线性代数在数学建模中的应用

合集下载

线性代数在数学建模中的应用举例

线性代数在数学建模中的应用举例

线性代数在数学建模中的应用举例1 基因间“距离”的表示在ABO 血型的人们中,对各种群体的基因的频率进行了研究。

如果我们把四种等位基因A 1,A 2,B ,O 区别开,有人报道了如下的相对频率,见表1.1。

表1.1基因的相对频率问题 一个群体与另一群体的接近程度如何?换句话说,就是要一个表示基因的“距离”的合宜的量度。

解 有人提出一种利用向量代数的方法。

首先,我们用单位向量来表示每一个群体。

为此目的,我们取每一种频率的平方根,记ki ki f x =.由于对这四种群体的每一种有141=∑=i ki f ,所以我们得到∑==4121i kix .这意味着下列四个向量的每个都是单位向量.记.44434241,34333231,24232221,141312114321⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=x x x x a x x x x a x x x x a x x x x a在四维空间中,这些向量的顶端都位于一个半径为1的球面上. 现在用两个向量间的夹角来表示两个对应的群体间的“距离”似乎是合理的.如果我们把a 1和a 2之间的夹角记为θ,则由于| a 1|=| a 2|=1,再由内只公式,得21cos a a ⋅=θ而.8307.03464.02943.03216.0,8228.01778.00000.05398.021⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a 故 9187.0cos 21=⋅=a a θ 得 2.23=θ°. 按同样的方式,我们可以得到表1.2.表1.2基因间的“距离”爱斯基摩人班图人 英国人 朝鲜人 爱斯基摩人 0° 23.2° 16.4° 16.8° 班图人 23.2° 0° 9.8° 20.4° 英国人 16.4° 9.8° 0° 19.6° 朝鲜人16.8°20.4°19.6°0°由表1.2可见,最小的基因“距离”是班图人和英国人之间的“距离”,而爱斯基摩人和班图人之间的基因“距离”最大.2 Euler 的四面体问题问题 如何用四面体的六条棱长去表示它的体积?这个问题是由Euler (欧拉)提出的.解 建立如图2.1所示坐标系,设A ,B ,C 三点的坐标分别为(a 1,b 1,c 1),( a 2,b 2,c 2)和(a 3,b 3,c 3),并设四面体O-ABC 的六条棱长分别为.,,,,,r q p n m l 由立体几何知道,该四面体的体积V 等于以向量→→→OC OB OA ,,组成右手系时,以它们为棱的平行六面体的体积V 6的16.而)(.3332221116c b a c b a c b a OC OB OA V =⋅⨯= 于是得 .6333222111c b a c b a c b a V = 将上式平方,得.362323233232323231313232322222221212131313121212121212133322211133322211122c b a c c b b a a c c b b a a c c b b a a c b a c c b b a a c c b b a a c c b b a a cb ac b a c b a c b a c b a c b a c b a V ++++++++++++++++++=⋅=根据向量的数量积的坐标表示,有.,,,,232323323232222222313131212121212121c b a OC OC c c b b a a OC OB c b a OB OB c c b b a a OC OA c c b b a a OB OA c b a OA OA ++=⋅++=⋅++=⋅++=⋅++=⋅++=⋅ 于是362OC OC OB OC OB OBOB OBOA OB OA OAV ⋅⋅⋅= (2.1)由余弦定理,可行.2cos 222n q p q p OB OA -+=⋅⋅=⋅θ同理.2,2222222l r q OC OB m r p OC OA -+=⋅-+=⋅将以上各式代入(2.1)式,得.222222362222222222222222222222r l r p m r p l r p p n q p m r p n q p pV -+-+-+-+-+-+=(2.2)这就是Euler 的四面体体积公式.例 一块形状为四面体的花岗岩巨石,量得六条棱长分别为l =10m, m =15m, n =12m, p =14m, q =13m, r =11m.则.952222,462222,5.1102222=-+=-+=-+l r p m r p n q p代入(2.1)式,得.75.13698291219546951695.110465.110196236==V 于是.)195(82639.38050223m V ≈≈即花岗岩巨石的体积约为195m 3.古埃及的金字塔形状为四面体,因而可通过测量其六条棱长去计算金字塔的体积.3 动物数量的按年龄段预测问题问题 某农场饲养的某种动物所能达到的最大年龄为15岁,将其分成三个年龄组:第一组,0~5岁;第二组,6~10岁;第三组,11~15岁.动物从第二年龄组起开始繁殖后代,经过长期统计,第二组和第三组的繁殖率分别为4和3.第一年龄和第二年龄组的动物能顺利进入下一个年龄组的存活率分别为12 和14 .假设农场现有三个年龄段的动物各100头,问15年后农场三个年龄段的动物各有多少头?问题分析与建模 因年龄分组为5岁一段,故将时间周期也取为5年.15年后就经过了3个时间周期.设)(k i x 表示第k 个时间周期的第i 组年龄阶段动物的数量(k =1,2,3;i =1,2,3).因为某一时间周期第二年龄组和第三年龄组动物的数量是由上一时间周期上一年龄组存活下来动物的数量,所以有).3,2,1(41,21)1(2)(3)1(1)(2===--k x x x x k k k k又因为某一时间周期,第一年龄组动物的数量是由于一时间周期各年龄组出生的动物的数量,所以有).3,2,1(34)1(3)1(2)(1=+=--k x x x k k k于是我们得到递推关系式:⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=----.41,21,34)1(2)(3)1(1213)1(2)(1k k k k k k k x x x x x x x 用矩阵表示).3,2,1(0410021340)1(3)1(2)1(1)(3)(2)(1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---k x x x x x x k k k k k k则).3,2,1()1()(==-k Lx x k k其中.100010001000,04100021340)0(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=x L 则有),3,2,1()(3)(2)(1)(=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k x x x x k k k k,250500700010001000100004100021340)0()1(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==Lx x,12535002750250500700004100021340)1()2(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==Lx x .8751375143751253500275004100021340)2()3(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==Lx x 结果分析 15年后,农场饲养的动物总数将达到16625头,其中0~5岁的有14375头,占86.47%,6~10岁的有1375头,占8.27%,11~15岁的有875头,占 5.226%.15年间,动物总增长16625-3000=13625头,总增长率为13625/3000=454.16%.注 要知道很多年以后的情况,可通过研究式)0()1()(x L Lx x k k k ==-中当趋于无穷大时的极限状况得到.关于年龄分布的人口预测模型 我们将人口按相同的年限(比如5年)分成若干年龄组,同时假设各年龄段的田、女人口分布相同,这样就可以通过只考虑女性人口来简化模型.人口发展随时间变化,一个时间周期的幅度使之对应于基本年龄组间距(如先例的5年),令)(k i x 是在时间周期k 时第i 个年龄组的(女性)人口,i =1,2,…,n .用1表示最低年龄组,用n 表示最高年龄组,这意味着不考虑更大年龄组人口的变化.假如排除死亡的情形,则在一个周期内第i 个年龄组的成员将全部转移到i +1个年龄组.但是,实际上必须考虑到死亡率,因此这一转移过程可由一存活系数所衰减. 于是,这一转移过程可由下述议程简单地描述:),1,,2,1()1()(1-==-+n i x b x k ii k i其中i b 是在第i 个年龄组在一个周期的存活率,因子i b 可由统计资料确定.惟一不能由上述议程确定的年龄组是,)(1k x 其中的成员是在后面的周期内出生的,他们是后面的周期内成员的后代,因此这个年龄组的成员取决于后面的周期内各组的出生率及其人数.于是有方程,)1(122)1(11)(1---+++=k n n k k k x a x a x a x (3.1)这里),,2,1(n i a i =是第i 个年龄组的出生率,它是由每时间周期内,第i 个年龄组的每一个成员的女性后代的人数来表示的,通常可由统计资料来确定.于是我们得到了单性别分组的人口模型,用矩阵表示便是,00000000000)1()1(3)1(2)1(11211321)()(3)(2)(1⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------k n k k k n n n k n k k k x x x x b b b a a a a a x x x x 或者简写成.)1()(-=k k Lx x (3.2)矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--000000000001211321n n n b b b a a a a a L称为Leslie 矩阵.由(3.2)式递推可得)0()1()(x L Lx x k k k ==-这就是Leslie 模型.4 企业投入产生分析模型问题 某地区有三个重要产业,一个煤矿、一个发电厂和一条地方铁路.开采一元钱的煤,煤矿要支付0.25元的电费及0.25元的运输费.生产一元钱的电力,发电厂要支付0.65元的煤费,0.05元的电费及0.05元的运输费.创收一元钱的运输费,铁路要支付0.55元的煤费及0.10元的电费.在某一周内,煤矿接到外地金额为50000元的定货,发电厂接到外地金额为25000元的定货,外界对地方铁路没有需求.问三个企业在这一周内总产值多少才能满足自身及外界的需求?数学模型 设x 1为煤矿本周内的总产值,x 2为电厂本周的总产值,x 3为铁路本周内的总产值,则⎪⎩⎪⎨⎧=⨯++-=++-=++⨯-,0)005.025.0(,25000)10.005.025.0(,50000)55.065.00(321332123211x x x x x x x x x x x x (4.1) 即.02500050000005.025.010.005.025.055.065.00321321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡x x x x x x 即.025********,005.025.010.005.025.055.065.00,321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Y A x x x X 矩阵A 称为直接消耗矩阵,X 称为产出向量,Y 称为需求向量,则方程组(4.1)为,Y AX X =-即Y X A E =-)(, (4.2)其中矩阵E 为单位矩阵,(E-A )称为列昂杰夫矩阵,列昂杰夫矩阵为非奇异矩阵.投入产出分析表 设,00000,)(3211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--=-x x x A C E A E B D=(1,1,1)C.矩阵B 称为完全消耗矩阵,它与矩阵A 一起在各个部门之间的投入产生中起平衡作用.矩阵C 可以称为投入产出矩阵,它的元素表示煤矿、电厂、铁路之间的投入产出关系.向量D 称为总投入向量,它的元素是矩阵C 的对应列元素之和,分别表示煤矿、电厂、铁路得到的总投入.由矩阵C ,向量Y ,X 和D ,可得投入产出分析表4.1.表4.1 投入产出分析表 单位:元 煤矿电厂铁路外界需求总产出煤矿 11c 12c 13c 1y 1x电厂 21c 22c 23c 2y 2x 铁路 31c32c33c 3y3x总投入1d 2d 3d计算求解 按(4.2)式解方程组可得产出向量X ,于是可计算矩阵C 和向量D ,计算结果如表4.2.表4.2 投入产出计算结果 单位:元 煤矿 电厂 铁路 外界需求 总产出 煤矿 0 36505.96 15581.51 50000 102087.48 电厂 25521.87 2808.15 2833.00 25000 56163.02 铁路 25521.87 2808.15 0 0 28330.02总投入51043.7442122.2718414.525 交通流量的计算模型问题 图5.1给出了某城市部分单行街道的交通流量(每小时过车数).假设:(1)全部流入网络的流量等于全部流出网络的流量;(2)全部流入一个节点的流量等于全部流出此节点的流量.试建立数学模型确定该交通网络未知部分的具体流量.建模与计算 由网络流量假设,所给问题满足如下线方程组:234457612157891091083630050020080080010004002006001000x x x x x x x x x x x x x x x x x x x x -+=⎧⎪+=⎪⎪-=⎪+=⎪⎪+=⎪⎨+=⎪⎪=⎪-=⎪⎪=⎪++=⎪⎩ 系数矩阵为11100000000011000000000011000110000000010001000000000001100000000001000000000110000000001010010100A -⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 增广矩阵阶梯形最简形式为1000100000800010010000000010000000200000110000050000000101008000000001100100000000000104000000000001600000000000000000000000B ⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦其对应的齐次方程组为1525345687891000000000x x x x x x x x x x x x x +=⎧⎪-=⎪⎪=⎪+=⎪⎨+=⎪⎪+=⎪=⎪⎪=⎩取(x 5,x 8)为自由取值未知量,分别赋两组值为(1,0),(0,1),得齐次方程组基础解系中两个解向量()11,1,0,1,1,0,0,0,0,0,'η=--()20,0,0,0,0,1,1,1,0,0'η=--其对应的非齐次方程组为1525345687891080002005008001000400600x x x x x x x x x x x x x +=⎧⎪-=⎪⎪=⎪+=⎪⎨+=⎪⎪+=⎪=⎪⎪=⎩赋值给自由未知量(x 5,x 8)为(0,0)得非齐次方程组的特解()800,0,200,500,0,800,1000,0,400,600'x *=于是方程组的通解,*2211x k k x ++=ηη其中k 1,k 2为任意常数,x 的每一个分量即为交通网络未知部分的具体流量,它有无穷多解.6 小行星的轨道模型问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1.表6.1 坐标数据由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为012225423221=+++++y a x a y a xy a x a .问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据:(x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5).由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定系数,将五个点的坐标分别代入上面的方程,得2211211314151221222232425222132333343532214244344454221525535455522212221222122212221a x a x y a y a x a y a x a x y a y a x a y a x a x y a y a x a y a x a x y a y a x a y a x a x y a y a x a y ⎧++++=-⎪++++=-⎪⎪++++=-⎨⎪++++=-⎪⎪++++=-⎩这是一个包含五个未知数的线性方程组,写成矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡11111222222222222222543215525552544244424332333232222222211211121a a a a a y x y y x x y x y y x x y x y y x x y x y y x x y x y y x x 求解这一线性方程组,所得的是一个二次曲线方程.为了知道小行星轨道的一些参数,还必须将二次曲线方程化为椭圆的标准方程形式:12222=+bY a X 由于太阳的位置是小行星轨道的一个焦点,这时可以根据椭圆的长半轴a 和短半轴b 计算出小行星的近日点和远日点距离,以及椭圆周长L .根据二次曲线理论,可得椭圆经过旋转和平移两种变换后的方程如下:[]22120D X Y C λλ++=所以,椭圆长半轴:C D a 1λ=;椭圆短半轴: CDb 2λ=;椭圆半焦矩:22b ac -=.计算求解 首先由五个点的坐标数据形成线性方程组的系数矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=7200.69600.142896.112656.509504.550520.53360.143807.62127.363802.516460.35180.133233.36433.246841.454040.25720.124448.11115.155138.39292.1528.114199.04701.72237.33A使用计算机可求得12345(,,,,)(0.6143,0.3440,0.6942, 1.6351,0.2165)a a a a a =---从而⎪⎪⎭⎫⎝⎛--=⎥⎦⎤⎢⎣⎡=6942.03440.03440.06143.03221a a a a C C C ,3081.0=的特征值120.3080, 1.0005λλ==123235450.61430.3440 1.63510.34400.69420.21651 1.63510.21651a a a D a a a a a ---⎡⎤⎡⎤⎢⎥⎢⎥==--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦.8203.1-=D于是,椭圆长半轴a=19.1834,短半轴b=5.9045,半焦距c=18.2521.小行星近日点距和远日点距为039313,37.4355h a c H a c =-==+=最后,椭圆的周长的准确计算要用到椭圆积分,可以考虑用数值积分解决问题,其近似值为84.7887.7 人口迁移的动态分析问题 对城乡人口流动作年度调查,发现有一个稳定的朝向城镇流动的趋势:每年农村居民的2.5%移居城镇,而城镇居民的1%迁出.现在总人口的60%位于城镇.假如城乡总人口保持不变,并且人口流动的这种趋势继续下去,则一年以后住在城镇人口所占比例是多少两年以后呢十年以后呢最终呢解 设开始时,令乡村人口为,0y 城镇人口为,0z 一年以后有乡村人口,10011000975100y z y =+ 城镇人口 ,10099100025100z z y =+或写成矩阵形式⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡00111009910002510011000975z y z y . 两年以后,有.100991000251001100097510099100025100110009750021122⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y z y . 十年以后,有.100991000251001100097500101010⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y 事实上,它给出了一个差分方程:k k Au u =+1.我们现在来解这个差分方程.首先,1009910002510011000975⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Ak 年之后的分布(将A 对角化):.75757275100200193115210000⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y A z y k k k k 这就是我们所要的解,而且容易看出经过很长一个时期以后这个解会达到一个极限状态.7572)(00⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=⎥⎦⎤⎢⎣⎡∞∞z y z y 总人口仍是00z y +,与开始时一样,但在此极限中人口的75在城镇,而72在乡村.无论初始分布是什么样,这总是成立的.值得注意这个稳定状态正是A 的属于特征值1的特征向量.上述例子有一些很好的性质:人口总数保持不变,而且乡村和城镇的人口数决不能为负.前一性质反映在下面事实中:矩阵每一列加起来为1;每个人都被计算在内,而没有人被重复或丢失.后一性质则反映在下面事实中:矩阵没有负元素;同样地0y 和0z 也是非负的,从而1y 和21,y z 和2z 等等也是这样.8 常染色体遗传模型为了揭示生命的奥秘,遗传学的研究已引起了人们的广泛兴趣.动植物在产生下一代的过程中,总是将自己的特征遗传给下一代,从而完成一种“生命的延续”.在常染色体遗传中,后代从每个亲体的基因对中各继承一个基因,形成自己的基因对.人类眼睛颜色即是通过常染色体控制的,其特征遗传由两个基因A 和a 控制.基因对是AA 和Aa 的人,眼睛是棕色,基因对是aa 的人,眼睛为蓝色.由于AA 和Aa 都表示了同一外部特征,或认为基因A 支配a ,也可认为基因a 对于基因A 来说是隐性的(或称A 为显性基因,a 为隐性基因).下面我们选取一个常染色体遗传——植物后代问题进行讨论.某植物园中植物的基因型为AA ,Aa ,aa .人们计划用AA 型植物与每种基因型植物相结合的方案培育植物后代.经过若干年后,这种植物后代的三种基因型分布将出现什么情形我们假设),2,2,0(,, =n c b a n n n 分别代表第n 代植物中,基因型为AA ,Aa 和aa 的植物占植物总数的百分率,令),,()('=n n n n c b a x为第n 代植物的基因分布, ),,(000)0('=c b a x 表示植物基因型的初始分布,显然,我们有.1000=++c b a (8.1)先考虑第n 代中的AA 型,第1-n 代AA 型与AA 型相结合,后代全部是AA 型;第1-n 代的Aa 型与和与AA 相结合,后代是AA 型的可能性为21;1-n 代的aa 型与AA 型相结合,后代不可能是AA 型。

数学建模重要知识点总结

数学建模重要知识点总结

数学建模重要知识点总结一、微积分微积分是数学建模中最重要的数学工具之一,它包括微分和积分两大部分。

微分是求函数的导数,用于描述函数的变化率和曲线的切线。

而积分则是求函数的不定积分或定积分,用于描述函数的面积、体积等性质。

在数学建模中,微积分可以用于建立问题的数学模型,求解微分方程和积分方程,对函数进行优化等。

例如,在物理建模中,我们经常会用到微积分来描述物体的运动、速度和加速度等。

在经济学建模中,微积分可以用来描述供求关系、利润最大化等问题。

二、线性代数线性代数是研究向量空间、线性映射和矩阵等数学对象的学科。

在数学建模中,线性代数可以用于描述多维空间中的几何关系、解线性方程组、求解最小二乘问题等。

例如,在计算机图形学中,线性代数可以用来描述和变换三维物体的位置和姿态。

在统计学建模中,线性代数可以用来对数据进行降维、拟合线性模型等。

三、概率论与数理统计概率论与数理统计是研究随机现象的规律性和统计规律的学科。

在数学建模中,概率论与数理统计可以用于描述随机现象的概率分布、推断总体参数、假设检验等。

例如,在风险管理建模中,我们经常会用到概率论与数理统计来描述风险的分布和进行风险评估。

在机器学习建模中,概率论与数理统计可以用来对数据进行建模和推断。

四、数学优化数学优化是研究如何在给定约束条件下,找到使目标函数取得极值的方法和理论。

在数学建模中,数学优化可以用来对问题进行建模和求解。

例如,在生产调度问题中,我们可以用数学优化来寻找最优的生产计划;在投资组合优化中,我们可以用数学优化来构建最优的资产配置。

五、微分方程微分方程是研究未知函数及其导数之间关系的方程。

在数学建模中,微分方程可以用来描述系统的动力学行为、生物种群的增长规律、热传导过程等。

我们可以通过对微分方程进行数值求解、解析求解或者定性分析,来获得系统的行为特征。

六、离散数学离散数学是研究离散结构及其性质的数学学科,包括集合论、图论、逻辑和代数等内容。

数学建模常用知识点总结

数学建模常用知识点总结

数学建模常用知识点总结1.1 矩阵及其运算矩阵是一个矩形的数组,由行和列组成。

可以进行加法、减法和数乘运算。

1.2 矩阵的转置对矩阵进行转置就是把矩阵的行和列互换得到的新矩阵。

1.3 矩阵乘法矩阵A和矩阵B相乘得到矩阵C,要求A的列数等于B的行数,C的行数是A的行数,列数是B的列数。

1.4 矩阵的逆只有方阵才有逆矩阵,对于矩阵A,如果存在矩阵B,使得AB=BA=I,那么B就是A的逆矩阵。

1.5 行列式行列式是一个标量,是一个方阵所表示的几何体积的无向量。

1.6 特征值和特征向量对于矩阵A,如果存在标量λ和非零向量x,使得Ax=λx,那么λ就是A的特征值,x就是对应的特征向量。

1.7 线性相关和线性无关对于一组向量,如果存在一组不全为零的系数,使得它们的线性组合等于零向量,那么这组向量就是线性相关的。

1.8 空间与子空间空间是向量的集合,子空间是一个向量空间的子集,并且本身也是一个向量空间。

1.9 线性变换对于向量空间V和W,如果满足T(v+u)=T(v)+T(u)和T(kv)=kT(v),那么T就是一个线性变换。

1.10 最小二乘法对于一个线性方程组,如果方程个数大于未知数个数,可以使用最小二乘法来求得最优解。

1.11 奇异值分解矩阵分解的方法之一,将一个任意的矩阵分解为三个矩阵的乘积。

1.12 特征分解对于一个对称矩阵,可以将其分解为特征向量和特征值的乘积。

1.13 线性代数在建模中的应用在数学建模中,线性代数是非常重要的基础知识,它可以用来表示和分析问题中的数据,解决矩阵方程组、优化问题、回归分析等。

二、微积分2.1 极限和连续性极限是指一个函数在某一点上的局部性质,连续性则是函数在某一点上的全局性质。

2.2 导数和微分对于一个函数y=f(x),它的导数可以表示为f’(x),其微分可以表示为dy=f’(x)dx。

2.3 泰勒级数泰勒级数是一种用多项式逼近函数的方法,在建模中可以用来进行函数的近似计算。

高等代数在数学建模中的应用探讨

高等代数在数学建模中的应用探讨

高等代数在数学建模中的应用探讨高等代数是数学中一个重要的分支,它研究的是数学中的线性空间、矩阵和向量等概念。

高等代数不仅仅为数学学科的发展做出了贡献,它在现代科学中也有着广泛的应用,尤其是在数学建模中。

1.线性回归模型线性回归模型是数学建模中最常使用的模型之一,它的核心是利用高等代数中的矩阵和向量计算,建立数学模型,预测未来的结果。

线性回归模型在金融、天气预测、医学等领域中都有着广泛的应用。

在线性回归模型中,矩阵和向量的应用至关重要。

在实际的建模过程中,我们需要将数据转换为矩阵和向量形式,以便于进行计算,从而得出对未来的预测结果。

2.特征值和特征向量在图像处理中的应用在图像处理中,我们通常需要对图像进行分析和处理。

高等代数中的特征值和特征向量可以很好地应用到图像处理中。

我们可以将图像视为一个矩阵,在对矩阵进行特征值和特征向量分解后,可以得到图像的一些特征信息,如边缘、斑点等信息,从而优化图像处理的效果。

3.矩阵在网络分析中的应用在现代社会中,网络已经成为了人们生活的重要组成部分。

矩阵在网络分析中也有着广泛的应用。

我们可以将网络视为一个图形,再利用高等代数中的矩阵计算方法,将网络分析成一个矩阵,从而更好地理解和分析网络的结构和特征。

4.线性代数在计算机图形学中的应用计算机图形学是指通过计算机对图形进行处理和生成的一门学科。

在计算机图形学中,我们需要对图形进行旋转、缩放、平移等操作。

这些操作都可以通过线性代数中的矩阵和向量计算来完成。

因此,线性代数在计算机图形学中扮演着重要的角色。

综上所述,高等代数在数学建模中有着广泛的应用。

它的应用范围从金融、医学到计算机图形学、网络分析等众多领域。

因此,对于专业的数学建模人员来说,学习和掌握高等代数知识是非常重要的。

将数学建模思想融入线性代数课程教学

将数学建模思想融入线性代数课程教学

将数学建模思想融入线性代数课程教学摘要:本文探讨了如何在线性代数教学中融入数学建模思想,从线性代数课程的主要性质以及工科学生学习它的目的、研究型教学需要等方面探讨数学建模思想融入教学,进而分析如何在教学中融入数学建模思想以及这种教学对教师的要求。

关键词:数学建模思想;研究型教学;线性代数;教学改革作为国家工科数学教学基地,电子科技大学应用数学学院展开了一系列教学研讨。

作为国家精品课程,如何进行“线性代数与空间解析几何”这门课程的教学改革,特别是从培养创新型人才的战略角度将数学建模的思想融入该课程的教学当中,将应用数学学院的另一门国家精品课程“数学建模”的精华和“线性代数与空间解析几何”充分结合,并立足于电子科技大学的办学特色,以培养电子技术创新人才。

一、课程的重要性“线性代数与空间解析几何”是工科学生高等数学学习的主干课程之一(微积分、概率论与数理统计为其他二门)。

这门课程以矩阵、线性空间结构及线性变换为基本研究对象,和微积分的显著区别是:抽象以及和高中的数学截然不同,不像微积分同中学数学还有一定的关联。

课程的核心,正如通常的矩阵概念引入一样,是研究线性代数方程组解的情况以及如何更快地求解线性代数方程组(特征值或矩阵的谱相关)、线性空间结构及线性变换。

这样一门抽象的课程对工科大学生的培养有何帮助呢?1培养一种抽象思维方式。

抽象思维的能力不管它是不是与生俱有的,但很确定的一点是,它是可以被训练的,方法之一就是通过线性代数等相关数学课程的学习来培养。

这门课程会告诉你n维空间,甚至一般的仿射空间,这些都超出了现实的直观几何范畴,实际上,要利用现在发达的计算机技术处理实际问题,就必须将问题抽象化,经过计算机处理后再回到现实问题的处理上,这一点对工科类学生尤为重要。

2现代工程问题的处理很大程度上在最后都归结为(大规模)线性代数方程组的求解,比如,雷达散射截面,复合材料的开发,大规模集成电路设计,信号处理,优化设计等莫不需要求解线性代数方程组。

线性代数数学建模案例教学研究

线性代数数学建模案例教学研究

学术研讨123线性代数数学建模案例教学研究◊宿迁学院文理学院周克元赵士银本文对线性代数融入数学建模进行分析研究,列举相关数学建模案例,使抽象的线性代数具体化、形象化,训练和培养学生数学建模、分析问题、解决问题的能力。

线性代数主要以线性方程组求解为基础,研究线性空间中线性关系和线性映射,具有较强的抽象性,对于普通应用型院校学生来说理解难度比较大。

很多学生认为线性代数没有任何用处,不想学也不愿学,教师往往感觉是在唱独角戏,久而久之,容易造成恶性循环。

造成这样困境的原因是多方面的,数学知识本身严谨性和逻辑性的特点是一个原因,但更重要的原因是长期以来割裂了数学和其他学科的联系,对线性代数进行孤立的教学,使学生很难认识到它的重要应用价值%线性代数难学的主要原因在于线性代数中有许多从天而降许多抽象的概念,抽象的各种概念和知识点有什么意义什么应用基本没有介绍%传统的线性代数教材偏重于理论推导,而轻实践应用,导致教学内容过于抽象,难于理解,且学生感受不到线性代数理论体系存在%学生难以理解学习各种概念的目的意义,学习线性方程组求解、线性空间、线性映射等知识点有什么作用。

目前一个比较好的解决方法是将数学建模融入线性代数中问,线性代数广泛应用在经济、管理、运筹学、社会学、人口学、遗传学、生物学等领域,在教学中补充讲解线性代数知识在生活工程中的各种应用,让学生理解线性代数各个知识的背景来源,理解学习线性代数在生活工程中的巨大应用,激发学生的学习兴趣,培养学生使用线性代数解决实际问题的能力。

本文介绍一些在实际教学过程中使用的一些数学建模案例。

1行列式应用案例各类线性代数教材旳中,对于行列式的介绍主要为,对于二元三元线性方程组,其解用二阶三阶行列式表示更方便,进而给出n阶行列式的概念、行列式性质、求解方法以及Crammer法则,对于行列式其他应用基本没有介绍。

学生在学习过线性代数后面知识后,认为用逆矩阵或初等变换方法求解线性方程组更方便,对于学习行列式有什么作用产生怀疑。

线性代数在数学建模中的应用

线性代数在数学建模中的应用

线性代数在数学建模中的应用线性代数是一门研究向量空间及其上的线性变换的数学学科。

在数学建模中,线性代数是一门重要的应用数学学科之一。

可以说,线性代数在数学建模中的应用是非常广泛的。

一、线性代数在矩阵计算中的应用在数学建模中矩阵计算是一个重要的应用领域。

矩阵计算中的线性代数运算尤为关键。

通过矩阵计算,我们可以进行线性变换。

例如,在机器学习中,我们可以对图像进行矩阵变换,从而实现对图像的分类和识别。

二、线性代数在图形学中的应用图形学是一门研究计算机图像和多媒体图像处理的学科。

在图形学中,矩阵和向量的运算是关键所在。

例如,在三维图像中,我们可以通过矩阵运算来表示三维空间中的向量,从而进行图形变换。

图形学在现代的娱乐产业、计算机游戏和虚拟现实等领域中得到了广泛的应用。

三、线性代数在金融学中的应用线性代数在金融学中的应用不可忽视。

在金融学中,线性代数可以用来建立金融模型。

例如,在经济学中,我们可以使用线性代数中的矩阵运算来对资产组合进行优化。

通过矩阵运算,我们可以通过协方差矩阵来计算风险和收益性。

这对于分析金融市场和制定投资策略非常重要。

四、线性代数在物理学中的应用在物理学中,线性代数也是一门非常重要的学科。

例如,在量子力学中,矩阵运算是非常核心的。

在计算机模拟中,我们可以使用线性代数的矩阵运算来模拟物理现象。

例如,在计算机游戏中,我们可以使用物理引擎来模拟现实世界中的物理效应,并且可以使用矩阵运算来实现。

总之,线性代数在数学建模中的应用是非常广泛的。

矩阵运算、图形学、金融学和物理学等领域都可以使用到线性代数。

因此,对于想从事这些领域的人来说,学好线性代数是非常必要的。

线性代数在数学建模中的一些应用

线性代数在数学建模中的一些应用

线性代数在数学建模中的一些应用摘要:线性代数是许多高校开设的一门重要基础理论课,作为数学的一个重要的分支,它具有较强的逻辑性、抽象性和广泛的实用性。

数学建模是对实际问题进行分析,利用数学知识和方法建立数学模型,对模型求解并用于实际问题的处理。

因此,数学建模是联系数学和实际问题的重要纽带。

本文通过一些实例讨论了线性代数在数学建模中的一些重要应用。

关键词:线性代数数学建模应用随着社会的发展,数学在社会各领域中的应用越来越广泛,作用越来越大。

不但运用到自然科学各学科、各领域,而且渗透到经济、军事、管理以至于社会科学和社会活动的各领域。

不论是用数学方法解决哪类实际问题,还是与其他学科相结合形成交叉学科,首要的和关键的一步是将研究对象的内在规律用数学的语言和方法表述出来,即建立所谓的数学模型,还要将求解得到的结果返回到实际问题中去,这种解决问题的全过程称为数学建模[1]。

建立数学模型是一个比较复杂的过程,该过程可归纳为以下步棸[2]。

(1)对某个实际问题进行观察、分析。

(2)对实际问题进行必要的抽象、简化,作出合理的假设。

(3)确定要建立的模型中的变量和参数。

(4)根据某种规律,建立变量和参数间确定的数学关系,这是最关键的一步。

(5)解析或近似地求解该数学问题,这里要用到很多数学理论和方法。

(6)数学结果能否展示、解释甚至预测实际问题中出现的现象,或用某种方法来验证结果是否正确。

(7)如果(6)的结果是肯定的,则可用于指导实践;如果是否定的,则要回到前面六步重新进行分析,并重复上述建模过程。

作为数学科学的重要分支,线性代数是以矩阵、线性空间结构及线性变换为基本研究对象,其核心是研究线性代数方程组解的情况以及如何更快地求解线性方程组、线性空间结构及线性变换。

线性代数虽然是一门理论性很强的学科,但是它与实际问题也有着十分密切联系。

线性代数中的基本定义都是从实际问题中抽象和概括得到的,因此通过实际问题的求解来理解线性代数中的定义会更有趣更深刻。

浙江大学数学建模第四章基于线性代数与差分方程方法的模型

浙江大学数学建模第四章基于线性代数与差分方程方法的模型
(i,i)为可取状态,这是因为总可以适当安排而使他 们是 i对夫妻。 (ii)可取运算: 过河方式可以是一对夫妻、两个男人或两个女人, 这一问题的状态和运算与 当然也可以是一人过河。转移向量可取成 ((- 前一问题有所不同,根据 im,(-1)in),其中m、n可取0、1、2,但必须 1) 题意,状态应能反映出两 满足1≤m+n≤2。当j为奇数时表示过河。 当j为偶 岸的男女人数,过河也同 数时表示由对岸回来,运算规则同普通向量的加 样要反映出性别 法。
2.移位密码体制
移位密码采用移位法进行加密,明文中的字母重新排列,本 身不变,只是位置改变了。 另一种移位 法采用将字母表中的字母平移若干位的方法来构造 早在4000多年前,古希腊人就用一种名 叫“天书”的器械 密文字母表,传说这类方法是由古罗马皇帝凯撒最早使用的, 来加密消息。该密码器械是用一条窄长的草纸缠绕在一个 故这种密文字母表被称为凯撒字母表。例如,如用将字母表向 直径确定的圆筒上,明文逐行横写在纸带上,当取下纸带 右平移3位的方法来构造密文字母表,可 得: 时,字母的次序就被打乱了,消息得以隐蔽。收方阅读消 明文字母表: ABCDEFGHIJKLMNOPQRSTUVWXYZ 息时,要将纸带重新绕在直径与原来相同的圆筒上,才能 密文字母表: DEFGHIJKLMNOPQRTSUVWXYZABC 看到正确的消息。在这里圆筒的直径起到了密钥的作用。 “WKDQN BRX” 因此 “THANK YOU” 以上两种移位较易被人破译,为打破字母表中原有的顺序还可 采用所谓路线加密法,即把明文字母表按某种既定的顺序安排 在一个矩阵中,然后用另一种顺序选出矩阵中的字母来产生密 文表。
§4.2 密码的设计,解码与破译
密码的设计和使用至少可从追溯到四千多年前的埃及 ,巴 比伦、罗马和希腊,历史极为久远 。古代隐藏信息的方法 主要有两大类: 其一为隐藏信息载体,采用隐写术 等; 其二为变换信息载体,使之无法为一般人所理解 。

线性代数教学中融入数学建模思想的思考与研究

线性代数教学中融入数学建模思想的思考与研究
, ,
发送的密文矩阵为 C = A B = 8 l 0 8 3 6 9 l , 注意到原来
5 4 6 7 5 0 J
的两个 8和两个 1 0在加密后成 了不 同的数字 ,这样就很难 根 据出现的频度来破译了 。 而 接收方 只需将这个消息 C左乘 A的 逆, 即可恢复原来 的消息 , 即S E N D M O N E Y 。 通 过上 面的实际问题 ,使学生 得知可逆矩阵可 以有效 地 应用于加密技 术 , 使 原本抽象 的内容变得生 动有趣 , 激发学 生 的好 奇心 和求知欲 , 提 高学 习积极性 。 2 . 2 实施考核方式多元化 由以书面考试 为主的单一评价方式 转变为 以数学素质 为 核心的多元评价方式。在考核中渗透数学建模的思想 , 考核 方 式 多样性 , 可采用书面考试 、 大型作业 、 课后访谈 、 分析小论 文 和活动报告等形式。例如布置数学建模课题 , 督促学生 独立 或
在讲授方阵 的逆 的时候 ,很多学生会产生 这样 的一个 问 题: 如果一个方 阵的逆 阵存在 . 那 么求方 阵的逆有什 么作 用呢? 下面通过一个 与实 际问题 的加密问题的案例进行说 明。 ( 1 ) 问题 提 出 : 在英 文 中有 一种 对消息进 行保 密的措施 , 就是把消息 中的英文字母用一个整数来表示 , 然后传送这组整 数, 例如 5代表 s , 8代表 E等等 , 然而 , 这种方法是很容 易被破 译的。在一个很长的消息 中 , 根据数 字出现的频率 , 往往可以大 体 估 计 出它 所 代 表 的字 母 。 例 如 出 现 频 率 特 别 高 的 数 字 , 很 可 能 对 应 于 出现 频 率 最 高 的字 母 E 。那 么 , 如 何 对 下 面 的消 息 进
1 数 学 建模 的 思想 融入 线 代 教 学 中的 意 义 数 学模 型是 沟通 实 际问题 和数 学 工具之 间 的桥 梁和纽 带. 建立和处理数学模型 的过程就是将数学理论 知识应用 于实 际 的过程 。 实践表明 , 在数学教学 中融人数学建模思想 , 是提高 教学效果 的最佳途 径 , 全面培养学生综合素质 和创新 能力 的重

线性代数数学建模案例

线性代数数学建模案例

【问题描述】: 某城市单行线如下图所示, 其中的数字表示该路段每小时按 箭头方向行驶的车流量(单位: 辆).
400
500 1
x1
2 300
x2 100
3
200
x3 X4 4 300
图3 某城市单行线车流量示意图
现在需要解决的问题如下:
(1) 建立确定每条道路流量的线性方程组. (2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x4 = 350时, 确定x1, x2, x3的值.
【模型分析】
• 若令1 = (2, 3, 1, 1)T, 2 = (1, 2, 1, 1)T, = (4, 7, 5, 3)T, 则原问题等价于“线性方程组Ax = b是否有 解”, 也等价于“能否由1, 2线性表示”。
• 若四种原料的比例是按体积计算的, 则还要考虑混合前后体 积的关系(未必是简单的叠加), 因而最好还是先根据具体情 况将体积比转换为重量比, 然后再按上述方法处理.
图5 日常膳食搭配
图6 几种常见的作料
【模型准备】:
一种佐料由四种原料A、B、C、D混合而成. 这种佐料现有两种规格, 这 两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种 原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两 种规格的佐料按一定比例配制而成?
一个网络由一个点集以及连接部分或全部点的直线或弧线构成。 网络中的 点称作联结点(或节点),网络中的连接线称作分支. 每一分支中的流量方向已经指
定,并且流量(或流速)已知或者已标为变量。
x3
x1
60
x4
80
x2
(a)
x5 (b)

数学建模的主要建模方法

数学建模的主要建模方法

数学建模的主要建模方法数学建模是一种用数学语言描述实际问题,并通过数学方法求解问题的过程。

它是数学与实际问题相结合的一种技术,具有广泛的应用领域,如物理、工程、经济、生物等。

数学建模的主要建模方法可以分为经典建模方法和现代建模方法。

经典建模方法是数学建模的基础,主要包括数理统计、微积分、线性代数等数学工具。

经典建模方法的特点是基于简化和线性的假设,并通过解析或数值方法来求解问题。

1.数理统计:统计学是数学建模的重要工具之一,它的主要任务是通过对样本数据的分析,推断出总体的特征。

数理统计中常用的方法有概率论、抽样理论、假设检验等。

2.微积分:微积分是数学建模中常用的工具,它研究变化率和积分问题。

微积分的应用范围广泛,常用于描述物体的运动,求解最优化问题等。

3.线性代数:线性代数是研究向量空间与线性变换的数学学科。

在数学建模中,线性代数经常出现在模型的描述和求解过程中,如矩阵运算、线性回归等。

现代建模方法是近年来发展起来的一种新的建模方法,主要基于现代数学工具和计算机技术。

现代建模方法的特点是模型更为复杂,计算更加精确,模拟和实验相结合。

1.数值模拟:数值模拟是一种基于计算机技术的建模方法,通过离散和近似的数学模型,利用数值计算方法求解模型。

数值模拟常用于模拟和预测实际问题的复杂现象,如天气预报、电路仿真等。

2.优化理论:优化理论是数学建模中的一种重要工具,它研究如何找到最优解或最优化方案。

优化问题常用于求解资源分配、生产排程等实际问题。

3.系统动力学:系统动力学是一种研究系统结构和行为的数学方法,它通过建立动态模型,分析系统的变化趋势和稳定性。

系统动力学常用于研究生态系统、经济系统等复杂系统。

4.随机过程:随机过程是描述随机事件随时间变化的数学模型。

它在数学建模中常用于分析随机现象的特征和规律,如金融市场变动、人口增长等。

总体而言,数学建模的方法多种多样,建模方法的选择取决于问题的性质、可用数据和计算资源等因素。

数学建模思想在线性代数教学中的运用

数学建模思想在线性代数教学中的运用

『\ 『 / _ 『 3 j 0 U \ 1 l U 0 1
xБайду номын сангаас
ll2I3I4 l+{=[+ 2 x0X0x 8
在化工专业讲授 “ 性 方程组的解 ” 一 章时 , 先给 出 线 这 我
了一 个 化 学 方 程式 [ 3 ] ( C H (, 0 ( CO +(4H, X ) , X ) ,X ) , X ) 0
f2 3 83 X I = X
x: x+ 4 :2 3x
线 性 代 数是 高 等数 学 中最 重 要 的基 础 课 之 一 , 它需 要 记 忆 的定 理 和 公 式很 少 , 计算 的方 式 也 较 简 单 。 是 有 相 当 一部 但 分学 生 感 到 线 性代 数 很 难 入 门 , 该 课 程 的 实 际 应 用 不 明 确 , 对 甚 至 认 为 线 性 代 数 非 常 的抽 象 、 燥 、 洞 , 后 续 课 程 中也 枯 空 在 没有 起 到 什 么 作用 。 事 实 上 。 现 代 经 济 社 会 , 息 高 速 发 展 , 学 已直 接 应 在 信 数 用 于工 程 技 术 、 产 活 动 、 生 医药 卫 生 、 口 、 人 经济 、 通 、 境 等 交 环 领域 。 乎 渗透 到 了每 一 个 领域 和学 科 …。线 性 代 数 作 为 一 门 几 重要 的数 学 基 础课 , 的 教 学 内容 、 学方 法也 面 临 着 巨 大 的 它 教 变革 。 如何 引导 和 帮 助 学 生顺 利 入 门 , 掌握 线 性 代 数 的精 髓 和 要点 了解 线 性 代 数 在 解 释 问 题 原 理 、 简化 问题 计 算 中所 起 的 作 用 , 善 于应 用 。 学 生 能 通 过 学 习提 高 数 学 素 养 , 成 为 并 使 已 当前 线 性 代 数 教 学 改革 的 主流 方 向。 1数 学建 模 简 介 . 数 学 建模 是 培 养 学 生 用数 学 来 解 决 实 际 问题 的课 程 , 使 学生在深入调查研究 、 了解 对 象 信 息 、 出 简 化 假 设 、 析 内 作 分 在 规 律 等 工 作 的 基 础 上 . 数 学 的符 号 和 语 言 , 实 际 问 题 用 把 表 述 为 数 学 模 型 。 所 得 的 结 果 来 解 决 实 际 问 题 , 接 受 实 用 并 际 的 检 验 。现 代 计 算 机 技 术 和 数 学 软 件 的 高 速 发 展 , 为 数 又 学 建 模 提 供 了非 常 好 的平 台 , 深 入 、 量 分 析 实 际 问 题 奠 为 定 定 了基 础 。 开展 十几 年 的全 国大 学 生 数 学 建 模 竞 赛 , 已成 为 一 项 重 要 的 大 学 生课 外 科 技 活 动 , 赛 人 数 逐 年递 增 。 参 数学 建 模 的理 念 是 鼓励 创 新 , 提倡 在 独 立 思 考 基 础 上 的 团 队合 作 , 更 新 了 它 教 师 的教 学 观 念 , 视 传 授 思 想 。 示 知 识 产 生 、 展 及 应 用 重 展 发 的 过 程 ; 教 学 模 式 上 , 倡 导 以学 生 为 主 体 、 在 它 以解 决 问 题 为 线 索 的 研 究性 自主 学 习 模式 4 l 。 2数 学 建模 思 想 融 入 教 学 . 线 性 代数 的主 要 教 学 内容 以矩 阵 运 算 、 列 式 、 性 方 程 行 线 组 、 量 空 间 、 阵 的 特 征 值 和 特 征 向 量 、 次 型 及 其 矩 阵 为 向 方 二 中心 , 以初 等 变 换 为 主线 贯穿 其 中 。该 课 程 既有 抽 象 的概 念 , 又 有 繁琐 和技 巧 性 较 高 的计 算 。 如何 在 短 短 的3 课 时 内 , 学 2 让 生 既 学 到 理论 知 识 . 又掌 握 其 实 际 应 用 呢 ? 矩 阵概 念 的引 入 是 比较 重 要 的一 个 教 学 环 节 ,我 们 通 过 工 厂 生 产 报表 等几 个 例 子 ,可 以看 出它 其 实 就 是 一 种 简 化 的 记 法 ( 学 建模 的抽 象化 思想 就体 现 出 来 了 ) 矩 阵 乘 法 的定 数 义 比较 难 以理 解 , 教 学 中 我 通过 一个 计 算 工 厂 总产 量 、 利 在 总 润 的 例 子 让学 生 理 想 该 知识 ’

数学建模基础知识

数学建模基础知识

数学建模基础知识一、数学基础数学建模是使用数学语言描述实际问题并建立模型的过程。

因此,掌握一定的数学基础知识是进行数学建模的关键。

这包括高等数学、线性代数、概率论与数理统计等学科的基础知识。

1. 高数学是数学建模的基础,主要包括极限、微积分、级数、微分方程等知识。

这些知识在模型构建和数值计算中有着广泛的应用。

2. 线性代数是研究线性方程组的科学,它提供了解决多变量问题的基本工具。

在模型构建和数据处理中,线性代数可以帮助我们理解和操作空间向量、矩阵等重要概念。

3. 概率论与数理统计是研究随机现象的数学科学。

在数据处理和问题解决中,概率论与数理统计的知识可以帮助我们理解和分析不确定性,从而更好地解决问题。

二、模型构建模型构建是数学建模的核心,它包括以下步骤:1. 问题分析:对实际问题进行深入分析,明确问题的主要矛盾和次要矛盾,找到问题的核心。

2. 模型假设:根据问题分析的结果,提出合理的假设,为模型构建提供基础。

3. 模型建立:根据假设,使用数学语言描述实际问题,建立数学模型。

4. 模型验证:将建立的模型用于实际问题,进行数据分析和预测,验证模型的准确性和可靠性。

三、数值计算数值计算是数学建模中不可或缺的一部分,它包括以下步骤:1. 算法设计:根据问题的特点,设计合适的算法,以实现模型的数值计算。

2. 编程实现:使用适当的编程语言实现算法,进行数值计算。

常用的编程语言包括Python、C++、Java等。

3. 结果分析:对计算结果进行分析和解释,为问题解决提供依据。

四、数据处理数据处理是数学建模中非常重要的一环,它包括以下步骤:1. 数据收集:根据实际问题的需要,收集相关的数据。

这可能包括历史数据、调查数据、实验数据等。

2. 数据清洗:对收集到的数据进行清洗和处理,去除无效和错误的数据,确保数据的准确性和完整性。

3. 数据转换:将清洗后的数据进行转换,使其更符合建模需要。

这可能包括数据的缩放、标准化、归一化等操作。

线性代数方法建模1常染色体基因遗传--数学建模案例分析

线性代数方法建模1常染色体基因遗传--数学建模案例分析

第三章 线性代数方法建模线性代数是以向量和矩阵为对象,以实向量空间为背景的一种抽象数学工具,它的应用遍及科学技术的国民经济各个领域。

本篇通过基因遗传学、投入产出模型等几个例子阐述以线性代数为主要工具建立数学模型的一般方法和步骤。

§1 常染色体基因遗传常染色体基因遗传中,后代是从每个亲本的基因对中各继承一个基因,形成自己的基因对。

模型一、植物基因的分布植物的基因对为AA ,Aa ,aa 这三种。

记 )(1n x ——第n 代植物中基因AA 所占的比例 )(2n x ——第n 代植物中基因Aa 所占的比例 )(3n x ——第n 代植物中基因aa 所占的比例,2,1,0,))(),(),()(321==n n x n x n x n x T( 显然1)()()(321=++n x n x n x由于后代是各从父代和母体的基因对中等可能地得到一个基因而形成自己的基因对,故父代母的基因对和子代各基因对之间的转移概率如下表:现在研究采用AA 型植物与其它基因植物相结合的方法培养后代。

故有⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+-=-+-=0)()1()1(21)()1(21)1()(3322211n x n x n x n x n x n x n x ),2,1( =n (1)令⎪⎪⎪⎭⎫⎝⎛=00012/1002/11L ,则第n 代与第1-n 代植物基因型分布的关系为 )1()(-=n Lx n x , ),2,1( =n (2) 由(2)得 )0()(x L n x n =,),2,1( =n (3) 下面把L 对角化,求出L 的特征值1、1/2、0,对应的特征向量构成矩阵⎪⎪⎪⎭⎫ ⎝⎛--=100210111P ,⎪⎪⎪⎭⎫⎝⎛--=-1002101111P ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛=---00)21()21(0)21(1)21(1100002/10001111n n n nnnP P L (4) 将(4)代入(3)得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=-+-+=--0)()0()21()0()21()()0(])21(1[)0(])21(1[)0()(3312231211n x x x n x x x x n x n n n n 当∞→n ,1)(1→n x ,0)(2→n x ,0)(3→n x 。

线性代数在数学建模中的一些应用

线性代数在数学建模中的一些应用
学术论坛
SO TNG2 N8圆 CE EOY O. I &CL 1 l E HO. 。 2 N . 0 。 。 0 2 1 应 用
杨 庆 ( 东海 洋大学 寸金 学院基 础部 广东湛 江 5 4 9 ) 广 2 0 4 摘 要: 线性 代数是 许 多高校 开设 的一 门重要基 础理论课 , 为数 学的一个 重要 的分支 , 作 它具 有较 强的逻辑 性 、 抽象性和 广泛的 实用性 。 数 学建模是 对 实际 问题进行 分析 , 利用数 学知 识和方 法建立数 学模 型 , 对模型求 解并 用于实际 问题 的处理 。 因此 , 学建模是 联 系数 学和 数 实际 问题 的重要 纽 带 。 本文通 过一 些 实例 讨论 了线性代 数在 数 学建 模 中 的一些 重要 应 用 。 关键 词 : 线性 代数 数 学建模 应用 中 图分 类 号 : 1 1 0 5 文献标识码 : A 文 章编 号 : 6 2 7 12 1 ) 3b一0 9 —0 1 7 —3 9 ( O 20 ( ) 1 8 2
应用 举 例 : 一 个 “ ” 型 公路 环 网 , 设 井 字
( ) 据 某 种 规 律 , 立 变 量 和 参 数 间 4根 建 确 定 的 数 学 关 系 , 是 最 关 键 的一 步 。 这 里要用到 很多数学理论和方 法。 实 际 问 题 中 出 现 的 现 象 , 用 某 种 方 法 来 或
c为 密 文 矩 阵 , 有 下 面 的 加 密 算 法 和 解 则 () 密 算 法 。 1加
加 密 时 , 用 矩 阵 乘 法 C:A 或 采 B
C = BA 。
首 要 的 和 关键 的 一 步 是 将研 究对 象 的 内在 空 间 六 面 体 体 积 出 发 , 到 2 和 3 行 列 密 算 法 。 得 阶 阶 规 律 用 数 学 的 语 言 和 方 法 表 述 出 来 , 建 式 的 基 本 公 式 ; 者 , 理 解 矩 阵 概 念 时 , 即 再 在 立 所 谓 的 数 学 模 型 , 要 将 求 解 得 到 的 结 可 以先 了解 诺 贝尔 经 济 学 奖 获 得 者 美 国数 还 果 返 回 到 实 际 问 题 中 去 , 种 解 决 问 题 的 学 家 和 经 济学 家 L o te 的投 入 产 出模 型 。 这 e n if 全 过 程 称 为 数 学 建 模…。 程 , 过 程 可 归纳 为 以 下 步 聚f。 该 2 ] ( ) 某 个 实 际 问题 进 行 观 察 、 析 。 1对 分

数学建模思想在线性代数教学中的应用

数学建模思想在线性代数教学中的应用
垫 Q: ! 墼
Sci nce e an T ech d n0l Ogy nn I ovaton i Her d al
学 术 论 坛
数 学 建模 思 想 在 线 性 代数 教 学 中 的应 用
桂 改花 邓洁 ( 广东科 学技术职 业学院 广东珠海 5 0 0 1 9) 9
作用难 以估量 。 科学 家们认 为“ 当前最令 人兴 奋的 发展是在 社会科 学和 生物科 学中数 学模 型的构造 ”Al n o f r;甚至是一 个粗造的 ( l d e e )“ e 数学模 型也能 帮我们 更好 的理解 一个实 际的 情况, 因为 我们 在建 立模 型 时被 迫 考虑 了各 种逻辑 可能性 , 不含 混地 定义 了所有 的概 念 ,
1概述
方 面 给 出 了 交 通 堵 塞 的数 学 解 释 , 一 方 3教学中渗透数学建模思想要注意 的几个 另
数 学是 科技 发 展 的强 大动 力 , 德说 过 面 也 给 出 了基 础 解 系的 一 个 生 动 的刻 画 。 康
问题
“ 自然 科学 的发展 , 决于其 方法 与内容 与数 取 例 1 设 一个 “ ” 环形 路 , 为单 向行 井 字 均 () 循 序 渐 进 , 1要 由简单 到 复 杂 , 步 渗 逐 学结 合 的程 度 , 学成 为 打开 知识 大 门 的金 驶 , 八 个 出入 口都有 一 个 记 录 口 , 记 录 透 。 数 在 可 钥匙 , 成为科学 的皇后 ” 数学 被公认 为“ 学 单 位 时 间 进 出 该 路 段 的 车 辆 数 目 , 知 八 , 科 已 ( ) 选 择 密切 联 系 学 生 , 2应 易接 受 且 实 的语 言 ” “ 、 思维 的 工具 ” 数 学对 科技 发 展的 个 出入 口在 某 一 个 时 间 段 的数 目如 图 l 。 。 用 的 数 学 建 模 内容 , 引导 学 生 关 注 日常 生

线性代数数学建模案例(1)

线性代数数学建模案例(1)

其增广矩阵
(A, b) =
1 1 0 0 500
1 0 0 1 100
1

0 0
0 1 0
0 1 1
1 0 1
100
300 300

初等行变换
0

0 0
1 0 0
0 1 0
1 1 0
600
300 0

由此可得
x1 x4 100
百甚至上千未知量和线性方程。
一个网络由一个点集以及连接部分或全部 点的直线或弧线构成。 网络中的点称作联结点
(或节点),网络中的连接线称作分支. 每一分支 中的流量方向已经指定,并且流量(或流速)已 知或者已标为变量。
x3
x1
60
x4
80
x2
(a)
x5 (b)
网络流的基本假设是(1)网络中流入与流 出的总量相等;(2)每个节点上流入和流出 的总量也相等。例如,上面两图(a)、(b)。 流量在每个节点守恒。 在类似的网络模式中, 每个结点的流量都可以用一个线性方程来表示。
线性代数数学建模案例 (1)
一、网络流模型
网络流模型广泛应用于交通、运输、通讯、电力 分配、城市规划、任务分派以及计算机辅助设计等众 多领域。当科学家、工程师和经济学家研究某种网络 中的流量问题时,线性方程组就自然产生了,例如,城市 规划设计人员和交通工程师监控城市道路网格内的交 通流量,电气工程师计算电路中流经的电流,经济学家 分析产品通过批发商和零售商网络从生产者到消费者 的分配等. 大多数网络流模型中的方程组都包含了数
Matlab练习题
某城市有下图所示的交通图, 每条道路都是 单行线, 需要调查每条道路每小时的车流量. 图 中的数字表示该条路段的车流数. 如果每个交叉 路口进入和离开的车数相等, 整个图中进入和离 开的车数相等。

浅谈线性代数方法在解决高等数学问题中的应用

浅谈线性代数方法在解决高等数学问题中的应用

浅谈线性代数方法在解决高等数学问题中的应用线性代数是数学的一个分支,广泛应用于科学与工程领域。

线性代数方法在解决高等数学问题中有着重要的应用,可以帮助我们更好地理解和解决复杂的数学问题。

本文将从不同的角度,浅谈线性代数方法在解决高等数学问题中的应用。

一、线性代数在解决方程组中的应用在高等数学中,我们经常要解决各种各样的方程组,比如线性方程组、非线性方程组等。

而线性代数方法能够帮助我们更加便捷地解决这些问题,化繁为简。

对于线性方程组,我们可以利用矩阵和向量的方法来进行求解。

通过求解线性方程组,可以得到方程组的解集,进而得到方程组的性质和特点。

而在非线性方程组的情况下,线性代数方法也可以通过线性化处理来求解非线性方程组,简化问题的复杂性,提高求解效率。

在高等数学中,向量空间是一个非常重要的概念,它是线性代数的核心内容之一。

线性代数通过向量空间的概念,帮助我们理解和描述向量的性质、运算法则和空间关系,对于解决高等数学中的向量运算、几何关系等问题具有重要意义。

在向量空间中,线性代数方法可以帮助我们进行向量的线性组合、向量的线性相关性、向量的投影等运算,从而更好地应用向量空间的概念来解决高等数学中的问题。

比如在几何向量运算中,通过向量的线性组合和向量的投影,可以方便地解决向量的加法、数量积等运算问题。

线性代数方法还可以帮助我们更好地理解向量的线性无关性和线性相关性,从而更好地应用向量空间的知识进行分析和计算。

在矩阵和行列式中,线性代数可以帮助我们进行矩阵的运算、矩阵的特征值和特征向量的计算、矩阵的相似和对角化、行列式的性质和行列式的求解等操作,从而更好地应用矩阵和行列式的知识来解决高等数学中的方程组、矩阵方程、行列式方程等各种问题。

数学建模是数学的一个重要应用领域,它涉及到多个学科的知识,其中包括线性代数。

线性代数方法在数学建模中具有重要的应用价值,可以帮助我们更好地建立模型、进行数据处理、进行参数估计等操作,从而解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目前 ,在 高等数 学教学 中引入数学建模 是解决高 等数学 教 学问题 的一种 有效方法 。 在高等数学教学 中引入数学建模 , 就能够 帮助 学生激发 学习兴 l a 2 ≠0
模型求解 :通过消元法求解得到

也 土血 模 型 建立 铲 al a2 一 a 2 al a2 一 a z a; t 对 于学生而 言 ,建立一 个合适 的数 学模型是 一件 困难 的 模型分析 , : 分母等 于方程组 系数交叉相乘之差 的式子 事情 。因为现实 的问题 相对 复杂 ,但 是学生 在解决现 实 问题 的 时候 也无法 做到全面 。所 以,在 教学过程 中,教师 需要 注 也 就 是 :
J o u na r l o f Ku n mi n g Na t i o n a l Ca d r e s Ac a d e my
N o . 7 . 2 O 1 6
线性代数在数 学建模 中的应用
王 珍 萍
长治学院沁县师范分院 ,山西省长治 ,0 4 6 4 0 0 【 摘要】 一直 以来,数 学建模都是讲 实际问题转化成 为数 学问题 的桥梁。 因此,首先分析线性代 数在 数学建 模之 中应 用, 然后对具体 的生活实例进行讲解,希望可 以通过这样 的方式帮助 学生增 强动手能力,并且可 以通过 建模 的手法, 来解决数 学问题。 【 关键词】数 学建模 :线性代数 :学生
I d l X l X 2 = b l 【 a 2 X 1 + a 2 X 2 b 2
l 2一
2 { l al

a2
将 一阶行 列式概念 引入 ,同时也可 以进行三 阶行列式 的 推出 ,等到 1 2 阶的时候 ,就可以进一步的对 其规律进行分析 。 在建模思想 当中引入矩阵、 线 性相关、 特征值 以及特征 向量等 , 从实 际 的问题 来引 出概念 ,进而 帮助学生 培养其应 用能 力以 及学 习积极性 。 ( 二)矩阵乘积 在一 个城 市 中有 A,B ,C,D,现在 要进行 一次旅 游 , 方 式 :先乘 坐火车 ,然 后坐汽 车 ,从第一 个城市坐 火车 前往 第二个城市 , 然后第二个城市乘坐汽车到第三个城市 ,那么 , 在 哪两个城 市之 间才 可 以实现一 次使 用两种交 通工具城 市 的 旅行 四个城 市的火车 交通线路 图和 汽车 交通线路 图如下 图 1 和2 所示 ,而火车和汽车 的交通路线实际情况见图 3 所示 。

意帮助学生将原本 的实际问题转化成为数学模 型能力的养成 。 在教学 过程 中 ,教 师需要 通过数 字语言 以及 数学方 法来帮 助 客观对象描述其 内在规律 ,进而建立数学模 型。 通过数 学建模 的方 法 ,就可 以解 决实 际问题 ,主要包 含 了假 设、建立 、计 算 以及推广等 几个主 要的步骤 。针对 显示 问题 , 在建立数学模型的时候 , 就 应该考虑 到问题 的基本原理 , 也就 是不但 需要把 握全局 ,同时 ,还需要 结合求 解 目的进 行 问题 的细致分 析 。建立 数学模 型是 问题 解决 的关键 ,教 师对 于 学生建模课 的教 学过 程 中一般都会选 择 已经建 立数 学模 型 来 进行求解 ,但是这样 却忽 略了如何才 能够将 实际 问题 转化 成 为数学 问题 ,这样 的教学很 容易让学 生失去 问题 的分 析能 力, 这样就无法感受 到数学建模 的真正意义 。建立数学模型 , 就 应该联 系到 问题 求解 的难 度 ,并且还 需要考 虑到求 解 的问 题 是不是 可 以满足 实 际问题 的解决 。通过数 学建模 的学 习, 就 可 以让 学生更好 的利用数 学知识 来解决 实际面 临的 问题 , 这 样也 可以帮助 学生提升其综合 能力。 二、 教学中数 学建模思 想渗透需要注 意的问题 第一 ,要懂得 循序渐进 ,能够从简 单到复杂 ,逐渐进行 渗透 。第 二 ,所选择 的 问题 应该与 学生实 际相互联 系 ,并且 是容易 接受与 实用 的数 学建模 内容 ,能够 引导学生更 多 的去 关注 日常生活 ,这 样才可 以在数学 教学 中融 入学生 实际生活 中所遇到的问题。 第三 , 在教学过程 中还应该强调实 际的应用 , 并且还需要让学生对隐含的内在规律性加以掌握。 数学建模 可 以帮助学 生激发其 学习兴趣 ,能够培养 自主 学 习和创新 能力 ,培养 学生 的逻辑思维 能力 。所 以 ,适 当将 建模 思想融入 教学 中 ,可 以帮助 学生提 高其素质 ,满足素 质 教育 的要求 ,确保学生可 以终身受益 。 三、线- I 生代数在数学建模中的应用 ( 一 )从实际 问题引入概念 线 性代数 的定 理、定义 以及性质都 非常 的多 ,并且 也很 抽象 ,如 果我们将 其一一 的罗列 出来然 后进行证 明 ,学 生会 感觉 到吃力 ,并且数学概 念非 常枯燥 ,所 以 ,让学 生感 觉不 到任何 的学 习兴趣 。通过 概念 的讲 解 ,通过 背景来 引入 实际 问题 的抽象 、概括分析 以及求解 的过程 ,这 样就可 以帮 助 学生培 养应用 能力和数 学兴趣 ,这 样才可 以引入数 学建模 思想 ,从而提出实际问题 ,建立模型 ,将概念 引入解答之 中。 实例 L : -行列式概念 ,引入二元方程组 . :
图 l 火 车交 通路线 图2 汽车交通路线 分析 :利用矩阵 S 、T来表示具体的交通线路 情况 。 乘坐火车用 s表示 ,即 :
0 1 O 1 0 0 1 0

1 1 0 0 1 1 0 0
相关文档
最新文档