多元函数的连续性,偏导数,方向导数及可微性之间的关系
高等数学偏导数部分的知识点及习题
![高等数学偏导数部分的知识点及习题](https://img.taocdn.com/s3/m/a5d7785b1fb91a37f111f18583d049649b660e9d.png)
= 。
−
例1、设 = ⅇ , sin
ⅆ
,具有连续导数,求 。
ⅆ
例2、设 = 2 − 2 , sin ,求 , 。
例3、设 =
例4、设 =
, ⅇ− , 2
+ 3
,f具有连续导数,求 , 。
方向导数的计算
= cos + cos ,,分别为与x轴y轴的正向相交的夹角。
例1、求 = ⅇ2 在点 1,0 处从点 1,0 到 2, −1 的方向导数。
推广:在(, , )中,
=
例2、已知两点 1,1,1 , 5,7,3 ,求 =
量方向的方向导数。
cos 2
1
+
cos
1
2
+
cos
6 2 + 8 2 在P点沿向
五、梯度
定义函数 = , 在点 , 的梯度,记为graⅆ , = ∇ , = Ԧ + Ԧ。
性质:
1、梯度是一个向量。
2、沿梯度方向的导数达到最大。
2、 = , ,其中 = , , , = , , 。
=
+
=
+
=
+
3、 = f , ,其中 = , = 。
=
⋅
+
多元函数微分及其应用
![多元函数微分及其应用](https://img.taocdn.com/s3/m/14dea1f7ba0d4a7302763a37.png)
1 f1 xyf 2 f1 yzf 2 z x 1 f1 xyf 2
三、
多元函数微分学的应用
空间曲线的切线与法平面 曲面的切平面与法线
(1) 几何应用
(2) 方向导数与梯度 (3) 求极值与最值
例1 设 f ( u ) 可微,证明曲面 上任一点处的切平面都通过原点.
P P0
则称 f ( P ) 在点 P0 处连续.
偏导数定义
定义 设函数 z f ( x , y ) 在点( x 0 , y 0 ) 的某一邻 域内有定义,当 y 固定在 y 0 而 x 在 x 0 处有增量 x 时,相应地函数有偏增量 f ( x0 x , y0 ) f ( x0 , y0 ) , f ( x0 x , y0 ) f ( x 0 , y0 ) 如果 lim 存在,则称 x 0 x 此极限为函数 z f ( x , y ) 在点( x 0 , y 0 ) 处对 x 的 偏导数,记为
2 2
多元函数的全微分的计算方法
(1)微分的计算公式,如
dz z x dx z y dy .
(2)利用微分的形式不变性
不论 u , v 是自变量还是因变量,
dz
du
dv
问题3.如何求复合函数的偏导数?
例 3 设 z arctan( xy ), y e , 求
x
dz dx
设 xy u, 则链式结构如图
xy k kx 2 lim 2 2 lim 2 2 2 x0 x y x0 x k x 1 k2 y 0 y kx
其值随k的不同而变化, 极限不存在.
故函数在(0,0)处不连续.
(2)可偏导性
d f x (0,0) f ( x,0) x0 dx d f y (0,0) f (0, y ) y0 dy
多元函数可微的判定
![多元函数可微的判定](https://img.taocdn.com/s3/m/482dcf9ed05abe23482fb4daa58da0116c171fa2.png)
多元函数可微的判定是微积分学中的重要概念。
首先,我们需要了解什么是可微性。
简单来说,如果一个多元函数在某一点的邻域内有切线,那么这个函数在该点可微。
具体来说,对于多元函数 f(x, y, z) 在点 (x0, y0, z0) 的可微性,需要满足以下三个条件:
1.f(x, y, z) 在点 (x0, y0, z0) 的偏导数存在,即 fx(x0, y0, z0),
fy(x0, y0, z0), fz(x0, y0, z0) 都存在。
2.f(x, y, z) 在点 (x0, y0, z0) 的方向导数存在,即沿任意方向 l 的方向
导数 f'l(x0, y0, z0) 都存在。
3.f(x, y, z) 在点 (x0, y0, z0) 的全导数存在,即全导数 f' (x0, y0, z0)
存在。
如果以上三个条件都满足,那么我们可以说函数 f(x, y, z) 在点 (x0, y0, z0) 可微。
可微性是函数的一种良好性质,它使得函数的值可以通过切线附近的点来近似,从而在数值计算和近似分析中具有重要意义。
1 可微性
![1 可微性](https://img.taocdn.com/s3/m/932c3d0276c66137ee0619e9.png)
故函数 z f ( x, y )在点( x, y )处连续.
例 1 考察函数 f x , y xy 在点 x 0, y 0 处的可 微性. 解 在点 x0 , y0 处函数 f 的全增量为
f x 0, y 0 x0 x y0 y x0 y0
x
z
说明:
求分界点、不连续点处的偏导数要用定义求;
xy , x 2 y 2 0, x2 y2 例6 设 f ( x , y ) 0, 2 2 x y 0
求 f x ( x, y ),
解 (1)
ห้องสมุดไป่ตู้
f y ( x, y ).
先求 f x ( x, y ). 当 x 2 y 2 0时 , 即 x 0 且 y 0 时 xy y ( x 2 y 2 ) 2 x xy f x ( x, y ) 2 2 2 2 2 ( x y ) x y
记作
f x ( x 0 , y0 )
或
f x x 0 , y0
u 注意 偏导数 是一个整体记号,不能拆分; x
定义中, f 在点 x 0, y 0 存在关于 x 的偏导 数 , f 至少在
x , y y y , x x
0
0
上
必须有定义.对于 y 同理
估计误差
全增量的概念
如果函数 z f ( x, y ) 在点 ( x, y ) 的某邻域内有 定义,设 P ( x x , y y ) 为这邻域内的任意一点, 则称这两点的函数值之差
f ( x x, y y) f ( x, y)
为函数在点 P 对应于自变量增量 x, y 的全增量, 记为 z ,即 z f ( x x , y y ) f ( x , y ).
第十七章多元函数的微分学
![第十七章多元函数的微分学](https://img.taocdn.com/s3/m/0ce3158465ce0508763213c8.png)
第十七章 多元函数的微分学 §1 可微性教学目的 掌握多元函数偏导数,可微性与全微分的定义,可微的必要条件. 教学要求(1) 基本要求:掌握多元函数偏导数,可微性与全微分的定义,熟记可微的必要条件与充分条件.(2) 较高要求:切平面存在定理的证明.教学建议(1)本节的重点是多元函数偏导数,可微性与全微分的定义.(2) 通过讨论可微的必要条件与充分条件,弄清多元函数连续,存在偏导数与可微这三个分析性质之间的关系.教学程序一、 可微性与全微分:由一元函数可微性引入二元函数可微性.定义1(可微性) 设函数(,)z f x y =在点000(,)P x y 的某邻域0()U P 内有定义,对于0()U P 中的点00(,)(,)P x y x x y y =+∆+∆,若函数f 在点0P 处的全增量可表示为 00(,)(,)()z f x x y y f x y A x B y ρ∆=+∆+∆-=∆+∆+,其中A ,B 是仅与点0P 有关的常数,22,()x y ρρ=∆+∆是较ρ高阶的无穷小量,则称函数f 在点0P 处可微。
全微分:当,x y ∆∆充分小时0000(,)(,)()()dz zf x y f x y A x x B y y ≈∆≈+-+-. 例1 考查函数xy y x f =),(在点) , (00y x 处的可微性 .二 、 偏导数(一)、偏导数的定义、记法),(y x f 在点),(00y x 存在偏导数定义为:000000),(),(lim ),(0x x y x f y x f y x f x x x --=→ 或 xy x f y x x f y x f x x x ∆-∆+=→∆),(),(lim ),(0000000 000000),(),(lim ),(0y y y x f y x f y x f y y y --=→ 或 y y x f y y x f y x f y y y ∆-∆+=→),(),(lim ),(0000000 偏导数的几何意义:(二)、求偏导数:例2 ),(y x f =)12sin()32(2+++y x x . 求偏导数.例3 ),(y x f = 1)1ln(2+++y x x . 求偏导数.例4 ),(y x f =22y x y x ++. 求偏导数, 并求) 1 , 2 (-x f . 三 、 可微条件(一)、必要条件定理17.1设) , (00y x 为函数),(y x f 定义域的内点 . ),(y x f 在点) , (00y x 可微的必要条件是) , (00y x f x 和) , (00y x f y 存在 , 且==),(00),(00y x df dfy x ) , (00y x f x +∆x ) , (00y x f y y ∆.证明:由于dy y dx x =∆=∆ , , 微分记为=),(00y x df ) , (00y x f x +dx ) , (00y x f y dy .定理17.1给出了计算可微函数全微分的方法. 但是两个偏导数存在只是可微的必要条件, 而不是充分条件.例5.考查函数 ⎪⎩⎪⎨⎧=+≠++=0 , 0, 0 , ),(222222y x y x y x xy y x f在原点的可微性 .这个例子说明,偏导存在不一定可微,(这一点与一元函数不同!)(二)、充分条件定理17.2(可微的充分条件)若函数),(y x f z =的偏导数在的某邻域内存在 , 且x f 和y f 在点) , (00y x 处连续 . 则函数f 在点) , (00y x 可微。
多元函数微分学解题技巧
![多元函数微分学解题技巧](https://img.taocdn.com/s3/m/1c47b6190b4e767f5acfce1f.png)
2.全微分形式不变性
z f (u, v ), u ( x, y), v ( x, y)有连续偏导数,
z z 则dz dx dy x y
z z dz du dv u v
3.隐函数求导法
2 2 ( x y ) ( 1 ) lim ( x y ) e 练习 求 ( x , y )( , )
=0
x2 y 1 xy
1 cos(xy) 1 ( 2) lim 2 2 ( x , y )( 0 , 0 ) x y 2
1 (3) lim (1 ) ( x , y )( , ) x
答案: 2a
x y 2 2 tan ( x y ), ( x,y) (0,0) 2 2 例11 设f ( x , y ) x y 0, ( x,y) (0,0) 证 明f ( x , y )在 点(0,0)处 可 微 , 并 求df ( x , y ) |( 0 , 0 ) .
多元函数微分学
一、重极限、连续、偏导数、全微分 (概念,理论) 二、偏导数与全微分的计算 三、方向导数和梯度 四、应用(极值、切线、切平面)
一、重极限、连续、偏导数、全微分 (概念,理论)
1.重极限
0 y y0
lim f ( x, y) A ( x, y) ( x0 , y0 ) 是以“任意方式” x x
f x ( 0,0)不存在,f y ( 0,0) 0
例13. 设 z e z 则 x 例14
x
2 y 0 z x f ( x 2 y),且当 时,
.
(e x e ( x 2 y ) 2( x 2 y ))
(整理)多元函数微分学
![(整理)多元函数微分学](https://img.taocdn.com/s3/m/30a4700131b765ce04081428.png)
模块十二 多元函数微分学※知识框架一、二重极限及连续 二、偏导数概念 三、可微与全微分 四、相互关系 五、方向导数与梯度※课程脚本:★引入:本章的标题是多元函数微分学,在前面我们介绍过一元函数微分,这里的‘多元’就是自变量为多个,而为了方便,我们一般研究的是二元函数,那么我们首先看看二元函数的概念,一. 二重极限及连续1、 二重极限 ●讲义内容【定义1】:设D 是平面上的一个点集,如果对于任意一点(),x y D ∈,变量z 按照一定的运算法则总有确定的值与之对应,则称z 关于变量,x y 的二元函数,记作(),z f x y =. ★讲解且过渡:给出二元函数定义后,下面不妨我们可以回忆下一元函数微分中的知识点,一块回忆下:一元函数()y f x =中自变量就一个“x ”,而二元函数显然就是自变量为两个,我们一般用,x y 来表示,当然也可以定义三元或者多元的函数,不过对于我们来说研究的对象大多是二元,其定义域也有一元函数时的区间变成了二元函数的平面区域,举个简单的二元函数例子:2z x y =,。
另外在一元函数中我们研究了极限、连续、可导。
可微等,其实这些可以延拓到二元函数中的,下面首先看看二元函数的极限问题,为了显示和一元函数的区别,我们称二元函数的极限为二重极限 ●讲义内容【定义2】:设(),z f x y =是D 上的一个函数,()00,x y D ∈,假设存在实数A ,使得0ε∀>,总0δ∃>,当0δ<时,有()0,f x y A ε<-<.则称当(),x y 趋近于()00,x y 时,函数(),fx y 的二重极限为A .记作()()00(,),lim,x y x y f x y A →=或()00lim ,x x y y f x y A →→=.★讲解且过渡:二重极限是一元函数极限的推广,它的定义要与一元函数的极限对比起来理解.例如,与一元函数一样,(),x y 在趋近于()00,x y 时,也不会等于()00,x y ,只会无限地接近;一元函数极限中x 趋近于0x 仅有两种方式——左或右,所以只要求左右极限存在且相等就能说明极限存在了;而二维平面上(),x y 趋近于()00,x y 的方式可以有无穷多种,另外在一元函数中极限存在的话是左右极限存在且相等,那么在二元函数中关于二重极限存在的内在要求是(),x y 沿任何路径趋近于()00,x y 的极限值都应该存在并且相等,换句话说如果能找到函数按照两种不同的路径逼近某一点的极限不一样,就可以断定函数在该点的极限不存在,其实这也是我们在具体做题的过程中判断极限不存在的思路,那么其他求极限的方法有哪些呢?其实这个时候也可以按照一元函数求极限的方法进行分析,大概有一下几种:1、四则运算。
第九章多元函数微分学(方向导数在前)总结
![第九章多元函数微分学(方向导数在前)总结](https://img.taocdn.com/s3/m/aca32dea050876323112123d.png)
E
若存在点 P 的某邻域 U(P) E ,
则称 P 为 E 的内点;
若存在点 P 的某邻域 U(P)∩ E = ,
则称 P 为 E 的外点 ; 若对点 P 的任一邻域 U(P) 既含 E中的内点也含 E 的外点 , 则称 P 为 E 的边界点 . 显然, E 的内点必属于 E , E 的外点必不属于 E , E 的 边界点可能属于 E, 也可能不属于 E .
(2) 聚点
若对任意给定的 , 点P 的去心 邻域
E
内总有E 中的点 , 则
称 P 是 E 的聚点. 聚点可以属于 E , 也可以不属于 E (因为聚点可以为 E 的边界点 ) 所有聚点所成的点集成为 E 的导集 .
(3) 开区域及闭区域
若点集 E 的点都是内点,则称 E 为开集;
E 的边界点的全体称为 E 的边界, 记作E ;
当函数在此点可微时那末函数在该点沿任意方向l的方向导数都存在且有coscoscos设方向l的方向角为定义设函数内具有一阶连续偏导数则对于每一点最快沿哪一方向增加的速度函数在点问题sincossincos上的单位向量由方向导数公式知函数在某点的梯度是这样一个向量它的方向与取得最大方向导数的方向一致而它的模为方向导数的最大值
x
y
图形为
空间中的超曲面.
三、多元函数的极限
定义2. 设 n 元函数 f ( P), P D R n , P0 是 D 的聚 点 , 若存在常数 A , 对任意正数 , 总存在正数 , 对一 切 P D U ( P0 ,δ ) , 都有
则称 A 为函数
记作
P P0
lim f ( P) A (也称为 n 重极限)
多元函数的连续性偏导数方向导数及可微性之间的关系
![多元函数的连续性偏导数方向导数及可微性之间的关系](https://img.taocdn.com/s3/m/6371fae8c0c708a1284ac850ad02de80d4d80606.png)
多元函数的连续性偏导数方向导数及可微性之间的关系首先,我们来回顾一下这些概念的定义和性质:1.多元函数的连续性:设有一个多元函数f(x1, x2, ..., xn),若对于任意给定的点(x1,x2, ..., xn),当自变量的每一个分量变化时,函数值都趋于其中一个确定的数,则称此函数在点(x1, x2, ..., xn)连续。
多元函数在定义域内的每一个点处都连续时,称此函数在该定义域上连续。
2.多元函数的偏导数:设有一个多元函数f(x1, x2, ..., xn),对于其中的其中一个自变量xi,在其他自变量固定的情况下,当xi取得一个微小的变化Δxi时,相应的函数值f(x1, x2, ..., xn)也会发生变化,偏导数是指函数值的这种变化相对于Δxi的比率的极限。
对于多元函数f(x1, x2, ..., xn),xi的偏导数记作∂f/∂xi。
3.多元函数的方向导数:设有一个多元函数f(x1, x2, ..., xn),对于函数上的其中一点(x1, x2, ..., xn)和以该点为起点的任意方向向量v=(v1, v2, ..., vn),方向的导数是指函数在该点沿着方向v的变化率的极限,记作D_vf(x1,x2, ..., xn)。
4.多元函数的可微性:设有一个多元函数f(x1, x2, ..., xn),若对于给定点(x1,x2, ..., xn)附近的一个小邻域内的任一点(x1+Δx1, x2+Δx2, ...,xn+Δxn),都有一个线性函数L(x1+Δx1, x2+Δx2, ..., xn+Δxn),使得当Δx1, Δx2, ..., Δxn趋于零时,有f(x1+Δx1, x2+Δx2, ...,xn+Δxn) = f(x1, x2, ..., xn) + L(x1+Δx1, x2+Δx2, ..., xn+Δxn) + o(Δxi),则称此函数在点(x1, x2, ..., xn)处可微。
高数第九章
![高数第九章](https://img.taocdn.com/s3/m/a5407016964bcf84b9d57b19.png)
x 0 0 6 2 f (0 x , 0) f (0, 0) lim x 0 0, f x (0, 0) lim x 0 x 0 x x 03 y 0 6 2 f (0, 0 y ) f (0, 0) 0 y lim f y (0, 0) y 0 lim 0. y0 y y (4) lim f ( x , y )不存在, f ( x , y )在o(0,0)处不可微.
lim f ( x , y ) lim f ( x , y ), lim f ( x , y )不存在.
x0 y0 x0 y x3
x 0 y0
16
x3 y ,( x , y ) (0, 0) 6 2 例2 : 设 f ( x , y ) x y 0, ( x , y ) (0, 0) (3)求 f x (0, 0), f y (0, 0); (4)问f ( x , y )在点o(0, 0)处是否可微?
y y0
f ( x 0 x , y0 ) f ( x 0 , y 0 ) 利用定义 f x ( x0 , y0 ) lim x 0 x
5
●求抽象的复合函数的偏导数-----链式法则 z z f (u, v ), u (t ), v (t ) 同路相乘, dz 异路相加. f1 ( t ) f 2 ( t ). u v dt 单路全导, t t 叉路偏导. z f ( x, y, v ), v ( x, y ) z z f f v z f f v x y v f 2 f 3 v f 3 v y , . f1 ,, x y y v y x x v x
4
二、多元函数微分法
(完整word版)(整理)数学分析教案(华东师大版)第十七章多元函数微分学
![(完整word版)(整理)数学分析教案(华东师大版)第十七章多元函数微分学](https://img.taocdn.com/s3/m/62961d35f78a6529647d53ae.png)
第十七章多元函数微分学教学目的:1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及偏导存在、偏导连续等之间的关系;2.掌握多元函数特别是二元函数可微性及其应用。
教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。
教学时数:18学时§1 可微性一.可微性与全微分:1.可微性:由一元函数引入. 亦可写为, 时.2.全微分:例1 考查函数在点处的可微性 . P107例1二.偏导数:1.偏导数的定义、记法:2.偏导数的几何意义: P109 图案17—1.3.求偏导数:例2 , 3 , 4 . P109—110例2 , 3 , 4 .例5. 求偏导数.例6. 求偏导数.例7. 求偏导数, 并求.例8. 求和.解=,=.例9证明函数在点连续, 并求和.证. 在点连续 .,不存在 .三.可微条件:1.必要条件:Th 1 设为函数定义域的内点.在点可微, 和存在, 且. ( 证) 由于, 微分记为.定理1给出了计算可微函数全微分的方法.两个偏导数存在是可微的必要条件, 但不充分.例10考查函数在原点的可微性 . [1]P110 例5 .2.充分条件:Th 2 若函数的偏导数在的某邻域内存在, 且和在点处连续 . 则函数在点可微 . ( 证) P111 Th 3 若在点处连续, 点存在,则函数在点可微 .证.即在点可微 .要求至少有一个偏导数连续并不是可微的必要条件 .例11验证函数在点可微, 但和在点处不连续 . (简证,留为作业)证因此, 即,在点可微, . 但时, 有,沿方向不存在, 沿方向极限不存在; 又时,,因此, 不存在, 在点处不连续. 由关于和对称,也在点处不连续 .四.中值定理:Th 4 设函数在点的某邻域内存在偏导数 . 若属于该邻域, 则存在和, , 使得. ( 证) 例12设在区域D内. 证明在D内.五.连续、偏导数存在及可微之间的关系:六.可微性的几何意义与应用:1.可微性的几何意义:切平面的定义. P113.Th 5 曲面在点存在不平行于轴的切平面的充要条件是函数在点可微 . ( 证略)2. 切平面的求法: 设函数在点可微,则曲面在点处的切平面方程为(其中),法线方向数为,法线方程为.例13试求抛物面在点处的切平面方程和法线方程 . P115例63. 作近似计算和误差估计: 与一元函数对照, 原理 .例14 求的近似值. P115例7例15 应用公式计算某三角形面积 . 现测得,. 若测量的误差为的误差为. 求用此公式计算该三角形面积时的绝对误差限与相对误差限. P116.§2 复合函数微分法简介二元复合函数: .以下列三种情况介绍复合线路图;, ;.一.链导法则: 以“外二内二”型复合函数为例.Th 设函数在点D可微, 函数在点可微, 则复合函数在点可微, 且,. ( 证) P118称这一公式为链导公式 . 该公式的形式可在复合线路图中用所谓“分线加,沿线乘”或“并联加,串联乘”)来概括 .对所谓“外三内二”、“外二内三”、“外一内二”等复合情况,用“并联加,串联乘”的原则可写出相应的链导公式.链导公式中内函数的可微性可减弱为存在偏导数 . 但对外函数的可微性假设不能减弱.对外元, 内元, 有,.外元内一元的复合函数为一元函数 . 特称该复合函数的导数为全导数.例1. 求和. P120例1例2, . 求和.例3, 求和.例4设函数可微 ..求、和.例5用链导公式计算下列一元函数的导数:ⅰ> ; ⅱ> . P121例4例6设函数可微. 在极坐标变换下, 证明. P120例2 例7设函数可微, . 求证.二.复合函数的全微分: 全微分和全微分形式不变性 .例8. 利用全微分形式不变性求, 并由此导出和.P122 例5§3 方向导数和梯度一.方向导数:1.方向导数的定义:定义设三元函数在点的某邻域内有定义 .为从点出发的射线 . 为上且含于内的任一点, 以表示与两点间的距离 . 若极限存在, 则称此极限为函数在点沿方向的方向导数, 记为或、.对二元函数在点, 可仿此定义方向导数 .易见, 、和是三元函数在点分别沿轴正向、轴正向和轴正向的方向导数 .例1=. 求在点处沿方向的方向导数,其中ⅰ>为方向; ⅱ>为从点到点的方向.解ⅰ>为方向的射线为. 即. ,.因此,ⅱ>从点到点的方向的方向数为方向的射线为., ;.因此,2. 方向导数的计算:Th 若函数在点可微, 则在点处沿任一方向的方向导数都存在, 且++,其中、和为的方向余弦. ( 证) P125 对二元函数, +, 其中和是的方向角.註由++==, , , , , 可见, 为向量, , 在方向上的投影.例2 ( 上述例1 )解ⅰ>的方向余弦为=, =, =.=1 , =, =.因此, =++=.ⅱ>的方向余弦为=, =, =. 因此, =.可微是方向导数存在的充分条件, 但不必要 .例3 P126 .二. 梯度( 陡度):1. 梯度的定义: , , .|= .易见, 对可微函数, 方向导数是梯度在该方向上的投影.2. 梯度的几何意义: 对可微函数, 梯度方向是函数变化最快的方向 . 这是因为|.其中是与夹角. 可见时取最大值, 在的反方向取最小值 .3. 梯度的运算:ⅰ> .ⅱ>(+) = +.ⅲ> () = +.ⅳ> .ⅴ> () = .证ⅳ> , ..§4 Taylor公式和极值问题一、高阶偏导数:1.高阶偏导数的定义、记法:例9 求二阶偏导数和. P128例1 例10 . 求二阶偏导数. P128例2 2.关于混合偏导数: P129—131.3.求含有抽象函数的二元函数的高阶偏导数: 公式, P131-132例11 . 求和. P132例34. 验证或化简偏微分方程:例12 . 证明+ . ( Laplace方程) 例13 将方程变为极坐标形式.解., , , ., ;因此, .方程化简为.例14试确定和, 利用线性变换将方程化为.解, .=+++==+2+.=+++==++.=++.因此,+ (+ . 令, 或或……, 此时方程化简为.二.中值定理和泰肋公式:凸区域 .Th 1 设二元函数在凸区域D 上连续, 在D的所有内点处可微 . 则对D内任意两点 D , 存在, 使.证令.系若函数在区域D上存在偏导数, 且, 则是D上的常值函数.二. Taylor公式:Th 2 (Taylor公式) 若函数在点的某邻域内有直到阶连续偏导数, 则对内任一点,存在相应的, 使证P134例1 求函数在点的Taylor公式( 到二阶为止) . 并用它计算P135—136例4 .三. 极值问题:1. 极值的定义: 注意只在内点定义极值.例2 P136例52.极值的必要条件:与一元函数比较 .Th 3 设为函数的极值点 . 则当和存在时, 有=. ( 证)函数的驻点、不可导点,函数的可疑点 .3. 极值的充分条件:代数准备: 给出二元( 实)二次型. 其矩阵为.ⅰ> 是正定的,顺序主子式全,是半正定的,顺序主子式全;ⅱ> 是负定的,, 其中为阶顺序主子式.是半负定的, .ⅲ> < 0时, 是不定的.充分条件的讨论: 设函数在点某邻域有二阶连续偏导数 . 由Taylor公式, 有++ .令, , , 则当为驻点时, 有.其中.可见式的符号由二次型完全决定.称该二次型的矩阵为函数的Hesse矩阵. 于是由上述代数准备, 有ⅰ> , 为( 严格) 极小值点;ⅱ> , 为( 严格) 极大值点;ⅲ> 时, 不是极值点;ⅳ> 时, 可能是极值点, 也可能不是极值点 .综上, 有以下定理 .Th 4 设函数在点的某邻域内有连续的二阶偏导数, 是驻点 . 则ⅰ> 时, 为极小值点;ⅱ> 时, 为极大值点;ⅲ> 时, 不是极值点;ⅳ> 时, 可能是极值点, 也可能不是极值点 .例3—7 P138—140 例6—10 .四.函数的最值:例8 求函数在域D = 上的最值 .解令解得驻点为. .在边界上, , 驻点为, ;在边界上, , 没有驻点;在边界上, , 驻点为, .又.于是,..[]。
方向导数
![方向导数](https://img.taocdn.com/s3/m/c9f46c68a45177232f60a2e4.png)
例1. 求函数 3) 的方向导数 .
在点 P(1, 1, 1) 沿向量
解: 向量 l 的方向余弦为
∂u ∂u ∴ ∂l
2 = 2xyz ⋅ 14 P
3 + x y⋅ 14
2
首页
上页
返回
下页
结束
例2. 求函数 朝 x 增大方向的方向导数.
在点P(2, 3)沿曲线
解: 将已知曲线用参数方程表示为 x = x y = x2 −1 它在点 P 的切向量为 (1, 2x) x=2 = (1, 4) 1 4 ∴ cosα = , cos β = 17 17
首页 上页 返回 下页 结束
内容小结
1. 方向导数 • 三元函数 在点 沿方向 l (方向角
为α, β, γ ) 的方向导数为 ∂f ∂f ∂f ∂f = cosα + cos β + cosγ ∂l ∂x ∂y ∂z
• 二元函数 在点 沿方向 l (方向角为
α, β )的方向导数为
∂ f ∂f ∂f = cosα + cos β ∂y ∂l ∂x
∂f f ( x + ∆x , y + ∆y ) − f ( x , y ) 记为 | P = lim+ . ρ →0 ρ ∂v
依定义, 依定义,函数 f ( x , y ) 在点 P 沿着 x 轴正向 e1 = {1,0} 、
y 轴正向e 2 = {0,1}的方向导数分别为 f x , f y ;
∂f ∂f ∂f ∂f cosα + cos β + cosγ = ∂v ∂ x ∂y ∂z
v
v
ρ
P′
证明: 证明 由函数 f (x, y, z) 在点 P 可微 , 得 ∂f ∂f ∂f v ∆f = ∆x+ ∆ y+ ∆ z + o (ρ ) ∂x ∂y ∂z
高等数学课件习题课8
![高等数学课件习题课8](https://img.taocdn.com/s3/m/660fe1f152d380eb63946d4c.png)
(2)找 两 种 不 同 趋 近 方 式 , 使 lim f(x,y)存 在 , 但
x x0 y y0
两 者 不 相 等 , 此 时 也 可 断 言 f(x,y)在 点 P0(x0,y0) 处 极 限 不 存 在 .
二元函数的连续性
定义
设n元函数f(P)的定义域为点集D, P0是其聚 点且P0D,如果limf(P)f(P0)则称n元
u x
zv wy
特殊地 zf(u ,x,y) 其中 u(x,y)
x z u f u x fx, yzu f u yfy.
隐函数的求导法则
1 . F (x ,y)0
dy dx
Fx Fy
.
2 . F (x ,y ,z) 0
z yFy Fz源自,z yFy Fz
.
3.
F(x, y,u,v)0 G(x, y,u,v)0
连续偏导数,则对于每一点P(x, y)D,都
可定出一个向量f x
i
f y
j
,这向量称为函
数z f(x, y)在点P(x, y)的梯度,记为
grfa(xd ,y) fxi fyj. 三元函数的梯度
grf(a x ,y ,d z) f xi f yj f zk.
多元函数的极值
极 大 值 、 极 小 值 统 称 为 极 值 . 使 函 数 取 得 极 值 的 点 称 为 极 值 点 .
设 P 0 是 函 数 f(P )的 定 义 域 的 聚 点 , 如 果 f(P )在 点 P 0 处 不 连 续 , 则 称 P 0 是 函 数 f(P )的 间 断 点 . 注意:二元函数可能在某些孤立点处间断,也可能
在曲线上的所有点处均间断。
在定义区域内的连续点求极限可用“代入法”: lim f(P)f(P 0) (P 0 定义)区域
多元函数疑难分析课
![多元函数疑难分析课](https://img.taocdn.com/s3/m/38e1760d16fc700abb68fcee.png)
z z 记为dz,即dz dx dy . x0 , y0 x 0 , y0 x y
● 函数可微的必要条件:z f x , y 在点 x , y 可微, z z 则该函数在点 x , y 的偏导数 , 必存在, x y 且z f x , y 的全微分为
在点 ( x0 , y0 ) 处有极值,则它在该点的偏导数必
然为零:
f x ( x 0 , y0 ) 0 ,
f y ( x 0 , y0 ) 0 .
f x x0 , y0 0 f y x0 , y0 0.
凡能使一阶偏导数同时为零的点,
均称为函数的驻点.
● 若B2-AC=0, 一般用极值的定义来求;
2)有界闭区域上的最大值与最小值 求 f (x,y)在有界闭区域D 上的最大值与 最小值的一般步骤: 10 求出 f (x,y) 在D内的所有驻点以及驻点处的函数值; 20 求出 f (x,y) 在边界上的最大值与最小值;
30 求出f x , y 在角点处的函数值;
先构造函数 :
F x , y , z f x , y , z 1 x , y , z 2 x , y , z
其中1,2均为常数.
可由 F 0 解出可能的极值点的坐标 x , y ,z
二、疑难分析
1. 2002年4分 二元函数 f ( x , y )的下面4条性质: (1) 在点( x0 , y0 )处连续; (2)在点( x0 , y0 )处的两个偏导数连续; (3)在点( x0 , y0 )处可微; (4)在点( x0 , y0 )处的两个偏导数存在. 则有 :
n 2e 2 x z , f , e 2 x z f
第八章 多元函数微分学
![第八章 多元函数微分学](https://img.taocdn.com/s3/m/e2814d12866fb84ae45c8dff.png)
例. 设 z = f ( xy, yg ( x)) 其中函数 f 具有二阶连续 偏导数,函数 可导, 偏导数,函数g(x)可导,且在 可导 且在x=1处取得极值 处取得极值 ∂2 z g(1)=1,求 求 x =1, y =1 ∂x∂y 可导且在x=1处取极值所以 g ′(1) = 0 解:由g(x)可导且在 由 可导且在 处取极值所以
′′′ fx′′′ (x, y, z) = f yz x (x, y, z) = fz′′′y (x, y, z) yz x
= fx′′′ y (x, y, z) = f y′′′ (x, y, z) = f z′′′ (x, y, z) z xz yx
4. 微分
∆z = fx′(x, y) ∆x + f y′(x, y) ∆ y
答案: ( 考研题) 答案:B(2012考研题) 考研题
x2 y2 2 2 , x + y ≠0 3 证明: 例. 证明 f (x, y) = (x2 + y2 ) 2 0 , x2 + y2 = 0 在点(0,0) 处连续且偏导数存在 , 但不可微 . 在点 解: 利用 2xy ≤ x2 + y2 , 知 1 1 2 2 2 f (x, y) ≤ (x + y ) 4 ∴ lim f (x, y) = 0 = f (0, 0)
k −1
f ( x, y , z )
同乘以 t, 得
(tx) f1′(u, v, w) + (ty) f 2′(u, v, w) + (tz ) f 3′(u, v, w) = k ⋅ t k f ( x, y, z )
由条件f (tx, ty , tz ) = t k f ( x, y , z ), 及u = tx, v = ty , w = tz , 得
《数学分析》第四章多元函数微分学
![《数学分析》第四章多元函数微分学](https://img.taocdn.com/s3/m/2498be4e0b4e767f5bcfce2b.png)
第四章 多元函数微分学一、本章知识脉络框图极 限 连 续重极限与累次极限 基本概念有 界 性极限存在的判别方法极值和最值 基本性质极限与连续介 值 性偏 导 数可 微 性概念可微和连续可微的必要条件可微的充分条件 复合函数微分隐函数微分计 算参数方程微分多元函数微分学全微分(三元为例)df=f x dx+f y dy+f z dz 条件极值应 用高阶导数与微分多元极值切线、法线、法平面、切平面泰勒公式二、本章重点及难点本章需要重点掌握以下几个方面内容:● 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor 公式.● 隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换. ● 几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线. ● 极值问题(必要条件与充分条件),条件极值与Lagrange 乘数法.三、本章的基本知识要点(一)平面点集与多元函数1.任意一点A 与任意点集E 的关系.1) 内点. 若存在点A 的某邻域()U A ,使得()U A E ⊂,则称点A 是点集E 的内点。
2) 外点. 若存在点A 的某邻域()U A ,使得()U A E ⋂=∅,则称点A 是点集E 的外点。
3) 界点(边界点). 若在点A 的任何邻域内既含有属于E 得的点,又含有不属于E 的点,则称点A 是点集E 的界点。
4) 聚点. 若在点A 的任何空心邻域()oUA 内部都含有E 中的点,则称点A 是点集E的聚点。
5) 孤立点. 若点A E ∈,但不是E 的聚点,则称点A 是点集E 的孤立点。
2. 几种特殊的平面点集.1) 开集. 若平面点集E 所属的每一点都是E 的内点,则称E 为开集。
2)闭集. 若平面点集E 的所有聚点都属于E ,则称E 为闭集。
多元函数 习题
![多元函数 习题](https://img.taocdn.com/s3/m/e77f5ad2b14e852458fb57b6.png)
则 z f du f v x u dx v x
ux zv
z f v f
y
y v y y
注意: z 与 f 是不同的.
y y
2.隐函数求导法:
方法1 对方程两端求(偏)导数,然后解出 所求(偏)导数.
方法2 隐函数的求导公式:
设z z( x, y)是由方程F( x, y, z) 0
曲线在点 M0 处的法平面方程为
x(t0 )( x x0 ) y(t0 )( y y0 ) z(t0 )(z z0 ) 0
r T
x
t0
,
y
t0
z
t0
,
若曲线的方程表示为
y y x
z
z
x
F(x, y, z) 0 G( x, y, z) 0
一切多元初等函数在其定义区域内是连续的.
(二)偏导数与全微分
1.偏导数 (1)定义:偏导数是函数的偏增量与自变量 增量之比的极限.
z lim x z lim f ( x x, y) f ( x, y)
x x0 x x0
x
z lim y z lim f ( x, y y) f ( x, y)
z
x
(
y )
y
x
4. z f ( x, x ), f 二阶偏导连续,求 z , z , 2z .
y
x y xy
z x
f1
1 y
f
2
,
z y
偏导数、全微分、方向导数三者之间的关系
![偏导数、全微分、方向导数三者之间的关系](https://img.taocdn.com/s3/m/eca3c533640e52ea551810a6f524ccbff021ca40.png)
偏导数、全微分、方向导数三者之间的关系
徐志敏;刘勇
【期刊名称】《数学学习与研究:教研版》
【年(卷),期】2016(000)017
【摘要】本文通过定理及反例的形式给出偏导数、全微分、方向导数三者之间的关系,从而使学习者更加认清三者之间的联系.
【总页数】1页(P119-119)
【作者】徐志敏;刘勇
【作者单位】大连交通大学,116028
【正文语种】中文
【中图分类】O172.1
【相关文献】
1.偏导数、全微分、方向导数三者之间的关系
2.任意方向上的方向导数与偏导数之间的关系
3.二元函数连续、偏导数、可微分与方向导数之间的关系及举例
4.二元函数连续、偏导数和全微分之间的关系
5.多元函数的可微性、连续性、偏导数及方向导数之间的关系
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元函数的连续性,偏导数,方向导数及可微性之间的关
系
多元函数这些性质之间的关系是:可微分是最强的性质,即可微必然
可以推出偏导数存在,必然可以推出连续。
反之偏导数存在与连续之间是
不能相互推出的(没有直接关系),即连续多元函数偏导数可以不存在;
偏导数都存在多元函数也可以不连续。
偏导数连续强于函数可微分,是可
微分的充分不必要条件,相关例子可以在数学分析书籍中找到。
其中可微分的定义是:
以二元函数为例(n元类似)
扩展:可微分可以直观地理解为用线性函数逼近函数时的情况(一元
函数用一次函数即切线替代函数增量,二元函数可以看做是用平面来代替,更多元可以看做是超平面来的代替函数增量,当点P距离定点P0的距离
p趋于零时,函数增量与线性函数增量的差是自变量与定点差的高阶无穷
小(函数增量差距缩小的速度快与自变量P靠近P0的速度))。