多变量非线性约束最优化问题

合集下载

数学建模案例之多变量无约束最优化

数学建模案例之多变量无约束最优化

数学建模案例之多变量无约束最优化多变量无约束最优化问题是指在变量间没有限制条件的情况下,求解目标函数的最优值。

这类问题在数学建模中非常常见,实际应用非常广泛。

下面以一个实际案例说明多变量无约束最优化的建模过程。

假设地有几个旅游景点,现在需要制定一个旅游路线,使得游客的游玩时间最长,同时经济成本最低。

已知每个旅游景点之间的距离和游玩时间,以及游客每次游玩每公里所需的成本。

目标是找到一条旅游路线,使得游客在游览所有景点后,花费的经济成本最少。

首先,我们需要定义问题的数学模型。

假设有n个旅游景点,用x1, x2, ..., xn表示每个景点的游玩时间(单位:小时),用dij表示第i个景点和第j个景点之间的距离(单位:公里),用c表示游客游玩每公里所需的成本。

为了定义问题的数学模型,我们需要明确如下几个关键部分:1. 决策变量:定义一个n维向量X,其中每一个分量xi表示游客在第i个景点的游玩时间。

2. 目标函数:定义一个目标函数f(X),表示游客花费的经济成本。

在本例中,目标函数可以定义为:f(X) = ∑dij * xi * c。

3.约束条件:由于是无约束最优化问题,这里没有额外的约束条件。

有了以上几个关键部分,我们可以将问题的数学模型表达为如下形式:最小化:f(X) = ∑dij * xi * c其中,i=1,2,...,n下一步是求解这个最优化问题。

可以使用各种数值优化算法,比如梯度下降法、牛顿法、遗传算法等。

具体的求解过程会涉及到算法的具体细节,这里不再详述。

最后,根据求解结果,我们可以得到游玩时间最长且经济成本最低的旅游路线。

这条路线就是我们需要制定的旅游路线。

总结起来,多变量无约束最优化问题在数学建模中的应用非常广泛。

通过定义合适的决策变量、目标函数和约束条件,可以将实际问题转化为数学模型,并通过数值优化算法求解这个模型,得到最优解。

在实际应用中,对于复杂的问题,可能需要结合多种算法和技巧来求解。

多变量约束优化方法

多变量约束优化方法

多变量约束优化方法多变量约束优化问题是指在给定一组目标函数和一组约束条件下,通过调整多个自变量的取值,找到使目标函数最优化且满足约束条件的解。

这类问题在实际应用中非常常见,如工程设计、金融管理、运筹学、物流和供应链管理等领域。

传统的优化方法对于多变量约束优化问题求解存在一些问题,如计算复杂度高、易陷入局部最优解等。

因此,为了有效解决这类问题,研究者们提出了多种多变量约束优化方法,下面将介绍其中几种主流的方法。

一、线性规划方法(Linear Programming, LP)线性规划是最简单且常用的多变量约束优化方法之一、它的目标函数和约束条件都是线性的。

线性规划问题可以通过单纯形法(Simplex Method)或内点法(Interior Point Method)求解。

虽然线性规划方法的计算复杂度比较低,但它只适用于线性目标函数和线性约束条件的情况。

二、非线性规划方法(Nonlinear Programming, NLP)非线性规划方法可以处理目标函数和约束条件是非线性的情况。

常用的非线性规划方法有梯度法、牛顿法和拟牛顿法等。

这些方法通过迭代的方式,在每一步计算目标函数在当前点的梯度,并根据梯度的信息调整自变量的取值,以逐步逼近最优解。

非线性规划方法的计算复杂度较高,但是可以处理复杂的实际问题。

三、遗传算法(Genetic Algorithm, GA)遗传算法是一种通过模拟生物进化过程的优化方法。

它通过模拟自然选择、交叉和变异等过程,逐步解空间中的最优解。

遗传算法具有全局收敛性和并行计算的特点,对于复杂的多变量约束优化问题有较好的适应性。

四、粒子群优化算法(Particle Swarm Optimization, PSO)粒子群优化算法是一种通过模拟鸟群或鱼群的行为进行优化的方法。

在粒子群优化算法中,每个个体(粒子)的位置代表潜在解,速度代表解的方向。

粒子的位置和速度通过迭代的方式进行更新,直到找到最优解。

非线性约束优化问题的数值解法

非线性约束优化问题的数值解法

非线性约束优化问题的数值解法在实际问题中,我们经常会遇到一类非线性约束优化问题,即在一定约束条件下,最小化或最大化一个非线性目标函数。

这类问题的数学模型可以表示为:$$\begin{aligned}\min_{x} \quad & f(x) \\\text{s.t.} \quad & g_i(x) \leq 0, \quad i=1,2,\ldots,m \\& h_j(x) = 0, \quad j=1,2,\ldots,n\end{aligned}$$其中,$x$是决策变量,$f(x)$是目标函数,$g_i(x)$和$h_j(x)$是约束函数。

有时候,这类问题的解析解并不容易求得,因此需要借助数值方法来找到近似解。

本文将介绍几种常用的非线性约束优化问题的数值解法。

一、拉格朗日乘子法拉格朗日乘子法是最基础的非线性约束优化问题求解方法之一。

它将原始问题转化为等价的无约束问题,并通过引入拉格朗日乘子来建立求解函数。

具体而言,我们将原始问题改写成拉格朗日函数的形式:$$L(x,\lambda,\mu) = f(x) + \sum_{i=1}^{m}\lambda_ig_i(x) +\sum_{j=1}^{n}\mu_jh_j(x)$$其中,$\lambda_i$和$\mu_j$是拉格朗日乘子。

然后,我们对拉格朗日函数求取对$x$的梯度,并令其等于零,得到一组等式约束:$$\nabla_x L(x,\lambda,\mu) = \nabla f(x) +\sum_{i=1}^{m}\lambda_i\nabla g_i(x) + \sum_{j=1}^{n}\mu_j\nablah_j(x) = 0$$再加上约束条件 $g_i(x) \leq 0$ 和 $h_j(x) = 0$,我们可以得到原始问题的一组等价条件。

二、内点法内点法是解决非线性约束优化问题的一种有效算法。

该方法通过将约束条件转化为惩罚项,将原问题转化为无约束的目标函数最小化问题。

优化问题的求解

优化问题的求解

11.5 最小二乘优化


一、线性最小二乘优化 线性最小二乘优化问题的一般数学描述为:
min 1 Cx d 2
2 2
Ax b (线性不等式约束) x s.t. Aeq x = beq (线性等式约束) lb x ub

MATLAB优化工具箱提供了函数lsqlin()来直接求解上述优化问题,该函 数的调用格式为: [x,resnorm,residual,exitflag,output,lambda]=lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0, options,p1,p2,...)
第11章 优化问题的求解
本章目标:求min(max)
xD
f ( x )或 min(max)
xD
F ( x)
11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8
线性规划 无约束优化 单目标约束优化 多目标约束优化 最小二乘优化 混合整数规划 动态规划 实例解析
11.1 线性规划
min max fi ( x ) Ax b Aeq x beq x s.t. lb x ub C ( x ) 0 (非线性不等式约束) Ceq ( x ) 0 (非线性等式约束)

MATLAB最优化工具箱中的fminimax()函数可以直接求解极小极大问题, 该函数的调用格式为 [x,fval,maxfval,exitflag,output,lambda]=fminimax(fun,x0,A,b,Aeq,beq,lb,ub, nonlcon,options,p1,p2,...) 另外,基于fminimax()函数,还可以求解相关的变形问题,如极小极小优 化问题:

第八章 无约束多维问题的最优化方法

第八章 无约束多维问题的最优化方法

5 共轭梯度法
共轭梯度法的迭代公式
设从xk出发,沿dk=-gk 方向作一维搜索到 xk+1点,并算 出xk+1点的梯度方向gk+1。由于gk+1 是沿等直面在该点的法 线方向,而dk是沿等直面在该点的切线方向,故(dk)Tgk+1= 0,即 gk+1Tgk=0,gk+1 与 gk 正交。 为了在 gk+1 和 gk 构成的正交系中确定共轭方向dk+1,令 dk+1 = -gk+1+k dk 即把共轭方向dk+1看成-gk+1与 dk的线性组合,k 为待定 系数。要使dk+1与dk 共轭,就应使 (dk+1)TGdk =0 而 (dk+1)TGdk =(-gk+1+kdk)TGdk =(-gk+1 kgk)TG(-gk ) =gk+1TGgk+k gkTGgk =0
T
0 T 4 100 1 50
T
1 1 2 2 4 0 100 0 4 100 50 2 f x 0

0 0
T
对照梯度法和牛顿法迭代公式,可以看出只相差一项 海赛矩阵的逆矩阵。因此,牛顿法是对梯度法的进一步修 正。事实上,梯度法是对目标函数f(x)在点xk的一阶(线性) 近似,而牛顿法是对f(x)在点xk 的二阶(二次)近似。
2 最速下降法
(1) 最速下降法以负梯度方向作为搜索方向并作一维搜索,因 此又称为“梯度法”,属于求导数的间接法。它的基本思想早 在1847年就已提出。尽管它本身不再被认为是一种有效的方法, 但它是许多优化方法尤其是二次收敛方法的基础。 各点的梯度一般各不相同,因此“最速下降方向”仅对某 一点附近而言,它具有局部性质。 当作一维搜索时,搜索方向是与目标函数等值线相切的, 而切点的梯度方向是与等值线正交的。因此,相邻两次搜索方 向相互垂直,搜索路径呈严重的“之”字形,特别是目标函数 接近二次型时更为明显。 可以利用梯度矢量在极值点为零这一重要性质设立收敛准 则 f(x*)

带约束的非线性优化问题解法小结

带约束的非线性优化问题解法小结

(1)带约束的非线性优化问题解法小结考虑形式如下的非线性最优化问题(NLP):min f(x)「g j (x )“ jI st 彳 g j (x)=O j L其 中, ^(x 1,x 2...x n )^ R n, f : R n > R , g j :R n > R(j I L) , I 二{1,2,…m }, L ={m 1,m 2...m p}。

上述问题(1)是非线性约束优化问题的最一般模型,它在军事、经济、工程、管理以 及生产工程自动化等方面都有重要的作用。

非线性规划作为一个独立的学科是在上世纪 50年 代才开始形成的。

到70年代,这门学科开始处于兴旺发展时期。

在国际上,这方面的专门性 研究机构、刊物以及书籍犹如雨后春笋般地出现,国际会议召开的次数大大增加。

在我国, 随着电子计算机日益广泛地应用,非线性规划的理论和方法也逐渐地引起很多部门的重视。

关于非线性规划理论和应用方面的学术交流活动也日益频繁,我国的科学工作者在这一领域 也取得了可喜的成绩。

到目前为止,还没有特别有效的方法直接得到最优解,人们普遍采用迭代的方法求解: 首先选择一个初始点,利用当前迭代点的或已产生的迭代点的信息,产生下一个迭代点,一 步一步逼近最优解,进而得到一个迭代点列,这样便构成求解( 1)的迭代算法。

利用间接法求解最优化问题的途径一般有:一是利用目标函数和约束条件构造增广目标 函数,借此将约束最优化问题转化为无约束最优化问题,然后利用求解无约束最优化问题的 方法间接求解新目标函数的局部最优解或稳定点,如人们所熟悉的惩罚函数法和乘子法;另 一种途径是在可行域内使目标函数下降的迭代点法,如可行点法。

此外,近些年来形成的序 列二次规划算法和信赖域法也引起了人们极大的关注。

在文献[1]中,提出了很多解决非线性 规划的算法。

下面将这些算法以及近年来在此基础上改进的算法简单介绍一下。

1. 序列二次规划法序列二次规划法,简称SQ 方法.亦称约束变尺度法。

《非线性最优化模型》课件

《非线性最优化模型》课件

无约束优化模型
定义
无约束优化模型是指在没有任何约束条件限制下,寻找目标函数的最大值或最 小值。
求解方法
无约束优化模型的求解方法主要包括梯度法、牛顿法、拟牛顿法、共轭梯度法 等。这些方法通过迭代的方式逐步逼近最优解,利用目标函数的梯度信息或海 森矩阵进行搜索。
混合整数优化模型
特点
混合整数优化模型是指目标函数 和约束条件中同时包含连续变量 和整数变量,整数变量的取值只 能是整数。
《非线性最优化模型》ppt课 件
Байду номын сангаас
CONTENTS
• 非线性最优化模型概述 • 非线性最优化模型的分类 • 非线性最优化模型的求解方法 • 非线性最优化模型的实际应用
案例 • 非线性最优化模型的未来发展
与挑战
01
非线性最优化模型概述
定义与特点
总结词
非线性最优化模型是一种数学方法,用于解决具有非线性约束和目标的优化问题。
优点
收敛速度快,精度高。
缺点
对Hessian矩阵敏感,计算量大,可能面临数值稳定问题。
拟牛顿法
总结词
改进的牛顿法 01
详细描述
02 通过迭代更新Hessian矩阵近似值 ,构造拟牛顿矩阵,以实现牛顿 法的数值稳定性和收敛速度。
优点
数值稳定性好,收敛速度快。
03
缺点
04 需要存储和计算Hessian矩阵或其 近似值。
客户需求。
运输优化
非线性最优化模型可用于 优化运输路线和运输方式 ,降低运输成本并提高运
输效率。
采购优化
通过非线性最优化模型, 可以确定最佳供应商和采 购策略,以降低采购成本
并确保产品质量。

非线性优化与约束优化问题的求解方法

非线性优化与约束优化问题的求解方法

非线性优化与约束优化问题的求解方法非线性优化问题是在目标函数和约束条件中包含非线性项的优化问题。

约束优化问题是在目标函数中加入了一些约束条件的优化问题。

解决这些问题在实际应用中具有重要意义,因此研究非线性优化和约束优化问题的求解方法具有重要的理论和实际意义。

一、非线性优化问题的求解方法非线性优化问题的求解方法有很多,下面介绍几种常见的方法:1. 黄金分割法:黄金分割法是一种简单但有效的搜索方法,它通过不断缩小搜索范围来逼近最优解。

该方法适用于目标函数单峰且连续的情况。

2. 牛顿法:牛顿法利用目标函数的一阶和二阶导数信息来逼近最优解。

该方法收敛速度较快,但在计算高阶导数或者初始点选取不当时可能产生不稳定的结果。

3. 拟牛顿法:拟牛顿法是对牛顿法的改进,它通过逼近目标函数的Hessian矩阵来加快收敛速度。

拟牛顿法可以通过不同的更新策略来选择Broyden-Fletcher-Goldfarb-Shanno(BFGS)方法或者DFP方法。

4. 全局优化方法:全局优化方法适用于非凸优化问题,它通过遍历搜索空间来寻找全局最优解。

全局优化方法包括遗传算法、粒子群优化等。

二、约束优化问题的求解方法约束优化问题的求解方法也有很多,下面介绍几种常见的方法:1. 等式约束问题的拉格朗日乘子法:等式约束问题可以通过引入拉格朗日乘子来转化为无约束优化问题。

通过求解无约束优化问题的驻点,求得原始约束优化问题的解。

2. 不等式约束问题的罚函数法:不等式约束问题可以通过引入罚函数来转化为无约束优化问题。

罚函数法通过将违反约束条件的点处添加罚项,将约束优化问题转化为无约束问题。

3. 逐次二次规划法:逐次二次规划法是一种常用的求解约束优化问题的方法。

该方法通过依次处理逐个约束来逼近最优解,每次处理都会得到一个更小的问题,直至满足所有约束条件。

4. 内点法:内点法是一种有效的求解约束优化问题的方法。

该方法通过向可行域内部逼近,在整个迭代过程中都保持在可行域内部,从而避免了外点法需要不断向可行域逼近的过程。

非线性最优化模型

非线性最优化模型

案例二:生产调度优化的应用
总结词
生产调度优化是利用非线性最优化模型来安排生产计划 ,以提高生产效率和降低生产成本。
详细描述
生产调度问题需要考虑生产线的配置、工人的排班、原 材料的采购等多个因素。非线性最优化模型能够综合考 虑这些因素,并找到最优的生产调度方案,提高生产效 率,降低生产成本,并确保生产计划的可行性。
04
非线性最优化模型的实例分析
投资组合优化模型
投资组合优化模型
通过非线性最优化方法,确定最佳投资组合配置,以实现预期收 益和风险之间的平衡。
目标函数
最大化预期收益或最小化风险,通常采用夏普比率、詹森指数等 作为评价指标。
约束条件
包括投资比例限制、流动性约束、风险控制等。
生产调度优化模型
01
生产调度优化模型
非线性最优化模型
• 非线性最优化模型概述 • 非线性最优化模型的分类 • 非线性最优化模型的求解方法 • 非线性最优化模型的实例分析 • 非线性最优化模型的挑战与展望 • 非线性最优化模型的应用案例
01
非线性最优化模型概述
定义与特点
定义
非线性最优化模型是指用来描述具有 非线性特性的系统或问题的数学模型 。
多目标非线性优化模型
多目标
多目标非线性优化模型中存在多个目标函数,这些目标函 数之间可能存在冲突。
01
求解方法
常用的求解方法包括权重法、帕累托最 优解法、多目标遗传算法等,这些方法 通过迭代过程逐步逼近最优解。
02
03
应用领域
多目标非线性优化模型广泛应用于各 种领域,如系统设计、城市规划、经 济分析等。
通过非线性最优化方法,合理安 排生产计划和调度,以提高生产 效率和降低成本。

非线性最优化计算方法与算法

非线性最优化计算方法与算法

毕业论文题目非线性最优化计算方法与算法学院数学科学学院专业信息与计算科学班级计算1201学生陶红学号20120921104指导教师邢顺来二〇一六年五月二十五日摘要非线性规划问题是一般形式的非线性最优化问题。

本文针对非线性规划的最优化问题进行方法和算法分析。

传统的求解非线性规划的方法有最速下降法、牛顿法、可行方向法、函数逼近法、信赖域法,近来研究发现了更多的求解非线性规划问题的方法如遗传算法、粒子群算法。

本文对非线性规划分别从约束规划和无约束规划两个方面进行理论分析。

利用最速下降法和牛顿法两种典型算法求解无约束条件非线性规划问题,通过MATLAB程序求解最优值,探讨其收敛性和稳定性。

另外给出了阻尼牛顿法,探讨其算法的收敛性和稳定性,求解无约束非线性规划比牛顿法的精确度更高,收敛速度更快。

惩罚函数是经典的求解约束非线性的方法,本文采用以惩罚函数法为核心的遗传算法求解有约束条件非线性规划问题,通过MATLAB程序求解最优值,探讨其收敛性和稳定性。

并改进遗传算法,给出适应度函数,通过变换适应度函数,提高算法的收敛性和稳定性。

关键词:非线性规划;最速下降法;牛顿法;遗传算法ABSTRACTNonlinear programming problem is the general form of the nonlinear optimization problem. In this paper, we carry on the analysis of the method and algorithm aiming at the optimization problem of nonlinear programming. The traditional methods of solving nonlinear programming problems include steepest descent method, Newton method, the feasible direction method, function approximation method and trust region method. Recent studies found more method of solving nonlinear programming problems, such as genetic algorithm, particle swarm optimization (pso) algorithm. In this paper, the nonlinear programming is analyzed from two aspects: the constraint programming and the unconstrained programming.We solve unconstrained condition nonlinear programming problem by steepest descent method and Newton's method, and get the optimal value through MATLAB. Then the convergence and stability are discussed. Besides, the damped Newton method is furnished. By discussing the convergence and stability of the algorithm, the damped Newton method has higher accuracy and faster convergent speed than Newton's method in solving unconstrained nonlinear programming problems.Punishment function is a classical method for solving constrained nonlinear. This paper solves nonlinear programming problem with constraints by using genetic algorithm method, the core of which is SUMT. Get the optimal value through MATLAB, then the convergence and stability are discussed. Improve genetic algorithm, give the fitness function, and improve the convergence and stability of the algorithm through transforming the fitness function.Key words:Nonlinear Programming; Pteepest Descent Method; Newton Method; GeneticAlgorithm目录摘要 (I)ABSTRACT .......................................................................................................................... I I 1 前言 .. (4)1.1 引言 (4)1.2 非线性规划的发展背景 (5)1.3 国内外研究现状 (5)1.4 研究主要内容及研究方案 (6)1.4.1 研究的主要内容 (6)1.4.2 研究方案 (6)1.5 研究难点 (7)2 预备知识 (8)2.1 向量和矩阵范数 (8)2.1.1 常见的向量范数 (8)2.1.2 谱范数 (9)2.2符号和定义 (9)2.3 数值误差 (10)2.4 算法的稳定性 (10)2.5 收敛性 (12)3 非线性规划模型 (13)3.1 非线性规划模型 (13)3.2 无约束非线性规划 (14)3.2.1 最速下降法 (16)3.2.2 牛顿法 (18)3.2.2 阻尼牛顿法 (18)3.3 约束非线性规划 (20)3.3.1 惩罚函数法 (21)3.3.2 遗传算法 (21)3.3.3 自适应遗传算法 (22)结论 (26)参考文献 (27)致谢 (28)附录 (29)1 前言1.1 引言我们知道最优化是一门很古老的求极值问题,最优化在求解线性规划,非线性规划,随机规划,多目标规划,非光滑规划,整数规划,几何规划等方面研究得到迅速发展。

数学建模案例之多变量最优化

数学建模案例之多变量最优化

数学建模案例之多变量最优化多变量最优化是数学建模中的一个重要问题,其主要目标是在给定的约束条件下,找到一个或多个变量的取值,使得目标函数取得最大或最小值。

多变量最优化的应用非常广泛,例如在经济学、工程学、管理学等领域中都有着重要的应用。

下面我将介绍一个关于生态平衡问题的多变量最优化案例。

在生态学中,保持生态系统的平衡是一个重要的目标。

因此,研究如何在给定的约束条件下最大限度地提高生态系统的平衡度是一个具有挑战性的问题。

在这个案例中,我们假设生态系统包含n个物种,每个物种在生态系统中所占的比例可以用一个变量xi表示。

我们的目标是最大限度地提高生态系统的平衡度,即最小化各物种比例之间的差异。

为了量化生态系统的平衡度,我们可以使用下面的公式:A = Σ ,xi - x'其中,A表示生态系统的平衡度,xi表示物种i在生态系统中所占的比例,x'表示物种比例的平均值。

然而,由于生态系统中存在一些约束条件,例如物种之间的相互作用、资源的有限性等,从理论上解析地求得最优解非常困难。

因此,我们需要使用数学建模中的多变量最优化方法来解决这个问题。

首先,我们需要明确问题的约束条件。

这些约束条件可以包括物种之间的相互作用、资源分配的限制、物种的生存要求等。

然后,我们可以将这些约束条件转化为一组约束方程,形成一个多变量最优化的问题。

假设我们将生态系统的平衡度最小化问题表示为一个多变量最优化问题,目标函数为最小化生态系统的平衡度A,约束条件为一组方程表示的生态系统限制。

我们可以使用优化算法,例如线性规划或非线性规划,来求解这个问题。

在求解过程中,我们需要确定一个合适的初始解,并进行迭代优化,直到找到满足约束条件的最优解。

优化算法将计算出生态系统中每个物种的最优比例,最小化生态系统的平衡度。

通过这个多变量最优化问题,我们可以得到一个最优解,即使各物种比例之间的差异最小。

这个最优解可以为生态系统的管理与保护提供重要的参考。

最优化方法第六讲 无约束(多维)最优化

最优化方法第六讲 无约束(多维)最优化

step4. 若 || f ( xk1) || ,停止,x* xk1 ;
否则,令 k : k 1, 转step 2 。
14
➢算法框图
给定初始点x0和精度 || f ( x0 ) ||
停止,输出x1


| x1 x0 |
是 停止,输出x0
否 否
2 f (x0) 0
计算x1
x0
f ( x0 ) 2 f (x0)
1
13 62
x2
x1
1d 1
(
36 , 31
8 31
)T
7
三、最速下降法的特点
1.性质. 设 f ( x) 有一阶连续偏导数,若 步长 满足 k
f ( xk d k ) min f ( xk d k )
k
则有 f ( xk d k )T d k 0。 k
证明:令 ( ) f ( xk d k ),所以
5
一、梯度法(最速下降法):
1. 搜索方向:d k f ( xk ) ,也称为最速下降方向;
2. 搜 索 步 长: k 取 最 优 步 长, 即 满 足
f (xk
kd k )
min
f
(xk
d k ) 。
二、梯度法算法步骤:
1. 给定初始点 x1 Rn ,允许误差 0, 令k 1。
2. 计算搜索方向 d k f ( xk ) ;
Step3. 令 xk 1 xk kd k , 其中tk : f ( xk kd k ) min f ( xk d k )。
24
Step 4. 判断 xk 1 是否满足终止准则: yes: 计算 stop, 则x* : xk1
No : 转 step 5 。

数学建模案例之多变量最优化

数学建模案例之多变量最优化

数学建模案例之多变量无约束最优化问题1[1]:某家液晶电视机制造商计划推出两种产品:一种47英寸液晶电视机,制造商建议零售价每台7900元。

另一种42英寸液晶电视机,零售价6500元。

公司付出的成本为47英寸液晶电视机每台4500元,42英寸液晶电视机每台3800元,再加上3200000元的固定成本。

在竞争的销售市场中,每年售出的液晶电视机数量会影响液晶电视机的平均售。

据估计,对每种类型的电视,每多售出一台,平均销售价格会下降0.08元。

而且47英寸液晶电视机的销售量会影响42英寸液晶电视机的销售,反之也是如此。

据估计,每售出一台47英寸液晶电视机,42英寸的液晶电视机平均售价会下降0.024元,而每售出一台42英寸的液晶电视机,47英寸液晶电视机的平均售价会下降0.032元。

问:(1)问每种电视应该各生产多少台,使总利润最大?(2)对你在(1)中求出的结果讨论42英寸液晶电视机的价格弹性系数的灵敏性。

1.问题分析、假设与符号说明这里涉及较多的变量:s:47英寸液晶电视机的售出数量(台);t:42英寸液晶电视机的售出数量(台);p:47英寸液晶电视机的售出价格(元/台);q:42英寸液晶电视机的售出价格(元/台);C:生产液晶电视机的成本(元);R:液晶电视机销售的收入(元);P:液晶电视机销售的利润(元)这里涉及的常量有:两种液晶电视机的初始定价分别为:339元和399元,成本分别为:195元和225元;每种液晶电视机每多销售一台,平均售价下降系数a=0.01元(称为价格弹性系数);两种液晶电视机之间的销售相互影响系数分别为0.04元和0.03元;固定成本400000元。

变量之间的相互关系确定:假设1:对每种类型的液晶电视机,每多售出一台,平均销售价格会下降1元。

假设2:据估计,每售出一台42英寸液晶电视机,47英寸的液晶电视机平均售价会下降0.3元,而每售出一台47英寸的液晶电视机,42英寸液晶电视机的平均售价会下降0.4元。

非线性多目标优化问题求解

非线性多目标优化问题求解

非线性多目标优化问题求解【导言】非线性多目标优化问题是指在实际应用中,存在多个决策目标且它们之间相互制约、相互影响,不是简单的线性关系。

如何快速有效地求解非线性多目标优化问题是近些年来研究的热点之一。

本文将重点介绍非线性多目标优化问题的求解方法。

【第一章】非线性多目标优化问题的概念和分类非线性多目标优化问题是指一类具有多个目标函数、多个自变量以及多个约束条件的优化问题,目标函数与约束条件都含有非线性关系。

可转化为多个标量优化问题求解,或直接求解多目标优化问题。

根据约束条件是否存在,可将非线性多目标优化问题分类为无约束的和有约束的。

而根据解的情况,可将非线性多目标优化问题分类为全局最优解、局部最优解和帕累托最优解。

【第二章】传统方法求解非线性多目标优化问题在传统方法中,常用的包括遗传算法、模拟退火算法、蚁群算法、粒子群算法和差分进化算法等。

遗传算法是一种基于生物学进化思想的优化算法,其核心思想是利用自然选择、交叉和变异等基本遗传操作来搜索最优解。

模拟退火算法则是一种模拟物理系统的退火过程的优化算法,其主要思想是在搜索过程中,通过引入随机扰动,逐步降低温度以实现全局搜索。

蚁群算法模仿蚂蚁搜索食物的行为,在寻找最优解的过程中,蚂蚁在解空间内设置路径,寻找最优路径索引物质。

粒子群算法也是一种基于个体群体适应度的智能优化算法,其主要思想是通过模拟群体中个体行动、合作及竞争等过程,来找寻最优解。

差分进化算法利用向量差分更新种群中的个体,不断调整自适应常数,迭代解空间,淘汰低适应度的个体,以实现全局搜索。

不同的算法在不同的问题中表现效果也不尽相同,通过不断实验和改进来适应不同的应用场景。

【第三章】多目标进化算法求解非线性多目标优化问题随着优化算法的不断发展和应用,多目标进化算法(MOEA)已经成为非线性多目标优化问题求解的一个主流方法。

多目标进化算法最早起源于1994年,伴随着重要性采样、拥挤距离、局部搜索等部分技术的出现,使得多目标进化算法在解决约束和非线性非凸优化问题方面具有了更为广泛的适用场景。

05运筹与优化—非线性规划约束最优化

05运筹与优化—非线性规划约束最优化

一、约束优化最优性条件
Page 8
拉格朗日乘子法
定义 n+l 元函数:
l
L(x, )=f(x)- Th(x)=f(x)- ihi(x) i1 为 lagrange 函数,
称 为 lagrange 乘子向量。
例:求解最优化问题
min f x2 y2 xy 3
一、约束优化最优性条件
Page 9
m
f (x ) uigi (x ) 0
i 1
ui* 0 i 1, 2, , m
uigi (x ) 0 i 1, 2, , m
(互补松弛条件)
其中:i I,且满足CQ条件
x*
g2
g1
x
f
g3 g2
f
D
一、约束优化最优性条件
Page 12
3.一般约束的Khun-Tucker条件
定理3: Khun-Tucker条件(KKT条件,K-T条件)
2.不等式约束的最优化条件
考虑不等式约束最优化问题 min f(x),x∈R n s.t. gi(x)≤0
极小值取值特点
(1)极小值点落在可行 域内(不包含边界)
(2)极小值点落在可 行域外(包含边界)
一、约束优化最优性条件
Page 10
定义:若不等式约束问题的一个可行点 x使某个不等式 约束 g j (x)≥0 变成等式,即 g j ( x)=0,则该不等式约束 gj (x)≥0,称为关于 x的有效约束。
运筹与优化— 非线性规划优化方法
Page 2
某金属制品厂要加工一批长方形容器,按规格要求,上 下底的材料为25元/m2,侧面的材料为40元/m2,试确定长、 宽、高的尺寸,在容积一定的情况下(设为90 m3 ),使 这个容器的成本最低。

数学中的非线性优化问题

数学中的非线性优化问题

数学中的非线性优化问题在数学领域中,非线性优化问题是一类重要而复杂的问题。

它主要研究的是在某些约束条件下,如何寻找一个满足给定目标函数的最优解。

非线性优化问题的求解过程具有广泛的实际应用,包括经济学、工程学、物理学等领域。

本文将介绍非线性优化问题的定义、常用的解法以及相关应用。

一、非线性优化问题的定义非线性优化问题是在给定一组约束条件下,寻找某个函数的最优解的问题。

与线性优化问题不同的是,非线性优化问题中目标函数可以是非线性的,约束条件也可以是非线性的。

通常情况下,非线性优化问题的目标是最小化或最大化一个目标函数。

例如,考虑一个简单的非线性优化问题:$\min_{x \in \mathbb{R}^n} f(x)$subject to $g_i(x) \leq 0, \quad i=1,2,...,m$$h_j(x) = 0, \quad j=1,2,...,p$其中,$f(x)$是定义在$\mathbb{R}^n$上的目标函数,$g_i(x)$和$h_j(x)$是定义在$\mathbb{R}^n$上的约束条件。

优化问题的目标是寻找一组变量$x$的取值,使得$f(x)$达到最小值,并且满足约束条件$g_i(x) \leq 0$和$h_j(x) = 0$。

二、非线性优化问题的解法非线性优化问题的解法有多种,常见的包括梯度下降法、牛顿法、拟牛顿法等。

1. 梯度下降法梯度下降法是一种常用的迭代算法,用于求解无约束非线性优化问题。

它通过不断沿着负梯度的方向更新变量值,直到达到最优解。

其基本思想是在每一次迭代中,通过计算目标函数的梯度来确定下降的方向和步长。

梯度下降法的优点是易于实现,但可能陷入局部最优解。

2. 牛顿法牛顿法是一种迭代算法,用于求解非线性优化问题。

它利用目标函数的函数值和梯度信息来近似地构造二次模型,并通过求解二次模型的最小值来确定下一步的迭代点。

牛顿法通常收敛速度较快,但需要计算目标函数的梯度和Hessian矩阵,且在某些情况下可能会出现数值不稳定的情况。

带有非线性约束的优化问题求解研究

带有非线性约束的优化问题求解研究

带有非线性约束的优化问题求解研究随着科技的不断进步和发展,我们的生活也越来越依赖于计算机和数据分析。

而优化问题求解作为数学的一个重要分支,也在逐渐成为各个领域中不可或缺的一部分。

然而,在实际操作中,很多优化问题都存在着非线性约束的情况,它们的解决方式也因此而产生了很多新的挑战和难点。

一、带有非线性约束的优化问题的性质和挑战在数学中,优化问题的基本形式为:最大(小)化某个目标函数,使得满足一定的约束条件。

而当这些约束条件中出现非线性的情况时,这个问题就会变得更加复杂起来。

因为在非线性的情况下,目标函数的优化方向和约束条件的符号会相互影响,导致求解起来非常困难。

对于带有非线性约束的优化问题,其解决的难度主要有以下几个方面:1. 非凸性问题:许多非线性优化问题都是不凸的,也就是说,它们在某些区域内存在多个极小值或者鞍点。

这种情况下,传统的优化算法就很难有效地找到全局最优解,而且可能会被困在局部最优解中。

2. 约束条件的“硬度”:在非线性问题中,约束条件可能会比目标函数更加复杂和难以处理。

而且,这些约束条件可能会存在多个限制条件,甚至是不等式约束。

这些条件之间相互作用,很难通过简单的规则来处理。

因此,优化算法需要耗费更多的计算量和时间来解决。

3. 更加复杂的求解方法:在非线性优化问题中,传统的求解方法已经不再适用了。

相反,我们需要使用更加复杂和高级的优化算法,如线性规划、二次规划、仿射规划、鲁棒优化等。

二、约束优化问题的解法与优化算法在研究非线性约束的优化问题时,我们可以先根据约束条件的特点来确定使用何种优化算法。

同时,我们还需要根据目标函数的特点,合理地调整算法的参数,以实现最优化的效果。

下面介绍几种常见的优化算法:1. 内点法:内点法是一种能够解决带有等式或非平凡不等式约束的优化问题的算法。

它的主要思想是通过解决一个关于正定对称矩阵的方程组来求解优化问题的解。

内点法因为能够解决一般限制条件下的凸优化问题,因此在实际操作中很受欢迎。

第三章非线性规划无约束问题的最优化方法

第三章非线性规划无约束问题的最优化方法

x0
0p 0
1.919877 还需要经过10次迭代才
能满足精度要求
0.003070
第三节 牛顿法
3. 牛顿法的缺点: 牛顿法要求初始解离最优解不远,若初始点选得离最优解太
远时,牛顿法并不能保证其收敛,甚至也不是下降方向。因此, 常将牛顿法与最速下降法结合起来使用。前期使用最速下降法, 当迭代到一定程度后,改用牛顿法,可得到较好的效果。 4. 修正牛顿法 基本思想: 保留了从牛顿法中选取牛顿方向作为搜索方向,摒弃其步长恒 为1的做法,而用一维搜索确定最优步长来构造算法。
2
2
0
2e2 2 3
00 21 0
03
f x3 9
第二节 最速下降法
再从x(3)点 出发,沿x3轴方向e3进行一维搜索:
0 x 3 e3 0
3
00 00 13
f x 3 e3
32
f' 0 x4 x3
3
3
0
3e3 0 0
f x4 0
第二节 最速下降法
因为 x 1
x 4 ,0故.0以1 x(4)点作为新的x(1) ,进行新一轮迭代。
0
1 33 22
f x0
p0
52 5
42
f' x0
p0 5 5 0
22
01
第三节 牛顿法
x1 x0
1 p0 3
2
3
f x1
14
12 2
0
30
12 1 2
2
f x1
所以选取 x* x 1
1 3 作为极小点。 2
第三节 牛顿法
6. 修正牛顿法的缺点: 修正牛顿法虽然比牛顿法有所改进,但也有不足之处:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•这种问题的一般形式为: 这种问题的一般形式为: 这种问题的一般形式为 • 目标函数: 目标函数:
min f ( x)
x
c ( x ) <= 0 •约束条件: ceq 约束条件: 约束条件 ( x ) = 0 A • x <= b Aeq • x = beq lb <= x <= ub
•其中: x 为向量,G(x)为函数向量,F(x)为标量函数, 其中: 为向量, ( )为函数向量, 为标量函数, 其中 为标量函数 F(x)和G(x)均可以是非线性函数。G(x)可以为等式约束 均可以是非线性函数。 和 均可以是非线性函数 可以为等式约束 也可以为不等式约束。 也可以为不等式约束。 •在matlab中这种一般的约束最优问题的求解要用到的 在 中这种一般的约束最优问题的求解要用到的 命令是: 命令是: FMINCON: •格式:x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
练习
1:目标函数:
•约束方程:
min f ( x) = − x1 x2 x3
− x1 − 2 x 2 − 2 x 3 ≤ 0
x1 + 2 x 2 + 2 x 3 ≤ 72
•2:
min f ( x) = 2 x12 + x2 2 + x3 2 − x1 x2 2 2 x1 + x2 ≤≥ 0 1 2 3
有约束非线性多元函数最优化 问题
考虑如下优化问题: 考虑如下优化问题:
x1 • 目标函数: min f ( x ) = e ( 4 x1 + 2 x 2 + 4 x1 x 2 + 2 x 2 + 1) 目标函数: x 2 2
•约束方程: 约束方程: 约束方程
x1 x 2 − x1 − x 2 ≤ −1.5 x1 x 2 ≥ −10
相关文档
最新文档