数据结构实验三
《数据结构》实验报告
苏州科技学院数据结构(C语言版)实验报告专业班级测绘1011学号10201151姓名XX实习地点C1 机房指导教师史守正目录封面 (1)目录 (2)实验一线性表 (3)一、程序设计的基本思想,原理和算法描述 (3)二、源程序及注释(打包上传) (3)三、运行输出结果 (4)四、调试和运行程序过程中产生的问题及采取的措施 (6)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (6)实验二栈和队列 (7)一、程序设计的基本思想,原理和算法描述 (8)二、源程序及注释(打包上传) (8)三、运行输出结果 (8)四、调试和运行程序过程中产生的问题及采取的措施 (10)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (10)实验三树和二叉树 (11)一、程序设计的基本思想,原理和算法描述 (11)二、源程序及注释(打包上传) (12)三、运行输出结果 (12)四、调试和运行程序过程中产生的问题及采取的措施 (12)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (12)实验四图 (13)一、程序设计的基本思想,原理和算法描述 (13)二、源程序及注释(打包上传) (14)三、运行输出结果 (14)四、调试和运行程序过程中产生的问题及采取的措施 (15)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (16)实验五查找 (17)一、程序设计的基本思想,原理和算法描述 (17)二、源程序及注释(打包上传) (18)三、运行输出结果 (18)四、调试和运行程序过程中产生的问题及采取的措施 (19)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (19)实验六排序 (20)一、程序设计的基本思想,原理和算法描述 (20)二、源程序及注释(打包上传) (21)三、运行输出结果 (21)四、调试和运行程序过程中产生的问题及采取的措施 (24)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (24)实验一线性表一、程序设计的基本思想,原理和算法描述:程序的主要分为自定义函数、主函数。
数据结构实验报告实验总结
数据结构实验报告实验总结本次数据结构实验主要涉及线性表、栈和队列的基本操作以及链表的应用。
通过实验,我对这些数据结构的特点、操作和应用有了更深入的了解。
下面对每一部分实验进行总结。
实验一:线性表的基本操作线性表是一种常见的数据结构,本实验要求实现线性表的基本操作,包括插入、删除、查找、遍历等。
在实验过程中,我对线性表的结构和实现方式有了更清晰的认识,掌握了用数组和链表两种方式实现线性表的方法。
实验二:栈的应用栈是一种后进先出(LIFO)的数据结构,本实验要求利用栈实现简单的括号匹配和后缀表达式计算。
通过实验,我了解到栈可以方便地实现对于括号的匹配和后缀表达式的计算,有效地解决了对应的问题。
实验三:队列的应用队列是一种先进先出(FIFO)的数据结构,本实验要求利用队列实现银行排队和迷宫求解。
通过实验,我对队列的应用有了更加深入的了解,了解到队列可以解决需要按顺序处理的问题,如排队和迷宫求解等。
实验四:链表的应用链表是一种常用的数据结构,本实验要求利用链表实现学生信息管理系统。
通过实验,我对链表的应用有了更深入的了解,了解到链表可以方便地实现对于数据的插入、删除和修改等操作,并且可以动态地调整链表的长度,适应不同的需求。
通过本次实验,我掌握了线性表、栈、队列和链表的基本操作,并了解了它们的特点和应用方式。
同时,通过实际编程的过程,我对于数据结构的实现方式和效果有了更直观的认识,也锻炼了自己的编程能力和解决问题的能力。
在实验过程中,我遇到了一些问题,如程序逻辑错误和内存泄漏等,但通过调试和修改,最终成功解决了这些问题,对自己的能力也有了更多的信心。
通过本次实验,我深刻体会到了理论与实践的结合的重要性,也对于数据结构这门课程有了更加深入的理解。
总之,本次数据结构实验给予了我很多有益的启发和收获,对于数据结构的概念、特点和应用有了更深入的理解。
在以后的学习中,我会继续加强对数据结构的学习和研究,不断提高自己的编程能力和解决问题的能力。
北邮数据结构实验3哈夫曼编码
数据结构实验报告实验名称:实验3——哈夫曼编码学生姓名:班级:班内序号:学号:日期:2013年11月24日1.实验要求利用二叉树结构实现赫夫曼编/解码器。
基本要求:1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个字符的频度,并建立赫夫曼树2、建立编码表(CreateTable):利用已经建好的赫夫曼树进行编码,并将每个字符的编码输出。
3、编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的字符串输出。
4、译码(Decoding):利用已经建好的赫夫曼树对编码后的字符串进行译码,并输出译码结果。
5、打印(Print):以直观的方式打印赫夫曼树(选作)6、计算输入的字符串编码前和编码后的长度,并进行分析,讨论赫夫曼编码的压缩效果。
2. 程序分析2.1存储结构:struct HNode{char c;//存字符内容int weight;int lchild, rchild, parent;};struct HCode{char data;char code[100];}; //字符及其编码结构class Huffman{private:HNode* huffTree; //Huffman树HCode* HCodeTable; //Huffman编码表public:Huffman(void);void CreateHTree(int a[], int n); //创建huffman树void CreateCodeTable(char b[], int n); //创建编码表void Encode(char *s, string *d); //编码void Decode(char *s, char *d); //解码void differ(char *,int n);char str2[100];//数组中不同的字符组成的串int dif;//str2[]的大小~Huffman(void);};结点结构为如下所示:三叉树的节点结构:struct HNode//哈夫曼树结点的结构体{ int weight;//结点权值int parent;//双亲指针int lchild;//左孩子指针int rchild;//右孩子指针char data;//字符};示意图为:int weight int parent int lchild int rchild Char c 编码表节点结构:struct HCode//编码表结构体{char data;//字符char code[100];//编码内容};示意图为:基本结构体记录字符和出现次数:struct node{int num;char data;};示意图为:2.关键算法分析(1).初始化:伪代码:1.输入需要编译的文本内容2.将输入的内容保存到数组str1中3.统计出现的字符数目,并且保存到变量count中4.统计出现的不同的字符,存到str2中,将str2的大小存到dif中时间复杂度O(n!)(2).创建哈夫曼树算法伪代码:1.创建一个长度为2*n-1的三叉链表2.将存储字符及其权值的链表中的字符逐个写入三叉链表的前n个结点的data域,并将对应结点的孩子域和双亲域赋为空3.从三叉链表的第n个结点开始,3.1从存储字符及其权值的链表中取出两个权值最小的结点x,y,记录其下标x,y。
数据结构实验三栈和队列的应用
数据结构实验三栈和队列的应用数据结构实验三:栈和队列的应用在计算机科学领域中,数据结构是组织和存储数据的重要方式,而栈和队列作为两种常见的数据结构,具有广泛的应用场景。
本次实验旨在深入探讨栈和队列在实际问题中的应用,加深对它们特性和操作的理解。
一、栈的应用栈是一种“后进先出”(Last In First Out,LIFO)的数据结构。
这意味着最后进入栈的元素将首先被取出。
1、表达式求值在算术表达式的求值过程中,栈发挥着重要作用。
例如,对于表达式“2 + 3 4”,我们可以通过将操作数压入栈,操作符按照优先级进行处理,实现表达式的正确求值。
当遇到数字时,将其压入操作数栈;遇到操作符时,从操作数栈中弹出相应数量的操作数进行计算,将结果压回操作数栈。
最终,操作数栈中的唯一值就是表达式的结果。
2、括号匹配在程序代码中,检查括号是否匹配是常见的任务。
可以使用栈来实现。
遍历输入的字符串,当遇到左括号时,将其压入栈;当遇到右括号时,弹出栈顶元素,如果弹出的左括号与当前右括号类型匹配,则继续,否则表示括号不匹配。
3、函数调用和递归在程序执行过程中,函数的调用和递归都依赖于栈。
当调用一个函数时,当前的执行环境(包括局部变量、返回地址等)被压入栈中。
当函数返回时,从栈中弹出之前保存的环境,继续之前的执行。
递归函数的执行也是通过栈来实现的,每次递归调用都会在栈中保存当前的状态,直到递归结束,依次从栈中恢复状态。
二、队列的应用队列是一种“先进先出”(First In First Out,FIFO)的数据结构。
1、排队系统在现实生活中的各种排队场景,如银行排队、餐厅叫号等,可以用队列来模拟。
新到达的顾客加入队列尾部,服务完成的顾客从队列头部离开。
通过这种方式,保证了先来的顾客先得到服务,体现了公平性。
2、广度优先搜索在图的遍历算法中,广度优先搜索(BreadthFirst Search,BFS)常使用队列。
从起始节点开始,将其放入队列。
数据结构实验三实验报告
数据结构实验三实验报告数据结构实验三实验报告一、实验目的本次实验的目的是通过实践掌握树的基本操作和应用。
具体来说,我们需要实现一个树的数据结构,并对其进行插入、删除、查找等操作,同时还需要实现树的遍历算法,包括先序、中序和后序遍历。
二、实验原理树是一种非线性的数据结构,由结点和边组成。
树的每个结点都可以有多个子结点,但是每个结点只有一个父结点,除了根结点外。
树的基本操作包括插入、删除和查找。
在本次实验中,我们采用二叉树作为实现树的数据结构。
二叉树是一种特殊的树,每个结点最多只有两个子结点。
根据二叉树的特点,我们可以使用递归的方式实现树的插入、删除和查找操作。
三、实验过程1. 实现树的数据结构首先,我们需要定义树的结点类,包括结点值、左子结点和右子结点。
然后,我们可以定义树的类,包括根结点和相应的操作方法,如插入、删除和查找。
2. 实现插入操作插入操作是将一个新的结点添加到树中的过程。
我们可以通过递归的方式实现插入操作。
具体来说,如果要插入的值小于当前结点的值,则将其插入到左子树中;如果要插入的值大于当前结点的值,则将其插入到右子树中。
如果当前结点为空,则将新的结点作为当前结点。
3. 实现删除操作删除操作是将指定的结点从树中移除的过程。
我们同样可以通过递归的方式实现删除操作。
具体来说,如果要删除的值小于当前结点的值,则在左子树中继续查找;如果要删除的值大于当前结点的值,则在右子树中继续查找。
如果要删除的值等于当前结点的值,则有三种情况:- 当前结点没有子结点:直接将当前结点置为空。
- 当前结点只有一个子结点:将当前结点的子结点替代当前结点。
- 当前结点有两个子结点:找到当前结点右子树中的最小值,将其替代当前结点,并在右子树中删除该最小值。
4. 实现查找操作查找操作是在树中寻找指定值的过程。
同样可以通过递归的方式实现查找操作。
具体来说,如果要查找的值小于当前结点的值,则在左子树中继续查找;如果要查找的值大于当前结点的值,则在右子树中继续查找。
国家开放大学《数据结构》课程实验报告(实验3 ——栈、队列、递归设计)参考答案
x=Pop(s); /*出栈*/
printf("%d ",x);
InQueue(sq,x); /*入队*/
}
printf("\n");
printf("(10)栈为%s,",(StackEmpty(s)?"空":"非空"));
printf("队列为%s\n",(QueueEmpty(sq)?"空":"非空"));
ElemType Pop(SeqStack *s); /*出栈*/
ElemType GetTop(SeqStack *s); /*取栈顶元素*/
void DispStack(SeqStack *s); /*依次输出从栈顶到栈底的元素*/
void DispBottom(SeqStack *s); /*输出栈底元素*/
} SeqQueue; /*定义顺序队列*/
void InitStack(SeqStack *s); /*初始化栈*/
int StackEmpty(SeqStack *s); /*判栈空*/
int StackFull(SeqStack *s); /*判栈满*/
void Push(SeqStack *s,ElemType x); /*进栈*/
sq=(SeqQueue *)malloc(sizeof(SeqQueue));
InitQueue(sq);
printf("(8)队列为%s\n",(QueueEmpty(sq)?"空":"非空"));
printf("(9)出栈/入队的元素依次为:");
数据结构实训实验报告
一、实验背景数据结构是计算机科学中一个重要的基础学科,它研究如何有效地组织和存储数据,并实现对数据的检索、插入、删除等操作。
为了更好地理解数据结构的概念和原理,我们进行了一次数据结构实训实验,通过实际操作来加深对数据结构的认识。
二、实验目的1. 掌握常见数据结构(如线性表、栈、队列、树、图等)的定义、特点及操作方法。
2. 熟练运用数据结构解决实际问题,提高算法设计能力。
3. 培养团队合作精神,提高实验报告撰写能力。
三、实验内容本次实验主要包括以下内容:1. 线性表(1)实现线性表的顺序存储和链式存储。
(2)实现线性表的插入、删除、查找等操作。
2. 栈与队列(1)实现栈的顺序存储和链式存储。
(2)实现栈的入栈、出栈、判断栈空等操作。
(3)实现队列的顺序存储和链式存储。
(4)实现队列的入队、出队、判断队空等操作。
3. 树与图(1)实现二叉树的顺序存储和链式存储。
(2)实现二叉树的遍历、查找、插入、删除等操作。
(3)实现图的邻接矩阵和邻接表存储。
(4)实现图的深度优先遍历和广度优先遍历。
4. 算法设计与应用(1)实现冒泡排序、选择排序、插入排序等基本排序算法。
(2)实现二分查找算法。
(3)设计并实现一个简单的学生成绩管理系统。
四、实验步骤1. 熟悉实验要求,明确实验目的和内容。
2. 编写代码实现实验内容,对每个数据结构进行测试。
3. 对实验结果进行分析,总结实验过程中的问题和经验。
4. 撰写实验报告,包括实验目的、内容、步骤、结果分析等。
五、实验结果与分析1. 线性表(1)顺序存储的线性表实现简单,但插入和删除操作效率较低。
(2)链式存储的线性表插入和删除操作效率较高,但存储空间占用较大。
2. 栈与队列(1)栈和队列的顺序存储和链式存储实现简单,但顺序存储空间利用率较低。
(2)栈和队列的入栈、出队、判断空等操作实现简单,但需要考虑数据结构的边界条件。
3. 树与图(1)二叉树和图的存储结构实现复杂,但能够有效地表示和处理数据。
数据结构实验报告
数据结构实验报告一、实验目的数据结构是计算机科学中重要的基础课程,通过本次实验,旨在深入理解和掌握常见数据结构的基本概念、操作方法以及在实际问题中的应用。
具体目的包括:1、熟练掌握线性表(如顺序表、链表)的基本操作,如插入、删除、查找等。
2、理解栈和队列的特性,并能够实现其基本操作。
3、掌握树(二叉树、二叉搜索树)的遍历算法和基本操作。
4、学会使用图的数据结构,并实现图的遍历和相关算法。
二、实验环境本次实验使用的编程环境为具体编程环境名称,编程语言为具体编程语言名称。
三、实验内容及步骤(一)线性表的实现与操作1、顺序表的实现定义顺序表的数据结构,包括数组和表的长度等。
实现顺序表的初始化、插入、删除和查找操作。
2、链表的实现定义链表的节点结构,包含数据域和指针域。
实现链表的创建、插入、删除和查找操作。
(二)栈和队列的实现1、栈的实现使用数组或链表实现栈的数据结构。
实现栈的入栈、出栈和栈顶元素获取操作。
2、队列的实现采用循环队列的方式实现队列的数据结构。
完成队列的入队、出队和队头队尾元素获取操作。
(三)树的实现与遍历1、二叉树的创建以递归或迭代的方式创建二叉树。
2、二叉树的遍历实现前序遍历、中序遍历和后序遍历算法。
3、二叉搜索树的操作实现二叉搜索树的插入、删除和查找操作。
(四)图的实现与遍历1、图的表示使用邻接矩阵或邻接表来表示图的数据结构。
2、图的遍历实现深度优先遍历和广度优先遍历算法。
四、实验结果与分析(一)线性表1、顺序表插入操作在表尾进行时效率较高,在表头或中间位置插入时需要移动大量元素,时间复杂度较高。
删除操作同理,在表尾删除效率高,在表头或中间删除需要移动元素。
2、链表插入和删除操作只需修改指针,时间复杂度较低,但查找操作需要遍历链表,效率相对较低。
(二)栈和队列1、栈栈的特点是先进后出,适用于函数调用、表达式求值等场景。
入栈和出栈操作的时间复杂度均为 O(1)。
2、队列队列的特点是先进先出,常用于排队、任务调度等场景。
数据结构 实验报告
数据结构实验报告一、实验目的数据结构是计算机科学中非常重要的一门课程,通过本次实验,旨在加深对常见数据结构(如链表、栈、队列、树、图等)的理解和应用,提高编程能力和解决实际问题的能力。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
操作系统为 Windows 10。
三、实验内容1、链表的实现与操作创建一个单向链表,并实现插入、删除和遍历节点的功能。
对链表进行排序,如冒泡排序或插入排序。
2、栈和队列的应用用栈实现表达式求值,能够处理加、减、乘、除和括号。
利用队列实现银行排队系统的模拟,包括顾客的到达、服务和离开。
3、二叉树的遍历与操作构建一棵二叉树,并实现前序、中序和后序遍历。
进行二叉树的插入、删除节点操作。
4、图的表示与遍历用邻接矩阵和邻接表两种方式表示图。
实现图的深度优先遍历和广度优先遍历。
四、实验步骤及结果1、链表的实现与操作首先,定义了链表节点的结构体:```cppstruct ListNode {int data;ListNode next;ListNode(int x) : data(x), next(NULL) {}};```插入节点的函数:```cppvoid insertNode(ListNode& head, int val) {ListNode newNode = new ListNode(val);head = newNode;} else {ListNode curr = head;while (curr>next!= NULL) {curr = curr>next;}curr>next = newNode;}}```删除节点的函数:```cppvoid deleteNode(ListNode& head, int val) {if (head == NULL) {return;}ListNode temp = head;head = head>next;delete temp;return;}ListNode curr = head;while (curr>next!= NULL && curr>next>data!= val) {curr = curr>next;}if (curr>next!= NULL) {ListNode temp = curr>next;curr>next = curr>next>next;delete temp;}}```遍历链表的函数:```cppvoid traverseList(ListNode head) {ListNode curr = head;while (curr!= NULL) {std::cout << curr>data <<"";curr = curr>next;}std::cout << std::endl;}```对链表进行冒泡排序的函数:```cppvoid bubbleSortList(ListNode& head) {if (head == NULL || head>next == NULL) {return;}bool swapped;ListNode ptr1;ListNode lptr = NULL;do {swapped = false;ptr1 = head;while (ptr1->next!= lptr) {if (ptr1->data > ptr1->next>data) {int temp = ptr1->data;ptr1->data = ptr1->next>data;ptr1->next>data = temp;swapped = true;}ptr1 = ptr1->next;}lptr = ptr1;} while (swapped);}```测试结果:创建了一个包含 5、3、8、1、4 的链表,经过排序后,输出为 1 3 4 5 8 。
数据结构实验报告
数据结构实验报告一、实验目的本实验旨在通过对数据结构的学习和实践,掌握基本的数据结构概念、原理及其应用,培养学生的问题分析与解决能力,提升编程实践能力。
二、实验背景数据结构是计算机科学中的重要基础,它研究数据的存储方式和组织形式,以及数据之间的关系和操作方法。
在软件开发过程中,合理选用和使用数据结构,能够提高算法效率,优化内存利用,提升软件系统的性能和稳定性。
三、实验内容本次实验主要涉及以下几个方面的内容:1.线性表的基本操作:包括线性表的创建、插入、删除、查找、修改等操作。
通过编程实现不同线性表的操作,掌握它们的原理和实现方法。
2.栈和队列的应用:栈和队列是常用的数据结构,通过实现栈和队列的基本操作,学会如何解决实际问题。
例如,利用栈实现括号匹配,利用队列实现银行排队等。
3.递归和回溯算法:递归和回溯是解决很多求解问题的常用方法。
通过编程实现递归和回溯算法,理解它们的思想和应用场景。
4.树和二叉树的遍历:学习树和二叉树的遍历方法,包括前序、中序和后序遍历。
通过编程实现这些遍历算法,加深对树结构的理解。
5.图的基本算法:学习图的基本存储结构和算法,包括图的遍历、最短路径、最小生成树等。
通过编程实现这些算法,掌握图的基本操作和应用。
四、实验过程1.具体实验内容安排:根据实验要求,准备好所需的编程环境和工具。
根据实验要求逐步完成实验任务,注意记录并整理实验过程中遇到的问题和解决方法。
2.实验数据采集和处理:对于每个实验任务,根据要求采集并整理测试数据,进行相应的数据处理和分析。
记录实验过程中的数据和结果。
3.实验结果展示和分析:将实验结果进行适当的展示,例如表格、图形等形式,分析实验结果的特点和规律。
4.实验总结与反思:总结实验过程和结果,回顾实验中的收获和不足,提出改进意见和建议。
五、实验结果与分析根据实验步骤和要求完成实验任务后,得到了相应的实验结果。
对于每个实验任务,根据实验结果进行适当的分析。
《数据结构》实验3链表
三、源代码以及实验结果为
四、源代码以及实验结果为
五、源代码以及实验结果为
六、源代码以及实验结果为
七、附加题以及实验体会:
{
NODE *s; /*定义指向结点类型的指针*/
s=(NODE *)malloc(sizeof(NODE));
/*生成新结点*/
3
4
5
return 1;
}
/*删除P所指向的结点的后继结点*/
void DelLinkList(NODE *p)
{ NODE *q;
if(p->next!=0)
{ q=p->next; /* q指向p的后继结点*/
ch=getchar();
while(ch!='$')
{ p=(NODE *)malloc(sizeof(NODE));
p->data=ch;
1
2
ch=getchar();
}
return (head);
}
/*在链表的P指定结点之后插入值为x的结点*/
int InsLinkList(NODE *p, char x)
四、设有两个单链表A、B,其中元素递增有序,编写算法将A、B归并成一个按元素值递减(允许有相同值)有序的链表C,要求用A、B中的原结点形成,不能重新申请结点。
五、已知单链表表示的线性表中含有两类的数据元素(字母字符,数字字符)。试设计算法,按结点的值将单链表拆分成两个循环链表,分别只含有数字或字母。要求:利用原表中的结点空间作为这两个表的结点空间,头结点可另开辟空间。
附加题:如果换成循环单链表该如何实现?
即题目变成:已知单循环链表表示的线性表中含有两类的数据元素(字母字符,数字字符)。试设计算法,按结点的值将单链表拆分成两个循环链表,分别只含有数字或字母。
《数据结构》实验报告三:几种查找算法的实现和比较
第三次实验报告:几种查找算法的实现和比较//2019-12-4//1.随机生成5万个整数,存入一个文件;//2.算法实现:(1)顺序查找:读入文件中的数据,查找一个key,统计时间;// (2)二分查找:读入文件,排序,二分查找key,统计时间;// (3)分块查找:读入文件,分100块,每块300+数字,查找key,统计时间// (4)二分查找树:读入文件,形成BST,查找key,统计时间//二叉排序树:建立,查找#include "stdio.h"#include "time.h"#include "stdlib.h"struct JD{//定义分块查找的链表结点结构int data;JD *next;};struct INDEX_T{//定义分块查找中,索引表结构int max;//这一块中最大的数字,<maxJD *block;//每一块都是一个单向链表,这是指向块的头指针};INDEX_T myBlock[100];//这是索引表的100项struct NODE{//定义的二分查找树结点结构int data;NODE *left;NODE *right;};const int COUNT=50000;//结点个数int key=666;//待查找的关键字int m=1;//int *array2;void createData(char strFileName[]){//产生随机整数,存入文件srand((unsigned int)time(0));FILE *fp=fopen(strFileName,"w");for(int i=1;i<=COUNT;i++)fprintf(fp,"%d,",rand());fclose(fp);}void createBST(NODE* &bst){//产生5万个随机整数,创建二叉排序树FILE *fp=fopen("data.txt","r");for(int i=1;i<=COUNT;i++){int num;fscanf(fp,"%d,",&num);//从文件中读取一个随机整数//若bst是空子树,第一个结点就是根结点//若bst不是空子树,从根结点开始左小右大,查找这个数字,找到了直接返回,//找不到,就插入到正确位置//创建一个结点NODE* p=new NODE;p->data=num;p->left=0;p->right=0;if(0==bst)//空子树{bst=p;continue;}//非空子树,//在bst中,查找给结点,NODE *q=bst;//总是从根结点开始查找while(1){if(p->data == q->data)//找到了,直接退出break;if(p->data < q->data && q->left==0){//小,往左找,且左边为空,直接挂在q之左q->left=p;break;}if(p->data < q->data && q->left!=0){//小,往左找,且左边非空,继续往左边找q=q->left;continue;}if(p->data > q->data && q->right==0){//大,往右找,且右边为空,直接挂在q之右q->right=p;break;}if(p->data > q->data && q->right!=0){//大,往右找,且右边非空,继续往右边找q=q->right;continue;}}}}int BST_Search(NODE *bst,int key){//在bst中找key,if(0==bst)return -1;//非空子树,//在bst中,查找给结点,NODE *q=bst;//总是从根结点开始查找while(1){if(key == q->data)//找到了,直接退出return 1;if(key < q->data && q->left==0)//小,往左找,且左边为空,找不到return -1;if(key < q->data && q->left!=0)//小,往左找,且左边非空,继续往左边找{q=q->left;continue;}if(key > q->data && q->right==0)//大,往右找,且右边为空,找不到return -1;if(key > q->data && q->right!=0){//大,往右找,且右边非空,继续往右边找q=q->right;continue;}}}void inOrder(NODE *bst){if(bst!=0){inOrder(bst->left);array2[m]=bst->data;//反写回array数组,使数组有序// printf("%7d",array2[m]);m++;inOrder(bst->right);}}int getBSTHeight(NODE *bst){if(bst==0)return 0;else{int hl=getBSTHeight(bst->left);int hr=getBSTHeight(bst->right);int h=hl>hr?hl:hr;return h+1;}}void makeArray(int array[],char strFileName[]) {//生成5万个随机整数FILE *fp=fopen(strFileName,"r");int i=1;while(!feof(fp)){fscanf(fp,"%d,",&array[i]);// printf("%6d",array[i]);i++;}}int Seq_Search(int array[],int key){//在无序顺序数组中,找data是否存在,-1=不存在,存在返回位置下标//监视哨:把要找的那个数放到首部array[0]=key;//for(int i=COUNT;array[i]!=key;i--);if(i>0)//找到了,返回下标return i;return -1;//查找不成功,返回-1}int Bin_Search(int array[],int key){//在有序存储的数组中查找key,找到返回位置,找不到返回-1 int low=1,high=COUNT,mid;while(1){if(low>high)//找不到return -1;mid=(low+high)/2;if(key == array[mid])return mid;else if(key<array[mid])high=mid-1;elselow=mid+1;}}void makeBlock(INDEX_T myBlock[],char strFileName[]) {//从文件中读取整数,分配到块中去//1.初始化块索引表,分100块,400,800,1200,for(int i=0;i<=99;i++){myBlock[i].max=400+400*i;//400,800,1200, (40000)myBlock[i].block=0;}//2.打开文件,读取整数,把每一个整数分配到相应的块中去FILE *fp=fopen(strFileName,"r");while(!feof(fp)){int num=0;fscanf(fp,"%d,",&num);//把num分配到num/400块中,挂到该块链表第一个int blockID=num/400;//求出应该挂在的块号//生成一个新节点,把num放进去,挂上JD *p=new JD;p->data=num;p->next=myBlock[blockID].block;myBlock[blockID].block=p;}fclose(fp);}int Block_Search(INDEX_T myBlock[],int key){int blockID=key/400;//找到块号JD* p=myBlock[blockID].block;while(p!=0){if(p->data==key)return blockID;//能找到p=p->next;}return -1;//找不到}void main(){clock_t begin,end;int pos=-1;//1.生成文件,存入5万个随机整数createData("data.txt");//2.顺序查找int *array=new int[COUNT+1];makeArray(array,"data.txt");//从文件中读取数据begin=clock();for(int k=1;k<=10000;k++)pos=Seq_Search(array,key);end=clock();printf("顺序查找:%d所在的位置=%d.时间=%d毫秒\n",key,pos,end-begin);//3.二分查找树NODE *bst=0;createBST(bst);//产生5万个随机数字,建立一个二叉排序树begin=clock();for(k=1;k<=10000;k++)pos=BST_Search(bst,key);//在bst中找key,找到返回1,找不到返回-1end=clock();printf("二叉排序树查找:%d所在的位置=%d.时间=%d毫秒\n",key,pos,end-begin);array2=new int[COUNT+1];inOrder(bst);//中序输出bst// int height=getBSTHeight(bst);//求出bst的高度// printf("BST高度=%d.\n\n",height);//4.二分查找,利用前面二叉排序树产生的array2,查找key begin=clock();for(k=1;k<=10000;k++)pos=Bin_Search(array2,key);end=clock();printf("二分查找:%d所在的位置=%d.时间=%d毫秒\n",key,pos,end-begin);//5.分块查找,关键字范围[0,32767],分配到100块中去,每一块中存400个数字makeBlock(myBlock,"data.txt");//从文件中读取数据,产生块begin=clock();for(k=1;k<=10000;k++)pos=Block_Search(myBlock,key);//在block中查找key,找到返回块号,找不到返回-1end=clock();printf("分块查找:%d所在的块=%d.时间=%d毫秒\n",key,pos,end-begin);/*for(k=0;k<=99;k++){printf("\n\n\n第%d块<%d:\n",k,myBlock[k].max);JD *q=myBlock[k].block;//让q指向第k块的第一个结点while(q!=0){//输出第k块中所有数字printf("%7d ",q->data);q=q->next;}}*/}。
(中央电大)数据结构实验报告3
中央广播电视大学实验报告(学科:数据结构)姓名班级学号实验日期成绩评定教师签名批改日期实验名称:实验三二叉树3.1 二叉树的顺序存储结构和链式存储结构【问题描述】设一棵完全二叉树用顺序存储方法存储于数组tree中,编写程序:(1)根据数组tree,建立与该二叉树对应的链式存储结构。
(2)对该二叉树采用中序遍历法显示遍历结果。
【基本要求】(1)在主函数中,通过键盘输入建立设定的完全二叉树的顺序存储结构。
(2)设计子函数,其功能为将顺序结构的二叉树转化为链式结构。
(3)设计子函数,其功能为对给定二叉树进行中序遍历,显示遍历结果。
(4)通过实例判断算法和相应程序的正确性。
【实验步骤】(1)运行PC中的Microsoft Visual C++ 6.0程序,(2)点击“文件”→“新建”→对话窗口中“文件”→“c++ Source File”→在“文件名”中输入“X1.cpp”→在“位置”中选择储存路径为“桌面”→“确定”,(3)输入程序代码,程序代码如下:#include<stdio.h>#include<malloc.h>#include<string.h>#include<stdlib.h>#include<memory.h>#define MaxSize 10typedef struct node{char data。
struct node *left,*right。
}NODE。
void Creab(char *tree,int n,int i,NODE *p)。
void Inorder(NODE *p)。
void main(){NODE *p。
char tree[MaxSize]。
int n=1。
int i=1。
printf("请输入完全二叉数的节点值(连续输入字符,以回车结束输入。
):")。
while((tree[n] = getchar( )) != '\n') n++。
数据结构课程实验报告
数据结构课程实验报告数据结构课程实验报告引言:数据结构是计算机科学中非常重要的一门课程,它研究了数据的组织、存储和管理方法。
在数据结构课程中,我们学习了各种数据结构的原理和应用,并通过实验来加深对这些概念的理解。
本文将对我在数据结构课程中的实验进行总结和分析。
实验一:线性表的实现与应用在这个实验中,我们学习了线性表这种基本的数据结构,并实现了线性表的顺序存储和链式存储两种方式。
通过实验,我深刻理解了线性表的插入、删除和查找等操作的实现原理,并掌握了如何根据具体应用场景选择合适的存储方式。
实验二:栈和队列的实现与应用栈和队列是两种常见的数据结构,它们分别具有后进先出和先进先出的特点。
在这个实验中,我们通过实现栈和队列的操作,加深了对它们的理解。
同时,我们还学习了如何利用栈和队列解决实际问题,比如迷宫求解和中缀表达式转后缀表达式等。
实验三:树的实现与应用树是一种重要的非线性数据结构,它具有层次结构和递归定义的特点。
在这个实验中,我们学习了二叉树和二叉搜索树的实现和应用。
通过实验,我掌握了二叉树的遍历方法,了解了二叉搜索树的特性,并学会了如何利用二叉搜索树实现排序算法。
实验四:图的实现与应用图是一种复杂的非线性数据结构,它由节点和边组成,用于表示事物之间的关系。
在这个实验中,我们学习了图的邻接矩阵和邻接表两种存储方式,并实现了图的深度优先搜索和广度优先搜索算法。
通过实验,我深入理解了图的遍历方法和最短路径算法,并学会了如何利用图解决实际问题,比如社交网络分析和地图导航等。
实验五:排序算法的实现与比较排序算法是数据结构中非常重要的一部分,它用于将一组无序的数据按照某种规则进行排列。
在这个实验中,我们实现了常见的排序算法,比如冒泡排序、插入排序、选择排序和快速排序等,并通过实验比较了它们的性能差异。
通过实验,我深入理解了排序算法的原理和实现细节,并了解了如何根据具体情况选择合适的排序算法。
结论:通过这些实验,我对数据结构的原理和应用有了更深入的理解。
南邮数据结构实验报告
南邮数据结构实验报告实验目的,通过本次实验,我们旨在加深对数据结构的理解,掌握数据结构的基本操作和算法设计能力,提高对数据结构的应用能力和实际问题的解决能力。
一、实验内容。
1. 实验一,线性表的基本操作。
本次实验中,我们首先学习了线性表的基本概念和操作,包括插入、删除、查找等操作,并通过实际编程操作来加深对线性表的理解。
2. 实验二,栈和队列的应用。
在实验二中,我们通过实际编程操作来学习栈和队列的应用,包括中缀表达式转换为后缀表达式、栈的应用、队列的应用等内容。
3. 实验三,树和二叉树的基本操作。
实验三中,我们学习了树和二叉树的基本概念和操作,包括树的遍历、二叉树的建立和遍历等内容,并通过实际编程操作来加深对树和二叉树的理解。
4. 实验四,图的基本操作。
最后,我们学习了图的基本概念和操作,包括图的存储结构、图的遍历等内容,并通过实际编程操作来加深对图的理解。
二、实验过程。
在实验过程中,我们首先对实验内容进行了深入的学习和理解,掌握了数据结构的基本概念和操作方法。
然后,我们通过实际编程操作来加深对数据结构的理解,并通过调试和修改程序来提高对数据结构的应用能力和实际问题的解决能力。
在实验过程中,我们遇到了一些问题,但通过不懈的努力和团队合作,最终顺利完成了实验任务。
三、实验结果与分析。
通过本次实验,我们深入理解了数据结构的基本概念和操作方法,掌握了线性表、栈、队列、树、二叉树和图的基本操作,并通过实际编程操作加深了对数据结构的理解。
同时,我们也提高了对数据结构的应用能力和实际问题的解决能力,为今后的学习和工作打下了坚实的基础。
四、实验总结。
通过本次实验,我们不仅加深了对数据结构的理解,还提高了对数据结构的应用能力和实际问题的解决能力。
在今后的学习和工作中,我们将继续努力,不断提升自己的专业能力,为将来的发展打下坚实的基础。
以上就是本次实验的报告内容,谢谢!。
数据结构实验报告
数据结构实验报告一、实验目的数据结构是计算机科学中的重要基础课程,通过实验可以更深入地理解和掌握数据结构的概念、原理和应用。
本次实验的主要目的包括:1、熟悉常见的数据结构,如链表、栈、队列、树和图等。
2、掌握数据结构的基本操作,如创建、插入、删除、遍历等。
3、提高编程能力和解决实际问题的能力,能够运用合适的数据结构解决具体的问题。
二、实验环境本次实验使用的编程语言为C++,开发环境为Visual Studio 2019。
三、实验内容1、链表的实现与操作单向链表的创建、插入和删除节点。
双向链表的实现和基本操作。
循环链表的特点和应用。
2、栈和队列的实现栈的后进先出特性,实现入栈和出栈操作。
队列的先进先出原则,完成入队和出队功能。
3、树的操作二叉树的创建、遍历(前序、中序、后序)。
二叉搜索树的插入、查找和删除操作。
4、图的表示与遍历邻接矩阵和邻接表表示图。
深度优先搜索和广度优先搜索算法的实现。
四、实验步骤及结果1、链表的实现与操作单向链表:首先,定义了链表节点的结构体,包含数据域和指向下一个节点的指针域。
通过创建链表头节点,并使用循环依次插入新节点,实现了链表的创建。
插入节点时,根据指定位置找到插入点的前一个节点,然后修改指针完成插入操作。
删除节点时,同样找到要删除节点的前一个节点,修改指针完成删除。
实验结果:成功创建、插入和删除了单向链表的节点,并正确输出了链表的内容。
双向链表:双向链表节点结构体增加了指向前一个节点的指针。
创建、插入和删除操作需要同时维护前后两个方向的指针。
实验结果:双向链表的各项操作均正常,能够双向遍历链表。
循环链表:使链表的尾节点指向头节点,形成循环。
在操作时需要特别注意循环的边界条件。
实验结果:成功实现了循环链表的创建和遍历。
2、栈和队列的实现栈:使用数组或链表来实现栈。
入栈操作将元素添加到栈顶,出栈操作取出栈顶元素。
实验结果:能够正确进行入栈和出栈操作,验证了栈的后进先出特性。
数据结构实验三——二叉树基本操作及运算实验报告
《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。
问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。
由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。
处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。
算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。
输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。
对二叉树的一些运算结果以整型输出。
程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。
计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。
对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。
测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。
数据结构实验报告
数据结构实验报告一、实验目的数据结构是计算机科学中的重要基础课程,通过本次实验,旨在加深对常见数据结构(如数组、链表、栈、队列、树、图等)的理解和运用,提高编程能力和问题解决能力,培养算法设计和分析的思维。
二、实验环境本次实验使用的编程语言为C++,开发环境为Visual Studio 2019。
三、实验内容1、数组与链表的实现与操作分别实现整数数组和整数链表的数据结构。
实现数组和链表的插入、删除、查找操作,并比较它们在不同操作下的时间复杂度。
2、栈与队列的应用用数组实现栈结构,用链表实现队列结构。
模拟栈的入栈、出栈操作和队列的入队、出队操作,解决实际问题,如表达式求值、任务调度等。
3、二叉树的遍历构建二叉树的数据结构。
实现先序遍历、中序遍历和后序遍历三种遍历算法,并输出遍历结果。
4、图的表示与遍历用邻接矩阵和邻接表两种方式表示图。
实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法,并分析它们的时间复杂度。
四、实验步骤1、数组与链表数组的实现:定义一个固定大小的整数数组,通过索引访问和操作数组元素。
链表的实现:定义链表节点结构体,包含数据和指向下一个节点的指针。
插入操作:对于数组,若插入位置在末尾,直接赋值;若不在末尾,需移动后续元素。
对于链表,找到插入位置的前一个节点,修改指针。
删除操作:数组需移动后续元素,链表修改指针即可。
查找操作:数组通过索引直接访问,链表需逐个节点遍历。
2、栈与队列栈的实现:用数组模拟栈,设置栈顶指针。
队列的实现:用链表模拟队列,设置队头和队尾指针。
入栈和出栈操作:入栈时,若栈未满,将元素放入栈顶,栈顶指针加 1。
出栈时,若栈不为空,取出栈顶元素,栈顶指针减 1。
入队和出队操作:入队时,在队尾添加元素。
出队时,取出队头元素,并更新队头指针。
3、二叉树构建二叉树:采用递归方式创建二叉树节点。
先序遍历:先访问根节点,再递归遍历左子树,最后递归遍历右子树。
中序遍历:先递归遍历左子树,再访问根节点,最后递归遍历右子树。
数据结构实验答案
实验一:以单链表表示集合,设计算法建立先后输入的两个集合的差。
说明:已知两个集合A和B,集合A-B中包含所有属于集合A而不属于集合B 的元素。
步骤:1.首先建立A和B的单链表2.然后对集合B中的每个元素x,在A中查找,若存在和x相同的元素,则从该链表中删除。
3.打印A-B,进行验证。
实验二:建立一个二叉树,并进行先序和中序遍历。
(递归和非递归算法)步骤1.补充元素0建立一个满二叉树,存储到一维数组2.利用递归算法建立二叉树,注意零的元素处置3.进行递归、非递归的中序和先序遍历。
打印结果。
实验三:先从键盘输入26个字母生成无序数组,对数组排序后,再从键盘输入一个字符进行折半查找。
实验四:为一个图(maxnode=20)建立一个邻接表、编写深度遍历和广度遍历算法并给出遍历结果。
实验一答案:#include<stdio.h>typedef struct linknode{int data;struct linknode *next;} node;node *creatlist(){node *head,*r,*s;int x;head=(node*)malloc(sizeof(node));r=head;printf("input int and end with \n");scanf("%d",&x);while(x!=0){s=(node*)malloc(sizeof(node));s->data=x;r->next=s;s->next=NULL;r=s;scanf("%d",&x);}r->next=NULL;s=head;head=head->next;free(s);return(head);}void subs(){node *p,*p1,*p2,*q,*heada,*headb;heada=creatlist();headb=creatlist();p=heada;p1=p;while(p!=NULL){q=headb;while(q->data!=p->data && q!=NULL) q=q->next; if(q!=NULL){if(p==heada){heada=heada->next;p1=heada;}else if(p->next==NULL) p1->next=NULL;else p1->next=p->next;p2=p->next;p->next=NULL;free(p);p=p2;}else{p1=p;p=p->next;}}p=heada;if(p==NULL)printf("kong\n");elseprintf(" A - B \n");while(p!=NULL){printf("%d\n",p->data);p=p->next;}}main(){subs();}实验二答案://程序目的建立二叉树,同时对他进行先序排列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)实验要求:利用 Dijkstra 算法求最低的票价 3) 实现提示:
该问题可以归结为一个求带权有向图中顶点间最短路径的问题。 建立以票价为权的有向图,再利用 Dijkstra 算法求最短路径及其路径长度。
}ArcNode; //表结点 # define VertexType int //顶点元素类型
typedef struct VNode { int degree,indegree; //顶点的度,入度 VertexType data; ArcNode *firstarc;
}Vnode /*头结点*/, AdjList[MAX_VERTEX_NUM]; typedef struct{
3.给定实际背景,解决最短路径问题。 数据结构为: typedef struct Graph{ int vertex[MAX_VERTEX_NUM];//顶点 int Adj[MAX_VERTEX_NUM][MAX_VERTEX_NUM];//邻接矩阵 }Graph; 本题还是采用的是邻接矩阵来存储图,用一个一维数组 vertex 来存放顶点本身,用一个
3)实验提示: 图的存储可采用邻接表或邻接矩阵; 图存储数据类型定义 (邻接表存储)
# define MAX_VERTEX_NUM 8 //顶点最大个数 typedef struct ArcNode
{ int adjvex; struct ArcNode *nextarc; int weight; //边的权
4.利用最小生成树算法解决通信网的总造价最低问题 1)问题描述:若在 n 个城市之间建通信网络,架设 n-1 条线路即可。如何以最低的经济
代价建设这个通信网,是一个网络的最小生成树问题。 2)实验要求:利用 Prim 算法求网的最小生成树。 3) 实现提示:通信线路一旦建立,必然是双向的。因此,构造最小生成树的网一定是无
测试结果:
4.利用最小生成树算法解决通信网的总造价最低问题。 数据结构为: typedef struct Graph{ int vertex[MAX_VERTEX_NUM];//顶点 int Adj[MAX_VERTEX_NUM][MAX_VERTEX_NUM];//邻接矩阵 }Graph; 本题仍然采用的是邻接矩阵来存储图,用一个一维数组 vertex 来存放顶点本身,用一个
2. 教学计划编制问题。
数据结构为: typedef struct Graph{
int vertex[MAX_VERTEX_NUM];//顶点 int Adj[MAX_VERTEX_NUM][MAX_VERTEX_NUM];//邻接矩阵 }Graph; 本题依旧采用的是邻接矩阵来存储图,用一个一维数组 vertex 来存放顶点本身,用一个 二维数组 adj 来表示各个顶点之间的邻接关系。 拓扑排序。首先增设一个一维数组 indegree 来存放每一个顶点的入度。入度为零表示没 有前驱节点,删除该顶点以及它的出弧就等价于弧头顶点的入度减 1。要实现拓扑算法可以借 助堆栈,凡是网中入度为零的顶点都将其进栈。具体步骤为:1)将没有前驱结点(入度为零) 的顶点进栈;2)从栈中退出栈顶元素输出,并把该顶点引出的所有弧删去,即把它的各个邻 接点的入度减 1,同时将当前已输出的顶点个数加 1;3)将新的入度为零的顶点再进栈;4) 重复 2)、3)两步,直到栈空为止。此时或者已输出全部顶点,或者剩下的顶点没有入度为 零的顶点。 栈在这里的作用只是保存当前入度为零的顶点,并使之处理有序。 测试结果:
AdjList vertices; int vexnum,arcnum;//顶点的实际数,边的实际数 }ALGraph; 4)注意问题: 注意理解各算法实现时所采用的存储结构。 注意区别正、逆邻接。 2. 教学计划编制问题
1)问题描述:软件专业的学生要学习一系列课程,其中有些课程必须在其先修课完成后 才能学习。
/*队列的数据结构*/ typedef struct {
int elem[MAX_VERTEX_NUM]; int front,rear; }Queue; Graph G; int visited[MAX_VERTEX_NUM]; Graph CreateAG(int n,int m) { int i=0,j=0,a=0,b=0; for(i=0;i<n;i++) {
程序运行 20 分
回答问题 15 分
实验报告 30 分
特色 考勤违
功能 纪情况 成绩
5分
5分
其它批改意见:
考核 内容
评价在实验 课堂中的表 现,包括实 验态度、编 写程序过程 等内容等。
□功能完善, □功能不全 □有小错 □无法运行
○正确 ○基本正确 ○有提示 ○无法回答
○完整
○较完整 ○一般 ○内容极少
二维数组 adj 来表示各个顶点之间的邻接关系,二维数组的值表示权值。 Dijkstra 算法。为了球最短路径采用三个数组:1)S 数组,S[i]=0 表示顶点 i 未进入 S
集合,S[i]=1 表示顶点 i 已进入 S 集合;2)dist[i]表示当前已知的从源点到顶点 i 的最短 路径长度;3)path[i]表示在当前已知的从源点到顶点 i 的最短路径上,i 前面的那个顶点的 下标。把图中顶点集合 V 分成两组,第一组为已求出最短路径的顶点集合(用 S 表示,初始 时 S 中只有一个源点,以后每求得一条最短路径 , 就将加入到集合 S 中,直到全部顶点都加 入到 S 中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用 U 表示),按最 短路径长度的递增次序依次把第二组的顶点加入 S 中。在加入的过程中,总保持从源点 v 到 S 中各顶点的最短路径长度不大于从源点 v 到 U 中任何顶点的最短路径长度。此外,每个顶点 对应一个距离,S 中的顶点的距离就是从 v 到此顶点的最短路径长度,U 中的顶点的距离,是 从 v 到此顶点只包括 S 中的顶点为中间顶点的当前最短路径长度。
○有 ○无
○无报告
○有 ○无
教师签字:
一、实验目的 1、 实验目的:通过实验使学生理解图的主要存储结构,掌握图的构造算法、图的深度优先和 广度优先遍历算法,能运用图解决具体应用问题。
二、实验题目与要求 要求:第 1 题 为必做题,2,3,4 至少选一 1.输入指定的边数和顶点数建立图,并输出深度优先遍历和广度优先遍历的结果。
2)实验要求:假设每门课程的学习时间为一个学期,试为该专业的学生设计教学计划, 使他们能在最短时间内修完专业要求的全部课程。
3) 实现提示: 以顶点代表课程,弧代表课程的先后修关系,按课程先后关系建立有向无环图。 利用拓扑排序实现。
3.给定实际背景,解决最短路径问题 1)问题描述:假设以一个带权有向图表示某一区域的公交线路网,图中顶点代表一些区
1)问题描述:在主程序中设计一个简单的菜单,分别调用相应的函数功能: 1…图的建立 2…深度优先遍历图 3…广度优先遍历图 0…结束
2)实验要求:在程序中定义下述函数,并实现要求的函数功能: CreateGraph(): 按从键盘的数据建立图 DFSGrahp():深度优先遍历图 BFSGrahp():广度优先遍历图
向网。为简单起见,图的顶点数不超过 10 个,网中边的权值设置成小于 100。
三、 实验过程与实验结果 1.输入指定的边数和顶点数建立图,并输出深度优先遍历和广度优先遍历的结果。
数据结构为: typedef struct Graph{
int vertex[MAX_VERTEX_NUM];//顶点信息 int adj[MAX_VERTEX_NUM][MAX_VERTEX_NUM];//邻接矩阵 }Graph; 本题采用的是邻接矩阵来存储图,用一个一维数组 vertex 来存放顶点本身,用一个二维 数组 adj 来表示各个顶点之间的邻接关系。 图的深度优先遍历,从图中任一顶点 v 开始访问,然后访问它的任一邻接顶点 w1;再从 w1 出发,访问与其邻接但还没访问过的顶点 w2;然后再从 w2 出发,进行类似的访问,···, 如此进行下去,直至到达所有的邻接顶点都被访问过的顶点 u 为止;接着退回一部,回溯到 u 的前一个邻接点,看它是否还有其它没有被访问的邻接点。如果有,则访问此节点;若没有, 就再退回一步进行搜索。重复上述过程,直至图中所有和 v 连通的顶点都被访问到。 图的广度优先遍历,要借助队列实现。广度优先搜索类似于树的层次遍历过程。它需要 借助一个队列来实现。要想遍历每一个顶点,我们可以设 v 为第一层,再逐个遍历每一层的 每个顶点。首先创建一个 visited 数组,用来记录已被访问过的顶点,然后创建一个队列, 用来存放每一层的顶点。从图中的 v 开始访问,将已访问过的 visited[v]数组的值设置为 true,同时将 v 入队。只要队列不空,则重复如下操作:(1)队头顶点 u 出队。(2)依次检查 u 的所有邻接顶点 w,若 visited[w]的值为 false,则访问 w,并将 visited[w]置为 true,同 时将 w 入队。 测试结果:
为实现 Prim 算法,需设置一个辅助数组 closedge,以记录从 U 到 V-U 具有最小权值的边。 对每个顶点 v 属于 V-U,在辅助数组中存在一个相应分量 closedge[v],它包括两个域,其中 lowcost 域用来保存集合 U 中各顶点与该顶点构成的边中具有最小权值的边的权值。即 closedge[v].lowcost = min{wuv|u∈U}。假设初始状态时 U={k}(k 为出发的顶点),这时有 closedge[k]. lowcost=0,表示顶点 k 已加人集合 U 中。然后不断选取权值最小的边(v,u)(u ∈U,v∈V-U),每选取一条边,就将 closedge[ v]. lowcost 置为 0,表示顶点 v 加入集合 U。 由于顶点 v 从集合 V-U 进人集合 U 后,这两个集合的内容发生了变化,就需要依据新的情况 更新每一个不属于 U 集的顶点的 lowcost 值。然后再选取出 lowcost 值最小的顶点加人集合 U,依次类推,直至所有顶点都加入集合 U 为止。