水箱液位模糊控制

合集下载

双容水箱模糊控制规则

双容水箱模糊控制规则

双容水箱模糊控制规则双容水箱模糊控制规则引言双容水箱是一种常见的水源供应系统,其通过两个容器间的自动切换来保证水源的持续供应。

在实际使用中,为了更好地控制水箱的切换和保障供水质量,需要采用模糊控制技术。

本文将对双容水箱模糊控制规则进行详细介绍。

一、双容水箱基本原理1.1 双容水箱结构双容水箱由两个相同的储水器和一个控制系统组成。

其中,每个储水器都有一个进口和一个出口,而控制系统则负责监测并调节两个储水器中的液位。

1.2 双容水箱工作原理当一个储水器中的液位下降到一定程度时,控制系统会自动切换到另一个储水器,并开启进口阀门将新鲜的自来水注入该储水器中。

同时,出口阀门会打开以保证该储水器中的液位不断上升。

二、模糊控制技术介绍2.1 模糊控制原理模糊控制是一种基于模糊逻辑理论的智能控制方法,其主要思想是将模糊的输入量通过一定的规则转化为模糊的输出量,从而实现对系统的控制。

2.2 模糊控制在双容水箱中的应用在双容水箱中,模糊控制可以通过对液位、进出水流量等参数进行监测和分析,从而实现对水箱切换和进出水阀门的精确控制。

三、双容水箱模糊控制规则3.1 液位监测规则液位监测是双容水箱模糊控制的基础。

在液位监测中,需要将液位高度转化为模糊变量,并根据不同的液位高度设置相应的隶属函数。

例如:- 高液位:隶属函数为“大”- 中等液位:隶属函数为“中”- 低液位:隶属函数为“小”3.2 切换规则当一个储水器中的液位下降到一定程度时,需要切换到另一个储水器。

此时,可以根据两个储水器中当前的液位高度以及进出水流量等参数来确定是否需要切换。

例如:- 当当前储水器中的液位低于“中”且另一个储水器中的液位高于“中”时,需要切换到另一个储水器。

- 当两个储水器中的液位都低于“小”时,需要启动进口阀门将新鲜的自来水注入当前储水器中。

3.3 进出水阀门控制规则进出水阀门控制是双容水箱模糊控制的核心。

在进出水阀门控制中,需要根据当前储水器的液位高度以及进出水流量等参数来精确控制进出水阀门的开关状态。

水箱液位模糊控制

水箱液位模糊控制

水箱液位模糊控制器的设计1.水箱液位控制系统已知一个容器中液体的流出是随机变化的,无法建立它的数学模型。

但是,通过人工控制进液阀门的开度和进液流速,却能调节容器中液位的高低,保持液位恒定。

根据人工操作经验,我们已经归纳出如下保持液位恒定的操作规则:①如果液位偏低,则快开阀门;②如果液位正好,则阀门开度不变;③如果液位偏高,则快关阀门;④如果液位正好而进液流速慢,则慢关阀门;⑤如果液位正好而进液流速快,则慢开阀门。

图1-1 水箱液位控制系统原理图为此,我们可以设计如图1-2所示的双输入--单输出模糊控制系统:k 1k 2D/FD/F RF/D 控制对象k u 模糊控制器u e ec图1-2 二维模糊控制系统原理框图模糊控制器的两个输入变量分别为液位差e (设定液位高度r -实测液位高度M模糊控制器反馈 压力传感器控制量设定y)和液位差变化率ec(单位时间内的偏差改变量),输出模糊变量为u。

输入变量e和ec、输出变量u的论域、覆盖变量论域的模糊子集明朝、隶属度函数类型及拐点参数等,初步设定为表1-1所列的数值。

表1-1 覆盖输入变量、输出变量的模糊子集设定值2.构建模糊控制器的FIS结构文件2.1编辑出名称为“tank”的液位模糊控制系统FIS启动Matlab后,在主窗口中键入fuzzy回车,进入“FIS Editor”编辑器界面,完成下列任务:①增加一个输入变量;②将输入、输出变量的名称分别改成e、ec和u;③将这个FIS文件名定为“tank”并予以存盘。

得出如图2-1所示的FIS编辑器界面。

图2-1 液位模糊控制FIS编辑器2.2 编辑覆盖输入、输出变量的模糊子集在图2-1所示的FIS编辑器上,单机输入变量e模框,按表1-1列出的数据编辑e、ec和u的模糊子集。

在FIS编辑器界面上,双击输入量或输出量模框中的任何一个,都会弹出隶属函数编辑器,简称MF编辑器。

在MF编辑器界面上,单击“变量模框索引区”中待编辑变量的小模框,使其边框变粗、变红,则界面下部“当前变量区”内就显示该变量的性态,以供编辑。

基于MATLAB的水箱水位模糊控制

基于MATLAB的水箱水位模糊控制

基于MATLAB的水箱水位模糊控制————————————————————————————————作者:————————————————————————————————日期:2目录前言1.模糊控制概述1.1模糊控制的产生及特点 (3)1。

2 模糊控制技术的发展 (4)1。

3 模糊控制理论的研究现状 (5)2.模糊推理原理2。

1模糊控制的基本工作原理 (6)3.基于MATLAB的水箱供水模糊控制3。

1水箱水位模糊控制系统设计 (8)小结 (16)参考文献 (17)第1页前言随着社会经济的迅速发展,水对人们生活与工业生产的影响越来越重要,尤其是近几年,随着居民生活水平的显著提高和城市化进程的加快,居民生活用水和工业用水增长幅度加大,原有的供水系统已经不能满足人们的需求。

为了保证正常的供水,这里应用模糊控制技术,实现对水箱水位的自动控制.第2页3、基于MATLAB的水箱供水模糊控制3。

1水箱水位模糊控制系统设计本系统设计基于MATLAB图形模糊推理系统,设计步骤如下:(1)打开MATLAB,输入指令fuzzy,打开模糊逻辑工具箱的图形用户界面窗口,新建一个Mamdani模糊推理系统。

图3.1 在FIS Editor窗口中新建水位控制模糊推理系统(2)增加一个输入变量,将输入变量命名为水位误差、误差变化,将输出变量命名为阀门开关速度.这样就建立了一个两输入单输出的模糊推理系统,保存为shuixiang.fis。

第3页图3。

2 增加一个输入变量(3)设计模糊化模块:设水位误差的论域为[-1 1],误差变化的论域为[—0.1 0。

1];两个输入量的模糊集都定为5个:其中水位误差定为高、偏高、合适、偏低、低五等;参数分别为[0.3 —1]、[0。

3 —0.5]、[0.3 0]、[0。

3 0.5]、[0.3 1];第4页图3.3 设计水位误差模块误差变化分为大、偏大、合适、偏小、小五等。

参数分别为[0.03 —0。

模糊控制水箱液位调节

模糊控制水箱液位调节

实验二:模糊控制水箱液位调节一实验目的1.掌握模糊控制的原理2.加强模糊控制在实践中的应用二实验器材装有Matlab软件PC电脑一台三实验原理模糊控制的基本原理:它的核心部分为模糊控制器,模糊控制器的控制规律由有计算机程序实现。

详见P32(模糊控制原理)。

四原代码clear allclose allq1=0; %定义第一个水箱的入水量q2=0; %定义第一个水箱的出水量q3=0; %定义第二个水箱的出水量q4=0; %定义第三个水箱的出水量b=1.4; %定义第一个水箱入水量的控制系数a1=8.6; %定义第一个水箱出水量的控制系数a2=8.6; %定义第一个水箱出水量的控制系数h1=100; %定义第一个水箱中水的初始高度h2=100; %定义第二个水箱中水的初始高度h3=100; %定义第三个水箱中水的初始高度v=119; %定义sin函数的系数s=190; %定义水箱底面积k=10; %定义开关控制量e=0; %定义误差e_1=0;ec=0;H=130; %定义第三个水箱的期望高度e=H-h1;a=newfis('fuzz'); %误差函数a=addvar(a,'input','e',[-25,25]);a=addmf(a,'input',1,'NB','zmf',[-25,-10]);a=addmf(a,'input',1,'PS','trimf',[-25,-10,0]);a=addmf(a,'input',1,'Z','trimf',[-10,0,10]);a=addmf(a,'input',1,'PS','trimf',[0,10,25]);a=addmf(a,'input',1,'PB','smf',[10,25]);a=addvar(a,'output','u',[0,100]); %控制量输出函数a=addmf(a,'output',1,'NB','zmf',[0,30]);a=addmf(a,'output',1,'NS','trimf',[0,30,50]);a=addmf(a,'output',1,'Z','trimf',[30,50,70]);a=addmf(a,'output',1,'PS','trimf',[50,70,100]);a=addmf(a,'output',1,'PB','smf',[70,100]);rulelist=[1 1 1 1;2 2 1 1;3 3 1 1;4 4 1 1;5 5 1 1];a = addrule(a, rulelist);for i=1:1:8000tt(i)=i; %时间轴q1=b*k; %第一个水箱的进水量q2=a1*sqrt(h1); %第一个水箱的出水量h1=h1+(q1-q2)/s; %第一个水箱中水的高度q3=a2*sqrt(h2); %第二个水箱的进水量h2=h2+(q2-q3)/4; %第二个水箱中水的高度q4=v*abs(sin(2.3*pi*i+0.35)); %第二个谁想的出水量h3=h3+(q3-q4)/s; %第三个水箱中的高度hh(i)=h3;k=evalfis(e,a);e=H-h3;endplot(tt,hh)五、插图。

模糊控制算法在水箱液位控制系统中的应用毕业论文

模糊控制算法在水箱液位控制系统中的应用毕业论文

模糊控制算法在水箱液位控制系统中的应用毕业论文目录摘要 (I)ABSTRACT...................................................... I I 1 绪论. (1)1.1课题研究的背景与意义 (1)1.2模糊控制产生的背景与意义 (1)1.3液位控制系统研究的意义 (2)1.4本论文研究的主要容 (3)2 液位控制系统的分析与建模 (4)2.1引言 (4)2.2液位控制系统控制对象及控制策略 (5)2.3被控对象的分析与建模 (6)2.4本章小结 (8)3 控制算法研究 (9)3.1模糊控制算法 (9)3.1.1 模糊控制的产生及发展 (9)3.1.2 模糊控制的特点 (10)3.1.3 模糊控制的基本概念 (10)3.1.4 模糊控制的基本理论 (14)3.2本章小结 (18)4 模糊控制算法在水箱液位控制中的应用 (19)4.1PID控制在双容水箱液位控制系统中的仿真研究 (19)4.1.1 PID控制算法 (19)4.1.2 PID参数对系统性能的影响 (21)4.1.3 PID参数的整定方法 (21)4.2模糊自整定PID在双容水箱液位系统中的应用 (25)4.2.1 模糊PID控制器的设计 (25)4.2.2 模糊控制部分 (25)4.3仿真结果与分析 (29)结论 (31)致谢 (32)参考文献 (33)1 绪论1.1 课题研究的背景与意义随着工业生产的飞速发展,人们对控制系统的控制精度、响应速度、系统稳定性与适应能力的要求越来越高。

而实际工业生产过程中的被控对象往往具有非线性、时延的特点,应用常规的控制手段难以达到理想的控制效果,研究对非线性、时延对象的先进控制策略,提高系统的控制水平,具有重要的实际意义。

本文所提及的液位控制系统是一种可以模拟多种对象特性的实验装置。

该装置是进行控制理论与控制工程教学、实验和研究的理想平台,可以方便的构成多阶系统对象,用户既可通过经典的PID控制器设计与调试,完成经典控制教学实验,也可通过模糊逻辑控制器的设计与调试,进行智能控制教学实验与研究。

水箱水位恒定的模糊PID控制(2)

水箱水位恒定的模糊PID控制(2)

4.3 模糊集选择及隶属函数设计(1)FC1模糊语言变量的设计:将变量E的语言值设定为8个,即{负大(NB),负中(NM),负小(NS),负零(NZ),正零(PZ),正小(PS),正中(PM),正大(PB)。

将EC的语言值设定为7个,即{负大(NB),负中(NM),负小(NS),零(Z),正小(PS),正中(PM),正大(PB);将输出变量ΔKp的语言值设定为7个,即{负大(NB),负中(NM),负小(NS),零(Z),正小(PS),正中(PM),正大(PB)并设定其隶属函数,如图4-6至4-8图4-6 FC1输入变量E的隶属函数图4-7 FC1输入变量EC的隶属函数图4-8FC1输出变量△Kp的隶属函数(2)FC2模糊语言变量的设计:将输入模糊变量E、EC和输出模糊变量ΔKi 的语言值都设定为7个,即{负大(NB),负中(NM),负小(NS),零(Z),正小(PS),正中(PM),正大(PB)。

模糊控制器FC2的输入输出模糊语言变量值隶属函数如图4-9至4-11图4-9 FC2输入变量E的隶属函数图4-10 FC2输入变量EC的隶属函数图4-11 FC2输出变量△Ki的隶属函数(3)FC3模糊语言变量设计:将变量E的语言值设定为6个,即{负大(NB),负中(NM),负小(NS),正小(PS),正中(PM),正大(PB)。

将EC的语言值设定为7个,即{负大(NB),负中(NM),负小(NS),零(Z),正小(PS),正中(PM),正大(PB);将输出变量ΔKd的语言值设定为7个,即{负大(NB),负中(NM),负小(NS),零(Z),正小(PS),正中(PM),正大(PB)并设定其隶属函数如图4-12至4-14图4-12 FC3输入变量E的隶属函数图4-13 FC3输入变量EC的隶属函数图4-14 FC3输出变量△Kd的隶属函数4.4 模糊规则集的设定参数Kp 、Ki 、Kd在不同的e 和ec 下的自调整要满足如下调整原则: (1) 当e 较大时,为加快系统的响应速度,防止因开始时e 的瞬间变大可能会引起的微分溢出,应取较大的Kp 和较小的Kd ,同时由于积分作用太强会使系统超调加大,因而要对积分作用加以限制,通常取较小的Ki值;(2) 当 e 中等大小时,为减小系统的超调量, 保证一定的响应速度, Kp 应适当减小;同时Kd 和Ki的取值大小要适中;(3) 当e 较小时,为了减小稳态误差, Kp 与Ki 应取得大些,为了避免输出响应在设定值附近振荡,同时考虑系统的抗干扰性能, Kd 值的选择根据|ec|值而定,ec较大时,Kd 取较小值,ec较小时,Kd取较大值,通常Kd 为中等大小。

智能控制及MATLAB实现—水箱液位模糊控制仿真设计

智能控制及MATLAB实现—水箱液位模糊控制仿真设计

智能控制及MATLAB实现—水箱液位模糊控制仿真设计智能控制是一种利用先进的智能技术和算法来实现自动控制的方法。

在智能控制中,模糊控制是一种常见且有效的方法之一、模糊控制通过将模糊逻辑应用于控制系统中的输入和输出,根据模糊规则来进行决策和控制。

水箱液位控制是一个典型的控制问题,常常用于工业和民用领域中的自动化系统。

在许多控制应用中,水箱液位的控制是一个关键的问题,因为它需要根据系统的液位情况来实现稳定的控制。

在模糊控制中,首先需要建立一套模糊规则系统,该系统包括模糊化、模糊推理和解模糊化这三个步骤。

模糊化是将实际输入转换为模糊集合的过程。

在水箱液位控制中,可以将液位分为低、中和高三个模糊集合。

通过将实际液位值映射到这些模糊集合中的一个,来表示液位状态。

模糊推理是根据一组模糊规则,将模糊输入转换为模糊输出的过程。

通过将输入和规则进行匹配,确定输出的模糊集合。

在水箱液位控制中,可以使用如下规则:如果液位低且液位变化小,则控制信号为增大水流量;如果液位高且液位变化大,则控制信号为减小水流量;如果液位中等且液位变化适中,则控制信号为不变。

解模糊化是将模糊输出转换为实际的控制信号的过程。

在水箱液位控制中,可以使用模糊加权平均值的方法来进行解模糊化。

通过将模糊集合和其对应的权重进行加权平均计算,得到最终的控制信号。

在MATLAB中,可以使用Fuzzy Logic Toolbox来实现水箱液位模糊控制仿真设计。

首先需要建立输入和输出的模糊化和解模糊化函数,然后根据实际的模糊规则,构建模糊系统。

最后通过设定输入的模糊值,使用模糊系统进行推理和解模糊,得到最终的控制信号。

总结起来,智能控制及MATLAB实现水箱液位模糊控制仿真设计包括建立模糊规则系统,进行模糊化、模糊推理和解模糊化三个步骤,通过Fuzzy Logic Toolbox来实现模糊控制系统的构建和仿真。

通过利用模糊控制的方法,可以实现水箱液位的自动稳定控制,并提高了控制系统的鲁棒性和适应性。

水箱液位模糊控制器仿真练习

水箱液位模糊控制器仿真练习

水箱液位模糊控制器仿真练习水箱通过调节阀可向内注水和向外抽水。

设计一个模糊控制器,通过调节阀门将水位稳定在固定点附近。

图1 水箱液位控制1.输入量和输出量的模糊化将偏差e分为五级:负大(NB),负小(NS),零(O),正小(PS),正大(PB)。

根据偏差e的变化范围分为七个等级:-3,-2,-1,0,+1,+2,+3。

表1 控制量变化划分表控制量u为调节阀门开度的变化。

将其分为五级:负大(NB),负小(NS),零(O),正小(PS),正大(PB)。

并根据u的变化范围分为九个等级:-4,-3,-2,-1,0,+1,+2,+3,+4。

表2 控制量变化划分表2.模糊规则的描述根据日常的经验,设计以下模糊规则:(1)“若e负大,则u正大”(2)“若e负小,则u正小”(3)“若e为0,则u为0”(4)“若e正小,则u负小”(5)“若e正大,则u负大”3.隶属度函数(1)输入(误差e)隶属函数(2)输出(控制量u)隶属函数4.仿真结果取偏差e=-3所得仿真结果如下:5.不同的隶属函数(1)输入(误差e)隶属函数(2)输出(控制量u)隶属函数6.仿真结果取偏差e=-3所得仿真结果如下:7.结果分析以上对输入(误差e)采用两个不同的隶属函数,第一个采用三角形隶属函数,第二个采用梯形隶属函数,从以上两个仿真结果可以看出,对于同样的输入e=-3,当使用三角形隶属函数时,其输出为u=-3.53, 当使用梯形隶属函数时,其输出为u=-3.05。

从图上还可以看出当采用梯形隶属函数时,对特定的元素所得到的隶属度会有较多机会为“1”,而用三角形隶属函数的隶属度较小。

模糊控制算法在水箱液位控制系统中的应用

模糊控制算法在水箱液位控制系统中的应用

模糊控制算法在水箱液位控制系统中的应用模糊控制算法在水箱液位控制系统中的应用摘要液位控制是工业控制中的一个重要问题,针对液位控制过程中存在时变、非线性等特点,为适应复杂系统的控制要求,人们研制了种类繁多的先进的智能控制器,模糊PID控制器便是其中之一。

模糊PID控制结合了PID控制算法和模糊控制算法的优点,可以在线实现PID参数的调整,使控制系统的响应速度快,过渡过程时间大大缩短,超调量减少,振荡次数少,具有较强的鲁棒性和稳定性,在模糊控制中扮演着十分重要的角色。

本文介绍了模糊PID控制在双容水箱的液位控制系统中的应用。

首先建立了液位控制系统数学模型,介绍了PID控制、模糊控制以及模糊PID的基本原理,然后利用MATLAB软件给出了设计结果,仿真结果验证了设计方法的有效性。

关键词:液位控制;模糊PID控制;仿真Application of fuzzy control algorithm in the tank liquid level control systemAbstractLiquid level control is an important problem in industrial control, for level control in big delay, time-varying and nonlinear characteristic, in order to adapt to complex system control requirements, people developed a wide range of advanced intelligent controller, fuzzy PID controller is one of them. Fuzzy PID control combined with PID control algorithm and the advantage of fuzzy control method, can realize adjustment of PID parameters online, and make the control system response speed, greatly shorten the transition time, overshoot less, fewer oscillations, has strong robustness and stability, and plays an important role in fuzzy control. This paper introduces the fuzzy PID control in the application of the double let water tank liquid level control system. Liquid level control system mathematical model is established first, and introduces the PID control, fuzzy control and the basic principle of fuzzy PID, and design result given by using MATLAB software, the simulation results verify the validity of the proposed design method.Keywords:liquid level control;fuzzy PID control;simulation目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1课题研究的背景与意义 (1)1.2模糊控制产生的背景与意义 (1)1.3液位控制系统研究的意义 (2)1.4本论文研究的主要内容 (3)2 液位控制系统的分析与建模 (4)2.1引言 (4)2.2液位控制系统控制对象及控制策略 (5)2.3被控对象的分析与建模 (6)2.4本章小结 (8)3 控制算法研究 (9)3.1模糊控制算法 (9)3.1.1 模糊控制的产生及发展 (9)3.1.2 模糊控制的特点 (10)3.1.3 模糊控制的基本概念 (10)3.1.4 模糊控制的基本理论 (14)3.2本章小结 (19)4 模糊控制算法在水箱液位控制中的应用 (20)4.1PID控制在双容水箱液位控制系统中的仿真研究 (20)4.1.1 PID控制算法 (20)4.1.2 PID参数对系统性能的影响 (22)4.1.3 PID参数的整定方法 (22)模糊自整定PID在双容水箱液位系统中的应用 (26)模糊PID控制器的设计 (26)模糊控制部分 (27)4.3仿真结果与分析 (31)结论 (34)致谢 (35)参考文献 (36)1 绪论课题研究的背景与意义随着工业生产的飞速发展,人们对控制系统的控制精度、响应速度、系统稳定性与适应能力的要求越来越高。

基于DCS平台的水箱液位控制系统的模糊控制算法

基于DCS平台的水箱液位控制系统的模糊控制算法

0 引

集散控制系统 ( dist ribut ed cont ro l syst em, DCS) 是一种 以微处理器为基础的分散型综合控 制系统。 DCS 综合了计算机技术、 网络通讯技术、 自动控制技术、 冗余及自诊断技术等先进技术, 采用多层分级的结 构形式, 适应现代化生 பைடு நூலகம்的控制与管理需求, 目前 已成为工业过程控制的主流系 统。但多数 企业开发的 DCS 控制算法仍停留在常规控制阶段 , 因此进一步开发及挖掘其潜力具有重大的意义, 其中先进控制的研 究就是很重要的一部分。水箱液位对象是具有大惯性、 大滞后动态特性的系统 , 在工业生产过程中, 广泛存 在于石油化工过程中的蒸馏塔、 化学反应器、 液体传输设备及热工过程中的锅炉、 热交换器等对象中[ 1] 。通 常液位控制采用 P ID 或模糊 P ID, 但是传统控制需要精确的数学模型 , 而且对于大滞后动态特性的系统控 制效果不是很好。模糊控制不需要精确的数学模型, 而且一些模糊控制器可以等效为变增益的非线性 P I 或 PD 控制器[ 3] , 因此得到广泛的关注和应用。 本文以 CS4000 装置的单容、 双容水箱为实验对象 , 基于 JX 300X DCS 控 制平台, 利用 SCX 语言开发相应的模糊控制算法对水箱液位控制系统进行研 究。 SU PCON JX 300X DCS 由工程师站、 操作站、 控制站、 过程控制网络等组 成, 如图 1 所示。
1 基于 DCS 水箱液位控制系统的模糊控制的设计
文中采用双输入单输出模糊控制器 , 将误差及误差变化作为模糊控制器输入 , 调节阀开度作为控制器 输出。
收稿日期 : 2008- 10- 08 基金项目 : 浙江省科技计划项目 ( 2006C31016) ; 浙江省科技计划项目( 021101039) 作者简介 : 苏 洁 ( 1980) , 女 , 内蒙古巴彦淖尔人 , 硕士研究生 , 研究方向为自结构模糊控制及其应用。

基于模糊控制的水箱液位控制系统设计

基于模糊控制的水箱液位控制系统设计

基于模糊控制的水箱液位控制系统设计在工业中,水平液位控制是控制系统中的重要部分,它能够有效地保持水箱液位在特定的水平。

一个高效的液位控制系统可以帮助我们高效地实现水箱液位的控制从而避免浪费水资源,从而节约成本。

随着技术的进步,模糊控制已经开始成为一个重要的技术,它可以有效地支持水箱液位控制系统的构建与管理。

首先,本研究保留了传统水箱液位控制系统的基本结构,并使用模糊控制理论来优化控制系统从而实现精确的控制效果。

首先,在生成模糊规则的过程中,将采用梯度下降法和变量化规则抽象的相结合的方法来确定模糊控制参数,以最大化水箱液位控制效果。

接下来,在模糊控制的实现过程中,会使用PID算法,以及模糊规则生成器,让检测出来的反馈信号与模糊规则生成器控制信号进行比较,并结合反馈回路系数,以调整水箱液位控制系统的运行状态。

此外,在实现水箱液位控制系统的控制部分中,将采用两个独立的控制器对水箱的液位进行控制,其中一个主控制器采用传统的PID控制算法,并配合模糊控制算法进行控制;另一个子控制器则采用线性状态反馈算法,由两个控制器一起实现更好的全局水箱液位控制。

在本研究中,还提出了一种基于数字滤波及模糊控制的结合策略,以便更好地抑制系统噪声并实现更准确的水箱液位控制。

该策略中,首先会采用数字滤波技术来减少系统的噪声,然后再采用模糊控制算法来解决系统控制的实际问题。

最后,本研究中建立了一个模型仿真实验,主要用于检验在水箱液位控制方面的实际效果。

仿真实验包括模型的建立,模糊控制参数的确定,液位控制策略的调整,以及液位控制策略的比较等。

仿真结果表明,采用本研究中建立的模糊控制策略,可以有效地调节水箱液位,达到良好的控制效果,表明该模糊控制策略有效可靠。

综上所述,本文针对传统水箱液位控制系统的局限性,提出了一种基于模糊控制的水箱液位控制系统的设计方案,通过梯度下降法和变量化规则抽象的相结合的方法来确定模糊控制参数,以最大化液位控制的效果,并采用PID算法和模糊规则生成器来实现更加精确的水箱液位控制,经过仿真实验和结果分析,证明了该控制系统的有效性和可靠性。

水箱液位matlab模糊控制例程sltank详解

水箱液位matlab模糊控制例程sltank详解

一问题描述水位控制系统是由水箱(Tank),进水管、出水管和控制阀门等构成。

在进水管上,安装有一液压阀门,控制它的位置,可以控制流入水箱的流量。

出水管道的面积(Out pipe crossection) 保持常数,因此,流出出水管的流量主要与水箱的水位和水压有关。

系统具有明显的非线性特性。

我们的目的是构建一个模糊闭环控制系统。

其控制目的是通过调整控制阀门的开度,达到控制水箱水位的目的,并使其能够快速跟随所设定的水位(给定输入)。

除控制对象外,控制系统应包含有水位检测装置,控制器(常规PID 控制器或模糊控制器)及执行机构。

二控制系统动态结构图流速计算依据为简化伯努利方程或托里拆利定律,二者结论一致。

其中托里拆利定律内容为:忽略粘滞性,任何液体止点从小孔中流出的速度与它从h高度处自由落下的速度相等。

Level flow out动态模型中主要用到的计算关系式如下:液位=容积/底面积level=tank volume/area流量=流速*出水口面积流速=(2*g*level)^0.5被控对象水箱模型搭建按照上述动态结构图进行,实际设计的水箱模型如下:封装后执行机构:VALVE三水位控制系统模型四模型使用方法启动matlab,命令行输入sltank,既可打开水位模糊控制仿真模型。

设置const大于等于0,系统工作于PID控制模式设置const小于0,系统工作于模糊控制模式模糊控制时液位输入输出关系(双击Comparison示波器)液位动画PID控制时液位的输入输出关系比较两种控制模式下液位曲线可以发现PID控制有超调,这一点在液位动画中也有体现。

修改模型参数PID参数的调整可以直接双击PID Controller模块设置,这里着重介绍模糊控制器参数的修改。

用到的主要命令如下:例如可通过以下代码以文本形式显示tanka=readfis('tank') %读取tank文件showfis(a); %显示在这里通过模糊推理的用户界面来修改水位控制的规则库,查看对控制效果的影响。

单容水箱液位模糊控制系统设计

单容水箱液位模糊控制系统设计

本科毕业设计论文题目单容水箱液位模糊控制系统设计专业名称学生姓名指导教师毕业时间任务书一、题目单容水箱液位模糊控制系统设计二、指导思想和目的要求通过毕业设计使学生对所学自动化专业知识和理论加深理解,掌握自动控制原理以及过程控制系统和仿真的基本方法。

要求毕业设计中:1、建立系统的数学模型2、设计单容水箱液位单回路反馈控制系统,采用PID控制并进行仿真以及参数整定。

3、设计单容水箱液位模糊控制系统。

即设计一个两维模糊控制器,模糊控制器的设计为两个输入一个输出,模糊控制器的输出用来控制阀门的开度,调节水箱的液位。

4、模糊控制系统的理论设计计算以及仿真计算模糊控制规则可调整的液位控制系统的性能指标,进行参数整定。

5、比较水箱液位模糊控制和PID控制系统。

三、主要技术指标1、液位保持在480-510mm2、超调量≤5%3、稳定时间<200S四、进度和要求1、1-3周:收集查阅资料;2、4-6周:完成总体方案设计和建模;3、7-8周:完成系统分析和控制规律设计;4、9-11周:完成仿真验证及修改;5、12-13周:完成毕业设计论文.五、主要参考书及参考资料(1)金以慧,《过程控制》清华大学出版社,1993.4 (2)刘永信,陈志梅,《现代控制理论》北京大学出版社,2006.9 (3)薛定宇,陈阳泉,《系统仿真技术与应用》清华大学出版社,2004.4 (4)胡寿松主编《自动控制原理》北京科学出版社,2007.6 (5)陈阳泉主编《过程控制与SIMULINK应用》北京电子工业出版社2001.4 (6)郝整清,《模糊控制及其MATLAB仿真》北京交通大学出版社208.3 (7)苏徽,《模糊PID研究》西安《工业化仪表与自动化装置》杂志社2001.4学生指导教师系主任摘要液位控制是工业控制中的一个重要问题,针对液位控制过程中存在大滞后,时变,非线性的特点,为适应复杂系统的控制要求,人们研制了种类繁多的先进的智能控制器,模糊控制器便是其中之一。

水箱液位的模糊免疫PID控制

水箱液位的模糊免疫PID控制
a p p l i c a t i o n s h o w s ha t t t h e me ho t d h s a s h o r t s e t t i n g t i me,s ma l l o v e r s h o o t a n d l f u c t u a t i o n-a nd i t c a n b e e f e c t i v e l y a p p l i e d i n t o a wa t e r t a n k s v s t e m
是过程控制 中一种典型 的控制对 象… 。采用传 统 P I D
进行 控 制 时 , 其超调量大、 响应 时 间长 , 控 制 效 果 不
理想 。
模糊免疫 P I D控制是利用生物系统抵御 外来Байду номын сангаас 毒 或细菌侵犯 的免疫机 理 , 结合传统 的 P I D控 制理论 和
模糊 控 制 理 论 的 特 性 构 造 的一 种 控 制 器 ] 。 中 控 E C S - 7 0 0系统具有 编程 局 限性 。 模 糊免 疫 P I D控 制 在 E C S - 7 0 0中不易实现 。Ma t l a b拥 有强大 的工程 计算 和 编程能力 , 易于实现复杂的控制算法 。Ma t l a b 7 . 0及其
O P C技 术。 因此 , 本 文通过稳定 的 O P C技 术 , 将由 M a t l a b编 写的模糊 免疫 P I D控制 和 E C S - 7 0 0相 结合 , 实现 了对一阶单容水箱液位的实时控 制。
图 1 单 容 水 箱 系统 结 构 图
Fi g. 1 St r u c t ur e o f t h e s i n g l e — v o l u me wa t e r t a n k s y s t e m

双容水箱液位模糊控制

双容水箱液位模糊控制

双容水箱液位模糊控制一、实验目的熟悉双容液位控制系统的组成原理。

通过实验进一步掌握模糊控制原理及模糊控制规则的生成。

了解量化因子和比例因子对控制效果的影响。

掌握解模糊方法及实现。

二、实验设备实验对双象为TKGK-1双容液位系统TKGK-1型实验装置:GK-06、GK-07-2万用表一只计算机系统三、实验原理图1 双容水箱液位模糊控制系统方框图图1为双容水箱液位控制系统。

控制的目的是使下水箱的液位等于给定值,并能克服来自系统内部和外部扰动的影响。

双容水箱液位系统如图2,该被控对象具有非线性和时滞性,建立精确的数学模型比较困难;模糊控制不仅可以避开复杂的数学模型,通常还能得到比较好性能指标。

模糊控制器的结构图如图3。

模糊控制器的输入为误差和误差变化率:误差e=r-y,误差变化率ec=de/dt,其中r和y分别为液位的给定值和测量值。

把误差和误差变化率的精确值进行模糊化变成模糊量E和EC,从而得到误差E和误差变化率EC的模糊语言集合,然后由E和EC模糊语言的的子集和模糊控制规则R(模糊关系矩阵)根据合成推理规则进行模糊决策,这样就可以得到模糊控制向量U,最后再把模糊量解模糊转换为精确量u,再经D/A转换为模拟量去控制执行机构动作。

图3 模糊控制器组成原理图模糊量化:根据精确量实际变化范围[a,b],合理选择模糊变量的论域为[-n,n],通过量化因子k=,将其转换成若干等级的离散论域,如七个等级为{负大,负中,负小,零,正小,正中,正大},简写为{NB,NM,NS,O,PS,PM,PB}。

确定模糊子集的隶属函数曲线。

一般常采用三角形、梯形和正态分布等几种曲线。

然后由隶属函数曲线得出模糊变量E、EC、U 的赋值表。

根据经验,E模糊子集的隶数度函数取正态分布曲线,则赋值表见表一:表一:变量E隶属函数赋值表模糊控制规则:模糊控制规则是操作经验和专家知识的总结,是进行模糊推理的依据。

在设计模糊控制规则时,必须考虑控制规则的完备性、交叉性和一致性。

现代计算方法—水箱水位模糊控制

现代计算方法—水箱水位模糊控制

水箱水位模糊控制控制130337杨康一、问题描述1.使用MATLAB的模糊逻辑工具箱,建立模糊推理系统,进行水位系统的模糊控制。

受控对象为二阶有自平衡能力的对象,h(s)/Q(s)=2/(s^2+1.2s+4),其中h(s)是水位偏差,Q(s)是入口阀门开度偏差。

2.模糊控制规则参考如下:IF(水位低)then(阀门迅速打开)IF(水位高)then(阀门迅速关闭)IF(水位偏差小且变化率为零)then(阀门大小不变)IF(水位偏差小且变化率为负)then(阀门缓慢关闭)IF(水位偏差小且变化率为正)then(阀门缓慢打开)二、解决方案熟悉模糊逻辑工具箱,通过工具箱并按照规则参考设计模糊控制逻辑;在Simulink工具箱中加载模糊控制逻辑完成仿真。

通过与传统PID控制的比较,来分析各自的优缺点,加强对控制算法的认识。

三、算法实现1、模糊控制逻辑实现按照上述模糊控制规则分别对水位(level)、水位变化(levelrate)和阀门动作(output)三个变量进行设计。

(1)在水位变量设计时,范围为[-1 1],其模糊子集为{high,okay,low},其隶属度函数如图所示:图一、水位变量设计(2)在水位速率变化设计时,范围为[-1 1],其模糊子集为{negative,none,positive},其隶属度函数如下图所示:图二、水位变化速率设计(3)在阀门变化设计时,范围为[-7 7],其模糊子集为{close fast, close slow, no change, open slow, open fast},其隶属度函数如下图所示:图三、阀门变化设计(4)按照参考的规则设计模糊推理决策的算法:图四、模糊推理设计(5)对输出模糊量的解模糊:模糊控制器的输出量是一个模糊集合,通过反模糊化方法判决出一个确切的精确量,凡模糊化方法很多,我们这里选取重心法。

如图所示:图五、模糊量解模糊2、Simulink平台搭建将设计好的模糊控制器导入到workspace中,并搭建好仿真控制系统,如图所示:图六、模糊逻辑控制仿真平台其中,参考选为正弦波信号,并将误差值及其变化率信号输入到模糊逻辑控制器中进行处理;对象的传递函数为h(s)/Q(s)=2/(s^2+1.2s+4),四、结果分析与比较当参考信号为正选函数时,传统的PID控制会产生一定的相位差,从而导致控制效果变差,若采用模糊逻辑控制可以大大减少相位差。

水箱液位控制器matlab

水箱液位控制器matlab
subplot(2, 1, 2); plot(t, a2, 'ro', t, freightVolume, 'b+'); legend('网络输出货运量', '实际货运量'); xlabel('年份'); ylabel('货运量/万吨'); title('神经网络货运量学习与测试对比图'); grid on;
figure(1); plotfis(a2); figure(2); plotmf(a,'input',1); figure(3); plotmf(a,'output',1);
showrule(a); ruleview('tank');
for i=1:1:7 e(i)=i-4; Ulist(i)=evalfis([e(i)],a2);
end Ulist = round(Ulist);
disp('------------------------------------------------------'); disp('----------模糊控制表:e =[-3,3], u = [-4,4]-----------'); disp('------------------------------------------------------'); fprintf('| a |'); fprintf(' %d |',e); fprintf('\n'); fprintf('| u |'); fprintf(' %d |',Ulist); fprintf('\n');

水箱液位的模糊控制

水箱液位的模糊控制

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载水箱液位的模糊控制地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容1、绪论1.1 水箱水位系统概述在能源、化工等多个领域中普遍存在着各类液位控制系统液。

各种控制方式在液位控制系统中也层出不穷,如较常用的浮子式、磁电式和接近开关式。

而随着我国工业自动化程度的提高,规模的扩大,在工程中液位控制的计算机控制得到越来越多的应用。

液位控制系统的检测及计算机控制已成为工业生产自动化的一个重要方面。

经典控制理论和现代控制理论的控制效果很大一部分取决于描述被控过程精确模型的好坏,这使得基于精确数学模型的常规控制器难以取得理想的控制效果。

但是一些熟练的操作工人、领域专家却可以得心应手的进行手工控制。

因此基于知识规则的模糊控控制理论在其应用中就有了理论和现实意义1.2模糊控制的概述人工智能包括推理、学习和联想三大要素,它是采用非数学式子方法,把人们的思维过程模型化,并用计算机来模仿人的智能的学科。

许多科学家认为下一世纪生产力的飞跃寄托于人工智能技术,并认为人工智能的发展必将带来一次新的史无前例的技术革命,第五代计算机的研究充分体现了人类左脑的逻辑推理功能,而人工智能研究的下一步是模仿人类右脑的模糊处理功能。

人工智能将在逻辑推理计算机、模糊计算机和神经网络计算机这三者的基础上,由两个方面来实现,即:一是利用现有的计算机技术模拟人类的智能;二是利用一种全新的技术来实现信息处理的模糊化和网络化。

前者是实现人工智能必需的先决条件;后者是实现人工智能的根本途径。

“模糊控制理论”是由美国学者加利福尼亚大学著名教授L.A.Zadeh于1965年首先提出,至今仅有20余年时间。

它以模糊数学为基础,用语言规则表示方法和先进的计算机技术,由模糊推理进行判决的一种高级控制策略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水箱液位模糊控制器的设计
1.水箱液位控制系统
已知一个容器中液体的流出是随机变化的,无法建立它的数学模型。

但是,通过人工控制进液阀门的开度和进液流速,却能调节容器中液位的高低,保持液位恒定。

根据人工操作经验,我们已经归纳出如下保持液位恒定的操作规则:
①如果液位偏低,则快开阀门;
②如果液位正好,则阀门开度不变;
③如果液位偏高,则快关阀门;
④如果液位正好而进液流速慢,则慢关阀门;
⑤如果液位正好而进液流速快,则慢开阀门。

图1-1 水箱液位控制系统原理图
为此,我们可以设计如图1-2所示的双输入--单输出模糊控制系统:
k 1k 2D/F
D/F R
F/D 控制对象
k u 模糊控制器
u e ec
图1-2 二维模糊控制系统原理框图
模糊控制器的两个输入变量分别为液位差e (设定液位高度r -实测液位高度M
模糊控制器
反馈 压力传感器
控制量
设定
y)和液位差变化率ec(单位时间内的偏差改变量),输出模糊变量为u。

输入变量e和ec、输出变量u的论域、覆盖变量论域的模糊子集明朝、隶属度函数类型及拐点参数等,初步设定为表1-1所列的数值。

表1-1 覆盖输入变量、输出变量的模糊子集设定值
2.构建模糊控制器的FIS结构文件
2.1编辑出名称为“tank”的液位模糊控制系统FIS
启动Matlab后,在主窗口中键入fuzzy回车,进入“FIS Editor”编辑器界面,完成下列任务:
①增加一个输入变量;
②将输入、输出变量的名称分别改成e、ec和u;
③将这个FIS文件名定为“tank”并予以存盘。

得出如图2-1所示的FIS编辑器界面。

图2-1 液位模糊控制FIS编辑器
2.2 编辑覆盖输入、输出变量的模糊子集
在图2-1所示的FIS编辑器上,单机输入变量e模框,按表1-1列出的数据编辑e、ec和u的模糊子集。

在FIS编辑器界面上,双击输入量或输出量模框中的任何一个,都会弹出隶属函数编辑器,简称MF编辑器。

在MF编辑器界面上,单击“变量模框索引区”中待编辑变量的小模框,使其边框变粗、变红,则界面下部“当前变量区”内就显示该变量的性态,以供编辑。

如图2-2为输入量e的MF编辑器,在“Name”一项上讲该模框的名称命名为“negative”,在“Type”一项上将该模框的隶属函数类型定为“gaussmf”(高斯型),在“Params”一项上将其拐点定为“[0.45 -1]”。

以此类推,将ec和u的模糊子集也按表1-1列出的数据编辑完成。

图2-2“tank”输入量e的MF编辑器
2.3 编辑“tank”的模糊控制规则
表2-1液位模糊控制规则表
在编辑器界面上,顺序单击菜单Edit→Rules...,弹出tank的Rule编辑器,在该编辑器上把表2-1所列的五条模糊规则输入进去,即完成了模糊控制规则的编辑。

3.在模型编辑器中构建系统的仿真模型图
在simulink中搭建如图3-1所示的仿真模型图,其中“V ALVE(液桶)”、“WATER TANK(阀门)”和“animtank(动画)”不是模块库中的基本模块,是
从模型仿真示例“tank”中复制的。

复制方法为:在Matlab主窗口中键入sltank,回车得出“sltank”仿真模型图,在图中复制所需的模块即可。

图3-1液位模糊控制仿真模型图
检查FIS结构文件是否嵌入“Fuzzy Logic Controller”模块,然后顺序单击菜单Simulation→Start开始仿真。

这时屏幕上出现Water Level Control水位控制动画,如图3-2所示。

图3-2水桶动画图
同时,在Conparision屏幕上出现信号源输出的方波经过系统前(黄色)后(红色)的两条波形曲线,如图3-3所示,分析他们的差异有利于了解系统性能,改进系统的设计。

图3-3方波经过控制系统前后的图线
4.总结
通过simulink仿真图上的波形可以看出,模糊控制具有响应速度快、超调量小、鲁棒性好的优点。

相关文档
最新文档