第十章时间序列预测法-季节指数法
第十章时间序列分析
第十章 时间序列分析Ⅰ.学习目的本章阐述常规的时间序列分析方法,通过学习,要求:1.理解时间序列的概念和种类,掌握时间序列的编制方法;2.掌握时间序列分析中水平指标和速度指标的计算及应用;3.掌握时间序列中长期趋势、季节变动、循环变动及不规则变动等因素的基本测定方法;4.掌握基本的时间序列预测方法。
Ⅱ.课程内容要点 第一节 时间序列分析概述一、时间序列的概念将统计指标的数值按时间先后顺序排列起来就形成了时间序列。
二、时间序列的种类反映现象发展变化过程的时间序列按其统计指标的形式不同,可分为总量指标时间序列、相对指标时间序列和平均指标时间序列三种类型。
其中总量指标时间序列是基础序列,相对指标和平均指标时间序列是派生序列。
根据总量指标反映现象的时间状况不同,总量指标时间序列又可分为时期指标时间序列和时点指标时间序列。
三、时间序列的编制方法:(一)时间长短应一致;(二)经济内容应一致;(三)总体范围应一致;(四)计算方法与计量单位要一致。
第二节 时间序列的分析指标一、时间序列分析的水平指标(一)发展水平。
发展水平是时间序列中与其所属时间相对应的反映某种现象发展变化所达到的规模、程度和水平的指标数值。
(二)平均发展水平。
将一个时间序列各期发展水平加以平均而得的平均数,叫平均发展水平,又称为动态平均数或序时平均数。
1.总量指标时间序列序时平均数的计算(1)时期序列:ny n y y y y in ∑=+++= 21 (2)时点序列①连续时点情况下,又分为两种情形:a .若掌握的资料是间隔相等的连续时点 (如每日的时点) 序列,则ny n y y y y in ∑=+++= 21 b .若掌握的资料是间隔不等的连续时点序列,则 ②间断时点情况下。
间断时点也分两种情况:a .若掌握的资料是间隔相等的间断时点,则采用首末折半法:b .若掌握的资料是间隔不等的间断时点序列,计算公式为:2.相对指标和平均指标时间序列序时平均数的计算。
第章时间序列预测习题答案
第10章时间序列预测从时间序列图可以看出,国家财政用于农业的支出额大体上呈指数上升趋势。
(2)年平均增长率为:。
(3)。
下表是1981年—2000年我国油彩油菜籽单位面积产量数据(单位:kg / hm2)年份单位面积产量年份单位面积产量1981 1451 1991 12151982 1372 1992 12811983 1168 1993 13091984 1232 1994 12961985 1245 1995 14161986 1200 1996 13671987 1260 1997 14791988 1020 1998 12721989 1095 1999 14691990 1260 2000 1519(1)绘制时间序列图描述其形态。
(2)用5期移动平均法预测2001年的单位面积产量。
(3)采用指数平滑法,分别用平滑系数a=和a=预测2001年的单位面积产量,分析预测误差,说明用哪一个平滑系数预测更合适?详细答案:(1)时间序列图如下:(2)2001年的预测值为:|(3)由Excel输出的指数平滑预测值如下表:年份单位面积产量指数平滑预测a= 误差平方指数平滑预测a=误差平方a=时的预测值为:比较误差平方可知,a=更合适。
下面是一家旅馆过去18个月的营业额数据月份营业额(万元)月份营业额(万元)1 295 10 4732 283 11 4703 322 12 4814 355 13 4495 286 14 5446 379 15 6017 381 16 5878 431 17 6449 424 18 660(1)用3期移动平均法预测第19个月的营业额。
(2)采用指数平滑法,分别用平滑系数a=、a=和a=预测各月的营业额,分析预测误差,说明用哪一个平滑系数预测更合适?(3)建立一个趋势方程预测各月的营业额,计算出估计标准误差。
详细答案:(1)第19个月的3期移动平均预测值为:(2)月份营业额预测a=误差平方预测a=误差平方预测a=误差平方1 2952 2833 3224 3555 2866 3797 3818 4319 42410 47311 47012 48113 44914 54415 60116 58717 64418 660合计————50236由Excel输出的指数平滑预测值如下表:a=时的预测值:,误差均方=。
季节指数预测法
练习: 练习:根据某市2007-2009年销售资料预测2010年各
个季节的销售量(单位:件)
2007年 年 182 1728 1144 118 2008年 年 231 1705 1208 134 2009年 年 330 1923 1427 132
季度 1季度 2季度 3季度 4季度
ቤተ መጻሕፍቲ ባይዱ
季度 1季度 季度 2季度 季度 3季度 季度 4季度 季度 合计
季节指数预测法
一、季节指数的含义
季节指数法是根据时间序列中的数据资料所 呈现的季节变动规律性,对预测目标未来状 况作出预测的方法。 在市场销售中,一些商品如电风扇、冷饮、 四季服装等往往受季节影响而出现销售的淡 季和旺季之分的季节性变动规律。掌握了季 节变动规律,就可以利用它来对季节性的商 品进行市场需求量的预测。
B=M/ (4*6)=4560/24=190 (单位) 3.各季节销售指数(Ci = Ai /B) C1=262÷19≈1.38 同理 C2≈0.95,C3≈0.73,C4≈0.95 4.修正2010年各季度预测值 Y t = (a + b *T )Ci
(1)建立时间序列方程式Y=a+b*T 由上表可得知各有关数据,利用公式 a=∑y t /n=4560/24=190 b= ∑y t *T / ∑T 2=8760/4600 ≈ 1.9 y=190+1.90T 式中 T=-23,-21,…,-1,1,3,…,23
季节平均值
2007年 年 182 1728 1144 118 3172 793
2008年 年 231 1705 1208 134 3278 819.5
2009年 年 330 1923 1427 132 3821 955.25
具有季节性特点的时间序列的预测
3.2 具有季节性特点的时间序列的预测这里提到的季节,可以是自然季节,也可以是某种产品的销售季节等。
显然,在现实的经济活动中,表现为季节性的时间序列是非常多的。
比如,空调、取暖设备、季节性服装的生产与销售所产生的数据等。
对于季节性时间序列的预测,要从数学上完全拟合其变化曲线是非常困难的。
但预测的目的是为了找到时间序列的变化趋势,尽可能地做到精确。
从这个意义上来讲,可以有多种方法,下面介绍其中一种,即所谓季节系数法。
季节系数法的具体计算步骤如下:1.收集m 年的每年各季度或者各月份(每年n 个季度)的时间序列样本数据ij x 。
2.计算每年所有的季度或所有月份的算术平均值x ,即:mn k x k x m i nj ij ==∑∑==,1113.计算同季度或同月份数据的算术平均值n j xx mi ijj ,,2,1,1. ==∑=4.计算季节系数或月份系数x x j j /.=β。
其中n j ,,2,1 =为季度或者月份的序号。
5.预测计算。
当时间序列是按季度列出时,先求出预测年份(下一年)的年加权平均:mmm m w w w y w y w y w y ++++=+2122111式中,∑==nj iji xy 1为i 年份的年合计数:i w 为i 年份权数,按自然数列取值。
再计算预测年份的季度平均值4:111+++=m m m y y y 。
最后,预测年份第i 季度的预测值为:i m i m y y β⋅=++1,1季节系数法的Matlab 程序如下。
funjie.m%简单季节系数法,文件名funjie.mfunction JiJie=funjie(x) %输入m 年,每年n 个季节的历史数据 [m,n]=size(x);BarX=mean(mean(x)) %计算所有数据的算术平均值 BarXj=mean(x) %计算同季节的算术平均值 Betaj=BarXj./BarX %计算季节系数 y1=[1:m];y=y1*sum(x,2)/sum(y1) %计算预测下一年的年加权平均值 y2=y/n %计算预测年份的季节平均值 y3=y2*Betaj %预测年份的季节预测值 end【例3-11】某商店某类商品1999-2003年各季度的销售额如表3-6所示。
最新季节指数预测模型
7
270 271 290
8
122 193 153
9
70 62 77
10
33 27 17
11
23 17 37
12
16 13 46
解:
• 1.采用最小平方法建立直线趋势模型: • 建立趋势模型:参考平均趋势法EXCEL
• Tt=126.972+0.048 t
• Y=a+bt(其中 t 0 )
ay n
Yˆ t Yˆ N SIi
SIi——第i季度的季节指数; t ——时间序列的项数,t = 4(N1)+i。
• 若利用一次指数平滑法进行估计,取=0.5, S0=Y1=11。各年的季平均预测值的计算结 果见表 2:
表 2 季平均预测值计算表 单位:万件
年份 年次
1996 1 1997 2 1998 3 1999 4 2000 5 2001 6
一季度季节指数:SI1=1012.5=0.8=80%; 二季度季节指数:SI2=1412.5=1.12=112%; 三季度季节指数:SI3=1812.5=1.44=144%; 四季度季节指数:SI4=812.5=0.64=64%。
6.建立季节变动预测模型。
水平型季节变动预测模型为(以季度为 单位):
1997
11 14 17 10 52 13.00
1998
8 16 21 6 51 12.75
1999
10 12 20 8 50 12.50
2000
12 15 16 10 53 13.25
合计 50 70 90 40 250
同季平均数 10 14 18 8
12.50
季节指数(%) 80 112 144 64 400 100.00
第十章-定量预测技术
第十章定量预测技术[教学目标与要求]了解定量预测的含义和作用;掌握时间序列预测法和回归预测法的原理;重点把握平滑预测法、趋势延伸预测法、季节指数预测法和线性回归分析预测法在实际调查中的应用。
[问题]产品销售要受哪些变动因素影响?近期的要素和远期的因素以及季节变动对销量的影响如何精确计算?第一节平滑预测法一、时间序列预测法的含义时间序列预测法,是指将过去的历史资料及数据,按时间顺序加以排列构成一个数字系列,根据其动向预测未来趋势。
这种方法的根据是过去的统计数字之间存在着一定的关系,这种关系,利用统计方法可以揭示出来,而且过去的状况对未来的销售趋势有决定性影响。
因此,可以用这种方法预测未来的趋势,它又称为外推法或历史延伸法。
二、影响时间序列变动的因素①长期趋势变动:它是时间序列变量在较长的持续时间内的某种发展总动向。
②季节变动。
它是由于季节更换的固定规律作用而发生的周期件变动。
季节变动的周期比较稳定,通常为一年。
③周期波动,又称循环变动,是指时间序列在为期较长的时间内(—年以上至数年),呈现出涨落起伏。
④不规则变动。
又称随机变动,是指偶发事件导致时间序列小出现数值忽高忽低、时升时降的无规则可循的变动,三、平滑预测法的概念平滑预测法是指借助平滑技术消除时间序列中高低突变数值,得出—个趋势数列,据以对未来发展趋势的可能水平做出估计。
主要有:①移动平均预测法、②指数平滑法、③季节指数法。
* 移动平均预测法的定义移动平均预测法是指观察期内的数据由远而近按一定跨越期进行平均,取其平均值;然后,随着观察期的推移,根据—定跨越期的观察期数据也相应向前移动,每向前移动—步,去掉最早期的一个数据,增添原来观察之后期的一个新数据,并依次求得移动平均值;最后将接近预测期的最后一个移动平均值作为确定预测值的依据。
第二节趋势延伸法一、直观法定义:根据预测目标的历史时间数列在坐标图上标出分布点,直观地用绘图工具,画出一条最佳直线或曲线,并加以延伸来确定预测值。
季节变动预测法课件
季节变动预测法课件2023-10-29•季节变动预测法概述•季节变动预测法的基本原理•季节变动预测法的应用•季节变动预测法的实践案例•季节变动预测法的优缺点及改进方向目•相关软件工具介绍及操作演示录01季节变动预测法概述定义季节变动预测法是一种基于时间序列数据,识别和预测具有季节性特征的周期性变化的方法。
特点考虑了时间序列数据中季节性因素的影响,能够揭示数据的周期性变化规律,适用于具有明显季节性特征的时间序列数据的预测。
定义与特点适用范围适用于具有明显季节性特征的周期性变化的时间序列数据,如旅游客流量、能源消耗量、农产品产量等。
限制不适用于非周期性变化的数据,或者季节性特征不明显的数据。
此外,季节变动预测法通常需要较长的历史数据,对于较短的时间序列数据可能无法准确预测。
适用范围与限制方法比较与选择方法比较01季节变动预测法与其他预测方法相比,如线性回归、指数平滑等,具有更强的针对性,特别是对于具有明显季节性特征的数据,预测效果通常更佳。
方法选择02在选择季节变动预测法时,需要考虑数据的特征和预测需求。
对于周期性变化明显、季节性因素重要的数据,季节变动预测法是一种有效的预测方法。
注03以上内容仅为概括性的描述,实际应用中还需要根据具体数据特征和预测需求进行详细的分析和应用。
02季节变动预测法的基本原理时间序列分析时间序列的分类根据数据性质的不同,时间序列可分为定量数据和定性数据两大类。
时间序列分析的意义通过对时间序列数据的分析,可以揭示现象在时间上的变化规律,发现其发展变化的趋势,为预测未来走势提供依据。
时间序列的定义时间序列是指按时间顺序排列的一组数据,用于反映某一现象在时间上的变化和发展趋势。
1季节指数计算23季节指数是根据时间序列数据,通过计算特定时间段内数据的平均值或加权平均值,反映现象在该时间段内的变化规律。
季节指数的定义根据时间序列数据性质的不同,季节指数可分为日季节指数、月季节指数、季度季节指数等。
季节指数预测法运用实例
季节指数预测法运用实例假设公司经营多种产品,其中一种产品是每年销售量呈现明显的季节性变化。
我们已经收集到该产品过去5年(60个月)的销售数据,现在需要利用这些数据来预测未来12个月的销售情况。
首先,我们应该生成季节指数。
季节指数可以通过计算每个季度平均销售量占总年销售量的比例来得到。
然后,季度平均销售量除以季度指数,即可得到季度调整后的销售量。
假设我们选取第一年的数据作为基期计算季度指数,即将第一年的季度指数设为1、则可以按照以下步骤进行计算:1.计算每个季度的销售总量:季度1:(销售量1+销售量5+销售量9+销售量13+销售量17+销售量21+销售量25+销售量29+销售量33+销售量37+销售量41+销售量45+销售量49+销售量53+销售量57)=总销售量1季度2:(销售量2+销售量6+销售量10+销售量14+销售量18+销售量22+销售量26+销售量30+销售量34+销售量38+销售量42+销售量46+销售量50+销售量54+销售量58)=总销售量2季度3:(销售量3+销售量7+销售量11+销售量15+销售量19+销售量23+销售量27+销售量31+销售量35+销售量39+销售量43+销售量47+销售量51+销售量55+销售量59)=总销售量3季度4:(销售量4+销售量8+销售量12+销售量16+销售量20+销售量24+销售量28+销售量32+销售量36+销售量40+销售量44+销售量48+销售量52+销售量56+销售量60)=总销售量42.计算每个季度的季度指数:季度指数1=总销售量1/(总销售量1+总销售量2+总销售量3+总销售量4)季度指数2=总销售量2/(总销售量1+总销售量2+总销售量3+总销售量4)季度指数3=总销售量3/(总销售量1+总销售量2+总销售量3+总销售量4)季度指数4=总销售量4/(总销售量1+总销售量2+总销售量3+总销售量4)3.计算每个月的季度调整销售量:月度销售量1=销售量1/季度指数1月度销售量2=销售量2/季度指数2...月度销售量60=销售量60/当季季度指数接下来,我们可以利用计算得到的季度调整销售量进行预测。
现代 市场调查与预测试题及答案第十章 定量预测方法
一、填空题1、对所有市场现象之间的数量依存关系可分为 函数关系 和 相关关系 两大类。
2、时间序列数据的主要变动类型有 长期变动趋势 、季节变动趋势、 循环变动趋势 和随机变动趋势。
3、季节变动有比较固定的周期,其变动周期通常为 一年 ;而 循环变动 无固定规律,其周期通常在一年以上。
4、当时间序列呈比较稳定趋势时,适宜于用 算术平均 法进行预测;而当时间序列逐期增长率大致相同时,适宜于用 几何平均 法进行预测。
5、移动平均法能揭示时间序列长期变动趋势,该方法预测的准确程度主要取决于 移动期数的选择 。
6、当时间序列各数据呈线性趋势变化时,最适宜的移动平均法是 二次移动平均法 ,其基本预测模型为:ˆt T t t X a bT +=+,其中t a =(1)(2)2t t M M -,t b =(1)(2)2()1t t M M n -- 。
7、指数平滑法的基本含义是:1t +期预测值=1t t αα⨯⨯实际值+(-)预测值 8、指数平滑法,实际上是一种特殊的 加权平均法 。
它对离预测期最近的观察值给予 较大 的权数,而对离预测期最远的观察值给予 较小 的权数。
9、应用二次指数平滑法进行预测时,通常令二次平滑的初始值)2(1S =)1(1S 10、最小二乘法的基本原理是:若以t y 表示时间序列中各期的实际值,t yˆ为预测值,满足实际值与预测值的离差平方和 最小 的直线为最佳直线。
它的数学表达式为:最小=-∑2)ˆ(t t y y11、直线趋势延伸预测法确定a 、b 值的常用方法是 最小二乘法 和 直观法 。
12、当时间序列各数据分布呈抛物线时,最适合的预测方法是 二次曲线趋势外推法 ;当时间序列反映预测目标的发展趋势大体按一定比例增长时,最适合的预测方法是 指数曲线趋势外推法 。
13、一元相关回归分析市场预测法,是根据 一个自变量 去预测一个因变量的市场预测方法。
14、多元回归预测的统计检验内容有 标准误差检验 、F 检验、 t 检验 和r 检验。
季节指数预测法 PPT课件
1季度 2季度 3季度 4季度 合计
季节平均值
182 1728 1144 118 3172 793
231 1705 1208 134 3278 819.5
330 1923 1427 132 3821 955.25
247 1788.3 1259.7
128 3423.7 855.93
28.9% 298.15 208.9% 2155.16 147.2% 1518.62
如某种商品第一季度的季节指数为125%,这表明该商品第 一季度的销售量通常高于年平均数25%,属旺季,若第三季 度的季节指数为73%,则表明该商品第三季度的销售量通常 低于年平均数27%,属淡季。
四、简单季节指数法实例分析
技能核算题:某公司从1996年到2001年,每一年各季度的
纺织品销售量见下表。预测2010年各季度纺织品的销售量。 (单位:件)
利用季节指数预测法进行预测时,时间序列的时间单位或是 季,或是月,变动循环周期为4季或是12个月。
运用季节指数进行预测,首先,要利用统计方法计算出预测 目标的季节指数,以测定季节变动的规律性;然后, 在已 知季度的平均值的条件下, 预测未来某个月(季)的预测值。
二、简单季节指数法
简单季节指数法是根据呈现季节变动的时间序列 资料,用求算术平均值方法直接计算各月或各季 的季节指数,据此达到预测目的的一种方法。
年度
2004 2005 2006 2007 2008 2009
年度销售量
600 660 700 750 850 1000
第一季 度
180 210 230 160 170 180 200 220
第三季 度
120 130 130 140 150 160
统计学的时间数列习地的题目及答案详解
第十章时间数列分析和预测一、填空题1.同一现象在不同时间的相继____________排列而成的序列称为_______________。
2.时间序列在__________重复出现的____________称为季节波动。
3.时间序列在___________呈现出来的某种持续_______________称长期趋势。
4.增长率是时间序列中_________观察值与基期观察值______减1 后的结果。
5.由于比较的基期不同,增长率可分为_____________和______________。
6.复合型序列是指含有___________季节性和___________的序列。
7.某企业2005年的利润额比2000年增长45%,2004年2000年增长30%,则2005年比2004年增长_______;2004年至2000年平均增长率__________。
8.指数平滑法是对过去的观察值__________进行预测的一种方法。
9.如果时间序列中各期的逐期增减量大致相等,则趋势近似于_____________;各期环比值大体相等,则趋势近似于___________。
10.测定季节波动的方法主要有____________和_____________。
二、单项选择题1.用图形描述时间序列,其时间一般绘制在()A. 纵轴上B. 横轴上C. 左端D. 右端2.求解()趋势参数方法是先做对数变换,将其化为直线模型,然后用最小二乘法求出模型参数A. 三次曲线B. 指数曲线C. 一次直线D. 二次曲线3.对运用几个模型分别对时间序列进行拟合后,()最小的模型即位最好的拟合曲线模型A. 判定系数B. 相关系数C. 标准误差D.D—W值4.当数据的随机波动较大时,选用的移动间隔长度K应该()A. 较大B. 较小C. 随机D. 等于n5.在进行预测时,最新观察值包含更多信息,可考虑权重应()A. 更大B. 更小C. 无所谓D. 任意6. 按季度资料计算的季节指数S的取值范围是()A. 0≤ S ≤4B. 0 ≤S≤ 1C. 1 ≤S ≤4D. 1≤ S≤ 2三、多项选择题1. 时间序列可以分解为下列因素的影响 ( )A. 长期趋势B. 季节变动C. 周期波动D. 不规则变动E. 随机误差因素2. 某地区国民收入2000年为140亿元,2005年比2000年增长45%,则()A. 国民收入2005年比2000年增加了63亿元B. 2000年每增长1%的绝对值为1.4亿元C. 五年间平均增长率是9%D. 国民收入2005年达到210亿元E. 国民收入2005年达到203亿元3.测定季节变动A. 可以依据年度资料B. 可以依据月度资料C. 可以依据季度资料D. 需要三年以上资料E. 可以依据任何资料4. 时间序列分解较常用的模型有()A. 加法模型B. 乘法模型C. 直线模型D. 指数模型E. 多项式模型5.一次指数平滑法的初值的确定可以()A. 取第一期的实际值B. 取最初三期的加权平均值C. 取最初几期的平均值D. 取初值=1E. 取任意值四、简答题1. 简述时间序列的构成要素2. 利用增长率分析时间序列时应注意哪些问题3. 简述用平均趋势剔除法求季节指数的步骤4. 简述用剩余法求循环波动的基本步骤5. 试比较移动平均法与一次指数平滑法五、计算题1.某企业利润额资料如下:要求:(1) 求出直线趋势方程(2)预测2006年的利润额2.已知某煤矿(1)求五期移动平均;(2)取α= 0.9,求一次指数平滑3.某地财政收入资料如下试用指数曲线拟合变动趋势4.某商场销售资料如下:(单位:百万元)试就其进行季节变动分析5.某企业职工人数逐年增加,有1992—2004年的资料,求得∑t = 0,∑ty=9100,∑y = 15600;试求出直线趋势方程,并估计2006年职工人数。
季节性波动时间序列预测的分解季节指数法X
文章编号:1002-1566(2000)06-0060-05季节性波动时间序列预测的分解季节指数法Ξ郭秀英1 尹兴国2 张艳云1(1.西南石油学院,南充 63700;2.川中钻井工程公司)摘 要:本文在分析研究已有季节性波动时间序列的预测方法基础上,提出了一种简单、易懂的实用预测方法,并通过实例验证了该方法是可行的。
关健词:季节性波动;时间序列;季节指数;趋势值一、引 言一般而言,季节性波动时间序明显地既具长期趋势性,又具季节性。
长期趋势是由于受到某些因素持续地同性质地影响,而表现为持续上升或下降或平衡的总变化趋势,其间变动幅度可能不等。
因而,其可能为线性的,也可能为非线性的。
而季节性则是受气候、社会、风俗习惯等的影响,而表现出以一年为周期随着自然季节的推移而呈现出在各年的一定季节出现高峰值,另一定季节出现低谷值,但各高峰值与低谷值不一定相等。
季节性波动时间序列变动的复杂性,决定了其预测存在一定困难,因此,人们不断探索,提出了各种各样的解决这一问题的方法。
但到目前为止,没有一种完善地普遍为人们接受的方法。
这些方法中无论哪一种方法都未全面考虑而或多或少地存在一定缺限。
如季节性因子分解预测法、Parsons连环比例法、定基比例法、Winters线性与季节性指数平滑法、时间序列分解法等都未考虑季节指数的趋势性变化。
而季节分解预测法、分解———组合预测法,虽然考虑了季节指数的趋势性变动,但未充分利用已知的数据信息。
著名的Box-Jenkins季节模型预测法,虽然理论上较完善,但方法较繁琐、复杂、理论上较难理解,而且预测费用也较高。
因此,仍不被人们接受。
为此,本文提出了一种既考虑季节性指数的趋势性变化,又充分利用其已知数据信息的简单、易懂的实用方法———分解季节指数法。
二、 分解季节指数法1.总体思想既考虑季节指数的趋势性变化,又充分利用已知数据信息。
即:首先,将季性波动时间序列的季节性“剔除”,预测出其长期趋势值,再预测出其季节指数;最后以季节指数预测值调整长期趋势预测值,而得出季节性波动时间序列的预测值。
季节指数法则
季节指数法则
季节指数法是一种基于时间序列中季节性周期变动的预测方法。
它通过计算描述该变动的季节变动指数来预测目标未来的状况。
这种方法适用于具有明显季节性特征的数据,如销售、生产等。
季节指数的计算步骤如下:
1. 收集数据:收集时间序列数据,确保数据具有明显的季节性特征。
2. 求出各年同月或同季观察值的平均数(用A表示)。
3. 求历年间所有月份或季度的平均值(用B表示)。
4. 计算各月或各季度的季节指数,即C=A/B。
季节指数法的应用非常广泛,可以用于预测销售、库存、生产等领域的未来趋势。
通过计算季节指数,企业可以更好地了解市场需求和销售情况,从而制定更加合理的生产和销售计划。
需要注意的是,季节指数法只适用于具有明显季节性特征的数据,对于非季节性数据或季节性特征不明显的数据,这种方法可能不太适用。
同时,在进行季节指数预测时,还需要考虑其他因素的影响,如经济环境、市场竞争等。
因此,在使用季节指数法进行预测时,需要结合其他方法和数据来源进行综合分析。
第10章时间序列3季节指数法
23
按季平均法计算比较简单,但应当注意,运 用此方法的基本假定是
原时间序列没有明显的长期趋势和循环变动, 通过各年同期数据的平均,可以消除不规则变 动。
数列的长期趋势可用移动平均法或趋势方 程拟合法测定。
25
谢 谢 大 家!
一季度预测值=7385×31.3%=2311.5(吨) 二季度预测值=7385×21.4%=1580.4(吨) 三季度预测值=7385×21.7%=1602.5(吨) 四季度预测值=7835×25.6%=1890.6(吨)
22
2、情形二:已知某季的实际值,预测其它各季度值。 计算公式: 某季的预测值=已知季度的实际值÷已知季度的季节比重×该季的季节比重 例题:已知2006年第一季度实际销售2400吨,利用季节比重预测其它各季节值。 二季度预测值=2400/ 31.3% 21.4% 1640.9 (吨)
表8-4 季节比重计算表
(单位:%)
年份
第一季度
第二季度
第三季度
第四季度
全年
2001
31.4
21.05
21.7
25.83
100
2002
31.3
21.45
21.6
25.65
100
2003
30.5
21.8
22.0
25.75
100
2004 2005 合 计% 季节比重%
31.4 31.9 156.3% 31.3%
-229.10
第四季度 年季度平均值 全年值
1768
1710.75
季节指数预测法
四,简单季节指数法实例分析
技能核算题: 技能核算题:某公司从1996年到2001年,每一年各季度的
纺织品销售量见下表.预测2010年各季度纺织品的销售量. (单位:件) 年度 2004 2005 2006 2007 2008 2009 年度销售量 600 660 700 750 850 1000 第一季 度 180 210 230 250 300 400 第二季度 150 160 170 180 200 220 第三季 度 120 130 130 140 150 160 第四季度 150 160 170 180 200 220
季节指数预测法
一,季节指数的含义
季节指数法是根据时间序列中的数据资料所 呈现的季节变动规律性,对预测目标未来状 况作出预测的方法. 在市场销售中,一些商品如电风扇,冷饮, 四季服装等往往受季节影响而出现销售的淡 季和旺季之分的季节性变动规律.掌握了季 节变动规律,就可以利用它来对季节性的商 品进行市场需求量的预测.
练习: 练习:根据某市2007-2009年销售资料预测2010年各
个季节的销售量(单位:件)
季度 1季度 2季度 3季度 4季度 2007年 年 182 1728 1144 118 2008年 年 231 1705 1208 134 2009年 年 330 1923 1427 132
季度 1季度 季度 2季度 季度 3季度 季度 4季度 季度 合计
Y=Yt*C = 298.15 2155.16 1518.62 154.75
247 1788.3 1259.7 128 3423.7 855.93
�
季节平均值
2007年 年 182 1728 1144 118 3172 793
2008年 年 231 1705 1208 134 3278 819.5
第十章时间序列预测法-季节指数法
第四季度 164 172 180 173
1、季节指数预测法的原理
❖ 季节指数法,就是根据预测目标各年按月(或季) 编制的时间数列资料,以统计方法测定出反映季 节变动规律的季节指数,并利用季节指数进行预 测的预测方法。
季节指数×预测年趋势值=预测年各季预测值
各年同季平均数 季总平均数
即预测年的 季平均数
2 、季节指数预测法的步骤
第1步 第2步
n
计算各年同季(或同月)的平均值
yi
yi
i 1
n
n
计算所有年所有季(或月)的总平均值
y
yi
i 1
n
第3步 计算各季(或月)的季节比率(即季节指数)
第4步
fi
Yi Y
估算预测期趋势值
Xˆ
(有多种估算方法)
t
第5步 建立季节指数预测模型 Yˆt Xˆt fi ,进行预测
下年预测值 147.03
二季度 三季度 四季度
165
282
114
182
312
123
197
354
140
218
370
148
190.5 329.5 131.25
97.41% 168.49% 67.11% 213.82 369.83 147.32
同年各季 平均数 170.25 185.25 207.25 219.50
第十章
时间序列 预测法
四、 季节指数预测法
❖ 本法适用于有季节变动特
150
销售量(万元)
100
销量
季度
50
1998年 1999年 2000年 2001年
0
0
4
8
季节指数法
简单季节指数法的步骤[1]简单季节预测法的具体步骤如下:1.收集历年按季度记录的历史统计资料;2.计算出n年各相同季度的平均值(A);3.计算出n年每一个季度的平均值(月);4.计算季节指数,即用各季度的平均值除以所有季度的平均值:式中C=A/BC——季节指数。
5.利用季节指数(C),对预测值进行修正:Yt = (a + bT)C i式中Ci——第i季度的季节指数(i=1,2,3,4);Yt——第t季度的销售量;a——待定系数;b——待定系数;T——预测期季度数,[编辑]简单季节指数法实例分析[1]例如,某公司从1996年到2001年,每一年各季度的纺织品销售量见下表。
预测2001年各季度纺织品的销售量。
1996 600 180 150 120 150 1997 660 210 160 130 160 1998 700 230 170 130 170 1999 750 250 180 140 180 2000 850 300 200 150 200 2001 1000 400 220 160 220 合计4560 1570 1080 830 1080 季节指数 1.38 0.95 0.73 0.95预测过程如下:1.六年各相同季节的平均销售量(Ai)A1=1970÷6≈262(单位)同理A_2=180,A_3≈138.3,A_4=180(单位)2.六年所有季度的平均销售量(B)(单位) M——6年销售量总和3.各季节销售指数(Ci)Ci=262÷19≈1.38同理C2≈0.95,C3≈0.73,C4≈0.954.修正2002年各季度预测值(1)建立时间序列线性回归预测模型由上表可得知各有关数据,利用公式(1)(2)y_t=190+1.90T式中T=-23,-21,…,-1,1,3,…,23(2)修正2002年各季度预测值第一季度预测值=(190+1.90×25)×1.38≈328(单位) 第二季度预测值=(190+1.90×27)×0.95≈229(单位) 第三季度预测值=(190+1.90×29)×0.73≈179(单位) 第三季度预测值=(190+1.90×31)×0.95≈236(单位)注意:如果n为奇数,例如n=9,则T=-4,-3,-2,1,0,1,2,3,4.季节销售指数也可以按月计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间序列 预测法
四、 季节指数预测法
❖ 本法适用于有季节变动特征的经济现象数量预测
销量
200
150
销售量(万元)
100
销量
季度
50
1998年 1999年 2000年 2001年
0
0
4
8
12
16
20
第一季度 148 138 150 145 第二季度 62 64 58 66
第三季度 76 80 72 78
年份 一季度 二季度 三季度 四季度
1995 120 1996 124 1997 138 1998 142
165 182 197 218
282 312 354 370
114 123 140 148
年份
一季度
1995
120
1996
124
1997
138
1998
142
各年同季平 均数
131
季节指数度 四季度
165
282
114
182
312
123
197
354
140
218
370
148
190.5 329.5 131.25
97.41% 168.49% 67.11% 213.82 369.83 147.32
同年各季 平均数 170.25 185.25 207.25 219.50
2 、季节指数预测法的步骤
第1步 第2步
n
计算各年同季(或同月)的平均值
yi
yi
i 1
n
n
计算所有年所有季(或月)的总平均值
y
yi
i 1
n
第3步 计算各季(或月)的季节比率(即季节指数)
第4步
fi
Yi Y
估算预测期趋势值
Xˆ
(有多种估算方法)
t
第5步 建立季节指数预测模型 Yˆt Xˆt fi ,进行预测
第四季度 164 172 180 173
1、季节指数预测法的原理
❖ 季节指数法,就是根据预测目标各年按月(或季) 编制的时间数列资料,以统计方法测定出反映季 节变动规律的季节指数,并利用季节指数进行预 测的预测方法。
季节指数×预测年趋势值=预测年各季预测值
各年同季平均数 季总平均数
即预测年的 季平均数
195.56
230.00
系列1
210.00
190.00
170.00
0
2
4
6
第11章 时间序列预测法小结
主要内容
概念 特点
几种 预测 方法
重点掌握
平均预测法
指数平滑法
趋势延伸法
季节指数法
67.03%
第四季度 164 172 180 173 172.25 150.93%
同年各季平均 销售量
112.5
113.5
115
115.5
114.125
2002年 预测值
147.00 63.25 77.42 174.33
散点图
销量 200
150
100
销量
50
0
0
4
8
12
16
20
练习
P204观念应用 分析题
3 、 实例分析
(P202观念应用11-7)
季度 第一季度
销售量(万元) 1998年 1999年 2000年 2001年
各年同季平 均销售量
季节比率
148 138 150 145 145.25 127.27%
第二季度 62 64 58 66
62.5
54.76%
第三季度 76 80 72 78
76.5