焊接电弧的物理基础

焊接电弧的物理基础
焊接电弧的物理基础

焊接电弧的物理基础

研究意义:弧焊电源是电弧能量的供应者,其电特性影响到电弧燃烧的稳定性,从而直接影响到焊缝的质量。

电弧定义:由焊接电源供给的,具有一定电压的两电极间或电极与母材间,在气体介质中产生的强烈而持久的放电现象。电弧是一种特殊的气体放电现象,它是带电粒子通过两电极之间气体空间的一种导电过程。

气体放电:两极间的气体被击穿而导电的过程。

非自持放电:气体导电所需要的带电粒子不能通过放电过程本身产生,而需要外加措施来产生带电粒子(加热、施加一定能量的光子等等)。

自持放电:当电流大于一定值时,一旦放电开始,放电过程本身就可以产生维持导电所需要的带电粒子。有暗放电、

辉光放电、电弧放电等三种。

要使两电极之间的气体导电必须具备两个条件:

(1) 两电极之间有带电粒子;

(2) 两电极之间有电场。

1、焊接电弧产生的条件

要使电弧产生和稳定燃烧,就必须使两极(或电极与母材)之间的气体中有带电粒子,而获得带电粒子的方法就是气体中性气体的电离和金属电极(阴极)电子发射。因此,

电离和阴极电子发射是焊接电弧产生和维持的两个必要条件。

(1)气体电离

定义:在外加能量作用下,使中性的气体分子或原子分离成电子和正离子的过程。

实质:中性气体粒子吸收足够的外部能量,使分子或原子中的电子脱离原子核束缚而成为自由电子和正离子的过程。

电离能:

中性气体粒子失去第一个电子所需要的最小能量成为第一

电离能

失去第二个电子所需的能量称为第二电离能。

……

-19J

101.6×)单位:电子伏(eV 为:气体的电离电压的大小反映了带电粒子产生的难电离电压:易程度。 ----带电粒子容易产生有利于电弧导电电离电压低带电粒子难以产生电弧导电困难----电离电压高电弧内单位体积内电离的粒

子数与气体电离前粒子电离度:总数的比值 /电离前中性粒子密度。电离的粒子密度 X= 焊接电弧中,气体介质电离的形式主要有:电场离电

热、致

离、光电离

①热电离

定义:气体粒子受热作用而产生电离的过程。

实质:气体粒子的热运动形成频繁而激烈的碰撞。

主要位置:弧柱区(温度在5000-50000K)

②场致电离

定义:在两电极间的电场的作用下,气体中的带电粒子被加速,电能转化为带电粒子的动能,当带电粒子的动能达到一定数值时,则可能与中性粒子发生非弹性碰撞而使之电离,这种电离被称为场致电离。

场致电离发生的位置:

主要是两极区,由于在这两个区域内电场强度可达

105-107V/cm,

而弧柱区电场强度为:10V/cm左右,电场作用不明显。

由于电子质量远小于其他粒子的质量,因而在电场的作用下,速度快,动能大,其余其他粒子发生非弹性碰撞,几乎将本身的动能全部传递给相应的粒子,使中性粒子发生电离或激励。因而场致电离中电子起到主要的作用。

③光电离

定义:中性气体粒子受到光辐射的作用而产生的电离过程

范围:电弧的辐射只可能对K、Na、Ca、Al等金属蒸汽直接引起电离,而对焊接电弧气氛中的其他气体则不能直接引起.电离

热电离和场致电离属于碰撞电离是产生带电粒子的主要途径,光电离是产生带电粒子的次要途径

(2)阴极电子发射

阴极表面的分子或原子接受外界的能量而释放出自由电子

的现象称为电子发射,电子发射所需要的能量成为逸出功。

①热发射:固态或者液态物质表面受热后其中的某些电子具有大于逸出功的动能而逸出到表面以外的空间中去。

②光电发射:固态或液态物质表面接受光射线的能量而释放出自由电子的现象。

③重粒子撞击发射:能量大的重粒子(正离子)撞击到阴极上,引起电子的逸出。

④自发射:固态或者液态物质表面存在强电场,使阴极有较多的电子发射出来,又称为场强发射。

2、焊接电弧的引燃方法

造成两电极间气体发生电离和阴极电子发射而引起电弧燃

烧的过程称为焊接电弧的引燃。

通常有接触引弧和非接触引弧两种方式。

(1)接触引弧

接触引弧主要应用于:焊条电弧焊、埋弧焊、熔化极气体保护焊。.

对于焊条电弧焊接触引弧又可分为:划擦法、直击法

(2)非接触引弧

引弧时,电极与工件之间保持一定间隙,在电极与工件之间施加高电压击穿间隙使电弧引燃,这种引弧方式称为非接触引弧。

非接触引弧需要利用引弧器,引弧器有两种,高压脉冲引弧和高频高压引弧。

高压脉冲引弧:使用高压脉冲发生器,其频率为50~100Hz,电压峰值为3000~10000V.

高频高压引弧:使用高频振荡器,其频率为150-260kHz,电压峰值为2000~3000V。

电弧焊基础知识

电弧焊基础知识 第一节焊接电弧 目的与要求:了解电弧的实质、获得的途径、电弧各区域及其导电机构的特点、能量与温度的分布规律;掌握电弧偏吹的概念及影响因素、解决措施。 一、焊接电弧的物理基础 (一)电弧及其电场强度分布 电弧的实质:气体放电(导电) 电弧的特点:低电压、大电流、温度高、亮度大 (二)电弧中带电粒子的产生 获得电弧的途径:气体电离+电子发射 1、电离的种类: 热电离场致电离光电离 电离能及其与引弧的关系 2、(阴极)电子发射 热发射场致发射光发射粒子碰撞发射 逸出功及其与引弧的关系 1、电离的种类: 热电离场致电离光电离 电离能及其与引弧的关系 2、(阴极)电子发射

热发射场致发射光发射粒子碰撞发射 逸出功及其与引弧的关系 二、焊接电弧的导电特性 电弧的三个区域:阴极区弧柱区阳极区 (一)弧柱区的导电特性 最小电压原理(难点,通过水珠的形状与能量的关系辅以解释说明) (二)阴极区的导电特性 1、热发射型 2、电场发射型阴极斑点 (三)阳极区的导电特 1、阳极斑点 2、阳极区导电形式 三、焊接电弧的工艺特性 电弧的工艺特性主要包括:热能特性、力学特性、电弧稳定性等。 (一)电弧的热能特性 1、电弧热的形成机构 电弧的弧柱、阴极区、阳极区的产热特性各不相同。 ⑴弧柱的产热 ⑵阴极区的产热特性 ⑶阳极区的产热特性

2、电弧的温度分布 ⑴轴向-两极区低弧柱区高 ⑵径向-中心高四周低 3、焊接电弧的热效率及能量密度 电弧产热的一部分热量会通过对流、传导、辐射等形式散失,所以会存在热效率问题。 能量密度分布:轴向-两极区大弧柱区小径向-中心大四周小 (二)、电弧的力学特性 1、电弧力类型及作用(重点) 电磁(收缩)力——使电弧获得刚直性,促进熔滴过渡 等离子流力——促进熔滴过渡 斑点(压)力——阴极>阳极/阻碍熔滴过渡 电极材料蒸发的反作用力——阴极>阳极/阻碍熔滴过渡 熔滴(droplet)冲击力——对熔池造成冲击 短路爆破力——短路时产生,导致飞溅 2、电弧力的主要影响因素 气体介质、焊接电流和电压、焊丝(条)直径、极性和电极端部形状等。 四、焊接电弧的稳定性 电弧稳定性的概念(P19) 影响电弧稳定性的因素:电源、外界因素、药皮(芯)(焊剂)、

焊接电弧的构造及静特性

§6—2焊接电弧的构造及静特性 一焊接电弧的构造及温度 焊接电弧的构造可划分三个区域:阴极区,阳极区,弧株。 电弧焊是利电弧的热能来达到连接金属的目的,电弧的热能是由上述各个区域的电过程作用下产生的,由于各个区域的电过程特点不同,因此各区域所放出的能量及温度的分布也是不相同的。 1阴极区 电弧紧靠负电极的区域称为阴极区。 阴极区很窄,约为10~10cm。在阴极区的阴极表面有一个明显的光的斑点,它是电弧放电时,负电极表面上集中发射的微小区域,称为阴极斑点。 阴极区的温度一般达到2130~3230℃,放出的热量占36%左右》阴极温度的高低主要取决于阴极的电极材料而且阴极的温度一般都低于阴极金属材料的沸点。(见图表) 此外,如果增加电极中的电流密度,那么阴极区的温度也可相应提高。

阴极区和阳极去的温度 注(1)电弧中气体介质为空气。(2)阴极和阳极为同种材料 2阳极区 电弧紧靠正极的区域称为阳极区。阳极区较阴极区宽,越为10~10cm在阳极区的阳极表面也有光亮的斑点,它是电弧放电时,正电极表面上集中的接收电子的位区域,称为阳极斑点。 阳极不发射电子,消耗能量少,因此在阴极材料相同时,阳极去的温度略高于阴极。阳极区的温度一般达2330~3930℃放出热量占43%左右,一般手工电弧焊时,阳极的温度比阴极的温度高些。 3弧柱 电弧阴极区和阳极区的部分称为弧柱。由于阴极区和阳极区都很窄,因此弧柱的长度基本上等于电弧长度。弧柱中所进行的电过程较复杂,而且它的温度不受材料沸点的限制,因此弧柱中心温度可达到5730~7730℃放出的热量占21%左右(手工电弧焊)。弧柱的温度与弧柱中气体介质和焊接电流大小等因素有关;焊接电流越大,弧柱中电离程度也越大,弧柱温度也越高。(图1)

焊接电弧的物理基础

焊接电弧的物理基础 研究意义:弧焊电源是电弧能量的供应者,其电特性影响到电弧燃烧的稳定性,从而直接影响到焊缝的质量。 电弧定义:由焊接电源供给的,具有一定电压的两电极间或电极与母材间,在气体介质中产生的强烈而持久的放电现象。 电弧是一种特殊的气体放电现象,它是带电粒子通过两电极之间气体空间的一种导电过程。 气体放电:两极间的气体被击穿而导电的过程。 非自持放电:气体导电所需要的带电粒子不能通过放电过程本身产生,而需要外加措施来产生带电粒子(加热、施加一定能量的光子等等)。 自持放电:当电流大于一定值时,一旦放电开始,放电过程本身就可以产生维持导电所需要的带电粒子。有暗放电、辉光放电、电弧放电等三种。 要使两电极之间的气体导电必须具备两个条件: (1) 两电极之间有带电粒子; (2) 两电极之间有电场。 1、焊接电弧产生的条件 要使电弧产生和稳定燃烧,就必须使两极(或电极与母材)之间的气体中有带电粒子,而获得带电粒子的方法就是中性气体的电离和金属电极(阴极)电子发射。因此,气体

电离和阴极电子发射是焊接电弧产生和维持的两个必要条件。 (1)气体电离 定义:在外加能量作用下,使中性的气体分子或原子分离成电子和正离子的过程。 实质:中性气体粒子吸收足够的外部能量,使分子或原子中的电子脱离原子核束缚而成为自由电子和正离子的过程。电离能: 中性气体粒子失去第一个电子所需要的最小能量成为第一电离能 失去第二个电子所需的能量称为第二电离能。 …… 单位:电子伏(eV)为:1.6×10-19J 电离电压:气体的电离电压的大小反映了带电粒子产生的难易程度。 电离电压低----带电粒子容易产生有利于电弧导电 电离电压高----带电粒子难以产生电弧导电困难 电离度:电弧内单位体积内电离的粒子数与气体电离前粒子总数的比值 X=电离的粒子密度/电离前中性粒子密度。焊接电弧中,气体介质电离的形式主要有: 热电离、场致电

第一章 焊接基本知识..

第二篇机器人焊接技术篇 第一章焊接基本知识 1.1焊接电弧 1.1.1电弧的产生 焊接时,将焊丝端部与焊件接触后很快拉开,在焊丝端部与焊件之间立即就会产生明亮的电弧,这种电弧与一般电火花在本质上是相同的,是一种气体放电现象,而且是一种自持放电过程。借助这种特殊的气体放电过程,电能转换为热能、机械能和光能。焊接时主要是利用其热能和机械能来达到连接金属的目的。电弧中的带电粒子主要是依靠电弧中的气体介质的电离和电极的电子发射两个物理过程而产生的。 1.1.1.1电离 在一定的条件下中性气体分子或原子分离成正离子和电子的现象称为电离。使中性粒子失去第一个电子所需要的最低外加能量称为第一电离能,通常以电子伏特(eV)为单位。若以伏特表示则为电离电位。不同的气体或元素,由于原子的构造不同,其电离电位也不同,表1.1为常用元素的电离电位。 在焊接时使气体介质电离的方式主要有三种:热电离、碰撞电离和光电离。 热电离:在高温时气体的分子或原子的运动速度很快,它们中间的电子也以高速度运动。由于焊接电弧具有很高的温度(弧柱的温度一般在5000K—30000K的范围),这时电子的高速运动所产生的离心力大于原子核对它的吸引力,电子就脱离原子,而使原子变成阳离子和电子。温度越高,热电离作用就越大。 碰撞电离:带电质点受电场的作用而加速运动,使它具有很大的动能,当与中性的气体分子或原子碰撞时,将一部分能量传给气体分子或原子中的电子,促使其内能发生变化,从而使电子脱离原子核的吸引而成为自由电子,原子便成为阳离子。当电弧长度不变,两极间

的电压越高,带电质点的运动速度就越大,产生碰撞电离的作用就越强。 光电离:中性粒子接受光辐射的作用而产生的电离现象称为光电离。光电离是电弧中产生带电粒子的一个次要途径。 1.1.1.2电子发射 电弧中担负导电任务的带电粒子除了依靠上述电离过程产生外,还需要从电极表面发射出来。只有从阴极表面发射的电子在电场作用下才可能参与导电过程。使一个电子由金属表面飞出所需要的最低外加能量称为逸出功,单位是电子伏特(eV),由于e是一常数,所以常用V来表示。几种金属的逸出功列于表1.2。由表2可见, 所有金属当表面存在氧化物时其逸出功皆减小。 表1.2几种金属的逸出功 焊接时,根据阴极所吸收能量的性质不同,电子发射的方式可分为热电子发射、场致电子发射和碰撞电子发射。 热电子发射:焊接时,阴极表面温度很高,阴极中的电子运动速度很快,当电子的动能大于电极内部正电荷的吸引时,电子就会冲出阴极表面,而产生热电子发射作用。温度越高,热电子发射作用越强烈。 场致电子发射:在强电场的作用下,由于电场对阴极表面电子的吸引力,电子可以获得足够的动能,从阴极表面发射出来。这种发射电子的情况除了决定于电极外还决定于电场强度。 碰撞电子发射:当运动速度较高,能量较大的阳离子撞击阴极表面时,将能量传给阴极而产生电子发射。电场强度越大,阳离子的运动速度也越大,则产生的碰撞电子发射作用就越强。 1.1.2电弧的构造和温度 焊接电弧可以划分为三个区域:阴极区、阳极区和弧柱区(图1.1)。阴极区和阳极区在电弧长度方向的尺寸皆很小, 约为10-4—10-6厘米。在阴极区的阴极表面有一个明亮部分, 称为阴极斑点。在阳极区的阳极表面也有一个明亮部分称为阳极斑点。 图1.1 焊接电弧的构造 阴极区:为了维持电弧的稳定燃烧,阴极区的任务是向弧柱区提供所需的电子流(Ie=0.999I,I为总电流),接受弧柱区送来的正离子流(Ii=0.001I)。从阴极发射出来的电子受到阳极的吸引,很快离开阴极向阳极移动。但阳离子的质量比电子大,运动速度较小,所以在阴极表面每一瞬间阳离子的浓度都比电子大得多,这样就使得阴极表面附近所有阳离子的总数大大超过所有电子的总数,因而造成阴极表面附近空间电荷呈正电性。这样从阴极表面到阳离子密集的地方就形成较大的电位差,这部分电位差称为阴极压降UK。

焊接结构作业2014

焊接结构作业1 1. 简述焊接结构的特点(优势与不足)。 2. 简述构件焊接性的含义,哪些因素影响构件焊接性? 3. 比较电弧焊(MIG )与电阻焊(点焊)过程中产热机构、散热机构和热量传递方式方面 的差异。 4. 哪些因素会影响MIG 过程产热及散热? 焊接结构作业2 1. 举例说明焊接结构过程中涉及到几种热量传递方式。 2. 比较交流TIG 焊与电阻焊的有效热功率的差异。 3. 什么是焊接热循环?描述焊接热循环的参数有哪些? 4. 请在典型焊接热循环曲线上标出各热循环参数并解释其意义。 5. 比较长段多层焊与短段多层焊的特点和使用范围。 焊接结构作业3 1. 什么是内应力?有什么特点? 2. 内应力的分类(作用范围划分)、温度应力产生原因。 3. 什么是自由变形、内部变形、外观变形?之间有什么关系? 4. 画出低碳钢的屈服极限随温度的变化曲线。 5. 简述长板条中心加热条件下的变形及应力产生分布情况。 6. 长板条中心加热—冷却后残余应力的产生机理(过程) 焊接结构作业4 1. 长板条一侧加热—冷却后,残余应力的产生及分布情况。 2. 长板条一侧加热时变形及应力的演变过程。 3. 以低碳钢平板条中心焊接为例说明焊接温度场与对应高温时的应力分布情况。 4. 说明受拘束体在热循环中应力与变形的演变过程。(以低碳钢为例)分三种情况 焊接结构作业5 1. 某种钢材((T s=960MPa的杆两端完全拘束的条件下温升多少才屈服?(注: E=210GPa, -6 a =1.2 X 10 )。

2. 某种钢材((T s=300MPa的杆两端完全拘束,环境温度为30C,问在均匀的加热的

焊接基础知识教案

第1,2课时 焊接基础知识 教学目标: 知识与技能:1、了解焊接的概念及分类。 2、知道焊接电弧的组成及焊接电弧的偏吹。 过程与方法:1、理解焊接参数的概念 2、掌握焊接接头的种类及接头型式 情感态度价值观:以图片和视频吸引学生注意,激发学习兴趣。 教学重点:焊接的分类、焊接电弧的偏吹 教学难点:焊接参数、焊接接头的种类及接头型式 教学方法:讲授法 教学准备:多媒体教学 教学过程: (一)导入: 观看图片、视频导入。 (二)新授: 一、焊接的概念及分类 1. 焊接的概念: 焊接就是通过加热或加压,或者两者并用,并且用或不用填充材料使焊件达到结合的一种加工方法。 2. 焊接的分类: 按造焊接过程中金属所处的状态不同,可以把焊接方法分为熔焊、压焊、钎焊三类。(1)熔焊,熔焊是在焊接过程中将焊接接头加热至熔化状态,不加压力完成的焊接方法。我们常用的焊条电弧焊、CO2气体保护焊、氩弧焊、埋弧焊、气焊等都属于这种焊接方法。(2)压焊,压焊是在焊接过程中必须对焊件施加压力(加热或不加热),以完成焊接的方法。电阻焊、摩擦焊、爆炸焊等都属于这种焊接方法。 (3)钎焊,钎焊是采用比母材熔点低的金属材料作钎料将焊件和钎料加热到高于钎料的熔点,低于母材的熔化温度,利用液态钎料润湿母材填充接头间隙并与母材相互扩散实现连接焊件的方法。常见的钎焊方法有烙铁钎焊、火焰钎焊等。 二、焊接电弧: 1、电弧的组成 由焊接电源供给的,具有一定电压的两极间,在气体介质中,产生强烈而持久的放电现象称为焊接电弧。焊接电弧由阴极区、阳极区、弧柱区三个部分组成。 2、焊接时的极性和应用 用直流电源焊接时焊件接电源正极,工件接电源负极称为正接;焊件接电源负极,工件接电源正极称为反接。交流电源不存在正反接。 焊接时极性的选用: 直流弧焊时,为获得较大的熔深,可采用正接,这是因为电弧的阳极区温度较高,在焊接薄板时,为防止烧穿,可采用反接。当采用低氢型(碱性)焊条时,为保证电弧稳定性必须采用反接。 3、焊接电弧的偏吹 在焊接过程中,因气流的干扰、磁场的作用或焊条偏心的影响,会出现电弧中心偏离电

第二章焊接料的组成及作用

第二章 焊接材料的组成及作用 1、焊条的工艺性能包括哪些方面?焊条的工艺性能对焊条及焊接质量有什么意义? 1)焊条的工艺性能包括: ①焊接电弧的稳定性 ②焊缝成形 ③各种位置焊接的适应性 ④飞溅⑤脱渣性 ⑥焊条溶化速度 ⑦焊条药皮发红 ⑧焊接烟尘 2) 焊条的工艺性能: 是指在焊接操作中的性能,是衡量焊接质量的重要指标之一,可以降低电弧气氛的电离电位,因而能提高电弧的稳定性;焊缝表面成形不仅影响美观,更重要的是影响焊接接头的力学性能如果熔渣的凝固温度过高,就会产生压铁水的现象,严重影响焊缝成形,甚至产生气孔,良好的焊条能适应全位置焊接脱渣性差的不仅造成清渣的困难,降低焊接生产率,而且在多层焊施工时,还往往产生夹渣的缺陷。 2、综合分析碱性焊条药皮中2CaF 的作用及对焊缝性能的影响。 它的主要作用是脱氧,在焊条药皮中加入2CaF 发生的焊接冶金反应生成HF 气体,HF 是比较稳定的气体,高温时不易发生分解,也不溶于液体金属中,而是与焊接烟尘一起挥发了,所以减低熔池金属中的H 含量,提高了焊缝金属的冲击韧性和抗裂性能。 3、配置22CaF TiO SiO CaO ---渣系焊条,经初步试验发现药皮套筒过长,电弧不稳,此时应该如何调整该焊条的药皮配方? 药皮套筒过长,是因为药皮熔点过高,溶化速度过慢,则可以通过减少药皮中CaO ,而适当加入些3232N CO a CO K 或,电弧不稳是因为焊条药皮中含2CaF 生成HF 气体的缘故,可适当降低2CaF 含量。 4、试分析低氢型碱性焊条降低发尘量及毒性的主要途径。 低氢型碳钢焊条的焊接烟尘量高于钛钙型焊条,烟尘中危害最大的是KF ,NaF ,而钠钾主要存在于水玻璃中,故可用树脂来降低水玻璃的粘性作用。

焊接电弧的基础知识

焊接电弧的基础知识 电弧是一切电弧焊焊接方法的能源,电弧是一种气体放电现象。 1. 电弧的物理特性 焊接电弧是由焊接电源供电的、具有一定电压的两电极间或电极与焊件间气体介质产生的强烈而持久的放电现象。通常情况下,气体的分子和原子呈中性,气体中没有带电粒子,即使在电场作用下,也不会产生气体导电现象,电弧不能自发产生。要使电弧引弧并稳定地燃烧,就必须使两电极间的气体电离产生导电粒子。 2. 焊接电弧的结构 (1)电弧结构:焊接电弧在长度方向上,由于其气体导体粒子的特性变化,电弧的阻抗也发生变化。通常将电弧分成三个区域,靠近阴、阳极分别为阴极区和阳极区,中间的部分为弧柱区(图1-1)。阴极区的长度非常小,只-5-6-3-4,而cm10~10,阳极区的长度也只有cm10~10有. 弧柱区则占据电弧的主要长度。在电弧电压的分布上,阴,10-30V)~20v,弧柱区的压降(U为)极区的压降(U为10CK 2~3V。)而阳极区的压降(U为A

1-1 电弧压降分布图)电弧中温度及能量的分布:根据焊接电弧的结构2(特点,焊接电弧中各区域温度及能量分布也不均匀。 焊接电弧的溫度结构特点,电极材料、气体种类、焊接电流 大小、焊接方法不同而不同。—般情况下,弧柱区的温度较 高,两电极温度较低,这主要是由于电极温度受到电极的材 料种类、焊接性能以及熔点和沸点的限制,而弧柱区则. 没有。 (3)电弧周围的磁场:电弧实际上是一种气态导体,从宏 观上看呈中性,而在其内部,正、负电荷分离并以一定的方

向运动形成电流,就像一根通电的导体。与流过电流的导体一样,电弧周围也产生自身的磁场。电流与磁场的方向由右手定则确定(图1-2)。这种自身磁场能产生一定的电磁收缩力,促使熔滴向熔池过渡,保证熔化深度,并使电弧具有一定刚度,即电弧抵抗外界干扰,力求保持沿焊条(丝)轴向流动的能力。 在焊接过程中,由于种种原因,电弧自身所产生的磁场均匀性的分布可能遭到破坏,使电弧偏离焊条(丝)的轴线方向,即产生磁偏吹现象,如图1-3所示。电流不仅在焊条与电弧的空间产生磁场,而且在流过焊件的方向产生磁场,结果使电弧偏离了焊条(丝)轴线。磁偏吹的产生还可能由于焊件上的剩磁以及焊件周围其他的磁场所引起。

焊接物理基础资料

电弧焊基础 兰州理工大学焊接系 本科生学习整理 第一章焊接电弧 1.焊接方法分类 焊接方法分为熔焊、钎焊、和压焊三大类 熔焊:熔焊是在不施加压力的情况下,将待焊处的母材加热熔化以形成焊缝的焊接方法。焊接时母材熔化而不施加压力是其基本特征。 压焊:压焊是焊接过程中必须对焊件施加压力(加热或不加热)才能完成焊接的方法。焊接施加压力是其基本特征。 钎焊:钎焊是焊接事采用比母材熔点低的钎料,将焊件和钎料加热到高于钎料熔点但是低于母材熔点的温度,利用液态钎料润湿母材,填充接头间隙,并与母材相互扩散而是心爱那个连接的一种方法力气特 征是焊接时母材不发生熔化,仅钎料发生熔化。 2.焊接电弧中气体电离的种类 热电离——气体粒子受热的作用而产生的电离称为热电离。其实质是气体粒子由于受热而产生高速运动和相互之间激烈碰撞而产生的一种电离。 场致电离——当气体中有电场作用时,气体中的带电粒子被加速,电能被转换为带电粒子的动能,当其动能增加到一定程度时,能与中性粒子产生非弹性碰撞,使之电离,这种电离称为场致电离。 光电离——中性粒子接受光辐射的作用而产生的电离现象称为光电离。不是所有的光辐射都可以引发电离,气体都存在一个能产生光电离的临界波长,气体的电离电压不同,其临界波长也不同,只有当接受的光辐射波长小于临界波长时,中性气体粒子才可能被直接电离。 3.焊接电弧中气体的发射有几种 热发射——金属表面承受热作用而产生电子发射的现象称为热发射。 场致发射——当阴极表面空间有强电场存在时,金属电极内的电子在电场静电库仑力的作用下,从电极表面飞出的现象称为场致发射。 光发射——当金属电极表面接受光辐射时,电极表面的自由电子能量增加,当电子的能量达到一定值时能飞出电极的表面,这种现象称为光发射。

电弧焊复习总结

1、试述电弧中带电粒子的产生方式:电弧中的带电粒子主要是指电子正离子和负离子,这些 带电粒子主要依靠电弧气体空间的电离和电极的电子发射两个物理过程所产生,同时伴随着解离、激励、扩散、复合、负离子的产生等一些其他过程。产生电弧的两个基本条件是有带电粒子和电极之间有一定的电场强度。产生方式有解离、电离(热电离电场作用电离光电离)激励(碰撞传递光辐射传递)电子发射(热发射电场发射光发射粒子碰撞发射)。 1、最小电压原理: 在给定电流和周围条件一定的情况下,电弧稳定燃烧时其导电区的半径或温度应使电弧电场强度具有最小的数值,就是说电弧具有保持最小能量消耗的特性。 2、什么是焊接静特性:是指稳定状态下(弧长一定,稳定的保护气流量和电极)焊接电弧的 焊接电流和电弧电压特性。 3、什么是焊接动特性,为什么交流电弧和直流变动的直流电弧的动特性呈回线特性? 是指的那个电弧的长度一定,电弧电流发生连续快速变化时,电弧电压与焊接电流瞬时值之间的关系。它反映了电弧的导电性对电流变化的响应能力。在焊接电流的上升过程中,由于电弧先前处于相对低温状态,电流的增加需要有较高的电场,因此表现出电弧电压有某种程度的增加;在电流下降过程中,由于电弧先前已处于较高温度状态,电弧等离子体的热惯性不能马上对电流降低做出反应,电弧中仍然有较多的游离带电粒子,电弧导电性仍然很强,使电弧电压处于相对较低的水平,从而形成回线状的电弧动特性。 4、试述焊接电弧的产热机构以及焊接电流T分布:焊接电流是一个能量输出很强的导体,其 能量通过电弧转换,由于弧柱、阴极区、阳极区组成,因此焊接电弧总的能量来自这三个部分。(1)阴极区的产热本质是产生电子(消耗能量)、接收正离子的过程有能量变化,这些能量的平衡结果就是产热。产热产热量是PK=I*(UK-Uw-UT),作用是用于加热阴极。(2)阳极区的产热本质是接收电子、产生A、过程中伴随能量的转换。产热量是PA=I*(UA-UK-Tt),用于加热阳极。(3)弧柱的产热机构本质是A+、e在电场下被加速,使其动能增大表现为温度升高。产热量为Pc=Ia*Ua,I及Ua的因素。 弧柱温度较高,两电极温度较低,焊接电弧径向温度分布,中间高四周低,靠近电极电弧直径小的一端,电流和能量密度高,电弧温度也高。 5、焊接电弧能产生哪几种电弧力?说明他们的产生原因以及影响焊接电弧力的因素。 焊接电弧作用力包括电弧静压力(电磁收缩力)、等离子流力(电弧电磁动压力)、斑点力、爆破力、细熔滴的冲击力。电磁收缩力:这个力的形成是由于一个导体中的电流在另一个导体周围空间形成磁场,磁场间相互作用,使导体受到电磁力。等离子流力:连续不断的气流,到达工件表面时形成附加的一种压力形成等离子流力,等离子流力是高温粒子高速流动形成的。斑点力:当电极上形成斑点时,由于斑点上导电和导热的特点,在斑点上将产生斑点力。爆破力:熔滴短路电弧瞬时熄灭,因短路时电流很大,短路金属液柱中电流密度很高,在金属液柱内产生很大的电磁收缩力,使缩颈变细,电阻热使金属液柱小桥温度急剧升高,使液柱汽化爆断。细熔滴的冲击力:熔滴在等离子流作用下以很高的加速度冲向熔池产生的,受电磁力和等离子流力的作用。影响焊接电弧力的因素有电弧电流及电弧电压、焊丝直径、电极的极性、气体介质、电流的脉动、钨极端部几何形状。 7.试述影响焊接电弧稳定性的因素 焊接电源、焊接电流和电压、电流的种类和极性、焊剂和焊条药皮、磁偏吹、及铁锈、水、油污、风等其他因素 1、熔化极电弧焊中,焊丝熔化的热源有哪些?熔化极电弧焊中,焊丝的加热熔化主要靠阴极区(电流正接时)或阳极区(电流反接时)所产生的热量及焊丝自身的电阻热,弧柱区产生的热量对焊丝熔化居次要地位。热源主要包括焊丝的电弧热和电阻热。 2、影响焊丝融化速度因素有哪些?是如何影响的? (1)焊接电流对熔化速度的影响。焊丝的电弧热与焊接电流成正比,电阻热与电流平方成正比,同一电流中,焊丝直径越细,伸出长度越长,熔化速度越快。 (2)电弧电压对熔化速度的影响。电弧电压较高时电弧电压基本上对焊丝熔化速度影响不大。电弧电压较低时,当电弧长度减小时,要熔化一定数量的焊丝所需要的电流减小,弧压变小,反而使焊丝熔化速度增加。 (3)焊丝直径对熔化速度的影响。电流一定时,焊丝直径越细,电流密度也越大,使焊丝熔化速度增大。

手工电弧焊基础知识培训内容

钢结构手工电弧焊焊接技能培训 1. 手工电弧焊 手工电弧焊也叫焊条电弧焊是用手工操纵焊条进行焊接的电弧焊方法。它利用焊条与焊件之间建立起来的稳定燃烧的电弧,使焊条和焊件熔化,从而获得牢固的焊接接头。图 1.0 为手工电弧焊示意图。 图1.0 2.手工电弧焊特点 2.1 .操作灵活由于焊条电弧焊设备简单、移动方便、电缆长、焊把轻,因而广泛应用于平焊、立焊、横焊、仰焊等各种空间位置和对接、搭接、角接、 T 形接头等各种接头形式的焊接。 2.2 .待焊接头装配要求低由于焊接过程由焊工手工控制,可以适时调整电弧位置和运条姿势,修正焊接参数,以保证跟踪接缝和均匀熔透。 2.3 .可焊金属材料广焊条电弧焊广泛应用于低碳钢、低合金结构钢的焊接。选配相应的焊条,焊条电弧焊也常用于不锈钢、耐热钢、低温钢等合金结构

钢的焊接。 2.4 .焊接生产率低焊条电弧焊与其它电弧焊相比,由于其使用的焊接电流小,每焊完一根焊条后必须更换焊条,以及因清渣而停止焊接等, 2.5 .焊接质量受人为因素的影响大焊缝质量在很大程度上依赖于焊工的 操作技能及现场发挥,甚至焊工的精神状态也会影响焊缝质量。 2.4手工电弧焊电焊机 手工电弧焊的主要设备有弧焊机,按其供给的焊接电流种类的不同可分为交流弧焊机和直流弧焊机两类。 1.交流弧焊机 交流弧焊机供给焊接时的电流是交流电,是一种特殊的降压变压器,它具有结构简单、价格便宜、使用可靠、工作噪声小、维护方便等优点,所以焊接时常 用交流弧焊机,它的主要缺点是焊接时电弧不够稳定。 2.直流弧焊机 直流弧焊机供给焊接时的电流为直流电。它具有电弧稳定、引弧容易、焊接质量较好的优点,但是直流弧焊发电机结构复杂、噪声大、成本高、维修困难。 在焊接质量要求高或焊接2mm 以下薄钢件、有色金属、铸铁和特殊钢件时,宜 用直流弧焊机。 4. 手工电弧焊常用的工具有: 4.1 .电焊钳 又称焊把,是用以夹持焊条、传导电流的工具。有300A、500A两种规格。 4.2 .面罩和护目镜 是防止焊接飞溅、弧光及高温对焊工面部及颈部灼伤的一种工具。面罩一般分为手持式和头盔式两种,。护目镜按亮度的深浅不同分为 6 个型号(7~12 号),号数越大,色泽越深。 4.3 .电焊条保温筒 使用低氢型焊条焊接重要结构时,焊条必须先进烘箱焙烘,烘干温度和保温时间因材料和季节而异。焊条从烘箱内取出后,应贮存在焊条保温筒内, 在施工现逐根取出使用。 4.4 .焊缝接头尺寸检测器用以测量坡口角度、间隙、错边以及余高、缝宽、

焊接电弧特性

焊接电弧特性 焊接电弧的电特性包括焊接电弧的静态伏安特性(静特性)和动态伏安特性(动特性)。 一、电弧静特性曲线 图1-1普通电阻静特性与电弧静特性曲线 1—普通电阻静特性曲线2—电弧静特性曲线 一定长度的电弧在稳定燃烧状态下,电弧电压与电弧电流之间的关系称为焊接电弧的静态伏安特性,简称伏安特性或静特性,也称为U曲线。 1)电弧静特性曲线。焊接电弧是焊接回路中的负载,它与普通电路中的普通电阻不同,普通电阻的电阻值是常数,电阻两端的电压与通过的电流成正比(U=IR),遵循欧姆定律,这种特性称为电阻静特性,为一条直线,如图1-1中的曲线1所示。 焊接电弧也相当于一个电阻性负载,但其电阻值不是常数。电弧两端的电压与通过的焊接电流不成正比关系,而呈U形曲线关系,如图1-1中的曲线2所示。 电弧静特性曲线分为三个不同的区域,当电流较小时(图1-1中的ab区),电弧静特性属下降特性区,即随着电流增加电压减小;当电流稍大时(图1-1中的bc区),电弧静特性属平特性区,即电流变化时,而电压几乎不变;当电流较大时(图1-1中的cd区),电弧静特性属上升特性区,电压随电流的增加而升高。 2)电弧静特性曲线的应用。由于不同的焊接方法,其焊接中所取的电流范围有限,因此对于特定焊接方法,根据其电流适用范围,其电弧静特性曲线只是整个U曲线的某一部分。 焊条电弧焊、埋弧焊一般工作在静特性的平特性区,即电弧电压只随弧长而变化,与焊接电流关系很小。 ◆焊条电弧焊、埋弧焊多半工作在静特性水平段。 ◆一般的钨极氩弧焊、等离子弧焊的焊接电弧也工作在水平段, ◆当电流很小时,如微束等离子弧焊、微束TIG焊工作在下降段 ◆细丝熔化极气体保护焊基本上工作在上升段。

焊接电弧特性

§1.2 焊接电弧特性 电弧特性是指电弧在导电行为方面表现出的一些特征,其中的电弧电特性与电弧热平衡、电弧稳定性等有很深的联系,是很重要的事项。 焊接电弧静特性 焊接电弧动特性 阴极斑点和阳极斑点 电弧的阴极清理作用 最小电压原理 电弧的挺直性与磁偏吹

1. 焊接电弧静特性 1)电弧静特性曲线变化特征(与金属电阻对应理解) 电弧的电流·电压特性 左图概念性示出稳定状态下焊接电弧的电流·电压特性,称作电弧静特性曲线。静特性曲线是在①某一电弧长度数值下,在②稳定的保护气流量和③电极条件下(还应包括其他稳定条件),改变电弧电流数值,在电弧达到稳定燃烧状态时所对应的电弧电压曲线。 呈现3个区段的变化特点下降特性区(负阻特性区)平特性区上升特性区

3个特性区域的特点是由于电弧自身性质所确定的,主要和电弧自身形态、所处环境、电弧产热与散热平衡等有关 在小电流区:电弧电压随电流的增大而减小,呈现负阻特性。原因如下: 电流小时,电弧热量低,导电性差,需要较高的电场推导电荷运动; 电弧极区(特别是阴极区),温度低,提供电子能力差,会形成较强的极区电场; 电流增大:电弧中产生和运动等量的电荷不再需要更高的电场; 电弧自身性质具有保持热量动态平衡的能力 当电流稍大时:焊条金属将产生金属蒸气的发射和粒子流。 消耗能量,故E不用降低 当电流进一步增大时,金属蒸气的发射和等离子流的冷却作用进一步增强,同时由于电磁收缩力的作用,电弧断面不能随电流的增加而成比例的增加,电弧电压降升高,电弧静特性呈正特性。

埋弧焊电弧静特性曲线埋弧焊电弧的散热损失小,且电弧中基本没有GTA、GMA那样的等离子流存在,采用粗焊丝大电流,电弧特性呈下降趋势。 电弧特性反应了电弧的导电性能和变化特征,电弧种发生的许多现象都与静特性有关,也可以用于对比解释各种电弧焊方法的差别

手工电弧焊焊接工艺

手工电弧焊焊接工艺 本工艺适用于低碳钢和低合金高强度各种大型钢结构工程制造重要结构的焊接。 一、焊前准备 1 ?根据施焊结构钢材的强度等级,各种接头形式选择相等强度等级牌号和合适焊条直径。 2?当施工环境温度低于0°C,或钢材的碳当量大于0.41% 及结构刚性过大,构件较厚时应采用焊前预热措施,预热温度为80°C?100°C,预热范围为板厚的5倍,但不小于lOOmmo 3?工件厚度大于6 mm对接焊时,为确保焊透强度,在板材的对接边沿开切V形或X形坡口,坡口角度Q为60。,钝边p二mm,装配间隙b = 0~l mm,如图1。当板厚差24 mm时,应对较厚板材的对接边缘进行削斜处理,如图2。

4?焊条烘焙:酸性药皮类型焊条焊前烘焙150°CX2保温2 小时;碱性药皮类焊条焊前必须进行300?350°CX2烘 焙,并保温2小时才能使用。 5?焊前接头清洁要求,在坡口或焊接处两侧30 mm 范围内 影响焊缝质量的毛刺、油污、水、铁锈等脏物及氧化皮, 必须清除干净。 6?在板缝两端如余量小于50 mm 时,焊前两端应加引弧、 熄弧板,其规格不小于50X50 mm 。 二、焊接材料的选用 1.首先考虑母材强度等级与焊条等级相匹配和不同药皮类 型焊条的使用特性。 2?考虑物件的工作条件,凡承受动载荷、高应力或形状复 杂,刚性较大,应选用抗裂性能和冲击韧性号的低氢型焊 L 图2

3.在满足使用性能和操作性能的前提下,应适当选用规格大效率高的铁粉焊条,以提高焊接生产效率。 三、焊接规范 1 ?应根据板厚选择焊条直径,确定焊接电流,如表。 该电流为平焊位置焊接,立、横、仰焊时焊接电流应降低10~15%; >16 mm板厚焊接底层选"3.2 mni焊条,角焊焊接电流应比对接焊焊接电流稍大。 2?为使对接焊缝焊透,其底层焊接应选用比其他层焊接的焊条直径较小。 3?厚件焊接,应严格控制层间温度,各层焊缝不宜过宽,应考虑多道多层焊接。 4?对接焊缝正面焊接厚,反而使用碳气刨扣槽,并进行封底焊接。 四、焊接程序 1 ?焊接板缝:有纵横交叉的焊缝,应先焊端接缝后焊边接

第二章 焊接电弧的基本知识

第二章焊接电弧的基本知识第一节焊接电弧的产生和组成·基本常识 配合件—动、静、过渡机(构)件联接件—机械联接、粘接 焊接件—热熔、压力、电阻 ·概念:电弧——气体介质中的放电现象 特性——高温(可达60000C)和强光 用途——除焊接外,还可用于炼钢、切 割、气刨、照明等 电弧焊接——利用焊接电弧热量熔化 焊条(焊丝)和母材形成焊缝 ·产生原理 原子结构—由带正电的原子核和围绕原子 核运动的一层或多层电子层组 成。如氧原子: 电离—通过外界的激发能量,使电子脱离

原子核的束缚,成为自由电子(负 离子)和失去电子的原子核(正 离子) 产生电离的能量源 撞击电离—带电粒子撞击中性粒子 热电离—热运动粒子相互撞击 光电离—光子能产生电离 电场电离—强电场,大电位差电离过程—电离与复合过程同时存在。能量不 足,电离中止。 ·引弧 接触引弧—先接触,后拉开(一般3-4mm) 非接触引弧—有间隙,高电压击穿(高频 高压、高压脉冲) ·电弧组成

阴极区—10-6cm,32000C,发射电子,吸收阳 离子,产热38% 弧柱区—离子和中性粒子混合区,60000C, 产热20% 阳极区—10-4cm,39000C产热42%(图2-2) 第二节焊接电弧的分类和特性·分类 1.按电流种类分:交流电弧、直流电弧、 脉冲电弧 2.按电弧状态分:自由电弧、压缩电弧 3.按电极材料分:熔化极电弧、非熔化极 电弧 ·焊接电弧的静特性 U形特性由Ⅰ、Ⅱ、Ⅲ三段组成(图2-3) Ⅰ段下降特性—I↑、U↓(基本不用) Ⅱ段等压特性—I↑、U不变(其他焊接) Ⅲ段上升特性—I↑、U↑(熔化极气保焊)·焊接电弧的稳定性

第一章 焊接电弧

第一章焊接电弧 电弧能放出强烈的光和大量的热。电弧焊接就是利用他的热能来溶化填充金属和母材的。因此,焊接时电弧的稳定性及热特征等性质,对焊接质量有着直接的影响。 本章就是从理论上对焊接电弧的性质及作用进行分析。通过学习,使我们能把焊接电弧的理论知识应用到实际的焊接工作中去,从而达到提高焊接质量的目的。 第一节焊接电弧的引燃 一、焊接电弧及其形成的基本知识 (一)焊接电弧的概念 电弧是通过气体放电的现象之一,在日常生活中经常可以看到气体放电现象。如电车行驶时,电刷与电线之间有时会出现闪光,以及大自然中出现的闪电等。 焊接电弧则是焊接时存在于焊条端部与焊件的间 隙中(图1-1),它与日常所见的气体放电现象有所不 同。焊接电弧不仅能量大,而且持续稳定。因此我们 说由焊接电源供给的,具有一定电压的两极间或电极 与焊件间,在气体介质中,产生的强烈而持久的放电 现象称为焊接电弧。 气体的分子和原子在正常的情况下都是呈中性 的,所以气体中没有游离的带电质点,不能导电,因 此,电流也就通不过。要使电流引燃和连续燃烧,就 必须使两极间的气体变成电的导体,这是电弧产生和 维持的重要条件。使气体电离的方法是气体电离。气 体电离后,原来的气体中的一些中性微粒转变成电子、 阳离子等带电质点,这时电流才能通过气体间隙而形 成电弧。 (二)气体电离 自然界的一切物质,都是有原子组成的。原子本身又由带电正电荷的原子核及带负电荷的电子组成,电子则是按照一定的轨道环绕原子核运动。在常态下,原子核所带的正电荷与核外电子所带的负电荷相等,这时原子是呈中性的。如果此时气体收到电场或热能的作用,就会使气体原子中的电子获得足够的能量,以克服原子核对它的吸引而成为自由电子;同时中的原子由于失去带负电荷的电子而变成带正电荷的正离子。这种使中性的气体分子或原子释放电子形成正离子的过程叫做气体电离。 要使电子克服原子核对它的引力,需要需要供给一定的能量。供给气体电离的能量有: 电离电位----消耗于使电子与原子核分离的能,称为电离的功;一电子伏特来表示的功叫做电离电位或电离势。 激励电位----为了使电子移动到距原子核更远的轨道,应使电子具有一定的速度。消耗在使电子具有这种速度的能,叫做激励电位,一电子伏特来表示。

《电弧焊基础》重点整理

第一章焊接电弧基础 1.电弧的本质是气体放电,是气体放电的一种表现形态。 2.三种放电形式:(自持,非自持,辉光)放电 3.带电粒子来源:一是电源通过电极(阴极)向气隙空间发射电子。二是气隙中的中性粒子被电离产生电子和离子。 4.阳离子和电子来源:阳离子(电离)电子(阴极电子发射,包括热发射,场致发射) 5.电弧压降包括哪三部分:(阳极,弧柱,阴极)压降 6.维持电弧放电的条件:1、放电气隙内带电粒子的生成。2、保持阴极、阳极与电弧间电的连续性。 7.焊接电弧的热量的来源:焊接电弧的热量来自电源提供的电能,电源向电弧的弧柱区、阳极区和阴极区即电弧整体提供的电能:Pa=IUa=I(Ua+Uc+Up) 8.焊接电弧的热效率 影响因素:热效率的数值与焊接方法、弧长因素、母材情况等有关。 热效率:相对于电弧功率(电弧电压X电弧电流),向母材传送的热量(热输入量)所占的比例称作焊接电弧热效率。 9.电弧静压力(电磁收缩力) 在两根互相平行导体中,通过同方向的电流时,导体间产生相互吸引的力,若电流方向相反,则产生排斥力。 10.交流电弧:是指电弧(电极)极性随时间交替变化的电弧,也就是焊接电流方向按照一定的时间间隔变化,一般用在TIG焊接、等离子弧焊接和焊条电弧焊中。 11.直流正/反接的区别:直流正接的热量比反接的热量要高,所以焊接厚板的时候多用直流正接。焊接薄板的时候为了防止焊穿,采用直流反接的方法。而焊接铝镁合金的时候直流反接,钨极为正极,电流大,对氧化膜有冲击清理的作用,但是容易烧穿,所以用交流焊接交替电波焊接,这样可以有效清理氧化膜还防止烧穿。 12.焊接电弧静特性 产生原因:小电流区,电弧温度低,其间粒子电离度低,电弧导电性较差,需要有较高的电场推动电荷运动在电弧极区,特别是阴极区,由于电极温度较低,极区的电子提供能力较差,不能实现大量的热电子发射,会形成较强的极区电压降,表现出较高的电压值。增大电流值弧柱温度增加,电弧中的粒子电离度增加,电弧的导电性增加,同时电极温度提高,阴极热发射能力增强,Uc值降低,阳极蒸发量增加UA值降低,两极区电场相对减弱,电弧电压下降。 15.阳极斑点:产生:一是小电流焊接,母材作为阳极,如果母材上不能型成连续的融化(比如电弧功率小、母材散热快等),将会在母材上电弧后面型成阳极斑点。二是大电流焊接,母材作为阳极,虽然型成了较大的熔池,但由于熔池运动或表面波动频繁,也可能是熔池中各处蒸发情况的变迁,或由于合金元素的蒸发,将在熔池内部型成阳极斑点。 18.磁偏吹:某种原因使磁力线分布的均匀,就会使电弧偏向一侧,这种现象叫做磁偏吹。 19.磁偏吹方向:电磁力把电弧从磁力线密集的一侧推向磁力线稀疏的一侧 20.电弧焊中的保护气体:作用:一是向电弧空间提供气体介质。二是起到保护作用,保护包括电弧、保护电极、保护被焊件,避免上述部分收到大气的侵蚀。

焊接电弧的构造及静特性

焊接电弧的构造及静特 性 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

§6—2焊接电弧的构造及静特性 一焊接电弧的构造及温度 焊接电弧的构造可划分三个区域:阴极区,阳极区,弧株。 电弧焊是利电弧的热能来达到连接金属的目的,电弧的热能是由上述各个区域的电过程作用下产生的,由于各个区域的电过程特点不同,因此各区域所放出的能量及温度的分布也是不相同的。 1阴极区 电弧紧靠负电极的区域称为阴极区。 阴极区很窄,约为10~10cm。在阴极区的阴极表面有一个明显的光的斑点,它是电弧放电时,负电极表面上集中发射的微小区域,称为阴极斑点。 阴极区的温度一般达到2130~3230℃,放出的热量占36%左右》阴极温度的高低主要取决于阴极的电极材料而且阴极的温度一般都低于阴极金属材料的沸点。(见图表)

此外,如果增加电极中的电流密度,那么阴极区的温度也可相应提高。 阴极区和阳极去的温度 电极材料材料沸 腾℃阴极区温 度℃ 阳极区温 度℃ 碳436732273827 铁299821302330 铜230719272177 290020972177 钨592727273927 注(1)电弧中气体介质为空气。(2)阴极和阳极为同种材料 2阳极区 电弧紧靠正极的区域称为阳极区。阳极区较阴极区宽,越为10~10cm在阳极区的阳极表面也有光亮的斑点,它是电弧放电时,正电极表面上集中的接收电子的位区域,称为阳极斑点。 阳极不发射电子,消耗能量少,因此在阴极材料相同时,阳极去的温度略高于阴极。阳极区的温度一般达2330~3930℃放

手工电弧焊焊接工艺和流程.

手工电弧焊焊接工艺和流程 工艺适用于低碳钢,低合金高强度钢,及各种大型钢结构工程制造的焊接,确保焊接生产施工质量,特制订本工艺。 一、焊前准备 1、根据施焊结构钢材的强度等级,各种接头型式选择相应强度等级牌号焊条和合适焊条直径。 2、当施工环境温度低于零度,或钢材的含碳量大于0.41%及结构刚性过大,构件较厚时应采用焊前预热措施,预热温度为80℃-100℃,预热范围为板厚的5倍,但不小于100毫米。 3、工件厚度大于6毫米对接焊时,为确保焊透强度,在板材的对接边沿应开切V型或X型坡口,坡口角为60度,钝边P=0-1毫米,装配间隙为0-1毫米,当板厚差≥4毫米时,应对较厚板材的对接边缘进行削斜处理。 4、焊条烘焙:酸性药皮类型焊条焊前烘焙150℃*2保温2小时,碱性药皮类焊条焊前必做进行300℃-350*2烘焙,并保温2小时才能使用。 5、焊前接头清洁要求:在坡口或焊前两侧30毫米范围内,应将影响质量的毛刺,油污,水,锈脏物,氧化皮等必须清洁干净。 6、在板缝二端如余量小于50毫米时,焊缝二端应加引弧,熄弧板,其规格不小于50*50毫米。 二、焊接材料的选用 1、首先应考虑,母材强度等级与焊条强度等级相匹配和不同药皮类型焊条的使用特性。 2、考虑物件工作环境条件,承受动、静载荷的极限,高应力或形状复杂,刚性较大,应选用抗裂性能和冲击韧性好的低氢型焊条。 3、在满足使用性能和操作性能的前提下,应适当选用规格大效率高的铁粉焊条,以提高焊接生产效率。 三、焊接规范 1、应根据板厚选择焊条直径,确定焊接电流(如表)。 板厚(mm)焊条直径(Φ:mm)焊接电流(A:安倍)备注 3 2.5 80-90 不开坡口 8 3.2 110-150 开V型坡口 16 4.0 160-180 开X型坡口 20 4.0 180-200 开X型坡口 该电流为平焊位置焊接,立、横、仰焊时焊接电流应降低10-15%,大于16毫米板厚焊接底层选Φ3.2mm焊条,角焊焊接电流应比对接焊焊接电

焊接件结构工艺

焊接件的结构工艺性 在焊接结构的生产制造中,除考虑使用性能之外,还应考虑制造时焊接工艺的特点及要求,才能保证在较高的生产率和较低的成本下,获得符合设计要求的产品质量。 焊接件的结构工艺性应考虑到各条焊缝的可焊到性、焊缝质量的保证,焊接工作量、焊接变形的控制、材料的合理应用、焊后热处理等因素,具体主要表现在焊缝的布置、焊接接头和坡口形式等几个方面。 一、焊缝布置 焊缝位置对焊接接头的质量、焊接应力和变形以及焊接生产率均有较大影响,因此在布置焊缝时,应考虑以下几个方面。 1.焊缝位置应便于施焊,有利于保证焊缝质量 焊缝可分为平焊缝、横焊缝、立焊缝和仰焊缝四种型式,如图1所示。其中施焊操作最方便、焊接质量最容易保证的是平焊缝,因此在布置焊缝时应尽量使焊缝能在水平位置进行焊接。 图1 焊缝的空间位置 a)平焊 b)横焊 c)立焊 d)仰焊 除焊缝空间位置外,还应考虑各种焊接方法所需要的施焊操作空间。图2所示为考虑手工电弧焊施焊空间时,对焊缝的布置要求;图3所示为考虑点焊或缝焊施焊空间(电极位置)时的焊缝布置要求。 图2手工电弧焊对操作空间的要求 a)合理 b)不合理 图3 电阻点焊和缝焊时的焊缝布置 a)合理 b)不合理 另外,还应注意焊接过程中对熔化金属的保护情况。气体保护焊时,要考虑气体的保护作用,如图4所示。埋弧焊时,要考虑接头处有利于熔渣形成封闭空间,如图5所示。 图4 气体保护电弧焊时的焊缝布置 a)合理 b)不合理 图5 埋弧焊时的焊缝布置 a)合理 b)不合理 2.焊缝布置应有利于减少焊接应力和变形 通过合理布置焊缝来减小焊接应力和变形主要有以下途径: (1)尽量减少焊缝数量采用型材、管材、冲压件、锻件和铸钢件等作为被焊材料。这样不仅能减小焊接应力和变形,还能减少焊接材料消耗,提高生产率。如图6所示箱体构件,如采用型材或冲压件(图6b)焊接,可较板材(图6a)减少两条焊缝。 图6 减少焊缝数量 (2)尽可能分散布置焊缝如图7所示。焊缝集中分布容易使接头过热,材料的力学性能降低。两条焊缝的间距一般要求大于三倍或五倍的板厚。? 图7分散布置焊缝 a)不合理 b)合理 (3)尽可能对称分布焊缝如图8所示。焊缝的对称布置可以使各条焊缝的焊接变形相抵销,对减小梁柱结构的焊接变形有明显的效果。 图8 对称分布焊缝

相关文档
最新文档