大物实验超声声速测量实验报告

合集下载

超声波测量声速实验报告

超声波测量声速实验报告

超声波测量声速实验报告一、实验目的本实验旨在通过超声波测量声速,加深对声波传播特性的理解,并掌握相关的实验技术和数据处理方法。

二、实验原理超声波是一种频率高于 20kHz 的机械波。

在本实验中,我们利用超声波的反射和接收来测量声速。

当超声波在介质中传播时,如果遇到障碍物,会发生反射。

我们通过发射超声波,并测量发射与接收之间的时间间隔,以及超声波传播的距离,就可以计算出声速。

声速的计算公式为:$v =\frac{2L}{t}$,其中$v$表示声速,$L$表示传播距离,$t$表示时间间隔。

三、实验仪器1、超声波发射接收仪2、示波器3、游标卡尺4、反射板四、实验步骤1、仪器调试将超声波发射接收仪和示波器连接好,打开电源,调整示波器的参数,使显示的波形清晰稳定。

用游标卡尺测量反射板与发射探头之间的距离$L$,并记录。

2、数据测量启动超声波发射接收仪,发射超声波,并在示波器上观察接收信号。

记录发射与接收信号之间的时间间隔$t$,重复测量多次,以减小误差。

3、改变距离测量改变反射板与发射探头之间的距离,每次增加一定的量,重复步骤2 进行测量。

4、数据记录将测量得到的距离$L$和时间间隔$t$记录在表格中。

五、实验数据|距离$L$(cm)|时间间隔$t$(μs)||::|::|| 500 | 300 || 1000 | 600 || 1500 | 900 || 2000 | 1200 || 2500 | 1500 |六、数据处理1、根据声速的计算公式$v =\frac{2L}{t}$,计算出每次测量的声速值。

2、计算声速的平均值和标准偏差,以评估测量结果的准确性和可靠性。

七、实验结果与分析1、计算得到的声速平均值为_____m/s,标准偏差为_____m/s。

2、与理论值进行比较,分析误差产生的原因。

可能的原因包括:测量距离时的误差,游标卡尺的读数存在一定的误差。

测量时间间隔时的误差,示波器的分辨率和读数可能存在误差。

超声声速测量实验报告

超声声速测量实验报告

超声声速测量实验报告超声声速测量实验报告引言:超声声速测量是一种常见的实验方法,广泛应用于物理、材料科学、地质学、医学等领域。

本实验旨在通过测量超声波在不同介质中的传播速度,探究声速与介质性质之间的关系,并验证超声波在空气、液体和固体中传播的特性。

实验原理:超声波是指频率高于人耳可听到的20kHz的声波。

在超声声速测量实验中,通常采用超声波在介质中的传播时间来计算声速。

根据声速的定义,声速等于声波在介质中传播的距离除以传播时间。

实验步骤:1. 实验装置搭建首先,将超声波发生器与超声波探头连接,然后将探头放置在测试介质中。

确保探头与介质接触良好,避免空气间隙对测量结果的影响。

2. 测量空气中的声速将超声波探头置于实验室中的空气中,调节发生器的频率和幅度,使得发出的超声波信号稳定。

记录下超声波在空气中传播的时间t1。

3. 测量液体中的声速将超声波探头放入一个已知介质(如水)中,调节发生器的频率和幅度,记录下超声波在液体中传播的时间t2。

4. 测量固体中的声速将超声波探头放置在一个固体物体上,调节发生器的频率和幅度,记录下超声波在固体中传播的时间t3。

实验数据处理:根据实验步骤中测得的传播时间t1、t2和t3,可以计算出空气、液体和固体中的声速。

1. 空气中的声速计算根据声速的定义,声速等于声波在介质中传播的距离除以传播时间。

由于空气中的声速近似为343m/s,传播距离为探头与接收器之间的距离,可以通过测量得到。

因此,可以计算出空气中的声速。

2. 液体中的声速计算同样地,根据声速的定义,液体中的声速等于声波在液体中传播的距离除以传播时间。

传播距离可以通过测量得到,而传播时间t2已经记录。

因此,可以计算出液体中的声速。

3. 固体中的声速计算固体中的声速计算与液体类似,只需将传播距离改为超声波在固体中传播的距离,传播时间为t3。

通过测量这两个参数,可以计算出固体中的声速。

实验结果与讨论:根据实验数据处理部分的计算,可以得到空气、液体和固体中的声速。

大物实验报告声速的测定

大物实验报告声速的测定

大物实验报告声速的测定篇一:大学物理实验报告-声速的测量实验报告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理;3.了解声速与介质参数的关系。

【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。

在超声波段进行声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。

超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常见的方法是利用压电效应和磁致伸缩效应来实现的。

本实验采用的是压电陶瓷制成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。

声波的传播速度与其频率和波长的关系为:vf(1)由(1)式可知,测得声波的频率和波长,就可以得到声速。

同样,传播速度亦可用v?L/t(2)表示,若测得声波传播所经过的距离L和传播时间t,也可获得声速。

1. 共振干涉法实验装置如图1所示,图中S1和S2为压电晶体换能器,S1作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;S2为超声波接收器,声波传至它的接收面上时,再被反射。

当S1和S2的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L为半波长的整倍数,即L=n×,n=0,1,2, (3)2λ时,S1发出的声波与其反射声波的相位在S1处差2nπ(n=1,2 ……),因此形成共振。

因为接收器S2的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。

本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。

从示波器上观察到的电信号幅值也是极大值(参见图2)。

图中各极大之间的距离均为λ/2,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。

我们只要测出各极大值对应的接收器S2的位置,就可测出波长。

由信号源读出超声波的频率值后,即可由公式(1)求得声速。

超声声速测量 实验报告

超声声速测量 实验报告

超声声速测量实验报告超声声速测量实验报告引言:超声声速测量是一种常见的物理实验,通过测量超声波在介质中传播的速度,可以得到介质的声速。

声速是介质的重要物理特性之一,对于材料的性质研究和工程应用具有重要意义。

本实验旨在通过超声声速测量,探究不同介质中声速的变化规律,并分析实验结果。

实验原理:超声声速测量利用了声波在介质中的传播速度与介质性质之间的关系。

声波在介质中的传播速度与介质的密度和弹性模量有关。

根据声速公式,声速v与密度ρ和弹性模量E之间的关系为v = √(E/ρ)。

因此,通过测量声速和已知介质密度,可以得到介质的弹性模量。

实验装置:本实验采用的超声声速测量装置包括超声发生器、超声传感器、信号发生器、示波器等。

超声发生器产生超声波信号,经过超声传感器发射到介质中,再由超声传感器接收反射回来的超声波信号。

信号发生器和示波器用于调节和显示超声波信号。

实验步骤:1. 将超声传感器固定在介质表面上,并与超声发生器和示波器连接好。

2. 打开超声发生器和示波器,调节信号发生器的频率和示波器的触发频率,使其保持一致。

3. 调节示波器的垂直和水平控制,使示波器屏幕上显示出清晰的超声波信号。

4. 测量超声波在不同介质中的传播时间,记录下每次测量的结果。

5. 根据测量结果计算出不同介质的声速,并进行数据分析。

实验结果:通过实验测量得到了不同介质中声速的数据,并进行了统计和分析。

结果表明,声速与介质的物理性质密切相关。

在相同条件下,固体的声速通常高于液体,而液体的声速又高于气体。

这是因为固体分子之间的相互作用力较大,导致声波传播速度较快。

此外,实验结果还显示了不同介质中声速的差异。

在相同类型的介质中,声速也会因为不同的材料而有所差异。

例如,在同一种液体中,若更换不同的溶液,其声速也会有所变化。

这是因为不同溶液的密度和弹性模量不同,导致声速也有所差异。

实验讨论:通过本次实验,我们深入了解了超声声速测量的原理和方法,同时也认识到了声速与介质性质之间的密切关系。

大学物理实验声速测量实验报告

大学物理实验声速测量实验报告

⼤学物理实验声速测量实验报告声速测量⼀、实验项⽬名称:声速测量⼆、实验⽬的1.学会测量超声波在空⽓中的传播速度的⽅法2.理解驻波和振动合成理论3.学会逐差法进⾏数据处理4.了解压电换能器的功能和培养综合使⽤仪器的能⼒三、实验原理声波的传播速度与声波频率和波长的关系为:可见,只要测出声波的频率和波长,即可求出声速。

可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。

根据超声波的特点,实验中可以采⽤⼏种不同的⽅法测出超声波的波长:1. 驻波法(共振⼲涉法)如右图所⽰,实验时将信号发⽣器输出的正弦电压信号接到发射超声换能器上,超声发射换能器通过电声转换,将电压信号变为超声波,以超声波形式发射出去。

接收换能器通过声电转换,将声波信号变为电压信号后,送⼊⽰波器观察。

由声波传播理论可知,从发射换能器发出⼀定频率的平⾯声波,经过空⽓传播,到达接收换能器。

如果接收⾯和发射⾯严格平⾏,即⼊射波在接收⾯上垂直反射,⼊射波与反射波相互⼲涉形成驻波。

此时,两换能器之间的距离恰好等于其声波半波长的整数倍。

在声驻波中,波腹处声压(空⽓中由于声扰动⽽引起的超出静态⼤⽓压强的那部分压强)最⼩,⽽波节处声压最⼤。

当接收换能器的反射界⾯处为波节时,声压效应最⼤,经接收器转换成电信号后从⽰波器上观察到的电压信号幅值也是极⼤值,所以可从接收换能器端⾯声压的变化来判断超声波驻波是否形成。

移动卡尺游标,改变两只换能器端⾯的距离,在⼀系列特定的距v f fv λ=f λf离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最⼤电压数值时(即接收器位于波节处)卡尺的读数(两读数之差的绝对值等于半波长),则根据公式:就可算出超声波在空⽓中的传播速度,其中超声波的频率可由信号发⽣器直接读得。

2.相位⽐较法实验接线如下图所⽰。

波是振动状态的传播,也可以说是位相的传播。

超声声速的测定实验报告

超声声速的测定实验报告

超声声速的测定实验报告
实验目的:
掌握超声波测速方法,了解超声波在不同介质中的传播速度,观察超声波的衍射和折射现象。

实验原理:
超声波是指频率超过20kHz的声波,具有短波长、易传播等特点。

在声波中,声速是一种很重要的物理量,不同介质中的声速不同。

超声波在通过不同介质时,会发生折射和反射,同时还会产生探头内部的谐振。

实验仪器:
超声波测速实验仪、金属样品、无气泡水、润滑油。

实验步骤:
1. 准备金属样品,涂上润滑油,将探头贴在金属表面上。

2. 打开超声波测速实验仪,选定合适的探头和频率,并调整超声波的强度。

3. 测量无气泡水中的声速。

4. 在实验过程中观察超声波在金属中的传播情况,并记录下声速数据。

实验数据和分析:
1. 测量无气泡水中的声速为1470 m/s。

2. 测量金属中的声速为5050 m/s。

3. 在金属中观察到了超声波的强烈衍射和折射现象。

实验结论:
通过本次实验,我们掌握了超声波测速方法,了解了超声波在
不同介质中的传播速度,并观察到了超声波的衍射和折射现象。

此外,我们还发现金属中超声波的传播速度明显高于水中的声速,这说明超声波在不同介质中的传播速度存在差异,应用时需要根
据实际情况进行调整。

大学物理实验声速测量实验报告

大学物理实验声速测量实验报告

大学物理实验声速测量实验报告一、实验目的1、了解声速测量的基本原理和方法。

2、学习使用驻波法和相位比较法测量声速。

3、掌握示波器和信号发生器的使用方法。

4、培养实验数据处理和误差分析的能力。

二、实验原理1、驻波法当声源发出的平面波在管内一端发生反射时,入射波和反射波相互叠加形成驻波。

在驻波中,波腹处的声压最大,波节处的声压最小。

相邻两波腹(或波节)之间的距离为半波长λ/2。

通过测量相邻两波腹(或波节)之间的距离,就可以计算出声波的波长λ,再根据声波的频率 f,由公式 v =λf 计算出声速 v。

2、相位比较法通过比较发射波和接收波的相位差来测量声速。

当发射波和接收波的相位差为2π 时,它们的传播距离恰好等于一个波长λ。

利用示波器观察发射波和接收波的李萨如图形,通过测量图形变化一个周期所对应的接收端移动的距离,即可得到波长λ,进而计算出声速 v。

三、实验仪器1、声速测量实验仪2、示波器3、信号发生器四、实验内容与步骤1、驻波法测量声速(1)将信号发生器的输出频率调节到 35kHz 左右,将示波器的扫描时间旋钮和垂直灵敏度旋钮调节到合适的位置。

(2)将超声发射器和接收器相对放置在实验导轨上,移动接收器,观察示波器上的波形,找到驻波的波腹和波节位置。

(3)记录相邻两个波腹(或波节)之间的距离,重复测量多次,计算出声波的波长λ。

(4)改变信号发生器的输出频率,重复上述步骤,测量不同频率下的波长λ,并计算出声速 v。

2、相位比较法测量声速(1)将信号发生器的输出信号同时接到示波器的 X 通道和超声发射器,将超声接收器的输出信号接到示波器的 Y 通道。

(2)调节示波器,使屏幕上显示出稳定的李萨如图形。

(3)缓慢移动接收器,观察李萨如图形的变化,当图形从一个形状变化到另一个形状时,记录接收器移动的距离,即为一个波长λ。

(4)重复测量多次,计算出声波的波长λ和声速 v。

五、实验数据记录与处理1、驻波法测量声速的数据记录|频率(kHz)|波腹间距(mm)|波长(mm)|声速(m/s)||||||| 35 | 345 | 690 | 24150 || 36 | 332 | 664 | 23904 || 37 | 320 | 640 | 23680 |平均值:声速 v =(24150 + 23904 + 23680)/ 3 = 23911 m/s2、相位比较法测量声速的数据记录|频率(kHz)|接收器移动距离(mm)|波长(mm)|声速(m/s)||||||| 35 | 685 | 685 | 23975 || 36 | 658 | 658 | 23688 || 37 | 635 | 635 | 23495 |平均值:声速 v =(23975 + 23688 + 23495)/ 3 = 23719 m/s3、误差分析(1)测量误差:在测量波腹间距和接收器移动距离时,由于读数的不确定性,会引入一定的测量误差。

大学物理实验超声波速测量实验报告

大学物理实验超声波速测量实验报告

大教物理真验超声波速丈量真验报告之阳早格格创做一真验脚段1.相识超声波的物理个性及其爆收体造;2.教会用相位法测超声波声速并教会用逐好法处理数据;3.丈量超声波正在介量中的吸支系数及反射里的反射系数;4.并使用超声波检测声场分散.5.教习超声波爆收战接支本理,6.教习用相位法战共振搞涉法丈量声音正在气氛中传播速度,并与公认值举止比较.7.瞅察战丈量声波的单缝搞涉战单缝衍射二真验条件HLD-SV-II型声速丈量概括真验仪,示波器,旗号爆收仪三真验本理1、超声波的有关物理知识声波是一种正在气体.液体、固体中传播的弹性波.声波按频次的下矮分为次声波(f<20Hz)、声波(20Hz≤f≤20kHz)、超声波(f>20kHz)战特超声波(f≥10MHz ),如下图.声波频谱分散图振荡源正在介量中可爆收如下形式的震荡波:横波:量面振荡目标战传播目标笔曲的波,它只可正在固体中传播.纵波:量面振荡目标战传播目标普遍的波,它能正在固体、液体、气体中的传播.表面波:当资料介量受到接变应力效率时,爆收沿介量表面传播的波,介量表面的量面搞椭圆的振荡,果此表面波只可正在固体中传播且随深度的减少衰减很快.板波:正在板薄与波少相称的弹性薄板中传播的波,可分为SH 波与兰姆波.超声波由于其波少短、频次下,故它有其特殊的个性:绕射局里小,目标性好,能定背传播;能量较下,脱透力强,正在传播历程中衰减很小,正在火中不妨比正在气氛或者固体中以更下的频次传的更近,而且正在液体里的衰减战吸支是比较矮的;能正在同量界里爆收反射、合射战波形变换.2、理念气体中的声速值声波正在理念气体中的传播可认为是绝热历程,果此传播速度可表示为μrRT=V (1)式中R 为气体普适常量(R=8.314J/(mol.k)),γ是气体的绝热指数(气体比定压热容与比定容热容之比),μ为分子量,T 为气体的热力教温度,若以摄氏温度t 估计,则:t T T +=0 K T 15.2730=代进式(1)得,000001V 1)(V T t T t T rRt T rR++⋅+===μμ (2)对付于气氛介量,0℃时的声速0V m /s .若共时思量到气氛中的蒸汽的效率,校准后声速公式为:s m pp T t w /)319.01)(1(45.331V 0++= (3) 式中w p 为蒸汽的分压强,p 为大气压强.3、共振搞涉法设有一从收射源收出的一定频次的仄里声波,通过气氛传播,到达接支器,如果接支里与收射里庄重仄止,进射波即正在接支里上笔曲反射,进射波与反射波相搞涉产死驻波,反射里处为位移的波节.改变接支器与收射源之间的距离l ,正在一系列特定的距离上,媒量中出现宁静的驻波共振局里.此时,l 等于半波少的整数倍,驻波的幅度达到极大;共时,正在接支里上的声压波背也相映天达到极大值.没有易瞅出,正在移动接支器的历程中,相邻二次达到共振所对付应的接支里之间的距离即为半波少.果此,若脆持频次 v 没有变,通过丈量相邻二次接支旗号达到极大值时接支里之间的距离(2/λ),便不妨用λv =V 估计声速.声压变更与接支器位子的关系:4、相位比较法收射波通过传声媒量到达接支器,所以正在共一时刻,收射处的波与接支处的波的相位分歧,其相位好 ϕ可利用示波器的李萨如图形去瞅察.ϕ 战角频次 ω、传播时间 t 之间犹如下关系:共时有:T /2πω=,V ,VT l t ==λ (式中T 为周期),代进上式可供得声速V .λ的决定用如下要领:根据当,...)3,2,1(2/==n n l λ时,得πϕn =.真验时,通过改变收射器与接支器之间的距离,可瞅察到相位的变更.而当相位好改变 π时,相映的距离l 的改变量即为半个波少.为透彻测定波少的值,正在本量的支配中要连绝测多个相位改变π的面的坐标,再用逐好法算出波少λ的值,根据波少战频次值可供出声速.止波法相位好图:5声速丈量及声波的单缝搞涉与单丝衍射由于超声波具备波少短,易于定背收射及抗搞扰等便宜,所以正在超声波段举止声速丈量是比较便当的.本真验用共振搞涉法战相位比较法丈量声音正在气氛中传播的声速;并钻研声波单缝搞涉,单缝衍射及声波的反射局里,将丈量截止与表里估计举止比较,进而对付动摇教的物理顺序战基础观念有更深的明白.6、声波的搞涉战衍射单缝搞涉真验拆置如图1所示.对付于分歧的α角,如果从单缝到接支器的程好是整或者波少的整数倍,便会爆收相少搞涉,果而瞅察到搞涉强度的极大值;当程好是半波少的偶数倍时,搞涉强度有极小值.果此,搞涉强度出现极大值与极小值的条件如下:极大值:λαn d =sin (4) 极小值:λα)21(sin +=n d (5) 式中,n 为整或者整数,d 为二个缝核心位子的距离,λ为声音的波少.图1衍射效力用超声波也不妨瞅察到,采与1个单缝,如图2所示.当去自单缝的一半的辐射与去自另一半的辐射出进半波少偶数倍时,会爆收相消搞涉,果此相消搞涉条件是:λα)21(sin 2+=n a (6) 式中,n =0,±1,±2,……,a 为单缝缝宽,α为接支器离核心位子转过角度.图2三、真验真量(一):声音正在气氛中传播速度丈量1、安排尝试系统的谐振频次按图4将真验拆置接好.正弦波的频次与40KHz,安排接支换能器尽大概近距离,且使示波器上的电源旗号为最大.而后,将二个换能器分启稍大些距离(约5-6cm),使接支换能器输进示波器上的电压旗号为最大.再安排频次,使该旗号真真为该位子极大值.此时旗号源输出频次才最后等于二个换能器的固有频次.正在该频次上,换能器输出较强的超声波.2、正在谐振频次处用共振法战相位法测声速.当测得一声速极大值后,连绝天移动接支端的位子,丈量相继出现20个极大值所相映的各接支里位子L,再用i逐好法供波少值.正在用相位比较法时,将接支器与示波器的Y轴贯串,收射器与示波器X轴贯串,即可利用李萨如图形去瞅察收射波与接支波的相位好,适合安排Y轴战X轴敏捷度,便能赢得比较谦意的李萨如图形.对付于二个共频次互相笔曲的简谐振荡的合成,随着二者之间相位好从0--π变更,其李萨如图形由斜率为正的曲线形成椭圆,再由椭圆变到斜率为背的曲线.记录游标卡尺上读数时,应采用李萨如图形为曲线时所对付应的位子.每移动半个波少,便会沉复出现斜率正背接替的曲线图形.3、本真验温度应透彻小心天丈量(为什么?),并测出温度计搞泡温度战干泡温度,查表得到该状态下的p值,w再测得真验室当时的气压值p,(搞燥天气可没有必丈量pw 战p)(详睹参照资料1战3),则可由式(3)供出声速值.4、将上述二种要领的丈量截止比较,估计相对付偏偏好.选搞真验:(安排性真验)(二)声波的单缝搞涉用图1所示单缝拆置去搞搞涉真验.真验须谦脚公式(4)战公式(5)条件.为了缩小由于二个缝处的衍射所引起的搀纯性.简朴的办法是每个缝宽度均小于1个波少(约8-9mm为一个波少),缝宽仅2-3mm,而二个缝相隔为几个波少,(本量使用单缝间距约为3倍波少).那时,丈量出主极大,次极大战极小值的位子.要瞅察更多极大值战极小值位子,须将牢固螺丝脱掉,搁好后.转化更大角度瞅察到.(三)声波的单缝衍射用图2所示单缝拆置去搞瞅察声波的单缝衍射真验(注意脱掉牢固螺丝必须保存好).体验声波衍射的物理含意.将转化紧固螺丝脱掉(注意螺丝战螺帽没有克没有及掉)搁正在纸盒内.将接支器绕轴心转化,不妨瞅察接支旗号正在分歧角位子时强度的变更,由公式(6)可估算一级极小值的角度.不妨正在谦脚公式(6)的条件下,瞅测到一级极小值.估算一下衍射是可与表里值普遍,转化更大角度时,可瞅测到一级极大值.四、使用注意事项1、仪器与拆置对接的电缆线,没有宜多拆、多接.角度牢固螺丝也没有宜让教死时常脱掉.最好规划是配一套公用“声速丈量概括真验仪”.让教死教习接拆共轴电缆接洽,以及瞅测大角度时单缝搞涉战单缝衍射,并备1个洪量角器.2、数隐游标卡尺使用时,应沉沉移动,移动时速度须缓而匀称.真验中断时,应将数隐部分电源关关.3、挪动变化仪器时,没有克没有及将数隐游标卡尺当脚柄使用.应二脚拿底板挪动变化拆置.4、通常,没有搞真验时,应用防尘罩(或者布)防尘,以预防灰尘加进换能器.五、思索与计划1、声波与光波、微波有何辨别?2、为何正在声波产死驻波时,正在波节位子声压最大,果而接支器输出旗号最大?3、正在什么条件下,声波传播中的压缩与稠密没有是绝热历程?那对付声速丈量截止有何效率?。

大学物理实验声速测量实验报告(1)

大学物理实验声速测量实验报告(1)

大学物理实验声速测量实验报告(1)大学物理实验声速测量实验报告一、实验目的本实验的主要目的是通过测量声波的传播时间和距离,计算出空气中的声速,并且借此掌握声波在介质中传播的相关知识和技能。

二、实验原理声波的传播速度与介质密度、压强以及温度有关。

本实验中,通过一段已知长度的玻璃耳管和可以发出超声波的脉冲发生器,将脉冲信号通过耳管传输到另一端,在经过接收装置后产生回响信号,并自动停止脉冲发生,记录下声波传播的时间t。

同时,测量被测介质温度以及用光学仪器测量出耳管长度L,即可利用以下公式计算出声速v:v=2L/t三、实验仪器超声波发生器、玻璃耳管、声波接收器、计时器、光学仪器、温度计等。

四、实验步骤1.将玻璃耳管放置在实验台上,测量其长度L;2.将发生器与接收器分别连接到耳管的两端,使其相离5cm左右,打开发生器的电源;3.按下发生器上的按钮,让发生的声波波段传输至接收器,并记录下传输时间t;4.多次重复上述步骤,取平均值,得到声波传播时间t及其标准差;5.测量被测介质温度;6.利用公式v=2L/t计算出声速,写入实验记录表中。

五、实验注意事项1.实验中要注意保持实验环境的安静和稳定,防止外界干扰;2.使用超声波发生器时要确保其正确接线,并调整合适的发射频率以避免信号干扰;3.测温时要注意温度计的准确度和可靠性。

六、实验结果及分析本实验中取得的数据如下:玻璃耳管长度L=0.35m声波传播时间t=0.002s被测介质温度T=25℃根据公式v=2L/t,代入上述数据可得声速v=350m/s。

与理论值相比较,误差很小,说明实验数据的可靠性比较高。

七、实验结论通过本实验的探究,可以得出空气中声速的测量值,并且掌握了声波在介质中传播的相关知识和技能。

在实验中要吸收并掌握科学的实验方法,注意数据积累与分析过程中的细节,以得到准确的结论。

大学物理实验超声波声速的测量(含数据)

大学物理实验超声波声速的测量(含数据)

大学物理实验超声波声速的测量(含数据)
一、实验目的
1、测量水中超声波的传播速度;
二、实验器材
2、水槽;
3、测量卡尺。

三、实验原理
超声波声速可以通过测量超声波在介质中传播的时间和距离来确定。

假设超声波在水中的传播速度为v,声波从超声波发射器发出后,在经过水中的传播距离L后,到达超声波接收器所需的时间为t,则有:
v = L/t
四、实验步骤与数据处理
1、将超声波发射器和接收器分别固定在水槽的两侧边缘,距离为L = 100.0 cm。

2、开始实验前,先开启超声波声速测量仪,待其进入正常工作状态后再进行后续步骤。

3、将水箱中的水注满,保证水面平整,不产生涟漪。

4、在超声波声速测量仪屏幕上调节并观察渐进式扫描波形直到找到超声波信号。

然后在屏幕上调节幅度使其在2/3波形范围内。

这个范围内的任何波形变化都可能导致声波时间测量误差。

5、在超声波声速测量仪屏幕上记录观察到的第一个波峰(应为正弦波的正向部分)的位置,这标志着声波的发射时刻。

7、重复实验三次,并将每组实验数据记录在下表中。

实验次数时间t(ms)
1 0.270
2 0.267
3 0.269
8、计算各次实验的平均时间t和超声波速度v:
t = (0.270 ms + 0.267 ms + 0.269 ms) / 3 = 0.269 ms
五、实验结论
本实验测量得到的水中超声波的传播速度为3.72 km/s。

实验结果和实际值(约为1.5 km/s)存在较大的偏差,可能是由于实验误差和水中的水质、温度等因素的影响。

大学物理实验声速的测量实验报告

大学物理实验声速的测量实验报告

大学物理实验声速的测量实验报告一、实验目的1、学会用驻波法和相位法测量声速。

2、了解声速测量的基本原理和方法。

3、加深对波动理论的理解,提高实验操作能力和数据处理能力。

二、实验原理1、驻波法声波在介质中传播时,入射波与反射波叠加形成驻波。

在驻波中,相邻两波节之间的距离为半波长的整数倍。

通过测量相邻两波节之间的距离,就可以计算出声波的波长,进而求得声速。

设声源的振动频率为 f,波长为λ,声速为 v,则有 v =fλ。

在驻波法中,我们使用超声换能器作为声源和接收器。

当两个换能器之间的距离等于半波长的整数倍时,接收端的信号幅度达到最大,此时两个换能器之间的距离 L 与波长λ之间的关系为:L =nλ/2(n =1,2,3,)。

2、相位法声源和接收器作相对运动时,接收器接收到的声波频率会发生变化,这种现象称为多普勒效应。

在相位法中,我们利用多普勒效应来测量声速。

设声源的频率为 f,声源和接收器的相对运动速度为 v',接收器接收到的声波频率为 f',则有:f' = f (1 + v'/v) 。

当声源和接收器相向运动时,v'为正;当声源和接收器相背运动时,v'为负。

通过测量声源和接收器的相对运动速度 v'以及声源的频率 f,就可以计算出声速 v。

三、实验仪器1、声速测量仪2、示波器3、信号发生器四、实验步骤1、驻波法测量声速(1)按照实验装置图连接好仪器,将超声换能器 S1 和 S2 分别连接到声速测量仪的发射端和接收端。

(2)打开信号发生器和示波器,调整信号发生器的输出频率,使示波器上显示出稳定的正弦波。

(3)缓慢移动 S2,观察示波器上的信号幅度变化。

当信号幅度达到最大时,记录此时 S2 的位置 L1。

(4)继续移动 S2,当信号幅度再次达到最大时,记录此时 S2 的位置 L2。

(5)重复步骤(3)和(4)多次,测量多组数据。

(6)根据测量数据计算出声波的波长λ,进而求得声速 v。

超声波声速的测定实验报告

超声波声速的测定实验报告

超声波声速的测定实验报告一、实验目的1、了解超声波的产生、发射和接收原理。

2、学会使用驻波法和相位比较法测量超声波在空气中的传播速度。

3、掌握示波器和信号发生器的使用方法。

二、实验原理1、超声波的产生超声波是频率高于 20000Hz 的机械波,通常由压电陶瓷片在高频电信号的激励下产生。

2、驻波法测声速当发射端和接收端之间的距离等于半波长的整数倍时,会形成驻波。

此时,相邻两个波腹(或波节)之间的距离为半波长。

通过测量相邻两个波腹(或波节)之间的距离,就可以计算出波长,再结合超声波的频率,从而得到声速。

3、相位比较法测声速从发射端发出的超声波和接收端接收到的超声波在示波器上会显示出两个正弦波。

通过观察这两个正弦波的相位差变化,来确定波长。

三、实验仪器1、超声波声速测定仪2、示波器3、信号发生器四、实验步骤1、驻波法(1)按实验装置图连接好线路,将信号发生器的输出频率调至约40kHz。

(2)移动接收端,观察示波器上的波形,使出现振幅较大且稳定的驻波。

(3)记录此时接收端的位置,然后缓慢移动接收端,依次记录相邻波腹(或波节)的位置。

(4)重复测量多次,计算波长的平均值。

2、相位比较法(1)将示波器置于“XY”工作方式,信号发生器的输出同时接到发射端和示波器的“X”输入端,接收端的输出接到示波器的“Y”输入端。

(2)移动接收端,观察李萨如图形的变化。

(3)当图形由直线变为椭圆,再变为直线时,记录接收端的位置。

(4)重复测量多次,计算波长的平均值。

五、实验数据处理1、驻波法测量次数相邻波腹(或波节)的距离(cm)波长(cm)1 ________ ________2 ________ ________3 ________ ________平均值:λ1 =________声速:v1 =f × λ1 =________2、相位比较法测量次数相邻李萨如图形变化的距离(cm)波长(cm)1 ________ ________2 ________ ________3 ________ ________平均值:λ2 =________声速:v2 =f × λ2 =________六、误差分析1、仪器误差仪器本身的精度和稳定性会对测量结果产生影响,如信号发生器的频率波动、示波器的测量误差等。

超声波的声速测量实验报告

超声波的声速测量实验报告

超声波的声速测量实验报告一、实验目的1、了解超声波的产生、发射和接收的原理。

2、学习用驻波法和相位比较法测量超声波在空气中的传播速度。

3、掌握示波器的基本使用方法。

二、实验原理1、超声波的产生超声波是频率高于 20000Hz 的声波,它的产生通常是利用压电效应。

将压电晶体片置于交变电场中,由于压电效应,晶体片会发生周期性的伸缩振动,从而产生超声波。

2、驻波法测量声速当发射面与接收面之间的距离等于半波长的整数倍时,会形成驻波。

此时,接收面处的声压最大,通过移动接收面,测量相邻两次声压最大时接收面的位置变化,即可求出超声波的波长,进而求得声速。

3、相位比较法测量声速从发射面发出的超声波与接收面接收到的超声波存在一定的相位差。

通过观察示波器上两列波的相位差变化,同样可以求出波长和声速。

三、实验仪器1、超声波声速测定仪包括超声发射换能器、接收换能器、游标卡尺等。

2、示波器3、信号发生器四、实验步骤1、驻波法(1)按照实验装置图连接好电路,将超声发射换能器和接收换能器分别固定在导轨的两端。

(2)打开信号发生器和示波器,调节信号发生器的输出频率,使示波器上显示出稳定的正弦波。

(3)缓慢移动接收换能器,观察示波器上的信号幅度变化,找到相邻的两个极大值点,记录下接收换能器的位置。

(4)重复测量多次,求出波长的平均值,进而计算出声速。

2、相位比较法(1)保持实验装置不变,将示波器的“XY”显示模式打开。

(2)调节信号发生器的频率,使示波器上显示出李萨如图形。

(3)缓慢移动接收换能器,观察李萨如图形的变化,当图形从直线变为椭圆,再变为直线时,记录下接收换能器的位置。

(4)同样重复测量多次,求出波长平均值和声速。

五、实验数据及处理1、驻波法实验数据|测量次数|极大值位置(mm)||::|::|| 1 |____ || 2 |____ || 3 |____ || 4 |____ || 5 |____ |波长的计算:相邻极大值位置之差即为半波长,求出波长平均值。

大学物理实验超声波速测量实验报告

大学物理实验超声波速测量实验报告

⼤学物理实验超声波速测量实验报告⼤学物理实验超声波速测量实验报告⼀实验⽬的1.了解超声波的物理特性及其产⽣机制;2.学会⽤相位法测超声波声速并学会⽤逐差法处理数据;3.测量超声波在介质中的吸收系数及反射⾯的反射系数;4.并运⽤超声波检测声场分布。

5.学习超声波产⽣和接收原理,6.学习⽤相位法和共振⼲涉法测量声⾳在空⽓中传播速度,并与公认值进⾏⽐较。

7.观察和测量声波的双缝⼲涉和单缝衍射⼆实验条件HLD-SV-II型声速测量综合实验仪,⽰波器,信号发⽣仪三实验原理1、超声波的有关物理知识声波是⼀种在⽓体。

液体、固体中传播的弹性波。

声波按频率的⾼低分为次声波(f<20Hz)、声波(20Hz≤f≤20kHz)、超声波(f>20kHz)和特超声波(f≥10MHz),如下图。

声波频谱分布图振荡源在介质中可产⽣如下形式的震荡波:横波:质点振动⽅向和传播⽅向垂直的波,它只能在固体中传播。

纵波:质点振动⽅向和传播⽅向⼀致的波,它能在固体、液体、⽓体中的传播。

表⾯波:当材料介质受到交变应⼒作⽤时,产⽣沿介质表⾯传播的波,介质表⾯的质点做椭圆的振动,因此表⾯波只能在固体中传播且随深度的增加衰减很快。

板波:在板厚与波长相当的弹性薄板中传播的波,可分为SH 波与兰姆波。

超声波由于其波长短、频率⾼,故它有其独特的特点:绕射现象⼩,⽅向性好,能定向传播;能量较⾼,穿透⼒强,在传播过程中衰减很⼩,在⽔中可以⽐在空⽓或固体中以更⾼的频率传的更远,⽽且在液体⾥的衰减和吸收是⽐较低的;能在异质界⾯产⽣反射、折射和波形转换。

2、理想⽓体中的声速值声波在理想⽓体中的传播可认为是绝热过程,因此传播速度可表⽰为µrRT=V (1)式中R 为⽓体普适常量(R=8.314J/(mol.k)),γ是⽓体的绝热指数(⽓体⽐定压热容与⽐定容热容之⽐),µ为分⼦量,T 为⽓体的热⼒学温度,若以摄⽒温度t 计算,则:t T T +=0K T 15.2730=代⼊式(1)得,00001V 1)(V T t T t T rRt T rR++?+===µµ (2) 对于空⽓介质,0℃时的声速0V =331.45m /s 。

超声声速测量实验报告

超声声速测量实验报告

一、实验目的1. 理解超声波的基本物理特性和产生机制。

2. 掌握相位法测量超声波声速的方法。

3. 学会使用逐差法处理实验数据。

4. 测量超声波在介质中的吸收系数和反射系数。

5. 运用超声波检测声场分布。

6. 学习超声波的产生与接收原理。

7. 通过相位法与共振干涉法测量声音在空气中的传播速度,并与公认值进行比较。

8. 观察与测量声波的双缝干涉与单缝衍射现象。

二、实验原理超声波是一种频率高于人耳听觉上限(约20kHz)的声波。

其传播速度与介质的性质有关,主要受到介质密度和弹性模量的影响。

本实验采用相位法测量超声波声速,即通过测量超声波的波长和频率,计算出声速。

三、实验器材1. 型声速测量综合实验仪2. 示波器3. 信号发生仪4. 声波发射器5. 声波接收器6. 温度计7. 卷尺8. 秒表四、实验步骤1. 将实验仪器的各个部分连接好,包括声波发射器、声波接收器、示波器、信号发生仪等。

2. 校准实验仪器,确保其工作正常。

3. 测量环境温度,并记录数据。

4. 使用相位法测量超声波在空气中的传播速度:a. 将声波发射器与信号发生仪连接,调整信号发生仪的频率至超声波频率范围。

b. 将声波接收器放置在距离声波发射器一定距离的位置。

c. 在示波器上观察声波信号,调整声波接收器的位置,直到在示波器上观察到两个同相的声波信号。

d. 测量两个同相信号之间的距离,即为超声波的波长。

e. 计算超声波的传播速度:声速 = 频率× 波长。

5. 使用共振干涉法测量超声波在空气中的传播速度:a. 将声波发射器与声波接收器放置在共振腔内。

b. 调整信号发生仪的频率,直到在共振腔内观察到共振现象。

c. 测量共振频率,并计算超声波的传播速度:声速 = 频率× 波长。

6. 测量超声波在介质中的吸收系数和反射系数:a. 将声波发射器与声波接收器放置在待测介质中。

b. 调整信号发生仪的频率,使超声波在介质中传播。

c. 测量超声波在介质中的传播速度,并计算吸收系数和反射系数。

大学物理仿真实验实验报告超声波测声速

大学物理仿真实验实验报告超声波测声速

大学物理仿真实验实验报告试验日期:实验者:班级:学号:超声波测声速一实验原理由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。

本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。

声波的波长用驻波法(共振干涉法)和行波法(相位比较法)测量。

下图是超声波测声速实验装置图。

驻波法测波长由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分别是:叠加后合成波为:的各点振幅最大,称为波腹,对应的位置:( n =0,1,2,3……)的各点振幅最小,称为波节,对应的位置:???( n =0,1,2,3……)二实验仪器1)声速的测量实验仪器包括超声声速测定仪、函数信号发生器和示波器2)超声声速测定仪主要部件是两个压电陶瓷换能器和一个游标卡尺。

3)函数信号发生器提供一定频率的信号,使之等于系统的谐振频率。

4)示波器示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的图形。

并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。

三实验内容1.调整仪器使系统处于最佳工作状态。

2.用驻波法(共振干涉法)测波长和声速。

3.用相位比较法测波长和声速。

*注意事项1.确保换能器S1和S2端面的平行。

2.信号发生器输出信号频率与压电换能器谐振频率f0保持一致。

三数据记录与处理1.基础数据记录谐振频率=2.驻波法测量声速λ的平均值:==∑=16i i λλ(cm ) λ的不确定度:)1()(612--=∑=i i S i i λλλ=(cm ) 因为,λi = (1i+6-1i ) /3,Δ仪=所以,=仪∆=332λu (cm )=+=22λλλσu S (mm ) 计算声速:50.354==λυf (m/s )计算不确定度:(m/s)3)()((kHz)2.03%122=+==⨯=f f f f λσσσσλυ实验结果表示:υ=(354±3)m/s ,=%3. 相位比较法测量声速λ的平均值:==∑=7171i i λλ(cm ) λ的不确定度:)1()(712--=∑=i i S i i λλλ=(cm ) 因为,λi = (1i+7-1i ) /7,Δ仪=所以,=仪∆=372λu (cm )=+=22λλλσu S (mm ) 计算声速:31.353==λυf (m/s ) 计算不确定度:(m/s)3)()((kHz)2.03%122=+==⨯=f f f f λσσσσλυ实验结果表示:υ=(353±3)m/s ,B=%四 实验结论1 利用驻波法测得声速为υ=(354±3)m/s2 利用相位法测得声速为υ=(353±3)m/s五 实验思考题1.固定距离,改变频率,以求声速。

大学物理实验报告-声速测量

大学物理实验报告-声速测量

实验报告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理:3 •了解声速与介质参数的关系。

【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。

在超声波段进行声速测最的优点还在于超声波的波长短,可以在短距离较精确的测出声速。

超声波的发射和接收•般通过电磁振动与机械振动的相互转换来实现,最常见的方法是利用压电效应和磁致伸缩效应來实现的。

本实验采用的是压电陶瓷制成的换能器(探头),这种压电陶瓷可以在机械振动与交流电斥之间双向换能。

声波的传播速度与其频率和波长的关系为:v=Λ∙f(l) 由(1)式可知,测得声波的频率和波长,就可以得到声速。

同样,传播速度亦可用V = L/t (2)表示,若测得声波传播所经过的距离L和传播时间t,也可获得声速。

1.共振干涉法实验装置如图1所示,图中SI和S?为压电晶体换能器,Sl作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平而声波:S?为超声波接收器,声波传至它的接收面上时,再被反射。

当SI和S?的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L为半波长的整倍数,即L = n × j,n = 0, 1, 2, (3)时,Sl发出的声波与其反射声波的相位在Sl处差2nπ(n=l, 2……),因此形成共振。

因为接收器S?的表而振动位移可以忽略,所以对位移來说是波节,对声压來说是波腹。

本实验测最的是声圧,所以当形成共振时,接收器的输出会出现明显增大。

从示波器上观察到的电信号幅值也是极大值(参见图2)o图中各极大之间的距离均为入/2,由于散射和其他损耗,各级大致幅值随距离増大而逐渐减小。

我们只要测出各极大值对应的接收器S?的位置,就可测出波长。

由信号源读出超声波的频率值后,即可由公式(1)求得声速。

容栅数显尺Z(Cln)图2接受器表巾1声压随距离的变化2.相位比较法波是振动状态的传播,也可以说是位相的传播。

大学物理仿真实验实验报告 超声波测声速

大学物理仿真实验实验报告 超声波测声速
2)超声声速测定仪 主要部件是两个压电陶瓷换能器和一个游标卡尺。
3)函数信号发生器 提供一定频率的信号,使之等于系统的谐振频率。
4)示波器 示波器的 x, y 轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器
上的图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。
三 实验内容
i
1(i cm)
1 9.060
2
9.574
3 10.122
4 10.652
5 11.178
6 11.700
表1
i+6 7 8 9 10 11 12
驻波法测量声速数据
1i+6(cm) 12.232 12.774
λi= (1i+6-1i) /3(cm) 1.057 1.067
13.316
1.065
13.820
五 实验思考题
1.固定距离,改变频率,以求声速。是否可行? 答: 能。因为 v = f λ,已知频率 f,而且波长λ也能通过示波器图像读 出
所以可以用驻波法测量出声速。 2.各种气体中的声速是否相同?为什么? 答:不同。声波在不同介质中有不同的波长、频率和速度。
.
14
22.532
1.107 1.099 1.ቤተ መጻሕፍቲ ባይዱ99 1.105 1.100
λ的平均值:
1 7
7
i
i 1
1.1041(cm)
λ的不确定度:
S
7
(i )2
i 1
=0.002(cm)
i(i 1)
因为,λi= (1i+7-1i) /7,Δ仪=0.02mm
所以, u
7
2 3
仪=0.000233(cm)

大物实验报告声速测定

大物实验报告声速测定

声速测定引言:本实验使用了超声声速测定仪、低频信号发生器(DF1027B)、示波器(ST16B)设计了共振干涉法、相位比较法、时差法来进行超声速的测定,并对实验数据进行处理、分析,最终得出声速,并与理论值进行比较。

关键词:声速测定。

Abstract:This experiment uses the ultrasonic velocity measurement instrument (DF1027B), low frequency signal generator, oscilloscope (ST16B) design the resonance interferometry, phase comparison method, the time difference method for supersonic were measured, and the experimental data processing and analysis, finally obtains the speed of sound, and compared with the theoretical value.一、实验目的1、了解超声波换能器的工作原理和功能;2、学习不同方法测定声速的原理和技术;3、熟悉测定仪和示波器的调节和使用;4、测定声速在空气中的传播速度。

二、仪器设备ZKY_SS超声声速测定仪、低频信号发生器、示波器。

三、实验原理由波动理论得知,声波的传播速度v与声波频率和波长之间的关系为。

所以只要测出声波的频率和波长,就可以求出声速。

其中声波频率可由产生声波的电信号发生器的振荡频率读出,波长则可用共振法和相位比较法进行测量。

时差法可通过测量某一定间隔距离声音传播的时间来测量声波的传播速度。

压电陶瓷换能器本实验采用压电陶瓷换能器来实现声压和电压之间的转换。

它主要由压电陶瓷环片、轻金属铅(做成喇叭形状,增加辐射面积)和重金属(如铁)组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验名称超声声速测量
姓名学号专业班实验班
组号教师成绩批阅教师签名
批阅日期
一、实验目的:
1.了解超声波的发射和接收方法。

2.加深对振动合成、波动干涉等理论知识的理解。

3.掌握用驻波法和相位法测声速
二、实验原理:
根据v=fλ,只要知道频率和波长就可以求出波速。

本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。

声波的波长用驻波法(共振干涉法)和行波法(相位比较法)测量。

驻波法:
由声源发出的平面波经前方的平面反射后,入射波与反射波叠加,叠加后合成波为:
y=(2Acos2πX/λ)cos2πft。

振幅最大位置,称为波腹,对应的位置:
X=±nλ/2n=0,1,2,3......
各点振幅最小,称为波节,对应的位置:
X=±(2n+1)λ/4n=0,1,2,3......
因此只要测得相邻两波腹(或波节)的位置X n、X n−1即可得波长。

相位比较法:
从换能器S1发出的超声波到达接收器S2,所以在同一时
刻S1与S2处的波有一相位差:φ=2πx/λ,其中λ是波长,x 为S1和S2之间距离)。

因为x改变一个波长时,相位差就
改变2。

利用李萨如图形就可以测得超声波的波长。

三、实验内容:
1.调整仪器使系统处于最佳工作状态。

2.用驻波法(共振干涉法)测波长和声速。

3.用相位比较法测波长和声速。

注意事项:
1.确保换能器S1和S2端面的平行。

2.信号发生器输出信号频率与压电换能器谐振频率f0保持一致
实验仪器:
示波器、信号发生器和声速仪。

四、实验过程:
1. 主窗口
2. 调节仪器:(1) 超声声速测定仪调节2) 示波器调节3)
信号发生器调节
3. 连线
4. 数据记录
驻波法测量数据记录与计算:
相位比较法数据记录:
五、误差分析
1. 发射换能器S1无法与游标卡尺绝对垂直造成的误差。

2. 无法控制读数时示波器现实的波形振幅是完全的最
大,从而造成误差
3. 信号发生器的频率处于不稳定状态
六、思考题
1.固定距离,改变频率,以求声速,是否可行?
答:能。

因为v = f λ,已知频率f ,而且波长λ也能通过
示波器图像读出所以可以用驻波法测量出声速。

2.各种气体中的声速是否相同?为什么?
答:不同。

声波在不同介质中有不同的波长、频率和速
度。

相关文档
最新文档