MT7968AL规格书-中文_Rev1.00
mt6582中文规格书(部分)

mt6582HSPA +手机应用处理器技术简明1系统概述mt6582是一个高度集成的基带平台使用调制解调器,应用处理和连接子系统使3G智能手机上的应用。
芯片集成了四核ARM®Cortex-A7 mpcoretm操作高达 1.3GHz,手臂®cortex-r4单片机和强大的多标准的视频加速器。
mt6582 NAND闪存的接口,为获得最佳性能,还支持启动SLC NAND或eMMC减少整体成本LPDDR2和LPDDR3的。
此外,一组广泛的接口,包括接口的摄像头,触摸屏显示,与MMC / SD卡。
应用处理器,四核ARM®Cortex-A7 mpcoretm包括霓虹多媒体处理引擎,提供处理能力要随着它的要求苛刻的应用,如网页浏览,电子邮件的最新openos支持,GPS导航和游戏。
都是在一个高分辨率的触摸屏显示图形的三维图形加速增强视。
多标准视频加速器和一个先进的音频子系统还包括提供先进的多媒体应用和服务,如音频和视频流,众多的解码器和编码器如H.264,MPEG-4。
音频支持包括法国,人力资源,财务,人力资源和AMR FR,AMR宽带AMR 声码器,和弦铃声,如回声消除先进的音频功能,免提扬声器操作和噪声消除。
臂®cortex-r4,DSP,和2G和3G的协处理器提供了一个可支持14级强大的调制解调器(21 Mbps HSDPA 下行链路子系统)和6类(5.76 Mbps)HSUPA上行数据速率以及12级GPRS,边缘。
mt6582包括四无线连接功能,WLAN,蓝牙,GPS,调频接收机。
放在mt6627芯片的射频部分的四块。
四先进的无线技术集成到一个芯片,mt6582 / mt6627提供最便捷的连接解决方案,在工业。
mt6582 / mt6627实施先进的无线技术共存的算法和硬件机制。
它还支持单天线2.4 GHz天线蓝牙共享,为GPS和1.575 GHz WLAN。
MT7965规格书-中文_Rev1.00

功率环路的面积
减小功率环路的面积,如变压器原边,功率管及缓 冲网络(snubber)的环路面积;以及次级二极管、
MT7965 Rev. 1.00
版权 © 2014 美芯晟科技有限公司
第6页
MT7965
高精度双绕组原边反馈 LED 恒流驱动
封装外形尺寸
重要声明:
·美芯晟科技有限公司保留不发布通知而对该产品和服务随时进行更改,补充,改进和其它变动的权利。 用户敬请在购买产品之前获取最新的相关信息并核实该信息是最佳的和完整的。 所有产品在订单确认后 将遵从美芯晟科技有限公司的销售条例进行销售。 ·本资料内容未经美芯晟科技有限公司许可,严禁以其它目的加以转载或复制等。 ·对于未经销售部门咨询使用本产品而发生的损失,美芯晟科技有限公司不承担其责任。
I P _ PK
500 (mA) RCS
式中 RCS 为峰值检测电阻(见典型应用电路) 。CS 外部电压与 500mV 阈值电平比较时还包括一个 500nS 的前沿消隐时间以滤除 CS 端在导通瞬间 的噪声。 LED 输出电流的计算公式为:
VCC EN
DRAIN
I LED
图 1、启动过程
I P _ PK 4
MT7965 Rev. 1.00 版权 © 2014 美芯晟科技有限公司
第7页
MT7965
高精度双绕组原边反馈 LED 恒流驱动
索取产品详细信息及样片申请,请联系:
美芯晟科技有限公司 (北京办公室) 北京市海淀区知春路 106 号,皇冠假日酒店写字楼 1006。邮政编码 100086 电话: 传真: 86-10-62662828 86-10-62662951
推荐工作条件
VCC 电源电压 工作温度(外部环境温度) 8V ~ 15V -40° C ~ 105° C
TPS79618KTTRG3资料

FEATURESDESCRIPTIONAPPLICATIONS123456GNDDCQ PACKAGE SOT223-6(TOP VIEW)NR/FBOUT GND IN EN 1KTT (DDPAK) PACKAGE(TOP VIEW)2345EN IN GND OUT NR/FB0.00.10.20.30.40.50.60.7Frequency (Hz)10010k100k1kO u t p u t S p e c t r a l N o i s e D e n s i t y − µV /√H zTPS79630OUTPUT SPECTRAL NOISE DENSITYvsFREQUENCY01020304050607080Frequency (Hz)110k 10M1kR i p p l e R e j e c t i o n − d BTPS79630RIPPLE REJECTIONvsFREQUENCY10100100k1MEN NC GND NR8765IN IN OUT OUT 1234DRB PACKAGE 3mm x 3mm SON (TOP VIEW)TPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006ULTRALOW-NOISE,HIGH PSRR,FAST,RF,1A LOW-DROPOUT LINEAR REGULATORS•1A Low-Dropout Regulator With Enable The TPS796xx family of low-dropout (LDO)low-power linear voltage regulators features high •Available in Fixed and Adjustable (1.2V to power supply rejection ratio (PSRR),ultralow-noise,5.5V)Versionsfast start-up,and excellent line and load transient •High PSRR (53dB at 10kHz)responses in small outline,3×3SON,SOT223-6,•Ultralow-Noise (40µV RMS ,TPS79630)and DDPAK-5packages.Each device in the family is stable with a small 1µF ceramic capacitor on the •Fast Start-Up Time (50µs)output.The family uses an advanced,proprietary •Stable With a 1µF Ceramic Capacitor BiCMOS fabrication process to yield extremely low •Excellent Load/Line Transient Response dropout voltages (e.g.,250mV at 1A).Each device achieves fast start-up times (approximately 50µs with •Very Low Dropout Voltage (250mV at Full a 0.001µF bypass capacitor)while consuming very Load,TPS79630)low quiescent current (265µA typical).Moreover,•3×3SON,SOT223-6,and when the device is placed in standby mode,the DDPAK-5Packagessupply current is reduced to less than 1µA.The TPS79630exhibits approximately 40µV RMS of output voltage noise at 3.0V output,with a 0.1µF bypass •RF:VCOs,Receivers,ADCs capacitor.Applications with analog components that are noise sensitive,such as portable RF electronics,•Audiobenefit from the high PSRR,low noise features,and •Bluetooth™,Wireless LANthe fast response time.•Cellular and Cordless Telephones •Handheld Organizers,PDAsPlease be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.Bluetooth is a trademark of Bluetooth SIG,Inc.All other trademarks are the property of their respective owners.PRODUCTION DATA information is current as of publication date.Copyright ©2002–2006,Texas Instruments IncorporatedProducts conform to specifications per the terms of the Texas Instruments standard warranty.Production processing does not necessarily include testing of all parameters.ABSOLUTE MAXIMUM RATINGSPACKAGE DISSIPATION RATINGSTPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006This integrated circuit can be damaged by ESD.Texas Instruments recommends that all integrated circuits be handled with appropriate precautions.Failure to observe proper handling and installation procedures can cause damage.ESD damage can range from subtle performance degradation to complete device failure.Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.ORDERING INFORMATION (1)PRODUCT V OUT (2)TPS796xx yyy zXX is nominal output voltage (for example,28=2.8V,01=Adjustable).YYY is package designator.Z is package quantity.(1)For the most current package and ordering information,see the Package Option Addendum at the end of this document,or see the TI web site at .(2)Output voltages from 1.3V to 4.9V in 100mV increments are available;minimum order quantities may apply.Contact factory for details and availability.over operating temperature range (unless otherwise noted)(1)UNITV IN range –0.3V to 6V V EN range –0.3V to V IN +0.3V V OUT range 6VPeak output current Internally limited ESD rating,HBM 2kV ESD rating,CDM500VContinuous total power dissipation See Dissipation Ratings Table Junction temperature range,T J –40°C to +150°C Storage temperature range,T stg –65°C to +150°C(1)Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.These are stress ratings only,and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.PACKAGE BOARD R θJC R θJA DDPAK High-K (1)2°C/W 23°C/W SOT223Low-K (2)15°C/W 53°C/W 3×3SONHigh-K (1)1.2°C/W40°C/W(1)The JEDEC high-K (2s2p)board design used to derive this data was a 3-inch ×3-inch (7,5-cm ×7,5-cm),multilayer board with 1-ounce internal power and ground planes and 2-ounce copper traces on top and bottom of the board.(2)The JEDEC low-K (1s)board design used to derive this data was a 3-inch ×3-inch (7,5-cm ×7,5-cm),two-layer board with 2-ounce copper traces on top of the board.2Submit Documentation FeedbackELECTRICAL CHARACTERISTICSTPS796xx SLVS351I–SEPTEMBER2002–REVISED MAY2006over recommended operating temperature range(TJ =–40°C to+125°C),VEN=VIN,,VIN=VOUT(nom)+1V(1),IOUT=1mA,COUT =10µF,and CNR=0.01µF,unless otherwise noted.Typical values are at+25°C.PARAMETER TEST CONDITIONS MIN TYP MAX UNITV IN Input voltage(1) 2.7 5.5VV FB Internal reference(TPS79601) 1.200 1.225 1.250VI OUT Continuous output current01AOutputvoltage TPS79601 1.225 5.5–V DD VrangeTPS79601(2)0µA≤I OUT≤1A,V OUT+1V≤V IN≤5.5V(1)0.98V OUT V OUT 1.02V OUT V Outputvoltage Fixed0µA≤I OUT≤1A,V OUT+1V≤V IN≤5.5V(1)–2.0+2.0% Accuracy V OUT<5VFixed0µA≤I OUT≤1A,V OUT+1V≤V IN≤5.5V(1)–3.0+3.0% V OUT=5VOutput voltage line regulationV OUT+1V≤V IN≤5.5V0.050.12%/V (∆V OUT%/V IN)(1)Load regulation(∆V OUT%/∆I OUT)0µA≤I OUT≤1A5mV TPS79628I OUT=1A270365TPS79628DRB I OUT=250mA5290Dropout voltage(3)TPS79630I OUT=1A250345mV (V IN=V OUT(nom)–0.1V)TPS79633I OUT=1A220325TPS79650I OUT=1A200300Output current limit V OUT=0V 2.4 4.2AGround pin current0µA≤I OUT≤1A265385µA Shutdown current(4)V EN=0V,2.7V≤V IN≤5.5V0.071µA FB pin current V FB=1.225V1µAf=100Hz,I OUT=10mA59f=100Hz,I OUT=1A54Power-supply rippleTPS79630dB rejection f=10Hz,IOUT=1A53f=100Hz,I OUT=1A42C NR=0.001µF54C NR=0.0047µF46BW=100Hz to100kHz,Output noise voltage(TPS79630)µV RMSI OUT=1A CNR=0.01µF41C NR=0.1µF40C NR=0.001µF50Time,start-up(TPS79630)R L=3Ω,C OUT=1µF C NR=0.0047µF75µsC NR=0.01µF110EN pin current V EN=0V–11µAHigh-level enable input voltage 2.7V≤V IN≤5.5V 1.7V IN V Low-level enable input voltage 2.7V≤V IN≤5.5V00.7V(1)Minimum V IN=V OUT+V DO or2.7V,whichever is greater.TPS79650is tested at V IN=5.5V.(2)Tolerance of external resistors not included in this specification.(3)V DO is not measured for TPS79618and TPS79625because minimum V IN=2.7V.(4)For adjustable version,this applies only after V IN is applied;then V EN transitions high to low.3Submit Documentation FeedbackGND ENINGND ENNRINOUTTPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006FUNCTIONAL BLOCK DIAGRAM—ADJUSTABLE VERSIONFUNCTIONAL BLOCK DIAGRAM—FIXED VERSIONTable 1.Terminal FunctionsTERMINALDESCRIPTIONNAME ADJ FIXED NR N/A 5Connecting an external capacitor to this pin bypasses noise generated by the internal bandgap.This improves power-supply rejection and reduces output noise.EN 11Driving the enable pin (EN)high turns on the regulator.Driving this pin low puts the regulator into shutdown mode.EN can be connected to IN if not used.FB 5N/A This terminal is the feedback input voltage for the adjustable device.GND 3,Tab 3,Tab Regulator groundIN 22Unregulated input to the device.OUT44Output of the regulator.4Submit Documentation FeedbackTYPICAL CHARACTERISTICS2.952.962.972.982.993.003.013.023.033.043.050.00.20.40.60.81.0V O U T (V )I OUT (A)V O U T (V )T J (°C)290300310320330340350−40−25−105203550658095110125I G N D (µA )T J (°C)0.00.10.20.30.40.50.60.7Frequency (Hz)10010k100k1kO u t p u t S p e c t r a l N o i s e D e n s i t y − µV //H z0.00.10.20.30.40.50.6Frequency (Hz)10010k 100k1k O u t p u t S p e c t r a l N o i s e D e n s i t y − µV//H z0.00.51.01.52.02.5Frequency (Hz)10010k 100k1kO u t p u t S p e c t r a l N o i s e D e n s i t y − µV //H zTPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006TPS79630TPS79628TPS79628OUTPUT VOLTAGEOUTPUT VOLTAGEGROUND CURRENTvsvsvsOUTPUT CURRENTJUNCTION TEMPERATUREFigure 1.Figure 2.Figure 3.TPS79630TPS79630TPS79630OUTPUT SPECTRAL NOISEOUTPUT SPECTRAL NOISEOUTPUT SPECTRAL NOISEDENSITYDENSITYDENSITYvsvsvsFREQUENCYFREQUENCYFREQUENCYFigure 4.Figure 5.Figure 6.5Submit Documentation FeedbackV D O (m V )T J (_C)102030405060R M S − R o o t M e a n S q u a r e d O u t p u t N o i s e − µV R M SC NR (µF)0.001 µF0.01 µF0.1 µF0.0047 µF01020304050607080Frequency (Hz)110k 10M1k R i p p l e R e j e c t i o n − d B10100100k 1M t (m s)V O U T (V )01020304050607080Frequency (Hz)110k 10M1kR i p p l e R e j e c t i o n− d B10100100k1M01020304050607080Frequency (Hz)110k 10M1kR i p p l e R e j e c t i o n − dB10100100k1MV I N (V )t (µs)∆V O U T (m V )t (µs)V I N (V )∆V O U T (m V )t (µs)I O U T (A )∆V O U T (m V )TPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006TYPICAL CHARACTERISTICS (continued)TPS79630ROOT MEAN SQUARED OUTPUTTPS79628TPS79630NOISE DROPOUT VOLTAGERIPPLE REJECTIONvsvsvsBYPASS CAPACITANCEJUNCTION TEMPERATUREFREQUENCYFigure 7.Figure 8.Figure 9.TPS79630TPS79630RIPPLE REJECTIONRIPPLE REJECTIONvsvsFREQUENCYFREQUENCYSTART-UP TIMEFigure 10.Figure 11.Figure 12.TPS79618TPS79630TPS79628LINE TRANSIENT RESPONSELINE TRANSIENT RESPONSELOAD TRANSIENT RESPONSEFigure 13.Figure 14.Figure 15.6Submit Documentation Feedback5010015020025030035001002003004005006007008009001000V D O (m V )I OUT (mA)0501001502002503002.53.03.54.04.55.0V D O (m V )V IN (V)200 µs/Div500 m V /D i vE S R − E q u i v a l e n t S e r i e s R e s i s t a n c e − ΩI OUT (mA)E S R − E q u i v a l e n t S e r i e s R e s i s t a n c e − ΩI OUT (mA)E S R − E q u i v a l e n t S e r i e s R e s i s t a n c e − ΩI OUT (mA)TPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006TYPICAL CHARACTERISTICS (continued)TPS79630TPS79601DROPOUT VOLTAGEDROPOUT VOLTAGETPS79625vsvsPOWER UP/POWER DOWNOUTPUT CURRENTINPUT VOLTAGEFigure 16.Figure 17.Figure 18.TPS79630TPS79630TPS79630TYPICAL REGIONS OF STABILITY TYPICAL REGIONS OF STABILITY TYPICAL REGIONS OF STABILITY EQUIVALENT SERIES RESISTANCEEQUIVALENT SERIES RESISTANCEEQUIVALENT SERIES RESISTANCE(ESR)(ESR)(ESR)vsvsvsOUTPUT CURRENTOUTPUT CURRENTOUTPUT CURRENTFigure 19.Figure 20.Figure 21.7Submit Documentation FeedbackAPPLICATION INFORMATIONBoard Layout Recommendation to ImproveV V OUTFExternal Capacitor RequirementsRegulator MountingProgramming the TPS79601Adjustable LDOVOUT +V REFǒ1)R1R2Ǔ(1)TPS796xxSLVS351I–SEPTEMBER2002–REVISED MAY2006The TPS796xx family of low-dropout(LDO)For example,the TPS79630exhibits40µV RMS of regulators has been optimized for use in output voltage noise using a0.1µF ceramic bypass noise-sensitive equipment.The device features capacitor and a10µF ceramic output capacitor.Note extremely low dropout voltages,high PSRR,ultralow that the output starts up slower as the bypass output noise,low quiescent current(265µA typically),capacitance increases due to the RC time constant and enable input to reduce supply currents to less at the bypass pin that is created by the internal than1µA when the regulator is turned off.250kΩresistor and external capacitor.A typical application circuit is shown in Figure22.PSRR and Noise PerformanceTo improve ac measurements like PSRR,outputnoise,and transient response,it is recommendedthat the board be designed with separate groundplanes for V IN and V OUT,with each ground planeconnected only at the ground pin of the device.In Figure22.Typical Application Circuit addition,the ground connection for the bypasscapacitor should connect directly to the ground pin ofthe device.Although not required,it is good analog designpractice to place a0.1µF—2.2µF capacitor near theThe tab of the SOT223-6package is electrically input of the regulator to counteract reactive inputconnected to ground.For best thermal performance, sources.A 2.2µF or larger ceramic input bypassthe tab of the surface-mount version should be capacitor,connected between IN and GND andsoldered directly to a circuit-board copper area. located close to the TPS796xx,is required forIncreasing the copper area improves heat stability and improves transient response,noisedissipation.rejection,and ripple rejection.A higher-value inputcapacitor may be necessary if large,fast-rise-time Solder pad footprint recommendations for the load transients are anticipated and the device is devices are presented in an application bulletin located several inches from the power source.Solder Pad Recommendations for Surface-MountDevices,literature number AB-132,available for Like most low dropout regulators,the TPS796xxdownload from the TI web site(). requires an output capacitor connected betweenOUT and GND to stabilize the internal control loop.The minimum recommended capacitor is1µF.AnyRegulator1µF or larger ceramic capacitor is suitable.The output voltage of the TPS79601adjustable The internal voltage reference is a key source ofregulator is programmed using an external resistor noise in an LDO regulator.The TPS796xx has andivider as shown in Figure28.The output voltage is NR pin which is connected to the voltage referencecalculated using Equation1:through a250kΩinternal resistor.The250kΩinternal resistor,in conjunction with an externalbypass capacitor connected to the NR pin,creates alow-pass filter to reduce the voltage reference noisewhere:and,therefore,the noise at the regulator output.Inorder for the regulator to operate properly,the•VREF = 1.2246V typ(the internal referencecurrent flow out of the NR pin must be at a minimum,voltage)because any leakage current creates an IR dropResistors R1and R2should be chosen for across the internal resistor,thus creating an outputapproximately40µA divider current.Lower value error.Therefore,the bypass capacitor must haveresistors can be used for improved noise minimal leakage current.The bypass capacitorperformance,but the device wastes more power. should be no more than0.1µF in order to ensure thatHigher values should be avoided,as leakage current it is fully charged during the quickstart time providedat FB increases the output voltage error.by the internal switch shown in the functional blockdiagram.8Submit Documentation FeedbackRegulator Protection R1+ǒV OUT V REF*1ǓR2(2)C1+(3x10–7)x(R1)R2)(R1x R2)(3)OUTPUT VOLTAGEPROGRAMMING GUIDEOUTPUTVOLTAGE R1R2C1 V V OUT1.8 V3.6V14.0 kΩ57.9 kΩ30.1 kΩ30.1 kΩ33 pF15 pFTPS796xxSLVS351I–SEPTEMBER2002–REVISED MAY2006The recommended design procedure is to chooseR2=30.1kΩto set the divider current at40µA,C1=The TPS796xx PMOS-pass transistor has a built-in 15pF for stability,and then calculate R1usingback diode that conducts reverse current when the Equation2:input voltage drops below the output voltage(e.g.,during power-down).Current is conducted from theoutput to the input and is not internally limited.Ifextended reverse voltage operation is anticipated,external limiting might be appropriate.In order to improve the stability of the adjustableversion,it is suggested that a small compensation The TPS796xx features internal current limiting and capacitor be placed between OUT and FB.The thermal protection.During normal operation,the approximate value of this capacitor can be calculated TPS796xx limits output current to approximately as Equation3: 2.8A.When current limiting engages,the outputvoltage scales back linearly until the overcurrentcondition ends.While current limiting is designed toprevent gross device failure,care should be taken The suggested value of this capacitor for several not to exceed the power dissipation ratings of the resistor ratios is shown in the table below(see package.If the temperature of the device exceeds Figure23).If this capacitor is not used(such as in a approximately+165°C,thermal-protection circuitry unity-gain configuration)then the minimum shuts it down.Once the device has cooled down to recommended output capacitor is2.2µF instead of below approximately+140°C,regulator operation 1µF.resumes.Figure23.TPS79601Adjustable LDO Regulator Programming9Submit Documentation FeedbackTHERMAL INFORMATIONT J+T A )P D max x ǒR θJC )R θCS )RθSAǓP D max +ǒV IN(avg)*V OUT(avg)Ǔ I OUT(avg))V IN(avg) I (Q)T JAR θJCT CBR θCST AC R θSA (a)(b)DDPAK PackageSOT223 PackageCIRCUIT BOARD COPPER AREAATPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006dissipation.The temperature rise is computed by The amount of heat that an LDO linear regulator multiplying the maximum expected power dissipation generates is directly proportional to the amount of by the sum of the thermal resistances between the power it dissipates during operation.All integrated junction and the case (R θJC ),the case to heatsink circuits have a maximum allowable junction (R θCS ),and the heatsink to ambient (R θSA ).Thermal temperature (T J max)above which normal operation resistances are measures of how effectively an is not assured.A system designer must design the object dissipates heat.Typically,the larger the operating environment so that the operating junction device,the more surface area available for power temperature (T J )does not exceed the maximum dissipation and the lower the object's thermal junction temperature (T J max).The two main resistance.environmental variables that a designer can use to improve thermal performance are air flow and Figure 24illustrates these thermal resistances for (a)external heatsinks.The purpose of this information is a SOT223package mounted in a JEDEC low-K to aid the designer in determining the proper board,and (b)a DDPAK package mounted on a operating environment for a linear regulator that is JEDEC high-K board.operating at a specific power level.Equation 5summarizes the computation:In general,the maximum expected power (P D(max))consumed by a linear regulator is computed as Equation 4:(5)The R θJC is specific to each regulator as determined (4)by its package,lead frame,and die size provided in the regulator's data sheet.The R θSA is a function of where:the type and size of heatsink.For example,black •V IN(avg)is the average input voltage.body radiator type heatsinks can have R θCS values •V OUT(avg)is the average output voltage.ranging from 5°C/W for very large heatsinks to 50°C/W for very small heatsinks.The R θCS is a •I OUT(avg)is the average output current.function of how the package is attached to the •I (Q)is the quiescent current.heatsink.For example,if a thermal compound is For most TI LDO regulators,the quiescent current is used to attach a heatsink to a SOT223package,insignificant compared to the average output current;R θCS of 1°C/W is reasonable.therefore,the term V IN(avg)×I (Q)can be neglected.The operating junction temperature is computed by adding the ambient temperature (T A )and the increase in temperature due to the regulator's powerFigure 24.Thermal Resistances10Submit Documentation FeedbackRθJAmax +(125*55)°C ń2.5W +28°C ńW(9)T J +T A )P D max x R θJA (6)R θJA +T J –T AP Dmax(7)Copper Heatsink Area − cm 2− T h e r m a l R e s i s t a n c e − θJ A R C /W°DDPAK PowerDissipation2 oz. Copper Solder Pad Diameter , 1,5 mm PitchP D max +(5*2.5)V x 1A + 2.5W (8)TPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006Even if no external black body radiator type heatsink is attached to the package,the board on which the regulator is mounted provides some heatsinking From Figure 25,DDPAK Thermal Resistance vsthrough the pin solder connections.Some packages,Copper Heatsink Area,the ground plane needs to be like the DDPAK and SOT223packages,use a 1cm 2for the part to dissipate 2.5W.The operating copper plane underneath the package or the circuit environment used in the computer model to construct board's ground plane for additional heatsinking to Figure 25consisted of a standard JEDEC High-K improve their thermal puter-aided board (2S2P)with a 1-oz.internal copper plane and thermal modeling can be used to compute very ground plane.The package is soldered to a 2-oz.accurate approximations of an integrated circuit's copper pad.The pad is tied through thermal vias to thermal performance in different operating the 1-oz.ground plane.Figure 26shows the side environments (e.g.,different types of circuit boards,view of the operating environment used in the different types and sizes of heatsinks,and different computer model.air flows,etc.).Using these models,the three thermal resistances can be combined into one thermal resistance between junction and ambient (R θJA ).This R θJA is valid only for the specific operating environment used in the computer model.Equation 5simplifies into Equation 6:Rearranging Equation 6gives Equation 7:Using Equation 6and the computer model generated curves shown in Figure 25and Figure 28,a designer can quickly compute the required heatsink thermal resistance/board area for a given ambient temperature,power dissipation,and operating environment.Figure 25.DDPAK Thermal Resistance vs CopperHeatsink AreaThe DDPAK package provides an effective means of managing power dissipation in surface mount applications.The DDPAK package dimensions are provided in the Mechanical Data section at the end of the data sheet.The addition of a copper plane directly underneath the DDPAK package enhances the thermal performance of the package.To illustrate,the TPS72525in a DDPAK package was chosen.For this example,the average input voltage is 5V,the output voltage is 2.5V,the average output current is 1A,the ambient temperature 55°C,the air flow is 150LFM,and the operating environment is the same as documented below.Neglecting the quiescent current,the maximum Figure 26.DDPAK Thermal Resistance average power is calculated as Equation 8:From the data in Figure 27and rearranging Substituting T J max for T J into Equation 6gives Equation 6,the maximum power dissipation for a Equation 9:different ground plane area and a specific ambient temperature can be computed.11Submit Documentation FeedbackPCB Copper Area − in 2− T h e r m a l R e s i s t a n c e − θJ A R C /W°Copper Heatsink Area − cm 2P D M a x i m u m (W )SOT223Power DissipationP D max +(3.3*2.5)V x 1A +800mW (10)R θJAmax +(125*55)°C ń800mW +87.5°C ńW T A (°C)P D M a x i m u m (W )TPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006Figure 28.SOT223Thermal Resistance vs PCBFigure 27.Maximum Power Dissipation vsArea Copper Heatsink AreaFrom the data in Figure 28and rearranging Equation 6,the maximum power dissipation for a different ground plane area and a specific ambient The SOT223package provides an effective means temperature can be computed (see Figure 29).of managing power dissipation in surface mount applications.The SOT223package dimensions are provided in the Mechanical Data section at the end of the data sheet.The addition of a copper plane directly underneath the SOT223package enhances the thermal performance of the package.To illustrate,the TPS72525in a SOT223package was chosen.For this example,the average input voltage is 3.3V,the output voltage is 2.5V,the average output current is 1A,the ambient temperature 55°C,no air flow is present,and the operating environment is the same as documented below.Neglecting the quiescent current,the maximum average power is calculated as Equation 10:Substituting T J max for T J into Equation 6gives Equation 11:(11)Figure 29.SOT223Power DissipationFrom Figure 28,R θJA vs PCB Copper Area,the ground plane needs to be 0.55in 2for the part to dissipate 800mW.The operating environment used to construct Figure 28consisted of a board with 1-oz.copper planes.The package is soldered to a 1-oz.copper pad on the top of the board.The pad is tied through thermal vias to the 1-oz.ground plane.12Submit Documentation FeedbackIMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements, improvements,and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right,or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered documentation.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use anynon-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers Audio /audioData Converters Automotive /automotiveDSP Broadband /broadbandInterface Digital Control /digitalcontrolLogic Military /militaryPower Mgmt Optical Networking /opticalnetworkMicrocontrollers Security /securityLow Power /lpw Telephony /telephonyWirelessVideo&Imaging /videoWireless /wirelessMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2007,Texas Instruments Incorporated。
MT7968规格书-中文_Rev1.40

第7页
MT7968
高精度双绕组原边反馈 LED 恒流驱动
索取产品详细信息及样片申请,请联系:
美芯晟科技有限公司 (北京办公室) 北京市海淀区知春路 106 号,皇冠假日酒店写字楼 1006。邮政编码 100086 电话: 传真: 86-10-62662828 86-10-62662951
应用
LED球泡灯、射灯 LED照明驱动 通用恒流源
典型应用电路
LED+ NP:NS
MT7968
3 Vin_ac 8
CBUS CVCC RCS RSET VCC CS OVP GND SW CS DRAIN DRAIN
LED-
4 7 6 5
2 1
MT7968 Rev. 1.40
版权 © 2014 美芯晟科技有限公司
地线
VCC 电容 CVCC 的地一定要与芯片地直接相连, 中 间不要有不干净的地线, 如 SW 电容地, 以及 RCS
第5页
版权 © 2014 美芯晟科技有限公司
MT7968
高精度双绕组原边反馈 LED 恒流驱动
的功率地等。 其它小信号的地线连接到芯片的地, 再与 SW 电容 地分别接到峰值电流采样电阻 RCS 的功率地线, 并 保持峰值电流采样电阻的功率地线尽可能短, 最后 连接到 Bulk 电容 CBUS 的地端。 OVP 引脚 OVP 引脚走线尽可能短,且 RSET 电阻(下图中的 R6)需要尽量靠近 OVP 引脚。OVP 引脚走线不 能靠近 DRAIN 引脚走线以及 SW 引脚走线。要用 地线将 OVP 引脚包围,并对包围的地线进行裸铜 处理。同时由于 MT7968 是 DIP8 的插件封装,必 须在芯片下面进行开槽处理,将漏极进行隔离。参 考下面的 PCB 示意图。
浮思特科技 FST50_09ALWIFI模组硬件规格书说明书

浮思特科技FST50_09AL WiFi模组硬件规格书版本1.0本文介绍FST50_09AL的产品硬件规格发布说明版本发布说明日期V1.0首次发布2020年8月22日免责申明和版权公告本文中的信息,包括供参考的URL地址,如有变更,恕不另行通知。
文档“按现状”提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。
本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。
本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。
由于产品版本升级或其他原因,本文档内容有可能变更。
深圳市浮思特科技有限公司保留在没有任何通知或者提示的情况下对本文档的内容进行修改的权利。
另本文档仅作为使用指导,不确保文档内容完全没有错误,本文档中的所有陈述、信息和建议也不构成任何明示或暗示的担保。
Wi-Fi联盟成员标志归Wi-Fi联盟所有。
文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。
本文档版权归深圳市浮思特科技有限公司所有,保留所有权利。
目录目录 (4)1.产品概述 (5)1.1特性 (5)1.2芯片框架 (6)2.模组参数 (6)2.1模组详细参数 (6)2.2RF参数范围 (7)3.模组引脚说明 (8)3.1模组引脚分布图 (8)3.2模组引脚说明 (8)4.外型与尺寸 (9)5数字端口特征 (9)6.功耗 (10)7.倾斜升温 (10)8.模组摆放指南 (11)9.WIFI模组外设参考电路图 (12)10.模组型号介绍 (13)11.模组生产保质 (14)12.包装 (15)13.联系方式 (15)1.产品概述FST50_09AL是浮思特科技采用翱捷科技(上海)有限公司的ASR5502A芯片研发的高集成、高性能、低成本WIFI模组,ASR5502A集成了射频收发机、802.11PHY+MAC、ARM Cortex-M4F、API接口、实时计数器(RTC)和完整的电源管理电路。
三星AMOLED驱动芯片中文版说明书

表 5 所示为其他端口。 Symbol I/O 功能描述 DUMMYR[3:1] 电阻测量管脚,正常情况下悬空。 DUMMYL[3:1] DUMMY 无用管脚,悬空即可。 V0/V63 O 伽玛电压镜像管脚。 VDD3DUM O 内部与 VDD3 接在一起。
VSSDUM FUSE_EN RTEST EN_EXCLK EN_CLK TEST_MODE[1:0] TEST_IN[6:0] TE TEST_OUT[2:0]
表 2 系统接口
表3为 Symbol MDP MDN MSP MSN GPIO[9:0] (DB[17:8]) S_CSB(DB [7])
MDDI 管脚作用。 I/O 功能描述 I/O MDDI 数据输入/输出正端,如果 MDDI 不用,该端口悬空。 I/O MDDI 数据输入/输出负端,如果 MDDI 不用,该端口悬空。 I MDDI 数据选通输入正端,如果 MDDI 不用,该端口悬空。 I MDDI 数据选通输入负端,如果 MDDI 不用,该端口悬空。 I/O 总体输入输出,如果在 MDDI 中没有用 GPIO 的话,这些管 脚应该置地。 O 子屏幕驱动 IC 片选信号。 低电平时说明子屏幕驱动 IC 可用,高电平时说明子屏幕驱动
表 1 电源接口
如表 2 所示为系统接口。 Symbol I/O 功能描述 S_PB I 选择 CPU 接口模式,低电平时为并行接口,高电平时为串行 接口。 MDDI_E I 选择 MDDI 接口,低电平时 MDDI 接口不可用,高电平时 N MDDI 接口可用。 ID_MIB I 选择 CPU 种类, 低电平为 intel 80 系列 CPU, 高电平为 motorola 68 系列 CPU,如果 S_PB 是高电平,该端口为 ID 设置端口。 CSB I 片选信号,低电平芯片可用,高电平芯片不可用。 RS I 寄存器选择管脚。 低电平时,指令/状态,高电平时为指令参数/RAM 数据。 不用时需与 VDD3 接在一起。 RW_WR I 管脚作用 CPU 种类 管脚说明 B/SCL RW 68 系列 读写选择,低电平写,高电平读。 WRB 80 系列 写选通作用,在上升沿捕获数据。 SCL 串行接口 时钟同步信号。 E_RDB I 管脚作用 CPU 种类 管脚说明 E 68 系列 读写操作使能端。 RDB 80 系列 读选通作用,低电平时读出数据。 选择串行模式时,将此端口接在 VDD3 上。 SDI I 串行接口的数据输入接口,在 SCL 上升沿捕捉到输入数据,
InTrac 796商品说明书

The InTrac 796 is a state-of-the-art retractable housing specifical-ly designed for on-line measuring applications in the biotechnology industry.It enables safe insertion and with-drawal of sensors during an on-going process without compro-mising sterility.– Twin chamber lock enables easy electrode maintenance or replace-ment and steam-sterilization in-situ, without process interrup-tion or compromise on sterility – Enhanced safety in combination with safety weld-in socket – Side-mounting in bioreactors and vessels through 25 mm standard (Ingold) or safety weld-in sockets – Suited for high-precision, liquid-electrolyte ph and redox electro-des– Versions for manual or pneumatic operation– Pressure resistant up to 6 bar (85 psi), allowing application in large-scale industrial fermenters and process vesselsRetractable housings InTrac 796InTrac 796 – the original retractable housing forsterilization of electrodes in biotech processes.InTrac 796 is designed to meet the specific application requirements ofbiotechnology processes.The electrode can be sterilized inside the housing when in retracted position, using the controlled environment of the twin-chamber lock. This double lock effectively protects the process from any intrusion of contamination after insertion of the electrode. The housing also enables the electrode to be withdrawn from the process for maintenance purposes under sterile conditions while the process is still running. After servicing or exchange, the electrode can be steam-sterilized within the housing before reinsertion into the process medium, without any fear of contamination.The InTrac 796 is easily installed through the side of the reactor or vessel, using a 25 mm weld-in socket (Ingold type or METTLER TOLEDO safety socket). It is available either as a manually operated version or with pneumatic drive.SpecificationsInTrac 796-M/75, InTrac 796-P/75Pressure in reactor:dependant on electrode specification, but not more then 6 bar (85 psi)Temperature ranges Retractable member: 0...130°C (32...266°F), steam-sterilizable Headpart:0...80°C (32...176°F)Weld-in socket:ID = 25 mm, L = 40 mm, 15°chamfer Insertion length:H = 75 mmMaterialsProcess wetted:Stainless steel, DIN 1.4435 with 3.1b material certificate Headpart:POM (polyoxymethylene) and PP (polypropylene)Seals process wetted:Viton ® FDA Flushing connections:G 1⁄8" thread∅ 68∅ 75∅ 50∅ 25 R1 1/4"43H = 75a = 25012 3Ordering Information DesignationOrder no.InTrac 796-M/75 (manual)00 796 3002InTrac 796-P/75 (pneumatic)00 796 3010(Fitting sets for steam lines see «spare parts and accessories »)Standard-Electrodes Designation Order no.pH electrode: InPro 2000/250/Pt100/984852 001 436pH electrode: InPro 2000/250/Pt1000/984852 001 437pH electrode: 465-50-SC-P-S7/250/984810 465 4503Redox electrode: Pt 4865-50-SC-S7/250/984810 565 3140For the retractable installation of low maintenance gel-filled electrodes and 12 mm 02or turbidity sensors,we recommend the InTrac 797 housing.Spare parts and accessories Description Order no. Service kit, small 00 796 2003Service kit, large00 796 2002Weld-in socket, inclined 15°, L = 40 mm, stainless steel DIN 1.443500 764 1014Safety weld-in socket, inclined 15°, L = 40 mm, stainless steel DIN 1.443552 400 462Fitting set for InTrac 796/797 Serto, Material: 1.457100 797 2006Fitting set for InTrac 796/797 Gyrolok, Material: 1.440100 797 2008Fitting set for InTrac 796/797 Swagelok, Material: 1.440100 797 2007Conversion kit, manual to pneumatic operation 00 777 2004Gasket20 305 1004Temperature sensor Pt100-764/5m10 100 3104The retractable housing InTrac 796 together with the appropriate electrode and a transmitterfrom METTLER TOLEDO offer a complete system for the most accurate and reproducible measurement of pH and redox values in biotechnology.Retractable housings InTrac 796Retractable housing for use in biotech.Sales and service:Mettler-Toledo GmbH, Process Analytics,Industrie Nord, CH-8902 Urdorf,Phone +41-1-736 22 11, Fax +41-1-736 26 36Subject to technical changes.© Mettler-Toledo GmbH 02/01 (Version 1.0) Printed in Switzerland. 52 400 084Management System certified according to ISO 9001 / ISO 140019001certifiedISO14001certifiedISO INTERNET1. «OUT » position approx. 5752. «IN » position approx. 5273. approx. 565。
德州仪器MAX796评估板EV kit说明书

_______________General DescriptionThe MAX796 evaluation kit (EV kit) is a preassembled and tested demonstration board that generates 5V and 15V. It features a flyback transformer rather than a sim-ple inductor, providing the extra 15V output with very lit-tle added cost. This loosely regulated 15V output is nor-mally post-regulated to 12V with a linear regulator such as the MAX667, in order to generate V PP programming voltages for flash memory and PCMCIA sockets. The board comes configured to accept battery voltages between 6.5V and 28V, but can be reconfigured for voltages between 5.7V and 30V by reducing the expec-tation on secondary load-current capability at low volt-ages (60mA) and substituting MOSFETs with higher breakdown voltage ratings.The standard board is guaranteed to deliver at least 3A of load current on the main output and a 120mA mini-mum on the secondary output (V SEC > 13V). To modify the load-current capability, change the sense-resistor (R1) value and re-size the external components accord-ing to the Design Procedure in the MAX796/MAX797/MAX799 data sheet.The main output voltage comes preset to 5.08V (nomi-nal). To select 3.3V operation, move jumper J2 to posi-tion 2-3. For operation in adjustable mode, install resis-tors R4 & R5 and remove the jumper. There is a small PC trace jumper that shunts J2 on the board. This default jumper must be cut apart for either adjustable-mode or fixed 3.3V operation.Don’t oper-ate the circuit if a jumper or resistor divider has not been installed, as this will damage the IC due to output overvoltage. Be sure to change the transformer turns ratio if the secondary feedback resistor divider is changed.In addition to the standard components, the EV kit has some extra pull-up and pull-down resistors (R2–R8) to set default logic input levels. These resistors can usual-ly be omitted in the final design. There is also an option-al HF noise filter on the current-sense leads (R6 and C9) that may be needed with some transformer types. If the main output becomes noisy when the secondary output is heavily loaded, the noise filter should be left installed.The MAX796 EV kit can be used to evaluate the MAX799 IC by replacing the IC and re-wiring the trans-former secondary. Changes needed include connect-ing the SECFB resistor divider to REF instead of GND,changing the transformer, and reversing the secondary rectifier (D3) and filter capacitor (C7) polarities.____________________________Featureso Battery Range: 6.5V to 28V o Load Capability: +3.3V at 3A+15V at 150mA o Precision 2.505V Reference Output o Oscillator SYNC Inputo Secondary Winding RegulationEvaluates: MAX796/MAX799MAX796 Evaluation Kit_________________________________________________________________Maxim Integrated Products119-0221; Rev 3a; 11/97______________Ordering Information_____________________MAX796 EV KitFor free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 408-737-7600 ext. 3468.E v a l u a t e s : M A X 796/M A X 799MAX796 Evaluation Kit 2____________________________________________________________________________________________________________Component List_________________________Quick Start1)Connect a stiff (20W or better) bench power supply to the VIN and GND pads found at the edge of the board. 2)Check that the jumpers are set correctly (J1installed, J2 and J3 both set to position 1-2).3)Turn up the input voltage to somewhere between 4.75V and 28V.4)Verify that the main output is regulating at 5V, and that the secondary output is at 15V or so. Normal full-load regulation is -2.5% while keeping the main output in tolerance. If the measured error is higher,there may be drops in the wiring or ground.5)Ensure that the voltmeter is sensing directly at the output and ground pads of the PC board. To observe normal PWM switching action, place a 1A load on the main output and observe the switching node (device LX pin) with an oscilloscope while varying the input voltage. Without a load, the switching wave-forms are intermittent and difficult to trigger on, and it may appear that the board isn’t working.Jumper J3 comes installed for 300kHz ponent values may need to be changed if 150kHz operation is selected; see the Design Procedure section in the MAX796/MAX797/MAX799 data sheet. The oscil-lator can be synchronized to an external clock signal by driving the SYNC pad with a pulse train of 5V amplitude.Table 2. Jumper ConnectionsTable 1. Pull-Up/Down ResistorsSee Table 2 in the MAX796/MAX797/MAX799 data sheet for component supplier phone/fax numbers.Evaluates: MAX796/MAX799MAX796 Evaluation Kit_________________________________________________________________________________________3Figure 1. MAX796 EV Kit SchematicFigure 2. MAX796 EV Kit Component Placement Guide—Component SideE v a l u a t e s : M A X 796/M A X 799MAX796 Evaluation Kit 4_______________________________________________________________________________________Figure 3. MAX796 EV Kit Component Placement Guide—Solder SideFigure 4. MAX796 EV Kit PC Board Layout—Component SideFigure 5. MAX796 EV Kit PC Board Layout—Solder SideFigure 6. MAX796 EV Kit PC Board Layout—Interior Groundplane。
MT7966规格书-中文_Rev1.00

如果 VCC 低于 8V, 则 MT7966 将自动关闭 (UVLO 阈值电压) 。 恒流控制与输出电流设置 芯片逐周期检测变压器原边的峰值电流,CS 端连 接到内部的峰值电流比较器的输入端,与内部 500mV 的阈值电平进行比较,当 CS 外部电压达 到该阈值时,功率管关断。 原边峰值电流的表达式为:
推荐工作条件
VCC 电源电压 工作温度(外部环境温度) 8V ~ 15V -40° C ~ 105° C
热阻
封装表面到环境 (RθCA) 128° C/W
管脚排列图
管脚描述
管脚名称 GND OVP VCC SW DRAIN NC CS 管脚号 1 2 3 4 5 6 7 8 接地脚 LED开路电压设定管脚。参见功能描述中,LED开路保护设置。 芯片电源脚 内部功率管源极 内部功率管漏极 悬空脚,该引脚必须悬空 电流采样端,采样电阻接在CS和GND之间 描述
应用
LED球泡灯、射灯 LED照明驱动 通用恒流源
典型应用电路
LED+ NP:NS
AC
LEDVCC CS OVP GND
3 8
4
SW NC DRAIN DRAIN
MT7966 7 2 (SOP8) 6
1 5
RCS
RSET
MT7966 Rev. 1.00
版权 © 2014 美芯晟科技有限公司
版权 © 2014 美芯晟科技有限公司
第5页
MT7966
高精度双绕组原边反馈 LED 恒流驱动
片的地线及其它小信号的地线分头接到 Bulk 电容 的地端。 OVP 引脚 OVP 引脚走线尽可能短,且 RSET 电阻需要尽量靠 近 OVP 引脚。OVP 引脚走线不能靠近 DRAIN 引 脚走线以及 SW 引脚走线, 如果有条件, 可用地线 将 OVP 引脚包围。 变压器次级、输出电容的环路面积,以减小 EMI 辐射。 DRAIN 引脚 增加 DRAIN 引脚的铺铜面积以提供芯片的散热能 力。 NC 引脚 NC 脚必须悬空以保证芯片引脚间距满足爬电距 离。
MT7688模块规格书_Rev0

HK NATER TECH LIMITEDMT7688核心模块Specification Customer:Description:LH7688EVB-MCustomer P/N:______________________________________ Date:Customer: Provider:HK NATER TECH LIMITEDAdd: Add: 2F,NO.27,2 Baomin Rd.,Baoan Dist.SZ City,China Tel: Tel:0086-755-61522172/135****0050Fax: Fax:0086-755-61522171Attn: Attn:LingoE-mail: E-mail:***************基于MT7688A的Wi-Fi路由模块文档版本:Rev 0.4版本历史:版本日期说明作者备注0.1 2014-Sep-18 初次紧急发布。
T om0.2 2014-Sep-19 增加电气特性部分。
T om0.3 2014-Sep-25 增加SD卡典型电路T om0.4 2014-Oct-09 增加RF典型特性T om1. 模块简介LH-7688-M是一款通用2.4G Wi-Fi路由模块,配合一个Ethernet接口,一个USB口,若干GPIO,它可以适用于很多场合。
比如有线转无线,3G/4G转WiFi,,硬AP,便携式路由器,无线音箱,无线存储等等。
模块大小为56mm*39mm,采用邮票接口(半孔工艺)与母板连接。
WiFi可以使用板载的片状天线,简化客户的整机装配;或者使用I-PEX引出。
模块基于台湾MTK的MT7688A方案,主要特点如下:◆ 无线+有线路由器方案◆ 无线支持802.11b/g/n,最高速率150Mbps◆ 有线支持1WAN或1LAN,10M/100M自适应◆ 适中的RF功率消耗◆ 支持64MB/128MB/256MB DDR2 memory◆ 480Mbps的高速USB接口◆ 3路UART(推荐UART0专用于系统Debug)◆ I2S数字音频接口◆ I2C通信接口◆ 4位/8位SD卡存储接口◆ 丰富的GPIO2. 信 号Pin说明3 @I2S_DO 输出 I2S 数据输出 内部下拉4 I2S_WS 输出 I2S 左右声道对齐5 I2S_CLK输出 I2S 位时钟 6 I2C_SCLK 双向 I2C 时钟线 7 I2C_SD 双向 I2C 数据线 8 SPI_MISO 输入 SPI 主入从出9 *SPI_CS0 输出 SPI 片选0,应悬空 仅供调试10 @SPI_CS1 输出 SPI 片选1 内部下拉,与Flash 型号/容量有关 11 GND地12 @SPI_CLK 输出 SPI 时钟 内部上拉 13 @SPI_MOSI 输出 SPI 主出从入 内部下拉 14 GPIO_0 双向 GPIO_015 @UART_TXD0 输出 UART0发送线 Debug,内部下拉 16 UART_RXD0 输入 UART0接收线 Debug 17 RXIP0 模拟 Ethernet 接收线正 18 RXIN0 模拟 Ethernet 接收线负 19 TXOP0 模拟 Ethernet 发送线正 20 TXON0模拟 Ethernet 发送线负 21 PWM_CH0/SPIS_CS 双向 PWM 通道0/从SPI 片选 22 PWM_CH1/SPIS_CLK 双向 PWM 通道1/从SPI 时钟 23 UART_TXD2/SPIS_MISO 双向 UART2发送线/从SPI 主入从出 24 UART_RXD2/SPIS_MOSI 双向 UART2接收线/从SPI 主出从入 25 GND地26 SD_D7/GPIO18 双向 SD Data7/GPIO18 27 SD_D6/GPIO19 双向 SD Data6/GPIO19 28 SD_D5/GPIO20 双向 SD Data5/GPIO20 29 SD_D4/GPIO21 双向 SD Data4/GPIO21 30 SD_WP_N 输入 SD 写保护检测 31 SD_CD_N 输入 SD 插入检测 引脚 名称 方向 描述备注1 GND地2 I2S_DI 输入 I2S 数据输入33 SD_D0 双向 SD Data034 SD_CLK 输出 SD时钟线35 SD_CMD 双向 SD命令线36 SD_D1 双向 SD Data137 SD_D0 双向 SD Data038 GND 地39 USB_DP 双向 USB 2.0 D+40 USB_DM 双向 USB 2.0 D-41 GND 地42 VIN 电源 3.3V-5.3V直流输入43 VIN 电源 同上44 GND 地45 GND 地46 VOUT 电源 3.3V电源输出47 VOUT 电源 3.3V电源输出48 @PERST_N 输出 GPO 内部上拉49 REF_CLKO 输出 系统时钟输出/GPIO50 WDT_RST_N 双向 WatchDog复位/GPIO 默认恢复出厂设置51 CPURST_N 双向 MT7688A Reset信号 内部RC52 JTRST_N/LINK4 双向 GPIO53 JTCLK/LINK3 双向 GPIO54 JTMS/LINK2 双向 GPIO55 JTDI/LINK1 双向 GPIO56 JTDO/LINK0 输出 GPIO 推荐Ethernet指示57 WLED_N 输出 Wi-Fi状态指示58 @UART_TXD1 输出 UART1发送线 内部上拉59 UART_RXD1 输入 UART1接收线60 GND 地61 GND 地注意:1. 带有“@”前缀的信号,MT7688A启动时用于系统配置,外部切不可驱动,也不可增加上/下拉电阻(防碍内部上/下拉电阻)。
MEMORY存储芯片MT29F64G08CBAAAWP-IT中文规格书

DQ12 VDDQ
VSS
UDQS# DQ14 VSSQ
UDQS DQ10 VDDQ
DQ8 VSSQ
VDD
LDM VSSQ VDDQ
DQ1 DQ3 VSSQ
VDD
VSS
VSSQ
DQ7 DQ5 VDDQ
CK
ห้องสมุดไป่ตู้VSS
NC
CK# VDD CKE
A10/AP ZQ
NC
NC VREFCA VSS
A12/BC# BA1 VDD
Symbol A[15:13], A12/BC#, A11, A10/AP, A[9:0]
BA[2:0] CK, CK#
CKE
CS# DM ODT RAS#, CAS#, WE# RESET#
Type Input
Input Input Input
Input Input Input Input Input
09005aef85af8fa8 4Gb_DDR3L.pdf - Rev. R 09/18 EN
4Gb: x4, x8, x16 DDR3L SDRAM Ball Assignments and Descriptions
Table 3: 78-Ball FBGA – x4, x8 Ball Descriptions
Clock enable: CKE enables (registered HIGH) and disables (registered LOW) internal circuitry and clocks on the DRAM. The specific circuitry that is enabled/ disabled is dependent upon the DDR3 SDRAM configuration and operating mode. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operations (all banks idle), or active power-down (row active in any bank). CKE is synchronous for power-down entry and exit and for self refresh entry. CKE is asynchronous for self refresh exit. Input buffers (excluding CK, CK#, CKE, RESET#, and ODT) are disabled during POWER-DOWN. Input buffers (excluding CKE and RESET#) are disabled during SELF REFRESH. CKE is referenced to VREFCA.
MEMORY存储芯片MT48LC8M16A2TG-75G中文规格书

Figure 40: DLL Disable Mode to DLL Enable ModeDon’t CareIndicates breakin time scale Notes: 1.Enter SELF REFRESH.2.Exit SELF REFRESH.3.Wait t XS, then set MR1[0] to 0 to enable DLL.4.Wait t MRD, then set MR0[8] to 1 to begin DLL RESET.5.Wait t MRD, update registers (CL, CWL, and write recovery may be necessary).6.Wait t MOD, any valid command.7.Starting with the idle state.8.Change frequency.9.Clock must be stable at least t CKSRX.10.Static LOW in the case that R TT,nom or R TT(WR) is enabled; otherwise, static LOW or HIGH.The clock frequency range for the DLL disable mode is specified by the parameter t CK (DLL_DIS). Due to latency counter and timing restrictions, only CL = 6 and CWL = 6 are supported.DLL disable mode will affect the read data clock to data strobe relationship (t DQSCK)but not the data strobe to data relationship (t DQSQ, t QH). Special attention is needed to line up read data to the controller time domain.Compared to the DLL on mode where t DQSCK starts from the rising clock edge AL + CL cycles after the READ command, the DLL disable mode t DQSCK starts AL + CL - 1 cycles after the READ command.WRITE operations function similarly between the DLL enable and DLL disable modes;however, ODT functionality is not allowed with DLL disable mode.8Gb: x4, x8, x16 DDR3L SDRAM CommandsInput Clock Frequency ChangeWhen the DDR3 SDRAM is initialized, the clock must be stable during most normal states of operation. This means that after the clock frequency has been set to the stable state, the clock period is not allowed to deviate, except for what is allowed by the clock jitter and spread spectrum clocking (SSC) specifications.The input clock frequency can be changed from one stable clock rate to another under two conditions: self refresh mode and precharge power-down mode. It is illegal to change the clock frequency outside of those two modes. For the self refresh mode con-dition, when the DDR3 SDRAM has been successfully placed into self refresh mode and t CKSRE has been satisfied, the state of the clock becomes a “Don’t Care.” When the clock becomes a “Don’t Care,” changing the clock frequency is permissible if the new clock frequency is stable prior to t CKSRX. When entering and exiting self refresh mode for the sole purpose of changing the clock frequency, the self refresh entry and exit specifications must still be met.The precharge power-down mode condition is when the DDR3 SDRAM is in precharge power-down mode (either fast exit mode or slow exit mode). Either ODT must be at a logic LOW or R TT,nom and R TT(WR) must be disabled via MR1 and MR2. This ensures R TT,nom and R TT(WR) are in an off state prior to entering precharge power-down mode,and CKE must be at a logic LOW. A minimum of t CKSRE must occur after CKE goes LOW before the clock frequency can change. The DDR3 SDRAM input clock frequency is al-lowed to change only within the minimum and maximum operating frequency speci-fied for the particular speed grade (t CK [AVG] MIN to t CK [AVG] MAX). During the input clock frequency change, CKE must be held at a stable LOW level. When the input clock frequency is changed, a stable clock must be provided to the DRAM t CKSRX before pre-charge power-down may be exited. After precharge power-down is exited and t XP has been satisfied, the DLL must be reset via the MRS. Depending on the new clock fre-quency, additional MRS commands may need to be issued. During the DLL lock time,R TT,nom and R TT(WR) must remain in an off state. After the DLL lock time, the DRAM is ready to operate with a new clock frequency.8Gb: x4, x8, x16 DDR3L SDRAM Input Clock Frequency Change。
MEMORY存储芯片MT29F64G08CBAAAWP中文规格书

DDR3L SDRAMMT41K1G4 – 128 Meg x 4 x 8 banksMT41K512M8 – 64 Meg x 8 x 8 banks MT41K256M16 – 32 Meg x 16 x 8 banksDescriptionDDR3L SDRAM (1.35V) is a low voltage version of theDDR3 (1.5V) SDRAM. Refer to DDR3 (1.5V) SDRAM(Die Rev :E) data sheet specifications when running in1.5V compatible mode.Features•V DD = V DDQ = 1.35V (1.283–1.45V)•Backward compatible to V DD = V DDQ = 1.5V ±0.075V–Supports DDR3L devices to be backward com-patible in 1.5V applications•Differential bidirectional data strobe•8n -bit prefetch architecture•Differential clock inputs (CK, CK#)•8 internal banks•Nominal and dynamic on-die termination (ODT)for data, strobe, and mask signals•Programmable CAS (READ) latency (CL)•Programmable posted CAS additive latency (AL)•Programmable CAS (WRITE) latency (CWL)•Fixed burst length (BL) of 8 and burst chop (BC) of 4(via the mode register set [MRS])•Selectable BC4 or BL8 on-the-fly (OTF)•Self refresh mode•T C of 105°C–64ms, 8192-cycle refresh up to 85°C–32ms, 8192-cycle refresh at >85°C to 95°C–16ms, 8192-cycle refresh at >95°C to 105°C •Self refresh temperature (SRT)•Automatic self refresh (ASR)•Write leveling •Multipurpose register •Output driver calibrationOptions Marking •Configuration – 1 Gig x 41G4–512 Meg x 8512M8–256 Meg x 16256M16•FBGA package (Pb-free) – x4, x8–78-ball (9mm x 10.5mm) Rev. E RH –78-ball (7.5mm x 10.6mm) Rev. N RG –78-ball (8mm x 10.5mm) Rev. P DA •FBGA package (Pb-free) – x16–96-ball (9mm x 14mm) Rev. E HA –96-ball (7.5mm x 13.5mm) Rev. N LY –96-ball (8mm x 14mm) Rev. P TW •Timing – cycle time –938ps @ CL = 14 (DDR3-2133)-093– 1.07ns @ CL = 13 (DDR3-1866)-107– 1.25ns @ CL = 11 (DDR3-1600)-125•Operating temperature –Commercial (0°C T C +95°C)None –Industrial (–40°C T C +95°C)IT –Automotive (–40°C T C +105°C)AT •Revision :E/:N/:P Table 1: Key Timing ParametersNotes: 1.Backward compatible to 1600, CL = 11 (-125).2.Backward compatible to 1866, CL = 13 (-107).4Gb: x4, x8, x16 DDR3L SDRAM Description09005aef85af8fa84Gb_DDR3L.pdf - Rev. R 09/18 ENTable 2: AddressingFigure 1: DDR3L Part Numbers([DPSOH 3DUW 1XPEHU 07 . 0 '$ 3Note: 1.Not all options listed can be combined to define an offered product. Use the part catalog search on for available offerings.FBGA Part Marking DecoderDue to space limitations, FBGA-packaged components have an abbreviated part marking that is different from the part number. For a quick conversion of an FBGA code, see the FBGA Part Marking Decoder on Micron’s Web site: .4Gb: x4, x8, x16 DDR3L SDRAM Description09005aef85af8fa84Gb_DDR3L.pdf - Rev. R 09/18 ENImportant Notes and WarningsMicron Technology, Inc. ("Micron") reserves the right to make changes to information published in this document,including without limitation specifications and product descriptions. This document supersedes and replaces all information supplied prior to the publication hereof. You may not rely on any information set forth in this docu-ment if you obtain the product described herein from any unauthorized distributor or other source not authorized by Micron.Automotive Applications. Products are not designed or intended for use in automotive applications unless specifi-cally designated by Micron as automotive-grade by their respective data sheets. Distributor and customer/distrib-utor shall assume the sole risk and liability for and shall indemnify and hold Micron harmless against all claims,costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting directly or indirectly from any use of non-automotive-grade products in automotive applications. Customer/distributor shall ensure that the terms and con-ditions of sale between customer/distributor and any customer of distributor/customer (1) state that Micronproducts are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to in-demnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys'fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting from any use of non-automotive-grade products in automotive applications.Critical Applications. Products are not authorized for use in applications in which failure of the Micron compo-nent could result, directly or indirectly in death, personal injury, or severe property or environmental damage ("Critical Applications"). Customer must protect against death, personal injury, and severe property and environ-mental damage by incorporating safety design measures into customer's applications to ensure that failure of the Micron component will not result in such harms. Should customer or distributor purchase, use, or sell any Micron component for any critical application, customer and distributor shall indemnify and hold harmless Micron and its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims,costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of such critical application, whether or not Mi-cron or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the Micron product.Customer Responsibility. Customers are responsible for the design, manufacture, and operation of their systems,applications, and products using Micron products. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT FAIL-URE RATES AND LIMITED USEFUL LIVES. IT IS THE CUSTOMER'S SOLE RESPONSIBILITY TO DETERMINE WHETHER THE MICRON PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER'S SYSTEM, APPLICATION, OR PRODUCT. Customers must ensure that adequate design, manufacturing, and operating safeguards are included in customer's applications and products to eliminate the risk that personal injury, death, or severe property or en-vironmental damages will result from failure of any semiconductor component.Limited Warranty. In no event shall Micron be liable for any indirect, incidental, punitive, special or consequential damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort, warranty,breach of contract or other legal theory, unless explicitly stated in a written agreement executed by Micron's duly authorized representative.4Gb: x4, x8, x16 DDR3L SDRAM Important Notes and Warnings09005aef85af8fa84Gb_DDR3L.pdf - Rev. R 09/18 EN。
MEMORY存储芯片MT29F64G08CBAAAWP-ZA中文规格书

DQ Input Timing
Data setup time to DQS, DQS#
VOH(AC)
VOL(AC)
Calculation
VOH(AC) - VOL(AC) ΔTRse
VOH(AC) - VOL(AC) ΔTFse
PDF: 09005aef8591dc1f 8Gb_DDR3L.pdf - Rev. C 10/15 EN
Speed Bin Tables
8Gb: x4, x8, x16 DDR3L SDRAM Speed Bin Tables
ACTIVATE-to-PRECHARGE command period
ACTIVATE-to-ACTIVATE command period
ACTIVATE-to-AC- x4/x8/x16 (2KB TIVATE minimum page size) command period
Four ACTIVATE x4/x8/x16 (2KB
27
27
27
27
512 – 512 – 512 – 512 – 215 – 140 – 80 – 60 –
375 – 300 – 240 – 220 – 365 – 290 – 205 – 185 –
500 – 425 – 340 – 320 – 285 – 210 – 150 – 130 –
375 – 300 – 240 – 220 – 900 – 780 – 620 – 560 –
Figure 27: Reference Output Load for AC Timing and Output Slew Rate
DUT
VDDQ/2 VREF
DQ DQS DQS#
MEMORY存储芯片MT29F64G08AJABAWP-IT B中文规格书

CIO RLDRAM 2MT49H32M9 – 32 Meg x 9 x 8 Banks MT49H16M18 – 16 Meg x 18 x 8 Banks MT49H8M36 – 8 Meg x 36 x 8 BanksFeatures•533 MHz DDR operation (1.067 Gb/s/pin data rate)•38.4 Gb/s peak bandwidth (x36 at 533 MHz clock frequency)•Organization–32 Meg x 9, 16 Meg x 18, and 8 Meg x 36•8 internal banks for concurrent operation and maxi-mum bandwidth•Reduced cycle time (15ns at 533 MHz)•Nonmultiplexed addresses (address multiplexing option available)•SRAM-type interface•Programmable READ latency (RL), row cycle time, and burst sequence length•Balanced READ and WRITE latencies in order to optimize data bus utilization•Data mask for WRITE commands•Differential input clocks (CK, CK#)•Differential input data clocks (DK x, DK x#)•On-die DLL generates CK edge-aligned data and output data clock signals•Data valid signal (QVLD)•32ms refresh (8K refresh for each bank; 64K refresh command must be issued in total each 32ms)•HSTL I/O (1.5V or 1.8V nominal)•25–60Ω matched impedance outputs•2.5V V EXT, 1.8V V DD, 1.5V or 1.8V V DDQ I/O•On-die termination (ODT) R TT Options1Marking •Clock cycle timing– 1.875ns @ t RC = 15ns-18– 2.5ns @ t RC = 15ns-25E– 2.5ns @ t RC = 20ns-25– 3.3ns @ t RC = 20ns-33– 5.0ns @ t RC = 20ns-5•Configuration–32 Meg x 932M9–16 Meg x 1816M18–8 Meg x 368M36•Operating temperature–Commercial (0° to +95°C)None–Industrial (T C = –40°C to +95°C;T A = –40°C to +85°C)IT•Package–144-ball µBGA FM–144-ball µBGA (Pb-free)BM–144-ball FBGA TR–144-ball FBGA (Pb-free)SJ •Revision:BNote: 1.Not all options listed can be combined todefine an offered product. Use the part cat-alog search on for available of-ferings.BGA Marking DecoderDue to space limitations, BGA-packaged components have an abbreviated part marking that is different from the part number. Micron’s BGA Part Marking Decoder is available on Micron’s web site at .Figure 1: 288Mb RLDRAM 2 CIO Part NumbersExample Part Number: MT49H16M18SJ-25 :BGeneral DescriptionThe Micron® reduced latency DRAM (RLDRAM®) 2 is a high-speed memory device de-signed for high-bandwidth data storage such as telecommunications, networking, andcache applications. The chip’s 8-bank architecture is optimized for sustainable high-speed operation.The DDR I/O interface transfers two data words per clock cycle at the I/O balls. Outputdata is referenced to the free-running output data clock.Commands, addresses, and control signals are registered at every positive edge of thedifferential input clock, while input data is registered at both positive and negativeedges of the input data clock(s).Read and write accesses to the device are burst-oriented. The burst length (BL) is pro-grammable to 2, 4, or 8 by setting the mode register.The device is supplied with 2.5V and 1.8V for the core and 1.5V or 1.8V for the outputdrivers.Bank-scheduled refresh is supported with the row address generated internally.The 144-ball package is used to enable ultra high-speed data transfer rates and a simpleupgrade path from early generation devices.Figure 2: State DiagramAutomatic sequenceCommand sequence。
MT7600规格书-中文 _Rev1.00

典型应用电路
MT7600 Rev. 1.00
版权 © 2012 美芯晟科技有限公司
第1页
MT7600
Maximizing IC Performance
极限参数
VCC SUM,CAP,CS 1,CS2, CS3,G1,G2,G3 存储温度 结温( Tj) -0.3V ~ 20V -0.3V ~ 6V -55° C ~ 150° C 150° C
MT7600 内置美芯晟专利的平均电流控制和补偿 电路,使得流过 LE D 灯串的平均电流在市电电压 变化时,仍能保持不变,达到良好的恒流效果。 平均电流模式主要通过在 CAP 脚外接 0.1uF – 1uF 对地电容来实现, 该电容同时在上电启动过程 中,起到软启动的作用。
MT7600 Rev. 1.00
版权 © 2012 美芯晟科技有限公司
第4页
MT7600
Maximizing IC Performance
过温保护 芯片内部温度高于 OTP 阈值后,会自动关闭。再 等温度降低到比 OTP 阈值低 20℃, 才会重新启动。 提高功率校准因子(PFC) MT7600 的系统,在三串 LE D 灯珠相同的导通电 流情况下,只要导通比 D 大于 0.66 ,功率因子 PF 就可以很容易达到 0.95。若需要进一步提高 PFC 值,那么分段 LE D 灯珠的导通电流波形就应该尽 量逼近市电的正弦电压波形,参见图 2,即 ILED3 > ILED2 > ILED1,也就是 R3 < R2 < R1 。 恒定功率输出模式 MT7600 内置平均电流模式控制电路, 根据外部电 路的接法不同,可以有两种不同的输出方式。 1) 恒定电流输出方式 ,SUM 脚浮空。该方式下, 在指定的市电电压变化范围内, LE D 灯串的平 均电流恒定不变。该方式电路简单,成本低; 2) 恒定功率输出方式 ,SUM 脚分别接不同阻值 的电阻( RS1,RS2 ,RS 3)到 CS 1 端,CS2
NEC 78K8R 说明书

[文件名称约定] 在命令行中指定输入文件名的约定如下所示。 (1) 指定磁盘文件名 [驱动名] <1> <1> <2> <3> [\] <2> [[路径名]...] <3> 主文件名 [.[文件类型]] <4> <5>
…
(): /: \:
指定存储文件的驱动名(A: 到 Z:)。 指定根目录名。 指定子目录名。 指定的字符串长度应该在操作系统允许范围内。 可以使用的字符: 操作系统允许圆括号(()),分号(:),逗号(,)之外的所有字符。 注意,连字符(-)不能被当作路径名的首字符。
用户手册
CC78K0R
C 编译器 操作篇 目标设备
Ver. 1.00
78K0R 微控制器
文档编号 出版日期 日本印刷
U17838CA1V0UM00 (第 1 版) 2007 年 12 月 CP(K)
© 日本电气电子株式会社 2007
用户手册 U17838CA1V0UM00
[备忘录]
2
用户手册 U17838CA1V0UM00
介绍编译选项,具体的规格说明方法和各个选项的优先级别。 第6章 C 编译器输出文件
介绍 CC78K0R 输出的各种列表文件。 第7章 C 编译器的使用方法
介绍一些技巧,帮助读者更熟练的使用 CC78K0R。
用户手册 U17838CA1V0UM00
5
第8章 议。 第9章
启动例程
CC78K0R 提供了启动例程作为样例。介绍了启动例程的使用,并提供了关于如何改善的建
<4>
主文件名 指定的字符串长度应该在操作系统允许范围内。 可以使用的字符: 操作系统允许除了圆括号(()),分号(:),逗号(,)以外的所有字符。 注意,连字符(-)不能被当作路径名的首字符。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
版权 © 2015 美芯晟科技有限公司
Rev. 1.00 第1页
MT7968AL
高精度双绕组原边反馈 LED 恒流驱动
极限参数
DRAIN VCC VCC 最大吸收电流 OVP CS PDMAX(最大功耗) 存储温度 结温(Tj) -0.3V ~ 600V -0.3V ~ 40V 5mA -0.3V ~ 6V -0.3V ~ 6V 1.2W -55° C ~ 150° C 150° C
推荐工作条件
VCC 电源电压 工作温度(外部环境温度) 8V ~ 15V -40° C ~ 105° C
热阻
PN 结到环境 (RθJA) 70° C/W
管脚排列图
芯片标记:
MT7968AL YY WW xxxx 生产内部代码 生产周代码 生产年代码
管脚描述
管脚名称 OVP GND VCC SW DRAIN CS 管脚号 1 2 3 4 5 6 7 8 接地脚 芯片电源脚 内部功率管源极 内部功率管漏极 电流采样端,采样电阻接在CS和GND之间 描述 LED 开路电压设定管脚。参见功能描述中,LED 开路保护设置。
I P _ PK
Tdemag_ov
过流保护 一旦 CS(D)脚电压超过 500mV,MT7968AL 将立 即关断功率 MOS 管。这种每周期过流检测的方式 保护了相关的元器件免于损坏,如功率 MOS 管, 变压器等。 PCB 设计 设计 MT7968AL 的 PCB 时,需要遵循下列原则:
图 2、变压器原级和次级电流波形
Email: sales@ Tel: 010-62662828 版权 © 2015 美芯晟科技有限公司 Rev. 1.00 第7页
Email: sales@ Tel: 010-62662828
旁路电容
VCC 的旁路电容要紧靠芯片的 VCC 引脚。
地线
VCC 电容 CVCC 的地一定要与芯片地直接相连, 中
Rev. 1.00 第5页
版权 © 2015 美芯晟科技有限公司
应用
LED球泡灯、射灯 LED照明驱动 通用恒流源
典型应用电路
LED+ NP:NS
MT7968AL
3 Vin_ac 8
CBUS CVCC RCS RSET VCC CS OVP GND SW CS DRAIN DRAIN
LED-
4 7 6 5
1 2
Email: sales@ Tel: 010-62662828
式中 LS 单位为 uH,RCS 单位为 Ω, RSET 的单位
I S _ PK
为 kΩ。 由于最小 TOFF 时间为 2us, 因此 RSET 的取
VOVP LS
值不要小于 20kΩ。 电感的精度对 OVP 的阈值有一定的影响,在系统 设计时,应充分考虑到电感的精度,对 OVP 的阈 值设定保留一定的裕量。
版权 © 2015 美芯晟科技有限公司
Rev. 1.00 第6页
MT7968AL
高精度双绕组原边反馈 LED 恒流驱动
封装外形尺寸 DIP-8 (8-Lead Dual In-Line)
重要声明:
·美芯晟科技有限公司保留不发布通知而对该产品和服务随时进行更改,补充,改进和其它变动的权利。 用户敬请在购买产品之前获取最新的相关信息并核实该信息是最佳的和完整的。 所有产品在订单确认后 将遵从美芯晟科技有限公司的销售条例进行销售。 ·本资料内容未经美芯晟科技有限公司许可,严禁以其它目的加以转载或复制等。 ·对于未经销售部门咨询使用本产品而发生的损失,美芯晟科技有限公司不承担其责任。
LS VOVP
0.5 N P RCS N S (V) Tdemag _OV
MT7968AL 通过 OVP 引脚的电阻 RSET(见图 3) 来设置 LED 开路时的退磁时间,即:
Tdemag _OV 0.1 RSET (us)
式中 RSET 的单位为 kΩ。
RSET
f SW
N VLED 8 N Lp I LED
QQ 1101521061
描述
MT7968AL是针对LED照明应用而设计的驱动开 关电源,采用无辅助绕组的原边反馈技术,无需次 级反馈电路,也无需补偿电路。内部集成600V高 压功率开关,可调LED开路保护(OVP)使得系统方 案简洁可靠。 MT7968AL采用美芯晟专利的恒流控制与补偿技 术,LED输出电流精度达到±5%以内,具有优异的 线性调整率和负载调整率, 且对变压器绕组电感变 化不敏感。 MT7968AL同时实现了各种保护功能, 包括逐周期 过流保护(OCP)、LED短路保护(SCP)、LED开路 保护(OVP)和过热保护(OTP)等,以确保系统可靠 地工作。
15V 13V
如果 VCC 低于 7V,则 MT7968AL 将自动关闭 (UVLO 阈值电压) 。 恒流控制与输出电流设置 芯片逐周期检测变压器原边的峰值电流,CS 端连 接到内部的峰值电流比较器的输入端,与内部 500mV 的阈值电平进行比较,当 CS 外部电压达 到该阈值时,功率管关断。 原边峰值电流的表达式为:
MT7968AL
高精度双绕组原边反馈 LED 恒流驱动
主要特点
内部集成600V功率管 无需辅助绕组 可调LED开路保护电压 AC85V到AC265V交流输入电压 LED短路保护 原边感应及恒流机制,无需次级反馈电路 高精度LED恒流电流 (+/-5%) 逐周期峰值电流控制 欠压锁定保护 过温保护 DIP8封装
MT7968AL
高精度双绕组原边反馈 LED 恒流驱动
间不要有不干净的地线, 如 SW 电容地, 以及 RCS 的功率地等。 其它小信号的地线连接到芯片的地, 再与 SW 电容 地分别接到峰值电流采样电阻 RCS 的功率地线, 并 保持峰值电流采样电阻的功率地线尽可能短, 最后 连接到 Bulk 电容 CBUS 的地端。 OVP 引脚 OVP 引脚走线尽可能短,且 RSET 电阻(下图中的 ROVP) 需要尽量靠近 OVP 引脚。 OVP 引脚走线不 能靠近 DRAIN 引脚走线以及 SW 引脚走线。要用 地线将 OVP 引脚包围,并对包围的地线进行裸铜 处理。参考下面的 PCB 示意图。
I P _ PK
500 (mA) RCS
式中 RCS 为峰值检测电阻(见典型应用电路) 。CS 外部电压与 500mV 阈值电平比较时还包括一个 500nS 的前沿消隐时间以滤除 CS 端在导通瞬间 的噪声。 LED 输出电流的计算公式为:
VCC 启动过程
I P _ PK 4
NP 500 N P (mA) N S 4 RCS N S
Rev. 1.00 第4页
Email: sales@ Tel: 010-62662828
版权 © 2015 美芯晟科技有限公司
MT7968AL
高精度双绕组原边反馈 LED 恒流驱动
Email: sales@ Tel: 010-62662828
版权 © 2015 美芯晟科技有限公司
Rev. 1.00 第2页
MT7968AL
高精度双绕组原边反馈 LED 恒流驱动
电气参数
(除非特别说明,测试条件为: VCC=12V, TA=25° C) 符号 ISTART UVLO VSTART VCC-CLAMP 电源电流 IQ VCS-TH LEB1 驱动电路 TOFF_MIN TOFF_MAX TON_MIN TON_MAX DUTY_MAX 热保护 OTP 过热保护温度阈值 过热保护释放的迟滞温度 功率管 (DRAIN 脚) RDSON BVDSS IDSS 功率管导通阻抗 功率管击穿电压 功率管漏电流 VGS=10V/IDS=2A VGS=0V/IDS=250uA VGS=0V/VDS=600V 600 10 4 Ω V uA 155 20 ℃ ℃ 最小关断时间 最大关断时间 最小导通时间 最大导通时间 最大占空比 2 240 1 24 42 us us us us % 最大工作电流 电流检测阈值 CS 脚的内置前沿消隐时间 485 0.3 500 500 515 mA mV nS 电流检测 (CS 脚) 参数 启动电流 欠压锁定电压 ( VCC 低阀值电压) VCC 脚电压下降 启动电压 VCC 钳位电压 VCC 脚电压上升 IDD=5mA Min Typ 35 7 13 15.5 Max 60 Unit μA V V V 启动与电源电压 (VCC 脚)
GND 功率开关驱 动控制
欠压保护
UVLO
SW
短路保护
OCP PWM控制 驱动
低压MOS
OVP
LED开路保护
OVP
过温保护
OTP
原边电感峰 值电流检测
线电压补偿 LEB
500mV CS
功能描述
MT7968AL是一款专用于LED照明恒流驱动的芯 片,工作于电感电流断续模式。采用美芯晟专利的 恒流控制和补偿方法,内部集成600V功率开关, 只需要极少的外围器件就可以达到优异的恒流特 性。外部可调节LED开路电压,无需辅助绕组及次 级反馈电路,系统方案简洁、成本低。 启动过程 启动过程中,VCC 通过一个连接到母线的启动电 阻充电。当 VCC 达到 13V 时,控制逻辑就开始工 作,内部功率管开始开关动作。如图 1 所示。
式中,NP 为变压器原边匝数,NS 为次级端匝数, IP_PK 为原边峰值电流。 由公式可知, 输出电流仅由 变压器匝比与峰值检测电阻决定, 与变压器电感量 无关。 工作频率 MT7968AL 工作于电感电流断续模式,无需环路 补偿,最大占空比为 42%。进行系统设计时,建 议最大工作频率小于 100kHz,最小工作频率大于 20kHz。 工作频率的计算公式为: 时次级电感退磁时间来实现 OVP 保护,即:
功率环路的面积
减小功率环路的面积,如变压器原边,功率管及缓 冲网络(snubber)的环路面积;以及次级二极管、 变压器次级、输出电容的环路面积,以减小 EMI 辐射。 DRAIN 引脚 增加 DRAIN 引脚的铺铜面积以提供芯片的散热能 力。