材料力学-应力分析、强度理论

合集下载

材料力学第七章应力状态和强度理论

材料力学第七章应力状态和强度理论
2
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y

x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2

x
y

2
4 2 xy
x
yx xy x
y
R c

x y
2
2
x
xy

dA
yx

y
x y 1 2 2 2

40

x y
2 0.431MPa
sin( 80 ) xy cos(80 )

C
C

C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa

材料力学 第07章 应力状态分析与强度理论

材料力学 第07章 应力状态分析与强度理论
2
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力

材料力学应力和应变分析强度理论

材料力学应力和应变分析强度理论

§7–5 广义虎克定律
y
一、单拉下旳应力--应变关系
x
x
E
y
E
x
ij 0 (i,j x,y,z)
二、纯剪旳应力--应变关系
z
E
x
z
y
xy
xy
G
i 0 (i x,y,z)
z
yz zx 0
x
x
xy
x
三、复杂状态下旳应力 --- 应变关系
y
y
x
y x
z
xy
z
x
依叠加原理,得:
x
1
(MPa)
解法2—解析法:分析——建立坐标系如图
45 25 3
95
60°
i j
x
2
y

x
2
y
)2
2 xy
y
1
25 3 y 45MPa
° 5
0
Ox
6095MPa 6025 3MPa
yx 25 3MPa xy
x ?
x
y
2
sin 2
xy cos 2
25 3 x 45 sin 120o 25 3 cos120o
y
z
z
y
证明: 单元体平衡 M z 0
xy x
x
( xydydz)dx( yxdzdx)dy0
xy yx
五、取单元体: 例1 画出下图中旳A、B、C点旳已知单元体。
F
A
y
F x
x
A
B
C z
x B x
zx
xz
F
Mex
yx
C
xy
FP

材料力学应力状态分析强度理论

材料力学应力状态分析强度理论
断裂力学
断裂力学用于研究材料发生断裂时的力学行为,包括断裂韧性和断裂韧性指标。
断裂模式分析
通过对材料断裂模式的分析,了解材料在受到外力作用时如何发生破裂。
材料的强度
应力。 材料在受力过程中开始产生塑性变形的应力值。
材料在受到大幅度应力作用时发生破裂的强度。
由强度理论推导的材料设计
根据材料的强度特性,可以进行材料设计,以确保材料在使用过程中不超过其强度极限。
考虑材料疲劳的应力分析
1
疲劳寿命评估
扭转应力分析
扭转应力是材料在受扭转力作 用下的应力分布,对材料的扭 转能力和疲劳寿命影响较大。
应力分布分析
1 梁的应力分布
梁的应力分布分析可以 帮助了解梁在受力过程 中的强度和变形情况。
2 压力容器的应力分析 3 板的应力分布
压力容器的应力分析是 为了确保容器在承受压 力时不会发生破裂或变 形。
板的应力分布分析可用 于评估板在受力状态下 的强度和变形性能。
材料力学应力状态分析强 度理论
材料力学应力状态分析强度理论是研究材料受力情况及其强度特性的理论体 系,包括弹性理论、横向状态分析、应力分布分析等内容。
弹性理论
基本原理
材料在受力过程中 会发生变形,弹性 理论用于描述材料 的弹性性质和应变 的产生与传递。
弹性模量
弹性模量是衡量材 料对应力的响应能 力,不同材料具有 不同的弹性模量。
应力-应变关 系
弹性理论可以通过 应力-应变关系来描 述材料受力后的变 形情况。
限制条件
弹性理论是在一定 条件下适用的,需 要考虑材料的线性 弹性和小变形假设。
横向状态分析
横向力
横向状态分析用于研究材料在 受横向力作用下的变形和应力 分布。

第12章 应力状态分析和强度理论—《材料力学》课程PTT精华版

第12章 应力状态分析和强度理论—《材料力学》课程PTT精华版
σα = σxcos2α σ ysin2α τxysin2α
12.2 平面应力状态分析
σα
=
σx
1 cos2α 2
σy
1 cos2α 2
τ xy sin 2α
σα
=
σx
σy 2
σx
σy 2
cos2α τxysin2α
同理,由 Ft = 0 得:
τα
=
σx
2
σy
sin2α
τ xy cos2α
一点的应力状态有三个主应力,
s2
s1
按其代数值排列:
σ1 σ2 σ3
4. 应力状态分类
s3
(1)单向应力状态:三个主应力中,有两个等于零,一
个不等于零的应力状态。
s
ss
s
F
F
12.1 引言
(2)二向应力状态:三个主应力中,有一个等于零,另 外两个不等于零的应力状态。
F
A
sx txy
z
B
sz
t zx t zy
2
s
A
2 Ax
CDE σ
Ay

sx
=
σx
σy 2
σx
σy 2
cos2α
τxysin2α
=
σα
同理可以证明:
Aα D
=
σx
2
σy
sin2α
τ xy cos2α
=
τα
12.2 平面应力状态分析
tyx t txy
4. 应力圆的特点
sy tyx
n
s
sx
t
sx txy
sy
t
s
t
A

材料力学——第6章(应力状态分析及强度理论)

材料力学——第6章(应力状态分析及强度理论)

t min
2t x tan 2 0 = s x s y
t max s max s min = R半 径 = 2 t min
s x s y 2 2 ( ) t x 2
25
[例6-4]求 ⑴图示单元体α =300 斜截面上的应力 ⑵主应力、主平面(单位:MPa)。
40
§6–1 应力状态概述
§6-2 平面应力状态分析
§6-3 三向应力状态分析 §6-4 广义胡克定律 §6-5 工程中常用的四种强度理论
1
拉压
扭转
弯曲
y
y
y
C
s max 压 s max 拉 s max
截面 应力 危险点
应力状态
C
o
FN
s=smax smax
MT
t max
M
t max
2
S平面
n
F
1

sx 面上的应力(s ,t )
tx
y x t n D( s , t C O B(sy ,ty) 2 O
面的法线
两面夹角 两半径夹角2 ; 且转向一致。 x
A(sx ,tx)
s
23
ty
sy s t
n
t D = DC sin[ 180 ( 2 0 2 )]
O
sx sy
图2
ty
px t
同理: t = p x sin p y cos
= s x cos t y sin sin t y cos s y sin cos
经简化 得
s x s y t = sin 2 t x cos 2 2
s
sx sy

材料力学第六章 应力状态理论和强度理论

材料力学第六章 应力状态理论和强度理论

单元体的各个面均为主平面,其上的主应力为: 单元体的各个面均为主平面,其上的主t
9
工程力学
Engineering mechanics
§6-1 应力状态理论的概念 和实例
3、三向应力状态(空间应力状态) 、三向应力状态(空间应力状态) 定义:三个主应力均不为零。 定义:三个主应力均不为零。 例如:导轨与滚轮接触点处,取导轨表面任一点 的单元体 的单元体, 例如:导轨与滚轮接触点处,取导轨表面任一点A的单元体, 它各侧面均受到压力作用,属于三向应力状态。 它各侧面均受到压力作用,属于三向应力状态。
工程力学
Engineering mechanics
第六章 应力状态理论 和强度理论
1
工程力学
Engineering mechanics


前面的分析结果表明, 前面的分析结果表明,在一般情况下杆件横截面上不同点 的应力是不相同的,过一点不同方向面上的应力也是不相同的。 的应力是不相同的,过一点不同方向面上的应力也是不相同的。 因此,当提及应力时,必须明确“哪一个面上哪一点” 因此,当提及应力时,必须明确“哪一个面上哪一点”的应力或 哪一点哪一个方向面上”的应力。 者“哪一点哪一个方向面上”的应力。 如果危险点既有正应力,又有切应力,应如何建立其强度 如果危险点既有正应力,又有切应力, 条件? 条件? 如何解释受力构件的破坏现象? 如何解释受力构件的破坏现象? 对组合变形杆应该如何进行强度计算? 对组合变形杆应该如何进行强度计算? 要全面了解危险点处各截面的应力情况。 要全面了解危险点处各截面的应力情况。
2
工程力学
Engineering mechanics
§6-1 应力状态理论的概念 和实例
一、一点的应力状态 定义:过受力体内一点所有方向面上应力的集合。 定义:过受力体内一点所有方向面上应力的集合。 一点的应力状态的四要素 四要素: 一点的应力状态的四要素: )、应力作用点的坐标 (1)、应力作用点的坐标; )、应力作用点的坐标; )、过该点所截截面的方位 (2)、过该点所截截面的方位; )、过该点所截截面的方位; )、应力的大小 (3)、应力的大小; )、应力的大小; )、应力的类型 (4)、应力的类型。 )、应力的类型。 二、研究应力状态的目的 对受到轴向拉伸(压缩)、扭转、弯曲等基本变形的杆件, 对受到轴向拉伸(压缩)、扭转、弯曲等基本变形的杆件, )、扭转 其危险点处于单向应力状态或纯剪切应力状态,受力简单, 其危险点处于单向应力状态或纯剪切应力状态,受力简单,可直 接由相应的试验确定材料的极限应力,建立相应的强度条件。 接由相应的试验确定材料的极限应力,建立相应的强度条件。

材料力学中的强度理论与应力分析方法

材料力学中的强度理论与应力分析方法

材料力学中的强度理论与应力分析方法材料力学是研究材料力学性质及其变形、破坏和断裂等状况的学科。

其中,强度理论是一种重要的理论方法,而应力分析方法则是强度理论的重要支撑。

本文将从材料强度理论和应力分析两个方面来探讨材料力学中的强度理论与应力分析方法。

一、强度理论强度是材料抵抗断裂、破坏的能力,也是材料的重要性能之一。

强度理论通常采用两种方法:极限破坏理论和应变能密度理论。

1.极限破坏理论极限破坏理论认为,当材料的最大应力超过其强度时,材料就会破坏。

这种理论关注的是材料抵抗断裂的能力,它主要包括如下几种:(1)最大应力理论:它认为,在拉伸或压缩中,当最大正应力或最大剪应力达到或超过材料的抗拉或抗剪强度时,材料就会发生断裂。

(2)最大努迈尔应力理论:它认为,在回转或剪切中,当最大努迈尔应力达到或超过材料的极限努迈尔应力时,材料会破裂。

(3)最大应变能理论:它认为,在材料加载过程中,当最大应变能密度达到或超过材料的极限应变能密度时,材料就会发生断裂。

2.应变能密度理论应变能密度理论就是根据能量原理,分析材料受力的能量对其破坏的影响。

应变能密度理论是通过对应变能密度进行分析而得出材料破坏的理论,它主要包括如下几种:(1)离散裂缝模型:它将材料分割成数个小块,并分析在这些小块中的应变能密度,从而得出材料的应变能密度分布图。

(2)连续裂缝模型:它将材料分成不同的层次,并通过不同层次之间的影响来分析材料的应变能密度。

(3)微观结构模型:它侧重于对材料内部微观结构的研究,从而得出材料内部应变能密度的分布情况。

二、应力分析方法应力分析方法是材料强度理论的重要支撑,它主要包括静力学分析、动力学分析和热力学分析三个方面。

1.静力学分析静力学分析是指材料在静止状态下各点所受的应力分析。

它主要采用等效应力理论和等效应变理论进行分析。

等效应力理论认为,当材料中各方向的应力大小不同时,我们可以通过一个等效应力来代表这些应力。

等效应力通常取其高或低值,从而来确定其破坏状态。

应力状态分析和强度理论

应力状态分析和强度理论

03
弹性极限
材料在弹性范围内所能承受的最大应力状态,当超过这一极限时,材料会发生弹性变形。
01
屈服点
当物体受到一定的外力作用时,其内部应力状态会发生变化,当达到某一特定应力状态时,材料会发生屈服现象。
02
强度极限
材料所能承受的最大应力状态,当超过这一极限时,材料会发生断裂。
应力状态对材料强度的影响
形状改变比能准则
04
弹塑性材料的强度分析
屈服条件
屈服条件是描述材料在受力过程中开始进入屈服(即非弹性变形)的应力状态,是材料强度分析的重要依据。
根据不同的材料特性,存在多种屈服条件,如Mohr-Coulomb、Drucker-Prager等。
屈服条件通常以等式或不等式的形式表示,用于确定材料在复杂应力状态下的响应。
最大剪切应力准则
总结词
该准则以形状改变比能作为失效判据,当形状改变比能超过某一极限值时发生失效。
详细描述
形状改变比能准则基于材料在受力过程中吸收能量的能力。当材料在受力过程中吸收的能量超过某一极限值时,材料会发生屈服和塑性变形,导致失效。该准则适用于韧性材料的失效分析,尤其适用于复杂应力状态的失效判断。
高分子材料的强度分析
01
高分子材料的强度分析是工程应用中不可或缺的一环,主要涉及到对高分子材料在不同应力状态下的力学性能进行评估。
02
高分子材料的强度分析通常采用实验方法来获取材料的应力-应变曲线,并根据曲线确定材料的屈服极限、抗拉强度等力学性能指标。
03
高分子材料的强度分析还需要考虑温度、湿度等环境因素的影响,因为高分子材料对环境因素比较敏感。
02
强度理论
总结词
该理论认为最大拉应力是导致材料破坏的主要因素。

应力分析和强度理论

应力分析和强度理论

要点二
详细描述
在机械工程领域,应力分析用于研究 机械零件和结构在各种工况下的受力 情况,以及由此产生的内部应力分布 。强度理论则用于评估这些应力是否 在材料的承受范围内,以确定结构是 否安全可靠。
要点三
应用举例
在机械设计中,通过对发动机、传动 系统、轴承等关键部件进行应力分析 ,可以优化设计,提高其承载能力和 可靠性。
该理论认为最大拉应力是导致材料破坏的 主要因素,当最大拉应力达到材料的极限 抗拉强度时,材料发生断裂。
第二强度理论
总结词
最大剪应力理论
详细描述
该理论认为最大剪应力是导致材料破坏的主 要因素,当最大剪应力达到材料的极限抗剪 强度时,材料发生断裂。
第三强度理论
总结词
最大应变能密度理论
详细描述
该理论认为最大应变能密度是导致材料破坏 的主要因素,当最大应变能密度达到材料的
应力分析
目录
• 应力分析概述 • 应力分析方法 • 材料力学中的应力分析 • 强度理论 • 实际应用中的应力分析与强度理

01
应力分析概述
定义与目的
定义
应力分析是研究物体在受力状态下应 力分布、大小和方向的一种方法。
目的
评估物体的强度、刚度、稳定性以及 预测可能的破坏模式,为结构设计提 供依据。
平衡方程
根据力的平衡原理,物体内部的应力分布满足平衡方程。
应变与应力的关系
通过材料的力学性能试验,可以得到应变与应力的关系,即应力-应变曲线。
弹性力学基本方程
根据弹性力学的基本原理,建立物体内部的应力、应变和位移之间的关系。
02
应力分析方法
有限元法
总结词
有限元法是一种广泛应用于解决复杂工程问题的数值分析方法。

材料力学第9章应力分析强度理论

材料力学第9章应力分析强度理论
已知如图,设ef 面积为dA
F
n
0
F 0

dA ( xydAcos ) sin ( x dAcos ) cos ( yxdAsin ) cos ( y dAsin ) sin 0
dA ( xydAcos ) cos ( x dAcos ) sin ( yxdAsin ) sin ( y dAsin ) cos 0
2
2 xy
xy
min
y
yx
23
⒉主方向
应力圆:D点顺时针转2α0到A1点
单元体:x轴顺时针转α0到主平面法线
证明:
xy 2 xy AD tg 2 0 CA x y x y 2
24
㈣利用应力圆求剪应力极值 应力圆上最高点、最低点的纵坐标值,为剪 应力的极大、极小值。 证明:
2
?
min
tg 2 0
2 xy
max
yx
x
x y
xy
解出两各极值点α0,α0=90+α0 最大、最小应力即为主应力
max x y x y 2 2 ( ) xy min 2 2
y
σmax、σmin为三个主应力中的两个。
11
讨论: ⑴若代数值σx≥σy,则α0、α0中,绝对值较小者是
σx与σmax之间夹角,且小于45。 ⑵若代数值 σx≤σy ,则α0 、α0 中,绝对值较小者是 σx 与 σmin之间夹角,且小于45。
min
max
yx
x
xy
12
y
㈢τmax、τmin(与z轴平行的任意斜截面上的)

第八章 应力状态分析和强度理论材料力学

第八章 应力状态分析和强度理论材料力学

(3)主方向 (4)主应力
(5)主单元体
4 广义胡克定律
1.应变叠加原理
各向同性材料在小变形的情况下,当应力不超过比例极限,则线应变只与正 应力有关,剪应变只与剪应力有关,且由正应力引起的某一方向上的应变 可以叠加;
2.主方向上的广义 胡克定律
由σ1 引起三个主方向的线应变为:
由σ2 引起三个主方向的线应变为:
2 二向应力状态分析
1.应力分量及其符号的规定
正应力规定与截面外法线 方向一致为正,反之为负; 剪应力规定对单元体内任 一点的矩顺时针为正,反 之为负;
2.斜截面上的应力
列出平衡方程: 由剪应力互等定理
整理得:
由上面两式可得:
这是关于σα和τα的圆方程;
圆心坐标是
半径是
3.应力圆 以横坐标表示正应力,纵坐标表示剪应力,画出二向应力状态的应力圆
4.应力圆与单元体之间的对应关系
(1)应力圆上的每一点对应单元体上互成1800的二个面上的应力状态; (2)应力圆上的点按某一方向转动2α角度,单元体上的面按相同方向转动α角度; (3)应力圆与α轴的交点代表主平面上的应力; (4)应力圆上代表主平面的点转动900得到剪应力极值点;单元体上主平面转动450得到剪 应力极值平面;
解: (1)应力分量
应力圆
(2)求主平面位置和主应力大小
例3.已知应力状态如图所示,图中的应力单位为MPa。试求: (1)主应力大小,主平面位置;(2)在单元体上给出主平面位置及主应力方向; (3)最大剪应力。
解:
(2)求主平面位置和主应力大小
(3)最大剪应力
例4.薄壁圆筒的扭转-拉伸示意图如图所示。若P=20kN,T=600NN·m,且d=50mm, =2mm。试求:(1)A点在指定斜截面上的应力。(2)A点主应力的大小及方向, 并用单元体表示。

材料力学之应力分析与强度理论

材料力学之应力分析与强度理论
W
eq4
M 2 0.75T 2 [ ]
W
统一形式:
eq
M eq W
[ ]
M eq3
M
2 z
M2 yT2 NhomakorabeaM eq4
M
2 z
M
2 y
0.75T
2
例1 求图示单元体的主应力及主平面的位置。(
单位:MPa)
解:主应力坐标系如图
25 3 4 5 B 9 5
A
在坐标系内画出点
2
1
0
° 5
25 3
45o
拉伸对应
2E
1
45o
剪切对应值
E
1
现在已测得圆杆表面上一点a沿45方向的线应变 45o=-2×10-4, 是上述两45方向的线应变之和
45o 测试值 45o 剪切对应值 45o 拉伸对应值
E45o 剪切对应值 E 45o 测试值 45o 拉伸对应值 =
1
1
E
2 3
1 3
体积改变比能
vV
1 2
6E
1 2
3 2
形状改变比能
1
vd 6E
1 2 2 2 3 2 1 3 2
5、四个常用强度理论
强度理论的统一形式: eqk [ ]
• 第一强度理论: • 第二强度理论: • 第三强度理论: • 第四强度理论:
eq1 1
eq2 1 2 3
组合变形习题课
一、应力分析和强度理论
1、平面应力状态分析
(1)斜截面上的应力
x x
y 2 y
2
x y
2
sin 2 x
cos cos
2 2

材料力学之应力分析与强度理论

材料力学之应力分析与强度理论

材料力学之应力分析与强度理论引言材料力学是研究物体在外力作用下的变形与破坏行为的学科,其中应力分析与强度理论是材料力学的重要内容。

本文将介绍应力分析和强度理论的基本原理、方法和应用。

应力分析应力的定义在材料内部,由于外力作用,会产生相应的内应力。

应力是描述这种内部应力状态的物理量,定义为单位面积上的内力。

常用的应力包括正应力、剪应力和法向应力等。

应力分析的基本原理应力分析的基本原理是根据力学平衡方程和材料连续性假设,利用应力分析方法分析物体内部各点的应力分布。

应力分析可以通过数学模型、解析方法、数值方法等多种手段进行。

应力分析的方法•静力学方法:静力学方法是最常用的应力分析方法之一。

通过求解静力平衡方程,可以得到物体内部的应力分布。

•离散元方法:离散元方法是一种基于离散单元的力学分析方法,能够模拟物体内部的复杂应力分布。

•有限元方法:有限元方法是一种广泛应用的数值分析方法,通过将物体分为有限个小单元进行分析,可以得到较为精确的应力分布。

应力分析的应用应力分析在工程设计、材料研究和结构分析等领域中有着广泛的应用。

例如,在机械设计中,通过应力分析可以评估零件的强度和刚度,从而指导设计优化。

在材料研究中,应力分析可以揭示材料的断裂机理和变形行为,为材料的改进和优化提供依据。

强度理论强度的定义强度是材料抵抗破坏的能力。

材料力学中常用的强度有屈服强度、抗拉强度、抗剪强度等。

强度理论的基本原理强度理论是根据材料性质和力学原理,研究材料破坏的力学理论。

其中,最常用的强度理论有极限强度理论、能量强度理论和变形强度理论等。

常用的强度理论•极限强度理论:极限强度理论是根据材料的极限强度,判断材料的破坏情况。

例如,判断一个零件是否破坏,只需比较其最大应力与材料的极限强度。

•能量强度理论:能量强度理论是根据材料的内能和位能,判断材料的破坏情况。

例如,当材料的内能和位能达到一定的临界值时,材料会发生破坏。

•变形强度理论:变形强度理论是根据材料的屈服条件和变形状态,判断材料的破坏情况。

材料力学8、应力分析与强度理论

材料力学8、应力分析与强度理论

相 1差45o
• (3)式中两式相减与(4)式比较:
max min
m x a2 2 xm yinmxa 2xy2x2 y --- (3)
• (3)式中两式相加:
mmmmianxianx
m x 2 a m xx y2 iyn x 2 x 2xyy2y2x2 y
--- (4) ---(3)
在这四个点所在的
横截面上,剪力和
弯矩都不为0
z
所以这四个点在横
截面上,既有剪应
P
力也有正应力
P z
max
Q.SZmax IZb
m ax
M Wz
m ax
M Wz
M y Iz
Q
S
z
I zb
l
S
FP
a
y
1
4
z
2
x
3
S平面
y
1
1
1
Mx Wt
z
x1
Mz Wz
2
3
4
4 Mz
4
Mx Wt
x
Mx
3
3
Mx Wt
主方向 tg2: 0x2xyy
---(2)
主应力作用面与主方向配对法则:
(1) 将原单元体上的剪应力等效汇合成两对流出和 流入的剪应力流。
(2) 最大主应力σmax的作用面偏向于流出的剪应力
流方向。
例:纯剪切应力状态及其主应力
等价流出的剪 应力流方向
等价流入的剪 应力流方向
xy,xy0
等价流入的剪 应力流方向
12(x y) a (x ,xy) max 圆心横坐标:
d
min
oc
1 2

材料力学应力状态分析和强度理论

材料力学应力状态分析和强度理论

材料力学应力状态分析和强度理论材料力学是一门研究物质内部各个部分之间的相互作用关系的科学。

在材料力学中,应力状态分析和强度理论是非常重要的概念和方法,用来描述和分析材料的力学行为和变形性能。

材料的应力状态是指在外力作用下,物体内部各个部分所受到的力的分布情况。

应力有三个分量:法向应力、剪应力和旋转应力。

法向应力是垂直于物体表面的作用力,剪应力是平行于物体表面的作用力,旋转应力则是物体受到扭转力产生的应力分量。

应力状态的描述可以用应力矢量来表示。

应力状态分析的目的是确定材料内部各个部分的应力分布情况,进而推导出物体的变形和破坏行为。

常用的应力状态分析方法有平面应力问题、平面应变问题和三维应力问题。

平面应力问题是指在一个平面上的应变为零,而垂直于该平面的应力不为零;平面应变问题是指在一个平面上的变形为零,而垂直于该平面的应力不为零;三维应力问题则是指在空间中3个方向的应力都不为零。

强度理论是指根据材料的内部应力状态来评估其抗拉强度、抗压强度和抗剪强度等,以判断材料是否能够承受外力而不发生破坏。

常见的强度理论有最大正应力理论、最大剪应力理论和最大扭转应力理论。

最大正应力理论是指在材料的任何一个点,其法向应力都不能超过材料的抗拉强度;最大剪应力理论则是指剪应力不能超过材料的抗剪强度;最大扭转应力理论则是指旋转应力不能超过材料的极限扭转强度。

实际应用中,强度理论通常与材料的断裂理论结合起来,以评估材料的破坏行为。

材料断裂的主要原因是应力超过了材料的强度极限,从而导致材料的破坏。

为了提高材料的强度和抗拉性能,可以通过选择合适的材料、改变材料的结构和制造工艺等方法来实现。

综上所述,材料力学应力状态分析和强度理论是描述和分析材料力学行为和变形性能的重要理论和方法。

通过深入研究应力状态、应力分析和强度理论,可以为材料的设计和制造提供指导和支持,从而提高材料的强度和抗拉性能。

材料力学-07-应力分析和强度理论

材料力学-07-应力分析和强度理论

§7-2 平面应力状态 平面应力状态--解析法 平面应力状态 解析法: 解析法
1.斜截面上的应力 1.斜截面上的应力
y
σx
a
τ yx
τ xy
σx α
τa
n
τ xy
σa
dA
x
σy
n
τ yx
σy
t
t
∑F = 0
∑F =0
13
§7-2 平面应力状态 平面应力状态--解析法 平面应力状态 解析法: 解析法
tan 2α0 = − 2τ xy
σ x −σ y
由上式可以确定出两个相互垂直的平面, 由上式可以确定出两个相互垂直的平面,分别 为最大正应力和最小正应力所在平面。 为最大正应力和最小正应力所在平面。 所以,最大和最小正应力分别为: 所以,最大和最小正应力分别为:
σmax = σ x +σ y
2 1 + 2 − 1 2
单元体
单元体——构件内的点的代表物, 单元体——构件内的点的代表物,是包围被研究点的 ——构件内的点的代表物 无限小的几何体。 常用的是正六面体。 无限小的几何体。 常用的是正六面体。 单元体的性质—— 平行面上,应力均布; 单元体的性质——1) 平行面上,应力均布; —— 2) 平行面上,应力相等。 平行面上,应力相等。
2 2
σy
τ xy
α
60 − 40 60 + 40 = + cos(−60o ) + 30 sin(−60o ) 2 2
σx
= 9.02 MPa
τα =
σ x −σ y
2 60 + 40 = sin(−60o ) − 30 cos(−60o ) 2

材料力学课件第十一章应力状态分析和强度理论

材料力学课件第十一章应力状态分析和强度理论

n
薄壁圆筒的横截面面积
πD 2 F p 4

p
A πD
πD 2 F p 4 pD A πD 4
n
D
第十一章
"
p
应力状态和强度理论
(2)假想用一直径平面将圆筒截分为二,并取下半环为研究对象
直径平面
FN

FN
d
y
D Fy 0 0 pl 2 sin d plD pD 2 l plD 0 2
2
3 1
1
3 2
第十一章
4.主平面 切应力为零的截面 5.主应力
应力状态和强度理论
主面上的正应力
说明:一点处必定存在这样的一个单元体, 三个相互垂直的面 均为主平面, 三个互相垂直的主应力分别记为1 ,2 , 3 且规定按 代数值大小的顺序来排列, 即
1 2 3

F k
n
(2)当 = 45°时, max 2 min (3)当 = -45° 时, (4)当 = 90°时, 0,


x
2 0
k
11.2
二向和三向应力状态的实例
m n
分析薄壁圆筒受内压时的应力状态

z
y
D
p
m
l
n
(1)沿圆筒轴线作用于筒底的总压力为F
F

k
F
k n
p cos cos
2
F
沿截面切线方向的切应力

k pα
x
p sin

2
sin2


  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点的研究常采用分析单元体的方法
Down Up
σy y
空间一般应力状态
y
σy
A
σx x
τxy
平面一般应力状态
τyz
τxz
σx
τxy
x
z σz
7
Down Up
主平面:若单元体上某个平面上的切应力为零,
则该平面称为主平面。
而主平面上的正应力称为主应力。
主单元体:所有面均为主平面的单元体。
σ3 σ2
σ1 σ2
例如:拉(压)杆横截面上各点的应力状态
P
P
k
σ
k
P
FN =σA
σ= FN/A
10
分析薄壁圆筒受内压时的应力状态
σ’’ m n
n
σ’
k σ’ p
Dp
p
σ’’ l
πD
2
m
(D
)
n
4
pD
4
n
2
plD (2l
)
dq
Oq
p
D
t
pD
2
直径平面
pD
2
1
3 p 0 11
例7.2 圆球形薄壁容器,壁厚为δ,内径为D,
切应力2个下标的意义:
第1个下标表示切应力所 τyx
< 0 σy
在的面;
σx
第2个下标表示切应力实际 沿那个坐标轴的方向。
x
τxy > 0
18
7.3 二向应力状态分析----解析法
若图示单元体上的应力
y
σx、 σy 、τxy
ττyxxy
均为已知,
则由平衡方程可求得 σx 斜角为α的斜截面上
α
的应力值(σα, τα)。
σx
α
+(τyxdA·sinα)·sinα=0
σy
Down Up
σα α τα x τyx
将上式化简得:
t
τα=σxcosαsinα-σysinαcosα+τxy(cos2α-sin2α)
= (σx –σy ) sin2α/2 +τxy cos2α
(7.4)
21
7.3 二向应力状态分析----解析法
即平面应力状态
先规定应力正负符号,
y
同前面章节规定的一样: τyx < 0 σy
σ“拉正,压负”
σx
τ“顺正,逆负”
x
τxy > 0
17
x面:该面的外法线沿x轴方向。 Down Up
y面:该面的外法线沿y轴方向。
x面的正面:该面的外法线沿x轴正方向。
x面的负面:该面的外法线沿x轴负方向。
y面也一样有正面与负面之分。 y
x
2
y
x
y
2x
y
2
sin 2
2
cos 2 xy sin 2
xy cos 2
x y

即单元体两个相互垂直面上 的正应力之和是一个常数。
即又一次证明了切应力的互等定理。
23
7.3 二向应力状态分析----解析法
Down Up
(7.3)
(7.4)
怎样求应力的极值以及所在的截面斜角???
设(2αx(=σxαy2)σs0iny时)2s,0i上n22式αx0y值coτ为sx2零yc0o,s即20αt0an主2应0 2力τα:0 x2主x0y平y
即α=α0 时,切应力为零。 面上的正应力
可见正应力取极值的平面即为主平面!
正应力的极值就是主应力! 25
tan
2 0
2 xy x
y
α0 满足上式,则α0 +π/2也满足上式。
σ1 有3个主应力:
σ3
1 2 3 8
应力状态分类
Down Up
单向应力状态 :三个主应力中只有一个不为零。 二向应力状态 :三个主应力中有一个为零。
三向应力状态 :三个主应力均不为零。
σ3 σ2
σ1 σ2
σ1 有3个主应力:
σ3
1 2 3 9
7.2 应力状态的实例
Down Up
1. 单向应力状态: 只有一个主应力不为零的应力状态。
Down Up
这就是经过 应力状态分析 所得的某点
应力值 (σα、τα) 随其截面方位角α 变化 的规律 — 应力与截面方位角α的函数关系:
(7.3)
(7.4)
怎样求应力的极值大小以及所在的截面 ???
22
x
2
y
x
y
2
cos 2
xy
sin 2

x
2
y sin 2 xy cos 2
斜截面截取,此截面上的应力为
tan
2(0
2
)
tan( 20 ) tan 20
由上式可以确定出两个相互垂直的平
- (τxydA·cosα)·sinα – (τxydA·sinα)·cosα
将上式化简得:
σα=σxcos2α+σysin2α-2τxycosα·sinα
(7.3)
20
同上理列出 t 轴方向的平衡方程:
Σt = 0: τα·dA –(σxdA·cosα)·sinα
y
τxy
–(τxydA·cosα)·cosα +(σydA·sinα)·cosα
承受内压p作用,试求容器壁内的应力。
F
πD 2
p
p 4
(D )
pD
4
1
2
3 0
12
7.3 二向应力状态分析
------ 解析法
y y
yx xyx
x
y yx x xy
z
• 二向应力状态的一般形式 即平面应力状态
16
7.3 二向应力状态分析
Down Up
------ 解析法
二向应力状态的一般形式如下图所示:
将上两式分别对α求导并令其导数值等于零:
dσα/d α =0 ; dτα/d α =0
解上两方程可分别得:αo和α1。 再将αo和α1分别代入前面两式中可得其极值
24
正应力极值和方向
d12(x( d
y) x y
1 (
2 ) sin
x
2
y )cos 2 2 xy cos
2
xy sin 2
主平面:切应力 为零的平面。
σy
Down Up
σy
σα σαx
τα
x
ττxyyx
Σn = 0:σα·dA-(σxdA·cosα)·cosα
+(τxydA·cosα)·sinα - (σy dA·sinα)·sinα
+(τyxdA·sinα)·cosα=0
19
7.3 二向应力状态分析----解析法
Down Up
σα·dA= (σxdA·cosα)·cosα + (σydA·sinα)·sinα
第七章 应力和应变分析 强度理论
1
7.1 应力状态概述
Mz FS
横截面上正应力分析和切应力分 析的结果表明:同一面上不同点的应
力各不相同,此即应力的点的概念。
2
轴向拉压
p cos 0 cos 2
F
p p sin
同一点在不同斜截 面上的应力不同!
0
2
s in 2
此例表明:即使同一点在不同方位截面 上,它的应力也是各不相同的,此即应力的 面的概念。
过一点不同方向面上应力的集合,
称之为这一点的应力状态。
3
F A
σ
A
σ
单元体
σ
A
σ
单向应力状态
Down Up
F
4
Down Up
T T
A
τ’
A
τ
τ’
y
n
σ σ o 135
β
σo 45
45o
A
x
A
τ 二向应力状态
5
P a
Down Up
A x
τ
σ
A
τ
σPSσ*APaIτzyA
A
Izb
σ
τ
平面应力状态
二向应力状态 6
相关文档
最新文档