函数334y x =

+的图像与y 轴交于点A ,点M 在正比例函数32y x =的图像上,且MO =MA .二次函数y =x 2+bx +c 的图像经过点A 、M .

(1)求线段AM 的长; (2)求这个二次函数的解析式;

(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数334

y x =+的图像上,且四边形ABCD 是菱形,求点C 的坐标.

8.如图,直线y=x ﹣4与x 轴、y 轴分别交于A 、B 两点,抛物线经过A 、B 两点,与x 轴的另一个交点为C ,连接BC .

(1)求抛物线的解析式及点C 的坐标; (2)点M 在抛物线上,连接MB ,当∠MBA+∠CBO=45°时,求点M 的坐标;

(3)点P 从点C 出发,沿线段CA 由C 向A 运动,同时点Q 从点B 出发,沿线段BC 由B 向C 运动,P 、Q 的运动速度都是每秒1个单位长度,当Q 点到达C 点时,P 、Q 同时停止运动,试问在坐标平面内是否存在点D ,使P 、Q 运动过程中的某一时刻,以C 、D 、P 、Q 为顶点的四边形为菱形?若存在,直接写出点D 的坐标;若不存在,说明理由.

9.已知抛物线2(2)y a x b =-+ (0)ab <的顶点为A ,与x 轴的交点为B ,C (点B 在点C 的左侧).

(1)直接写出抛物线对称轴方程;

(2)若抛物线经过原点,且△ABC 为直角三角形,求a ,b 的值;

(3)若D 为抛物线对称轴上一点,则以A 、B 、C 、D 为顶点的四边形能否为正方形?若能,请求出a ,b 满足的关系式;若不能,说明理由.

21y x bx c 3

=

+

+

10.如图,已知双曲线

6

y

x

与直线AB交于A、B两点,与直线CD交于C、D两点.

(1)求证四边形ACBD是平行四边形;

(2)四边形ACBD可能是矩形吗?可能是正方形吗?

(3)如果点A的横坐标为3,点C的横坐标为m(m>0),四边形ACBD的面积为S,求S与m的之间的关系式.

相关文档
最新文档