吉林大学工程热力学课件001工程热力学第一讲
合集下载
工程热力学课件第1章 基本概念
2 r 3 r 2 r 3 r 5 r
(a22 a23 / Tr a24 / Tr2 a25 / Tr3 a26 / Tr4 ) r6 (a27 / Tr a28 / T a29 / T a30 / T )
4 r 7 r
(a31 a32 / Tr a33 / Tr2 ) r8 (a34 a35 / Tr2 a36 / Tr3 ) r9
热力循环的评价指标
逆循环:消耗外部功,将低温热源的热量传给高温 热源→制冷循环 T0
目的:要Q2
评价指标:制冷系数
Q1
W
Q 收益 吸热 2 e = W 代价 耗功
Q2
T2
[例] 某空调名牌上参数:制冷量:3200W;输入电功率: 1200W,求:该空调机的制冷系数。
混合过程
p1 p1>p2
p2
• • • • • • • • • • • • • • • • •
★
★ ★
★ ★ ★ ★ ★
★ ★ ★
★ ★
★
引入可逆过程的意义
准静态过程是实际过程的理想化过程,但并非最优
过程,可逆过程是最优过程,为评价实际过程的完善程 度提供了一个比较基准。
可逆过程的功与热完全可用系统内工质的状态参数
2 2
强度参数与广延参数
强度参数:与物质的量无关的参数,如压力 p、温度T
广延参数:与物质的量有关的参数可加性 如 质量m、容积 V、内能 U、焓 H、熵S
V 比参数: v m 比容
单位:/kg
U u m 比内能
/kmol
H h m 比焓
S s m 比熵
具有强度量的性质
1.2.3 平衡状态
(a22 a23 / Tr a24 / Tr2 a25 / Tr3 a26 / Tr4 ) r6 (a27 / Tr a28 / T a29 / T a30 / T )
4 r 7 r
(a31 a32 / Tr a33 / Tr2 ) r8 (a34 a35 / Tr2 a36 / Tr3 ) r9
热力循环的评价指标
逆循环:消耗外部功,将低温热源的热量传给高温 热源→制冷循环 T0
目的:要Q2
评价指标:制冷系数
Q1
W
Q 收益 吸热 2 e = W 代价 耗功
Q2
T2
[例] 某空调名牌上参数:制冷量:3200W;输入电功率: 1200W,求:该空调机的制冷系数。
混合过程
p1 p1>p2
p2
• • • • • • • • • • • • • • • • •
★
★ ★
★ ★ ★ ★ ★
★ ★ ★
★ ★
★
引入可逆过程的意义
准静态过程是实际过程的理想化过程,但并非最优
过程,可逆过程是最优过程,为评价实际过程的完善程 度提供了一个比较基准。
可逆过程的功与热完全可用系统内工质的状态参数
2 2
强度参数与广延参数
强度参数:与物质的量无关的参数,如压力 p、温度T
广延参数:与物质的量有关的参数可加性 如 质量m、容积 V、内能 U、焓 H、熵S
V 比参数: v m 比容
单位:/kg
U u m 比内能
/kmol
H h m 比焓
S s m 比熵
具有强度量的性质
1.2.3 平衡状态
工 程 热 力 学 第一章 热力学基本概念PPT课件
本篇主要讲述:热力学的基本概念及基本定律(热力 学第一定律、热力学第二定律);理想气体的热力性质和 热力过程;参与能量转换与传递的工作介质(水蒸气、混 合气体、湿空气等)的热力性质;蒸汽动力循环;气体和 蒸汽的流动等工程热力学基础知识。
第一章
热力学基本概念
学习导引
本章介绍了许多重要的概念,对于后续内 容的学习非常重要。在学习过程中,应注意把 相关的概念串接起来,既对单个概念的物理意 义有较深刻的理解,又能从整体上将这些概念 有机的联系起来。
气缸
活塞
(2)开口热力系
1
进口
与外界有能量、
物质交换的系统。系
1
统的容积始终保持变。
(3)绝热热力系
与外界没有热 量交换的系统。
汽轮机
边界
2 出口
叶轮
2
(4)孤立热力系
与外界既无能量(功、热量)交 换又无物质交换的系统。
特殊热力系
如:热源
本身热容量很大, 且在放出或吸收有限量 热量时自身温度及其它 热力学参数没有明显变 化的物体。
提供热量的热源称 为高温热源;吸收热量 的热源称为低温热源。
高温热源
吸热Q1 作功W
热机 机械能
放热Q2
低温热源
第二节 工质的热力状态和基本状态参数
工质在进行热
量传递和能量转
锅
换的过程中, 其
炉
状态不断发生变
化.
汽机轮
凝 汽 器
一、 热力状态和状态参数
1.热力状态
——工质在某一瞬间所呈现的宏观物理状况称为工质的热力状态, 简称状态。
• 可为真实的物质、设备或假想的热力学模型 如:泵中的水、汽轮机 、卡诺热机
如:对小球进行受力分析
第一章
热力学基本概念
学习导引
本章介绍了许多重要的概念,对于后续内 容的学习非常重要。在学习过程中,应注意把 相关的概念串接起来,既对单个概念的物理意 义有较深刻的理解,又能从整体上将这些概念 有机的联系起来。
气缸
活塞
(2)开口热力系
1
进口
与外界有能量、
物质交换的系统。系
1
统的容积始终保持变。
(3)绝热热力系
与外界没有热 量交换的系统。
汽轮机
边界
2 出口
叶轮
2
(4)孤立热力系
与外界既无能量(功、热量)交 换又无物质交换的系统。
特殊热力系
如:热源
本身热容量很大, 且在放出或吸收有限量 热量时自身温度及其它 热力学参数没有明显变 化的物体。
提供热量的热源称 为高温热源;吸收热量 的热源称为低温热源。
高温热源
吸热Q1 作功W
热机 机械能
放热Q2
低温热源
第二节 工质的热力状态和基本状态参数
工质在进行热
量传递和能量转
锅
换的过程中, 其
炉
状态不断发生变
化.
汽机轮
凝 汽 器
一、 热力状态和状态参数
1.热力状态
——工质在某一瞬间所呈现的宏观物理状况称为工质的热力状态, 简称状态。
• 可为真实的物质、设备或假想的热力学模型 如:泵中的水、汽轮机 、卡诺热机
如:对小球进行受力分析
吉林大学工程热力学课件001工程热力学第一讲[1]
PPT文档演模板
2020/11/7
吉林大学工程热力学课件001工程热 力学第一讲[1]
•五.工程热力学课程的主要内容
•1.研究能量转换的客观规律; •2.研究各种热力装置的工作过程; •3.研究工质的基本热力性质。
PPT文档演模板
2020/11/7
吉林大学工程热力学课件001工程热 力学第一讲[1]
吉林大学工程热力学课 件001工程热力学第一讲
PPT文档演模板
2020/11/7
吉林大学工程热力学课件001工程热 力学第一讲[1]
•成绩分 布
•考试成绩 70分 •平时成绩 15分 •实验成绩 5分 •素质成绩 10分
PPT文档演模板
2020/11/7
吉林大学工程热力学课件001工程热 力学第一讲[1]
• 提供热量的热源称为高温热源; • 吸收热量的热源称为低温热源。
PPT文档演模板
2020/11/7
吉林大学工程热力学课件001工程热 力学第一讲[1]
PPT文档演模板
•高温热源
•吸热Q1
•作功W
•热机
• 机械能
•放热Q2
•低温热源
2020/11/7
•返回
吉林大学工程热力学课件001工程热 力学第一讲[1]
•教材:《工程热力学》华自强 张忠进
编 高等教育出版社出版
•参考书:《工程热力学》 朱明善 等编
•
清华大学出版社出版
•
《工程热力学》沈维道 编
•
高等教育出版社出版
PPT文档演模板
2020/11/7
吉林大学工程热力学课件001工程热 力学第一讲[1]
•绪论
•(课程研究的主要任务)
《工程热力学》第一章ppt
21
强度参数与广延参数 速度 (强) Velocity 高度 (强) Height 温度 (强) Temperature 应力 (强) Stress (广) 动能 Kinetic Energy 位能 (广) Potential Energy (广) 内能 Internal Energy 摩尔数 Mol (广)
20
2.状态的单值函数。 物理上—与过程无关; 数学上—其微量是全微分。
Ñx 0 d
1b 2
dx dx
1a 2
3.状态参数分类 广延量:与物质的量有关的参数可加性 如 质量m、容积 V、内能 U、焓 H、熵S 强度量:与物质的量无关的参数 如压力 p、温度T 又:广延量的比性质具有强度量特性,如比体积 V v m 工程热力学约定用小写字母表示单位质量参数。
t C TK 273.15
24
附:
华氏温标和朗肯温标
{T} °R={t} ℉ +459.67
华氏温标和摄氏温标
{t} ℃=5/9[{t} ℉-32]
{t} ℉ =9/5{t} ℃ +32
25
五、压力(pressure)
绝对压力 p(absolute pressure) 表压力 pe(pg)(gauge pressure; manometer pressure) 真空度 pv(vacuum; vacuum pressure) 当地大气压pb(local atmospheric pressure)
系统随时接近于平衡态
p0
p
1.
.
.
p,T
v 2
40
准静态过程的工程条件
破坏平衡所需时间 (外部作用时间)
>>
强度参数与广延参数 速度 (强) Velocity 高度 (强) Height 温度 (强) Temperature 应力 (强) Stress (广) 动能 Kinetic Energy 位能 (广) Potential Energy (广) 内能 Internal Energy 摩尔数 Mol (广)
20
2.状态的单值函数。 物理上—与过程无关; 数学上—其微量是全微分。
Ñx 0 d
1b 2
dx dx
1a 2
3.状态参数分类 广延量:与物质的量有关的参数可加性 如 质量m、容积 V、内能 U、焓 H、熵S 强度量:与物质的量无关的参数 如压力 p、温度T 又:广延量的比性质具有强度量特性,如比体积 V v m 工程热力学约定用小写字母表示单位质量参数。
t C TK 273.15
24
附:
华氏温标和朗肯温标
{T} °R={t} ℉ +459.67
华氏温标和摄氏温标
{t} ℃=5/9[{t} ℉-32]
{t} ℉ =9/5{t} ℃ +32
25
五、压力(pressure)
绝对压力 p(absolute pressure) 表压力 pe(pg)(gauge pressure; manometer pressure) 真空度 pv(vacuum; vacuum pressure) 当地大气压pb(local atmospheric pressure)
系统随时接近于平衡态
p0
p
1.
.
.
p,T
v 2
40
准静态过程的工程条件
破坏平衡所需时间 (外部作用时间)
>>
工程热力学第一讲
温度
温度是把通过感觉而得到的冷热程度加 以客观表示的量。从第零定律可以推证, 互为热平衡的系统必然具有一个在数值上 相等的热力学参数来描述热平衡的特性、 这个参数就定义为温度。由此可知,温度 是描述热力系统冷热状态的物理量。温度 是大量分子热运动的集体表现,含有统计 意义,对于个别分子来说温度是没有意义 的。
它的重要性在于给出了温度的定义和温 度的测量方法,为建立温度概念提供实验 基础。
热力学第一定律
当能量被转移或转换时,以不同形式 存在的最终的总能量肯定与初始的总能量 相等,即能量守恒定律。
能量既不能被创造也不能被消灭,但它 可以从一种形态转变为另一种形态,且在 能量的转换的过程中,能量的总量保持不 变。
电磁波的形式辐射的能量。 热机:把热能变为机械能的各种机器的统称。 热力:产生于热能的作的功。
热量
热量与热能之间的关系就好比是做功与 机械能之间的关系一样。热量指的是内能 的变化、系统的做功。热量描述能量的流 动,而内能描述能量本身。热量是量度系 统内能变化的物理量。在热传递的过程中, 实质上是能量转移的过程,而热量就是能 量转换的一种量度。
随着人类技术文明的发展,人类对于热的认识有了新 的进展。在19世纪40年代,J.P.焦耳同志清楚地表明,热 是能量,并且指出热和功之间有一种精妙的换算关系。
热量
与热相关的概念 热能:物体燃烧时释放的能量,也指物体内
部分工作不规则运动时放出的能量。 热传导:热介质的一部分传到另一部分。 热辐射:固体液体和气体因温度而产生的以
此公式适用于任何条件,任何过程。
热力学第一定律
对于开口系统: 进入系统的能量
热力学第一定律
进入系统的能量 离开系统的能量 控制容积的储存能量
《工程热力学》课件
理想气体混合物
理想气体混合物的性质
理想气体混合物具有加和性、均匀性、 扩散性和完全互溶性等性质。
VS
理想气体混合物的计算
通过混合物的总压力、总温度和各组分的 摩尔数来计算混合物的各种物理量。
真实气体近似与修正
真实气体的近似
真实气体在一定条件下可以近似为理想气体。
真实气体的修正
由于真实气体分子间存在相互作用力,因此需要引入修正系数对理想气体状态方程进行 修正。
特点
工程热力学是一门理论性较强的学科 ,需要掌握热力学的基本概念、定律 和公式,同时还需要了解其在工程实 践中的应用。
工程热力学的应用领域
能源利用
工程热力学在能源利用领域中有 着广泛的应用,如火力发电、核 能发电、地热能利用等。
工业过程
工程热力学在工业过程中也发挥 着重要的作用,如化工、制冷、 空调、热泵等。
稳态导热问题
稳态导热是指物体内部温度分布不随时间变 化的导热过程,其特点是热量传递达到平衡 状态。
对流换热和辐射换热的基本规律
对流换热的基本规律
对流换热主要受牛顿冷却公式支配,即物体 表面通过对流方式传递的热量与物体表面温 度和周围流体温度之间的温差、物体表面积 以及流体性质有关。
辐射换热的基本规律
辐射换热主要遵循斯蒂芬-玻尔兹曼定律, 即物体发射的辐射能与物体温度的四次方成
正比,同时也与周围环境温度有关。
传热过程分析与计算方法简介
要点一
传热过程分析
要点二
计算方法简介
传热过程分析主要涉及热量传递的三种方式(导热、对流 和辐射)及其相互影响,需要综合考虑物性参数、几何形 状、操作条件等因素。
常用的传热计算方法包括分析法、实验法和数值模拟法。 分析法适用于简单几何形状和边界条件的传热问题;实验 法需要建立经验或半经验公式;数值模拟法则通过计算机 模拟传热过程,具有较高的灵活性和通用性。
工程热力学第一章基本概念PPT课件
等压过程在工业生产和日常生活中有着广泛的应用。
详细描述
等压过程在各种工业生产过程中发挥着重要作用,如蒸汽机、汽轮机、燃气轮机等热力机械中的工作过程。此外, 在制冷技术、气体压缩、气体分离等领域也广泛应用等压过程。在生活中,等压过程也随处可见,如气瓶的压力 保持、气瓶压力的调节等。
感谢您的观看
THANKS
06
热力学第三定律
绝对零度不能达到原理
绝对零度是热力学的最低温度,理论 上不可能通过任何有限过程达到。
这一定律对于理解热力学的基本概念 和原理非常重要,因为它揭示了热力 学过程不可逆性。
这是由于热力学第三定律指出,熵在 绝对零度时为零,而熵是系统无序度 的量度,因此系统必须经历无限的过 程才能达到绝对零度。
04
热力学第一定律
能量守恒
1 2
能量守恒定律
能量不能凭空产生,也不能消失,只能从一种形 式转化为另一种形式。
热力学能
系统内部能量的总和,包括分子动能、分子位能 和内部势能等。
3
热力学第一定律表达式
ΔU = Q + W,其中ΔU表示系统能量的变化,Q 表示系统吸收的热量,W表示系统对外做的功。
热量与功的转换
是与系统相互作用的其它物质或 能量的总和。
状态与状态参数
状态
描述系统在某一时刻的物理状态,包括宏观和微观状态。
状态参数
描述系统状态的物理量,如压力、温度、体积、内能等。
热力学平衡
热力学平衡
系统内部各部分之间以及系统与外界 之间达到相对静止的一种状态。
热力学平衡的条件
系统内部不存在宏观的净力、净热和 净功。
热力学的应用领域
能源转换
热能转换为机械能: 如内燃机、蒸汽机和 燃气轮机等。
详细描述
等压过程在各种工业生产过程中发挥着重要作用,如蒸汽机、汽轮机、燃气轮机等热力机械中的工作过程。此外, 在制冷技术、气体压缩、气体分离等领域也广泛应用等压过程。在生活中,等压过程也随处可见,如气瓶的压力 保持、气瓶压力的调节等。
感谢您的观看
THANKS
06
热力学第三定律
绝对零度不能达到原理
绝对零度是热力学的最低温度,理论 上不可能通过任何有限过程达到。
这一定律对于理解热力学的基本概念 和原理非常重要,因为它揭示了热力 学过程不可逆性。
这是由于热力学第三定律指出,熵在 绝对零度时为零,而熵是系统无序度 的量度,因此系统必须经历无限的过 程才能达到绝对零度。
04
热力学第一定律
能量守恒
1 2
能量守恒定律
能量不能凭空产生,也不能消失,只能从一种形 式转化为另一种形式。
热力学能
系统内部能量的总和,包括分子动能、分子位能 和内部势能等。
3
热力学第一定律表达式
ΔU = Q + W,其中ΔU表示系统能量的变化,Q 表示系统吸收的热量,W表示系统对外做的功。
热量与功的转换
是与系统相互作用的其它物质或 能量的总和。
状态与状态参数
状态
描述系统在某一时刻的物理状态,包括宏观和微观状态。
状态参数
描述系统状态的物理量,如压力、温度、体积、内能等。
热力学平衡
热力学平衡
系统内部各部分之间以及系统与外界 之间达到相对静止的一种状态。
热力学平衡的条件
系统内部不存在宏观的净力、净热和 净功。
热力学的应用领域
能源转换
热能转换为机械能: 如内燃机、蒸汽机和 燃气轮机等。
工程热力学PPT课件
另一种表述是,热量不可能自发地从低温物体传到高温物体而不引起其他变化。
还有一种表述是,自然发生的热传递总是向着熵增加的方向进行,即系统总是向着熵增加的方向演化。
热力学第二定律的应用
01
在能源利用领域,热力学第二定律指导我们如何更有效地利用能源,避免能源 浪费。例如,在发电厂中,利用热力学第二定律可以优化蒸汽轮机的设计和运 行,提高发电效率。
热力学第二定律的实质
热力学第二定律的实质是揭示了自然界的不可逆性,即自然界的自发过程总是向着熵增加的方向进行 。这意味着自然界的能量转化和物质转化总是向着无序和混乱的方向发展,而不是向着有序和规则的 方向发展。
热力学第二定律的实质还表明了人类对自然界的干预和改造是有限制的,我们不能违背自然规律来无 限地利用能源和资源。因此,我们需要更加珍惜和合理利用自然界的能源和资源,以实现可持续发展 和环境保护的目标。
热力学第一定律的表述
01
热力学第一定律的表述是:能量既不能凭空产生,也不能凭空 消失,它只能从一种形式转化为另一种形式,或者从一个物体
传递给另一个物体。
02
热力学第一定律也可以表述为:在封闭系统中,能量守恒。
03
热力学第一定律也可以表述为:系统总能量的变化等于系 统与环境之间传递的热量和系统对外界所做的功之和。
制冷与空调技术
制冷与空调技术
制冷和空调技术是利用热力学原理实现热量转移和控制的工程技术。
制冷剂的选择
制冷剂是制冷和空调技术中的重要物质,需要具备适当的热力学性质 和环保性能。
制冷循环的类型
制冷循环有多种类型,如压缩式、吸收式和吸附式等,每种类型都有 其特定的应用场景。
空调系统的优化
为了提高空调系统的效率和降低能耗,需要对空调系统进行优化设计, 如采用变频技术、智能控制等措施。
还有一种表述是,自然发生的热传递总是向着熵增加的方向进行,即系统总是向着熵增加的方向演化。
热力学第二定律的应用
01
在能源利用领域,热力学第二定律指导我们如何更有效地利用能源,避免能源 浪费。例如,在发电厂中,利用热力学第二定律可以优化蒸汽轮机的设计和运 行,提高发电效率。
热力学第二定律的实质
热力学第二定律的实质是揭示了自然界的不可逆性,即自然界的自发过程总是向着熵增加的方向进行 。这意味着自然界的能量转化和物质转化总是向着无序和混乱的方向发展,而不是向着有序和规则的 方向发展。
热力学第二定律的实质还表明了人类对自然界的干预和改造是有限制的,我们不能违背自然规律来无 限地利用能源和资源。因此,我们需要更加珍惜和合理利用自然界的能源和资源,以实现可持续发展 和环境保护的目标。
热力学第一定律的表述
01
热力学第一定律的表述是:能量既不能凭空产生,也不能凭空 消失,它只能从一种形式转化为另一种形式,或者从一个物体
传递给另一个物体。
02
热力学第一定律也可以表述为:在封闭系统中,能量守恒。
03
热力学第一定律也可以表述为:系统总能量的变化等于系 统与环境之间传递的热量和系统对外界所做的功之和。
制冷与空调技术
制冷与空调技术
制冷和空调技术是利用热力学原理实现热量转移和控制的工程技术。
制冷剂的选择
制冷剂是制冷和空调技术中的重要物质,需要具备适当的热力学性质 和环保性能。
制冷循环的类型
制冷循环有多种类型,如压缩式、吸收式和吸附式等,每种类型都有 其特定的应用场景。
空调系统的优化
为了提高空调系统的效率和降低能耗,需要对空调系统进行优化设计, 如采用变频技术、智能控制等措施。
《工程热力学》课件
空调技术
空调系统的运行与热力学密切相关。制冷和 制热循环的原理、空调系统的能效分析以及 室内空气品质的保障等方面均需要热力学的
支持。
热力发电与动力工程
热力发电
热力学在热力发电领域的应用主要体现在锅炉、汽轮机和燃气轮机等设备的能效分析和 优化上。通过热力学原理,提高发电效率并降低污染物排放。
动力工程
热力学与材料科学的关系
材料科学主要研究材料的组成、结构、性质以及应用,而热力学为材料科学提供了材料制备、性能优 化和失效分析的理论基础。
在材料制备过程中,热力学可以帮助人们了解和控制材料的相变、结晶和熔融等过程,优化材料的性能 。
在材料性能优化方面,热力学为材料科学家提供了理论指导,帮助人们理解材料的热稳定性、抗氧化性 等性能,从而改进材料的制备工艺和应用范围。
热力学与其他学科的联系
热力学与物理学的关系
热力学与物理学在研究能量转换和传递方面有 密切联系。物理学中的热学部分为热力学提供 了基本概念和原理,如温度、热量、熵等。
热力学的基本定律,如热力学第一定律和第二 定律,是物理学中能量守恒和转换定律的具体 应用。
物理学中的气体动理论和分子运动论为热力学 提供了微观层面的解释,帮助人们理解热现象 的本质。
高效热能转换与利用技术
高效热能转换技术
随着能源需求的不断增加,高效热能转换与利用技术 成为研究的重点。例如,高效燃气轮机、超临界蒸汽 轮机等高效热能转换设备的研发和应用,能够提高能 源利用效率和减少污染物排放。
热能利用技术
除了高效热能转换技术外,热能利用技术的进步也是工 程热力学领域的重要发展方向。例如,热电转换技术、 热光转换技术等新型热能利用技术,为能源的可持续利 用提供了新的解决方案。
《工程热力学》教学课件绪论第1章
4 英国
9755 23770
5.7
21217.6 21900
0.2
5 加拿大 5680 12716
5.2
20908.9 24034
0.9
6 俄罗斯 6081
9906
3.1
87827
4487
-17
7 日本 29320 43684
2.5
44591.6 43460 -0.2
8 韩国
2536
8882
8.1
9265
《工程热力学》教学课件
授课60学时 实验4学时
工程热力学 Thermodynamics
能源概论(绪论) §0-1 自然界的能源及其利用
一、能源及其分类
定义:能源是指可向人类提供各种能量和动力的物质 资源。
能源可以根据来源、形态、使用程度和技术、 污染程度以及性质等进行分类:
工程热力学 Thermodynamics (一)按来源分:
第一节 热力系、状态与状态参数 一、热力系统与工质
1、定义 人为划定的一定范围内的研究对象称为热力系统, 简称热力系或系统。
11
固定边界
移动边界
系统
系统
边界
22
热力系统
2、分类
工程热力学 Thermodynamics
按物质 闭口系:与外界无物质交换的系统 CM
交换 开口系:与外界有物质交换的系统 CV
1850~1851年克劳修斯和开尔文先后独立提出了热力学第二定律; 1906~1912年能斯特提出了热力学第三定律。
工程热力学 Thermodynamics
§0-3 工程热力学的研究对象、内容和方法
一、研究对象
热力学是研究热能和机械能相互转换规律,以提高能量利 用经济性(节能)为主要目的的一门学科。
工程热力学第1章基本概念[1]PPT课件
14
状态参数的微分特征
设 z =z (x , y)
dz是全微分
dzxzy dxyy yx
可判断是否 是状态参数
16
§1-3 基本状态参数
压力 p、温度 T、比容 v (容易测量)
1、压力 p 物理中压强,单位: Pa , N/m2 常用单位: 1 bar = 105 Pa 1 MPa = 106 Pa 1 atm = 760 mmHg = 1.013105 Pa 1 mmHg =133.3 Pa 1 at=735.6 mmHg = 9.80665104 Pa17
3.对于平衡状态,有确定性:非平衡态,则为变化
量。
13
状态参数的特征:
1、状态确定,则状态参数也确定,反之亦 然 2、状态参数的积分特征:状态参数的变化 量与路径无关,只与初终态有关 3、当热力系经历一封闭的状态变化过程, 又回复到原始状态时,状态的参数变化为0. 4、状态参数的微分特征:全微分
但平衡状态是死态,没有能量交换
能量交换
状态变化
如何描述
破坏平衡 31
§1-5 状态方程、坐标图
平衡状态可用一组状态参数描述其状态
想确切描述某个热力系,是 否需要所有状态参数?
状态公理:对组元一定的闭口系,
独立状态参数个数 N=n+1
32
状态公理
闭口系: 不平衡势差 状态变化 能量传递
消除一种不平衡势差 达到某一方面平衡 消除一种能量传递方式
压力p测量
一般是工质绝对压力与环境压力的相对值 ——相对压力
注意:只有绝对压力 p 才是状态参数
18
绝对压力与相对压力
当 p > pb 当 p < pb
表压力 pe 真空度 pv
状态参数的微分特征
设 z =z (x , y)
dz是全微分
dzxzy dxyy yx
可判断是否 是状态参数
16
§1-3 基本状态参数
压力 p、温度 T、比容 v (容易测量)
1、压力 p 物理中压强,单位: Pa , N/m2 常用单位: 1 bar = 105 Pa 1 MPa = 106 Pa 1 atm = 760 mmHg = 1.013105 Pa 1 mmHg =133.3 Pa 1 at=735.6 mmHg = 9.80665104 Pa17
3.对于平衡状态,有确定性:非平衡态,则为变化
量。
13
状态参数的特征:
1、状态确定,则状态参数也确定,反之亦 然 2、状态参数的积分特征:状态参数的变化 量与路径无关,只与初终态有关 3、当热力系经历一封闭的状态变化过程, 又回复到原始状态时,状态的参数变化为0. 4、状态参数的微分特征:全微分
但平衡状态是死态,没有能量交换
能量交换
状态变化
如何描述
破坏平衡 31
§1-5 状态方程、坐标图
平衡状态可用一组状态参数描述其状态
想确切描述某个热力系,是 否需要所有状态参数?
状态公理:对组元一定的闭口系,
独立状态参数个数 N=n+1
32
状态公理
闭口系: 不平衡势差 状态变化 能量传递
消除一种不平衡势差 达到某一方面平衡 消除一种能量传递方式
压力p测量
一般是工质绝对压力与环境压力的相对值 ——相对压力
注意:只有绝对压力 p 才是状态参数
18
绝对压力与相对压力
当 p > pb 当 p < pb
表压力 pe 真空度 pv
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械能 : 物体的动能与势能; 电能 :与电荷的运动和积蓄有关的能量; 化学能 :通过化学反应释放的能量; 核能 :通过核反应释放的能量; 辐射能 :物体以电磁波的形式发射的能量。
22.11.2020
6
三.能量的转换与利用
燃料电池
机械能
氢、酒精等二次能源
电能
辐射能
光电池
发电机
机械
风能、水能、海洋能
22.11.2020
21
3.压力测量:
p =pb +pe
p =pb -pv
只有绝对压力 p 才是状态参数。
22.11.2020
22
(二)温度
1.定义:温度是反映物体冷热程度的物理量。
2.热力学第零定律:
如果两个物体中的每一个都分别与第三 个物体处于热平衡,则这两个物体彼此也必 处于热平衡。
22.11.2020
符号v表示,单位为 m3/kg 。
vV m
2. 密 度:单 位 体 积 工 质 的 质 量 , 用 符 号
表示。单位为 kg/ m3 。
v 1
3.意义:系统与外界作功与否的标志。
22.11.2020
25
四、状态参数的性质
1.给定状态和该状态下的状态参数是一一 对应的;
2.状态参数的数值仅取决于系统的状态, 而与到达该状态所经历的途径无关;
《工程热力学》沈维道 编
高等教育出版社出版
22.11.2020
4
绪论
(课程研究的主要任务)
工程热力学主要研究热能和机械能 之间相互转换的规律及提高能量转换经 济性的途径和技术措施 。
22.11.2020
链接 返回
5
一.能量: 能量是物质运动的度量。 二.能量的主要形式 :
热能 :物质分子热运动动能与位能之和;
例:状态1变化到状态2
22.11.2020
26
中期考试:
1.考试时间:12月初,提前一周报名
2.考试成绩
3.要求:实验必做、作业全交
4.网址:
①/software/net/GCRLX/index.htm ②校内办公--教学在线--教学资源平台--省级精品课 ③汽车学院主页--精品课程
1 MPa = 103 kPa =106 Pa
22.11.2020
20
2.常用压力单位:
1 bar(巴) = 105 Pa 1 atm(标准大气压) = 1.013105 Pa 1 at (工程大气压) = 0.981105 Pa 1 mmH2O(毫米水柱) = 9.81 Pa 1 mmHg (毫米汞柱) = 133.3 Pa
22.11.2020
15
(二)按系统与外界相互作用的性质分: 1.按与外界有无质量交换 (1)闭口系统:
与外界无物质交换的系统。系统的质 量始终保持恒定,也称为控制质量系统。
(2)开口系统:
与外界有物质交换的系统。系统的容 积始终保持不变,也称为控制容积系统。
22.11.2020
16
2.按与外界有无热量交换分: (1)绝热系统:
系统以外的物体称为外界或环境。
系统与外界之间的分界面称为边界。
22.11.2020
链接
13
五、边界的属性
1. 边界是真实的、假象的, 可以是变动的、固定的;
2. 系统与外界通过边界的有且仅有三种 作用方式,即质量交换、热量交换、 功量交换
22.11.2020
14
六、系统的分类
(一)按系统性质分: 1.单元系、多元系; 2.单相系、多相系; 3.均匀系、非均匀系。
与外界没有热量交换的系统。
(2)非绝热系统: 与外界有热量交换的系统。
3.孤立系统:
与外界既无能量(功、热量)交 换又无物质交换的系统。
22.11.2020
17
本节小结 热机、工质、热源、热力系统、边界及其属性 ※ 热力系统的分类
22.11.2020
18
§ 1-2 热力学系统的状态及基本状态参数
机械能
热能 直接利用
煤、石油、天然气
核能
核反应
燃烧 集热器
热机 90%
热 能 直接利用
燃烧
太阳能 光合作用
生物质能 食物利用
22.11.2020
7
四.热能利用的基本方式
1.热利用: 烧饭、蒸煮、采暖、烘干、熔炼等;
2.动力利用: 将热能转换成机械能或者再通过
发电机转换成电能加以利用。
22.11.2020
吉林大学工程热力学课件001工程热力学第一讲
工程热力学B
22.11.2020
主讲:刘研
汽车工程学院热能工程系
2
考试成绩 70分
成绩分布
平时成绩 实验成绩
15分 5分
素质成绩 10分
22.11.2020
3
教材:《工程热力学》华自强 张忠进编
高等教育出版社出版
参考书:《工程热力学》 朱明善 等编
清华大学出版社出版
22.11.2020
返回 27
作业:
1-8、1-14、1-19; 2-7、2-18; 3-3、3-9、3-10、3-20; 4-6、4-10、4-11
5-6、5-20; 6-5、6-13; 7-1、7-5; 8-5;
本身热容量很大,且在放出或吸收有限 量热量时自身温度及其它热力学参数没有明 显变化的物体。
提供热量的热源称为高温热源; 吸收热量的热源称为低温热源。
22.11.2020
11
22.11.2020
高温热源
吸热Q1
作功W
热机
பைடு நூலகம்
机械能
放热Q2 低温热源
返回
12
四、热力系统
在工程热力学中,通常选取一定的工质或 空间作为研究的对象,称之为热力系统,简 称系统。
23
3.单位:
(1) 摄氏温标:用符号t 表示,单位为℃ 。
(2) 热力学温标(绝对温标):
用符号T 表示,单位为 K(开)。 (3) 热力学温标与摄氏温标的关系:
温差:1 K = 1 ℃
t = T – 273.15 K
22.11.2020
24
(三)比体积
1. 定 义 :单位质量的工质所占有的体积,用
一、状态(热力状态):
系统在某一瞬间所呈现的宏观物理状 况称为系统的热力状态,简称状态。
二、状态参数:
用于描述系统平衡状态的物理量称为 状态参数,如温度、压力、比体积等。
22.11.2020
19
三、基本状态参数
(一)压力 单位面积上所受到的垂直作用力(即压强)。
p F A
1.单位 : Pa (帕),1 Pa =1 N/ m2
8
五.工程热力学课程的主要内容
1.研究能量转换的客观规律; 2.研究各种热力装置的工作过程; 3.研究工质的基本热力性质。
22.11.2020
9
第一章 基本概念
§1-1 热力系统 一、热机:
能将热能转换为机械能的机器。
二、工质:
实现热能和机械能之间转换的媒介物质。
22.11.2020
10
三、热源:
22.11.2020
6
三.能量的转换与利用
燃料电池
机械能
氢、酒精等二次能源
电能
辐射能
光电池
发电机
机械
风能、水能、海洋能
22.11.2020
21
3.压力测量:
p =pb +pe
p =pb -pv
只有绝对压力 p 才是状态参数。
22.11.2020
22
(二)温度
1.定义:温度是反映物体冷热程度的物理量。
2.热力学第零定律:
如果两个物体中的每一个都分别与第三 个物体处于热平衡,则这两个物体彼此也必 处于热平衡。
22.11.2020
符号v表示,单位为 m3/kg 。
vV m
2. 密 度:单 位 体 积 工 质 的 质 量 , 用 符 号
表示。单位为 kg/ m3 。
v 1
3.意义:系统与外界作功与否的标志。
22.11.2020
25
四、状态参数的性质
1.给定状态和该状态下的状态参数是一一 对应的;
2.状态参数的数值仅取决于系统的状态, 而与到达该状态所经历的途径无关;
《工程热力学》沈维道 编
高等教育出版社出版
22.11.2020
4
绪论
(课程研究的主要任务)
工程热力学主要研究热能和机械能 之间相互转换的规律及提高能量转换经 济性的途径和技术措施 。
22.11.2020
链接 返回
5
一.能量: 能量是物质运动的度量。 二.能量的主要形式 :
热能 :物质分子热运动动能与位能之和;
例:状态1变化到状态2
22.11.2020
26
中期考试:
1.考试时间:12月初,提前一周报名
2.考试成绩
3.要求:实验必做、作业全交
4.网址:
①/software/net/GCRLX/index.htm ②校内办公--教学在线--教学资源平台--省级精品课 ③汽车学院主页--精品课程
1 MPa = 103 kPa =106 Pa
22.11.2020
20
2.常用压力单位:
1 bar(巴) = 105 Pa 1 atm(标准大气压) = 1.013105 Pa 1 at (工程大气压) = 0.981105 Pa 1 mmH2O(毫米水柱) = 9.81 Pa 1 mmHg (毫米汞柱) = 133.3 Pa
22.11.2020
15
(二)按系统与外界相互作用的性质分: 1.按与外界有无质量交换 (1)闭口系统:
与外界无物质交换的系统。系统的质 量始终保持恒定,也称为控制质量系统。
(2)开口系统:
与外界有物质交换的系统。系统的容 积始终保持不变,也称为控制容积系统。
22.11.2020
16
2.按与外界有无热量交换分: (1)绝热系统:
系统以外的物体称为外界或环境。
系统与外界之间的分界面称为边界。
22.11.2020
链接
13
五、边界的属性
1. 边界是真实的、假象的, 可以是变动的、固定的;
2. 系统与外界通过边界的有且仅有三种 作用方式,即质量交换、热量交换、 功量交换
22.11.2020
14
六、系统的分类
(一)按系统性质分: 1.单元系、多元系; 2.单相系、多相系; 3.均匀系、非均匀系。
与外界没有热量交换的系统。
(2)非绝热系统: 与外界有热量交换的系统。
3.孤立系统:
与外界既无能量(功、热量)交 换又无物质交换的系统。
22.11.2020
17
本节小结 热机、工质、热源、热力系统、边界及其属性 ※ 热力系统的分类
22.11.2020
18
§ 1-2 热力学系统的状态及基本状态参数
机械能
热能 直接利用
煤、石油、天然气
核能
核反应
燃烧 集热器
热机 90%
热 能 直接利用
燃烧
太阳能 光合作用
生物质能 食物利用
22.11.2020
7
四.热能利用的基本方式
1.热利用: 烧饭、蒸煮、采暖、烘干、熔炼等;
2.动力利用: 将热能转换成机械能或者再通过
发电机转换成电能加以利用。
22.11.2020
吉林大学工程热力学课件001工程热力学第一讲
工程热力学B
22.11.2020
主讲:刘研
汽车工程学院热能工程系
2
考试成绩 70分
成绩分布
平时成绩 实验成绩
15分 5分
素质成绩 10分
22.11.2020
3
教材:《工程热力学》华自强 张忠进编
高等教育出版社出版
参考书:《工程热力学》 朱明善 等编
清华大学出版社出版
22.11.2020
返回 27
作业:
1-8、1-14、1-19; 2-7、2-18; 3-3、3-9、3-10、3-20; 4-6、4-10、4-11
5-6、5-20; 6-5、6-13; 7-1、7-5; 8-5;
本身热容量很大,且在放出或吸收有限 量热量时自身温度及其它热力学参数没有明 显变化的物体。
提供热量的热源称为高温热源; 吸收热量的热源称为低温热源。
22.11.2020
11
22.11.2020
高温热源
吸热Q1
作功W
热机
பைடு நூலகம்
机械能
放热Q2 低温热源
返回
12
四、热力系统
在工程热力学中,通常选取一定的工质或 空间作为研究的对象,称之为热力系统,简 称系统。
23
3.单位:
(1) 摄氏温标:用符号t 表示,单位为℃ 。
(2) 热力学温标(绝对温标):
用符号T 表示,单位为 K(开)。 (3) 热力学温标与摄氏温标的关系:
温差:1 K = 1 ℃
t = T – 273.15 K
22.11.2020
24
(三)比体积
1. 定 义 :单位质量的工质所占有的体积,用
一、状态(热力状态):
系统在某一瞬间所呈现的宏观物理状 况称为系统的热力状态,简称状态。
二、状态参数:
用于描述系统平衡状态的物理量称为 状态参数,如温度、压力、比体积等。
22.11.2020
19
三、基本状态参数
(一)压力 单位面积上所受到的垂直作用力(即压强)。
p F A
1.单位 : Pa (帕),1 Pa =1 N/ m2
8
五.工程热力学课程的主要内容
1.研究能量转换的客观规律; 2.研究各种热力装置的工作过程; 3.研究工质的基本热力性质。
22.11.2020
9
第一章 基本概念
§1-1 热力系统 一、热机:
能将热能转换为机械能的机器。
二、工质:
实现热能和机械能之间转换的媒介物质。
22.11.2020
10
三、热源: