阿波罗尼斯圆问题

合集下载

阿波罗尼斯圆及其直接应用 (解析版)

阿波罗尼斯圆及其直接应用  (解析版)

1专题一:阿波罗尼斯圆介绍及其直接应用主干知识:1、阿波罗尼斯圆的定义在平面上给定两点,A B ,设P 点在同一平面上且满足PAPBλ=,当0λ>且1λ≠时,P 点的轨迹是个圆,称之为阿波罗尼斯圆.(1λ=时P 点的轨迹是线段AB 的中垂线)2、阿波罗尼斯圆的方程【定理1】设()()()1,,,0,,0P x y A a B a -.若PAPBλ=(0λ>且1λ≠),则点P 的轨迹方程是2222221211a x a y λλλλ⎛⎫+⎛⎫-+= ⎪ ⎪--⎝⎭⎝⎭,其轨迹是以221,01a λλ⎛⎫+ ⎪-⎝⎭为圆心,半径为221a r λλ=-的圆.例题讲解例1.(2022·河北盐山中学高二期中)已知两定点()2,1A -,()2,1B -,如果动点P满足PA =,则点P 的轨迹所包围的图形的面积等于___________.【分析】设(,)P x y ,根据题设条件,结合两点距离公式列方程并整理即可得P 的轨迹方程,即知轨迹为圆,进而求其面积即可.【详解】设(,)P x y ,由题设得:2222(2)(1)2[(2)(1)]x y x y ++-=-++,∴22(6)(3)40x y -++=,故P的圆,∴图形的面积等于40π.故答案为:40π例2.(2022四川涪陵月考)若ABC ∆满足条件4, 2 AB AC BC ==,则ABC ∆面积的最大值为__________.【分析】设BC x =,则2AC x =,由余弦定理得出cos B ,根据三角形任意两边之和大于第三边得出x 的范围,再由三角形面积公式,结合二次函数的性质得出答案.【详解】设BC x =,则2AC x =,由余弦定理可得22216(2)163cos 248x x x B x x+--==⨯⨯由三角形任意两边之和大于第三边得2442x x x x +>⎧⎨+>⎩,解得443x <<,即216169x <<14sin 222ABCS x B ∆∴=⋅⋅⋅===当2809x =时,ABC ∆面积取最大值163故答案为:163答案第2页,共3页例3.在平面直角坐标xOy 中,已知点()()1,0,4,0A B ,若直线0x y m -+=上存在点P 使得12PA PB =,则实数m 的取值范围是_______.【分析】根据12PA PB =得出点P 的轨迹方程,又点P 在直线0x y m -+=上,则点P 的轨迹与直线必须有公共点,进而解决问题.【详解】解:设(,)P x y则PA PB ==因为12PA PB ==,同时平方,化简得224x y +=,故点P 的轨迹为圆心在(0,0),半径2为的圆,又点P 在直线0x y m -+=上,故圆224x y +=与直线0x y m -+=必须有公共点,2≤,解得m -≤例4.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,阿波罗尼斯圆就是他的研究成果之一,指的是:已知动点M 与两个定点A ,B 的距离之比为λ(0λ>,且1λ≠),那么点M 的轨迹就是阿波罗尼斯圆.若平面内两定点A ,B 间的距离为2,动点P满足PA PB=22PA PB +的最大值为()A.16+B.8+C.7+D.3【分析】设()()1,0,1,0A B -,(),P x y,由PA PB=P 的轨迹为以()2,0为圆心,半()222221PA PB x y +=++,其中22x y +可看作圆()2223x y -+=上的点(),x y 到原点()0,0的距离的平方,从而根据圆的性质即可求解.【详解】解:由题意,设()()1,0,1,0A B -,(),P x y ,因为PA PB=,即()2223x y-+=,所以点P 的轨迹为以()2,0因为()()()222222221121x y x y x y PA PB =++++-+=++,其中22x y +可看作圆()2223x y -+=上的点(),x y 到原点()0,0的距离的平方,所以()(222max27x y+=+=+,所以()22max2116x y ⎡⎤++=+⎣⎦22PA PB +的最大值为16+3故选:A.例5.(2022四川·成都外国语学校高二月考)古希腊数学家阿波罗尼奥斯(约公元首262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中这样一个命题:平面内与两定点距离的比为常数(0k k >且)1k ≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆,已知点()1,0A -,()2,0B ,圆()()()221:204C x y m m -+-=>,在圆上存在点P 满足2PA PB=,则实数m 的取值范围是()A.22⎣⎦B.542⎡⎢⎣⎦C.2⎛ ⎝⎦D.2⎥⎣⎦【分析】设(),P x y ,根据2PA PB =求出点P 的轨迹方程,根据题意可得两个圆有公共点,根据圆心距大于或等于半径之差的绝对值小于或等于半径之和,解不等式即可求解.【详解】设(),P x y ,因为点()1,0A -,()2,0B ,2PA PB =,=22650x y x +-+=,所以()2234x y -+=,可得圆心()3,0,半径2R =,由圆()()221:24C x y m -+-=可得圆心()2,C m ,半径12r =,因为在圆C 上存在点P 满足2PA PB =,所以圆()2234x y -+=与圆()()221:24C x y m -+-=有公共点,所以112222-≤≤+,整理可得:2925144m ≤+≤,解得:22m ≤≤,所以实数m 的取值范围是2⎥⎣⎦,。

初中数学几何最值专题44:阿波罗尼斯圆问题(最全修正版)

初中数学几何最值专题44:阿波罗尼斯圆问题(最全修正版)

阿波罗尼斯圆问题(阿氏圆)所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.如下图,已知A 、B 两点,点P 满足PA :PB=k (k ≠1),则满足条件的所有的点P 构成的图形为圆.【问题引入】如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12PA PB 的最小值为__________;则PA+23PB 的最小值为__________;解析提示:解析提示:【问题分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB 最小值,直接连BM 即可. 【问题剖析】(1)这里为什么是12PA ?(2)如果问题设计为PA+kPB 最小值,k 应为多少?【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决. 【思考】分析解析提示2中原理EAB C DPMPDCBA【问题引入】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点C为圆心,2为半径作圆C,分别交AC、BC于D、E两,则2PM+PN的最小值为__________;则2PM+3PN的最小值为点,点P是圆C上一个动点,CM=1,CN=43__________;解析提示:解析提示:【问题分析】这个问题最大的难点在于转化2PM,此处P点轨迹是圆,注意到圆C半径为2,CM=1,连接CP,构造包含线段PM的△CMP,连接AP,可得△CPA∽△CMP,故PA:PM=2:1,即2PM=PA.问题转化为PN+PA最小值,直接连AN即可.【问题剖析】(1)这里为什么是2PM?(2)如果问题设计为PM+kPN最小值,k应为多少?【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决.【思考】分析解析提示2中原理【例题精讲】例1、如图,点A、B在圆O上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB上,且OD=4。

专题11 最值模型-阿氏圆问题(解析版)

专题11 最值模型-阿氏圆问题(解析版)

专题11 最值模型-阿氏圆问题最值问题在中考数学常以压轴题的形式考查,“阿氏圆”又称“阿波罗尼斯圆”,主要考查转化与化归等的数学思想。

在各类考试中都以高档题为主,中考说明中曾多处涉及。

本专题就最值模型中的阿氏圆问题进行梳理及对应试题分析,方便掌握。

【模型背景】已知平面上两点A、B,则所有满足PA=k·PB(k≠1)的点P的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。

【模型解读】如图 1 所示,⊙O的半径为r,点A、B都在⊙O外,P为⊙O上一动点,已知r=k·OB,连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?如图2,在线段OB上截取OC使OC=k·r,则可说明△BPO与△PCO相似,即k·PB=PC。

故本题求“PA+k·PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。

如图3所示:注意区分胡不归模型和阿氏圆模型:在前面的“胡不归”问题中,我们见识了“k·P A+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【最值原理】两点之间线段最短及垂线段最短解题。

例1.(2022·安徽·九年级期末)如图,在Rt△ABC中,△ACB=90°,CB=7,AC=9,以C为圆心、3为半径作△C,P为△C上一动点,连接AP、BP,则13AP+BP的最小值为()A.7B.2C.410D.13【答案】B【详解】思路引领:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.利用相似三角形的性质证明MP13=P A,可得13AP+BP=PM+PB≥BM,利用勾股定理求出BM即可解决问题.答案详解:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.∵PC=3,CM=1,CA=9,∵PC2=CM•CA,∵PC CM CA CP=,∵∵PCM=∵ACP,∵∵PCM∵∵ACP,∵13 PM PCPA AC==,∵PM13=P A,∵13AP+BP=PM+PB,∵PM+PB≥BM,在Rt∵BCM中,∵∵BCM=90°,CM=1,BC=7,∵BM2217=+=52,∵13AP+BP≥52,∵13AP+BP的最小值为52.故选:B.例2.(2020·广西中考真题)如图,在Rt中,AB=AC=4,点E,F分别是AB,AC的中点,点PABC是扇形AEF 的上任意一点,连接BP ,CP ,则BP +CP 的最小值是_____..【分析】在AB 上取一点T ,使得AT =1,连接PT ,P A ,CT .证明,推出==,推出PT =PB ,推出PB +CP =CP +PT ,根据PC +PT ≥TC ,求出CT 即可解决问题. 【详解】解:在AB 上取一点T ,使得AT =1,连接PT ,P A ,CT .∵P A =2.AT =1,AB =4,∵P A 2=AT •AB ,∵=, ∵∵P AT =∵P AB ,∵,∵==,∵PT =PB ,∵PB +CP =CP +PT , ∵PC +PT ≥TC ,在Rt 中,∵∵CAT =90°,AT =1,AC =4,∵CT ,∵PB +PC ,∵PB +PC . 【点睛】本题考查等腰直角三角形的性质,三角形相似的判定与性质,勾股定理的应用,三角形的三边关系,圆的基本性质,掌握以上知识是解题的关键.例3.(2022·四川成都·模拟预测)如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的EF 1217PAT BAP ∽PT PB AP AB 1212124=PA ATAB PA PAT BAP ∽PT PB AP AB 121212ACT 22AT AC +171217121717一个动点,则12PD PC -的最大值为_______.【答案】152【分析】如图,连接BP ,在BC 上取一点M ,使得BM =32,进而证明BPM BCP △∽△,则在点P 运动的任意时刻,均有PM =12PC ,从而将问题转化为求PD -PM 的最大值.连接PD ,在△PDM 中,PD -PM <DM ,故当D 、M 、P 共线时,PD -PM =DM 为最大值,勾股定理即可求得DM .【详解】如图,连接BP ,在BC 上取一点M ,使得BM =32, 31232BM BP ==,3162BP BC ==BM BP BP BC ∴= PBM CBP ∠=∠∴BPM BCP △∽△12MP BM PC BP ∴==12MP PC ∴=12PD PC PD MD ∴-=-在△PDM 中,PD -PM <DM ,当D 、M 、P 共线时,PD -PM =DM 为最大值,四边形ABCD 是正方形90C ∴∠=︒在Rt CDM 中,2222915622DM DC MC ⎛⎫=+=+= ⎪⎝⎭故答案为:152. 【点睛】本题考查了圆的性质,相似三角形的性质与判定,勾股定理,构造12PC 是解题的关键. 例4.(2022·浙江·舟山九年级期末)如图,矩形ABCD 中,4,2AB AD ==,以B 为圆心,以BC 为半径画圆交边AB 于点E ,点P 是弧CE 上的一个动点,连结,PD PA ,则12AP DP +的最小值为( )A 10B 11C 13D 14【答案】C【分析】连接BP ,取BE 的中点G ,连接PG ,通过两组对应边成比例且夹角相等,证明BPG BAP ,得到12PG AP =,则12AP DP PG DP +=+,当P 、D 、G 三点共线时,取最小值,求出DG 的长得到最小值. 【详解】解:如图,连接BP ,取BE 的中点G ,连接PG ,△2AD BC BP ===,4AB =,△2142BP BA ==, △G 是BE 的中点,△12BG BP =,△BP BG BA BP=, △PBG ABP ∠=∠,△BPGBAP ,△12PG BP AP BA ==,△12PG AP =, 则12AP DP PG DP +=+,当P 、D 、G 三点共线时,取最小值,即DG 长, 224913DG AD AG =+=+=.故选:C .【点睛】本题考查矩形和圆的基本性质,相似三角形的性质和判定,解题的关键是构造相似三角形将12AP 转换成PG ,再根据三点共线求出最小值.例5.(2022·广东·广州市第二中学九年级阶段练习)如图,在平面直角坐标系中,A (2,0),B (0,2),C (4,0),D (5,3),点P 是第一象限内一动点,且135APB ∠=︒,则4PD +2PC 的最小值为_______.【答案】20【分析】取一点(1,0)T ,连接OP ,PT ,TD ,首先利用四点共圆证明2OP =,再利用相似三角形的性质证明12PT PC =,推出14+2=4(+)=4(+)2PD PC PD PC PD PT ,根据+PD PT DT ≥,过点D 作DE OC ⊥交OC 于点E ,即可求出DT 的最小值,即可得.【详解】解:如图所示,取一点(1,0)T ,连接OP ,PT ,TD ,△A (2,0),B (0,2),C (4,0),△OA =OB =2,OC =4,以O 为圆心,OA 为半径作O ,在优弧AB 上取一点Q ,连接QB ,QA ,△1452Q AOB ∠=∠=︒,135APB ∠=︒,△45135180Q APB ∠+∠=︒+︒=︒, △A ,P ,B ,Q 四点共圆,△2OP OA ==,△2OP =,1OT =,4OC =,△2OP OC OT =,△OP OT OC OP=,△POT POC ∠=∠,△POT COP △∽△,△12PT OP PC OC ==,△12PT PC =, △14+2=4(+)=4(+)2PD PC PD PC PD PT ,过点D 作DE OC ⊥交OC 于点E , △D 的坐标为(5,3),△点E 的坐标为(5,0),TE =4,△22=3+4=5DT△+PD PT DT ≥,△4+220PD PC ≥,△4+2PD PC 的最小值是20,故答案为:20.【点睛】本题考查了四点共圆,相似三角形,勾股定理,三角形三边关系,解题的关键是掌握这些知识点.例6.(2021·浙江金华·一模)问题提出:如图1,在等边△ABC中,AB=9,△C半径为3,P为圆上一动点,连结AP,BP,求AP+13BP的最小值(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将13BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)如图2,连结CP,在CB上取点D,使CD=1,则有13== CD CP CP CB又△△PCD=△△△△△13=PDBP△PD=13BP△AP+13BP=AP+PD△当A,P,D三点共线时,AP+PD取到最小值请你完成余下的思考,并直接写出答案:AP+13BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=4,则12AP+PC的最小值为.(请在图3中添加相应的辅助线)(3)拓展延伸:如图4,在扇形COD中,O为圆心,△COD=120°,OC=4.OA=2,OB=3,点P是CD上一点,求2P A+PB的最小值,画出示意图并写出求解过程.【答案】(1)BCP,PCD,BCP,2592;(2)210;(3)作图与求解过程见解析,2P A+PB的最小值为97.【分析】(1)连结AD,过点A作AF△CB于点F,AP+13BP=AP+PD,要使AP+13BP最小,AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即可求解;(2)在AB上截取BF=2,连接PF,PC,AB=8,PB=4,BF=2,证明△ABP△△PBF,当点F,点P,点C 三点共线时,AP+PC的值最小,即可求解;(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB△OD于点M,确定12OA OPOP OF==,且△AOP=△AOP,△AOP△△POF,当点F,点P,点B三点共线时,2AP+PB的值最小,即可求解.【详解】解:(1)如图1,连结AD,过点A作AF△CB于点F,△AP+13BP=AP+PD,要使AP+13BP最小,△AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+13BP最小值为AD,△AC=9,AF△BC,△ACB=60°△CF=3,AF=932;△DF=CF﹣CD=3﹣1=2,△AD=22259 =2AF DF+,△AP+13BP的最小值为2592;故答案为:2592;(2)如图2,在AB上截取BF=2,连接PF,PC,△AB=8,PB=4,BF=2,△12BP BFAB BP==,且△ABP=△ABP,△△ABP△△PBF,△12FP BPAP AB==,△PF=12AP,△12AP+PC=PF+PC,△当点F,点P,点C三点共线时,AP+PC的值最小,△CF=222262210BF BC+=+=,△12AP+PC的值最小值为210,故答案为:210;(3)如图3,延长OC,使CF=4,连接BF,OP,PF,过点F作FB△OD于点M,△OC=4,FC=4,△FO=8,且OP=4,OA=2,△12OA OPOP OF==,且△AOP=△AOP△△AOP△△POF△1=2AP OAPF OF=,△PF=2AP△2P A+PB=PF+PB,△当点F,点P,点B三点共线时,2AP+PB的值最小,△△COD=120°,△△FOM=60°,且FO=8,FM△OM△OM=4,FM=43,△MB=OM+OB=4+3=7△FB=2297FM MB+=,△2P A+PB的最小值为97.【点睛】本题主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,解本题的关键是根据材料中的思路构造出相似三角形..例7.(2022·广东·二模)(1)初步研究:如图1,在△P AB中,已知P A=2,AB=4,Q为AB上一点且AQ=1,证明:PB=2PQ;(2)结论运用:如图2,已知正方形ABCD的边长为4,△A的半径为2,点P是△A上的一个动点,求2PC+PB的最小值;(3)拓展推广:如图3,已知菱形ABCD的边长为4,△A=60°,△A的半径为2,点P是△A上的一个动点,求2PC−PB的最大值.【答案】(1)见解析;(2)10;(3)237【分析】(1)证明△P AQ△△BAP,根据相似三角形的性质即可证明PB=2PQ;(2)在AB上取一点Q,使得AQ=1,由(1)得PB=2PQ,推出当点C、P、Q三点共线时,PC+PQ的值最小,再利用勾股定理即可求得2PC+PB的最小值;(3)作出如图的辅助线,同(2)法推出当点P在CQ 交△A的点P′时,PC−PQ的值最大,再利用勾股定理即可求得2PC−PB的最大值.【详解】解:(1)证明:△P A=2,AB=4,AQ=1,△P A2=AQ⋅AB=4.△PA AB AQ PA=.又△△A=△A,△△P AQ△△BAP.△12PQ PAPB AB==.△PB=2PQ;(2)如图,在AB上取一点Q,使得AQ=1,连接AP,PQ,CQ.△AP=2,AB=4,AQ=1.由(1)得PB=2PQ,△2PC+PB=2PC+2PQ=2(PC+PQ).△PC+PQ≥QC,△当点C、P、Q三点共线时,PC+PQ的值最小.△QC =22QB BC +=5,△2PC +PB =2(PC +PQ )≥10.△2PC +PB 的最小值为10.(3)如图,在AB 上取一点Q ,使得AQ =1,连接AP ,PQ ,CQ ,延长CQ 交△A 于点P ′,过点C 作CH 垂直AB 的延长线于点H .易得AP =2,AB =4,AQ =1.由(1)得PB =2PQ ,△2PC −PB =2PC −2PQ =2(PC −PQ ) ,△PC −PQ ≤QC ,△当点P 在CQ 交△A 的点P ′时,PC −PQ 的值最大.△QC =22QH CH + =37,△2PC −PB =2(PC −PQ )≤237.△2PC −PB 的最大值为237.【点睛】本题考查了圆有关的性质,正方形的性质,菱形的性质,相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决.例8.(2022·江苏·苏州九年级阶段练习)阅读以下材料,并按要求完成相应的任务.已知平面上两点AB 、,则所有符合0(PA k k PB=>且1)k ≠的点P 会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆. 阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标中,在x 轴,y 轴上分别有点()(),0,0,C m D n ,点P 是平面内一动点,且OP r =,设OP k OD=,求PC kPD +的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD 上取点M ,使得::OM OP OP OD k ==;第二步:证明kPD PM =;第三步:连接CM ,此时CM 即为所求的最小值.下面是该题的解答过程(部分):解:在OD 上取点M ,使得::OM OP OP OD k ==,又,POD MOP POM DOP ∠=∠∴.任务:()1将以上解答过程补充完整.()2如图2,在Rt ABC 中,90,4,3,ACB AC BC D ∠=︒==为ABC 内一动点,满足2CD =,利用()1中的结论,请直接写出23AD BD +的最小值.【答案】(1)222.m k r +(2)4103. 【分析】 △ 将PC+kPD 转化成PC+MP ,当PC+kPD 最小,即PC+MP 最小,图中可以看出当C 、P 、M 共线最小,利用勾股定理求出即可;△ 根据上一问得出的结果,把图2的各个点与图1对应代入,C 对应O,D 对应P ,A 对应C ,B 对应M ,当D 在AB 上时23AD BD +为最小值,所以23AD BD +=2223AC CD ⎛⎫+ ⎪⎝⎭ = 224410433⎛⎫+= ⎪⎝⎭ 【详解】解()1:,MP PD k MP kPD =∴=∴,PC kPD PC MP ∴+=+,当PC kPD +取最小值时,PC MP +有最小值,即,,C P M 三点共线时有最小值,利用勾股定理得()2222222.CM OC OM m kr m k r =+=+=+ ()223AD BD +的最小值为4103, 提示:4AC m ==,2433CD kr ==,23AD BD ∴+的最小值为224410433⎛⎫+= ⎪⎝⎭. 【点睛】此题主要考查了新定义的理解与应用,快速准确的掌握新定义并能举一反三是解题的关键.课后专项训练1.(2022·福建南平九年级期中)如图,在Rt△ABC 中,△ACB =90°,CB =7,AC =9,以C 为圆心、3为半径作△C ,P 为△C 上一动点,连接AP 、BP ,则13AP +BP 的最小值为( )A .2.B .3C .5D .2【答案】D【分析】作辅助线构造相似三角形,进而找到P 在何时会使得13AP +BP 有最小值,进而得到答案. 【详解】解:如图,连接CP ,作PE 交AC 于点E ,使CPE PAC ∠=∠△=PCE ACP ∠∠ △PCE △APC △ △PC EP AC AP = △9,3AC PC == △13EP AP = △13AP BP EP BP +=+,当B 、P 、E 三点共线,即P 运动P '时有最小值EB△EC PC PC AC = △1EC = △2252EB EC CB =+= △13AP BP +的最小值为52 故选:D .【点睛】本题考查相似三角形,解直角三角形;懂得依题意作辅助线构造相似三角形是解题的关键.2.(2022·江苏·无锡市九年级期中)如图,△O与y轴、x轴的正半轴分别相交于点M、点N,△O半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接P A,PB,则3P A+PB的最小值为___.【答案】85【分析】如图,在y轴上取一点C(0,9),连接PC, 根据13OA APOP PC==,△AOP是公共角,可得△AOP△△POC,得PC=3P A,当B,C,P三点共线时,3P A+PB的值最小为BC,利用勾股定理求出BC的长即可得答案.【详解】如图,在y轴上取一点C(0,9),连接PC,△△O半径为3,点A(0,1),点B(2,0),△OP=3,OA=1,OB=2,OC=9,△1=3OA OPOP OC=,△AOP是公共角,△△AOP△△POC,△PC=3P A,△3P A+PB=PC+PB,△当B,C,P三点共线时,3P A+PB最小值为BC,△BC =22OC OB +=2292+=85,△3P A +PB 的最小值为85.故答案为:85【点睛】本题主要考查相似三角形的判定与性质及最小值问题,正确理解C 、P 、B 三点在同一条直线上时3P A +PB 有最小值,熟练掌握相似三角形的判定定理是解题关键.3.(2022·陕西·三模)如图,在四边形ABCD 中, 3AB =260AC BAC ACD =∠=∠=︒,,设•AD k BD =,则k 的最小值为 ___________.21##12-【分析】如图,过点C 作CJ AB ⊥于点J ,过点B 作BM DC ⊥交DC 的延长线于点M ,在AB 的上方构造Rt ABE △,使得ABE MBD ∽,取BE 的中点F ,连接AF DF ,.由ABE MBD ∽,推出232,903BE AB BAE M DB MB ===∠=∠=︒,设BD m =,则2BE m =,由勾股定理求得DF ,根据两点之间线段最短可得AD 的最小值,进而根据•AD k BD =,即可求解.【详解】解:如图,过点C 作CJ AB ⊥于点J ,过点B 作BM DC ⊥交DC 的延长线于点M ,在AB 的上方构造Rt ABE △,使得ABE MBD ∽,取BE 的中点F ,连接AF DF ,.在Rt ACJ 中,260AC CAJ =∠=︒,,△sin 603CJ AC =⋅︒=,△60ACD BAC ∠=∠=︒,△AB CD ∥, △BM CD CJ AB ⊥⊥,,△四边形BJCM 是矩形,△3BM CJ ==,90MBJ ∠=︒,△ABE MBD ∽,△232,903BE AB BAE M DB MB ===∠=∠=︒,△设BD m =,则2BE m =, △EF FB =,△12AF BE m ==,△ABE MBD ∠=∠,△90EBD ABM ∠=∠=︒,△222DF BF BD m =+=, △2AD DF AF m m ≥-=-,△AD 的最小值为2m m -,△AD kBD =,△k 是最小值为221m m m-=-.故答案为:21-. 【点睛】本题考查轴对称问题,勾股定理,相似三角形的性质等知识,解题的关键是相似构造相似三角形解决问题.4.(2022·湖北武汉·模拟预测)【新知探究】新定义:平面内两定点 A , B ,所有满足PA PB= k ( k 为定值)的P 点形成的图形是圆,我们把这种圆称之为“阿氏圆”,【问题解决】如图,在△ABC 中,CB = 4 ,AB= 2AC ,则△ABC 面积的最大值为_____.【答案】16 3【分析】以A为顶点,AC为边,在△ABC外部作△CAP=△ABC,AP与BC的延长线交于点P,证出△APC△△BPA,列出比例式可得BP=2AP,CP=12AP,从而求出AP、BP和CP,即可求出点A的运动轨迹,最后找出距离BC最远的A点的位置即可求出结论.【详解】解:以A为顶点,AC为边,在△ABC外部作△CAP=△ABC,AP与BC的延长线交于点P,△△APC=△BPA,AB= 2AC△△APC△△BPA,△12AP CP ACBP AP AB===△BP=2AP,CP=12AP△BP-CP=BC=4△2AP-12AP=4解得:AP=83△BP=163,CP=43,即点P为定点△点A的轨迹为以点P为圆心,83为半径的圆上,如下图所示,过点P作BC的垂线,交圆P于点A1,此时A1到BC的距离最大,即△ABC的面积最大S△A1BC=12BC·A1P=12×4×83=163即△ABC面积的最大值为163故答案为:163.【点睛】此题考查的是相似三角形的判定及性质、确定点的运动轨迹和求三角形的面积,掌握相似三角形的判定及性质、圆的定义和三角形的面积公式是解决此题的关键.5.(2022·浙江·九年级期中)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接P A,PB,则P A+PB的最小值为.【解答】解:如图,在CB上取一点F,使得CF=,连接PF,AF.∵∠DCE=90°,DE=4,DP=PE,∴PC=DE=2,∵=,=,∴=,∵∠PCF=∠BCP,∴△PCF∽△BCP,∴==,∴PF=PB,∴P A+PB=P A+PF,∵P A+PF≥AF,AF===,∴P A+PB≥,∴P A+PB的最小值为,故答案为.6.(2022·江苏·苏州九年级阶段练习)如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在CG的最小值为_____.边CD上,且线段EF=4,点G为线段EF的中点,连接BG、CG,则BG+12【答案】5【分析】因为DG=12EF=2,所以G在以D为圆心,2为半径圆上运动,取DI=1,可证△GDI△△CDG,从而得出GI=12CG,然后根据三角形三边关系,得出BI是其最小值【详解】解:如图,在Rt△DEF中,G是EF的中点,△DG=122EF=,△点G在以D为圆心,2为半径的圆上运动,在CD上截取DI=1,连接GI,△DIDG=DGCD=12,△△GDI=△CDG,△△GDI△△CDG,△IG DICG DG==12,△IG=12CG,△BG+12CG=BG+IG≥BI,△当B、G、I共线时,BG+12CG最小=BI,在Rt△BCI中,CI=3,BC=4,△BI=5,故答案是:5.【点睛】本题考查了相似三角形的性质与判定,圆的概念,求得点G的运动轨迹是解题的关键.7.(2022·山西·九年级专题练习)如图,在ABC 中,90,2B AB CB ∠=︒==,以点B 为圆心作圆B 与AC 相切,点P 为圆B 上任一动点,则2PA PC 的最小值是___________.【答案】5 【分析】作BH △AC 于H ,取BC 的中点D ,连接PD ,如图,根据切线的性质得BH 为△B 的半径,再根据等腰直角三角形的性质得到BH 12=AC 2=,接着证明△BPD △△BCP 得到PD 22=PC ,所以P A 22+PC =P A +PD ,而P A +PD ≥AD (当且仅当A 、P 、D 共线时取等号),从而计算出AD 得到P A 22PC +的最小值. 【详解】解:作BH △AC 于H ,取BC 的中点D ,连接PD ,如图,△AC 为切线,△BH 为△B 的半径,△△ABC =90°,AB =CB =2,△AC 2=BA =22,△BH 12=AC 2=,△BP 2=, △22PB BC =,1222BD BP ==,而△PBD =△CBP ,△△BPD △△BCP , △22PD PB PC BC ==,△PD 22=PC ,△P A 22+PC =P A +PD , 而P A +PD ≥AD (当且仅当A 、P 、D 共线时取等号),而AD 22215=+=,△P A +PD 的最小值为5,即P A 22PC +的最小值为5.故答案为:5.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.解决问题的关键是利用相似比确定线段PD22PC.也考查了等腰直角三角形的性质.8.(2022·湖北·九年级专题练习)如图,已知正方形ABCD的边长为4,△B的半径为2,点P是△B上的一个动点,则PD﹣12PC的最大值为_____.【答案】5【详解】分析: 由PD−12PC=PD−PG≤DG,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG=5.详解: 在BC上取一点G,使得BG=1,如图,△221PBBG==,422BCPB==,△PB BCBG PB=,△△PBG=△PBC,△△PBG△△CBP,△12PG BGPC PB==,△PG=12PC,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG=2243+=5.故答案为5点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.9.(2022·北京·九年级专题练习)如图,边长为4的正方形,内切圆记为△O,P是△O2P A +PB的最小值为________.【答案】25【分析】2P A+PB=2(P A+22PB),利用相似三角形构造22PB即可解答.【详解】解:设△O 半径为r ,OP =r =12BC =2,OB =2r =22,取OB 的中点I ,连接PI ,△OI =IB =2,△222OP OI ==,2222OB OP == ,△OP OB OI OP = ,△O 是公共角,△△BOP △△POI , △22PI OI PB OP ==,△PI =22PB ,△AP +22PB =AP +PI , △当A 、P 、I 在一条直线上时,AP +22PB 最小,作IE △AB 于E , △△ABO =45°,△IE =BE =22BI =1,△AE =AB −BE =3, △AI =223110+=,△AP +22PB 最小值=AI =10, △2P A +PB =2(P A +22PB ),△2P A +PB 的最小值是2AI =21025⨯=.故答案是25. 【点睛】本题是“阿氏圆”问题,解决问题的关键是构造相似三角形.10.(2022·山东·九年级专题练习)如图,在Rt ABC 中,90ACB ∠=︒,4CB =,6CA =,圆C 半径为2,P 为圆上一动点,连接,2,1A A P P P P B B +最小值__________.13BP AP +最小值__________.【答案】37;2373.【分析】如图,连接CP,在CB上取点D,使CD=1,连结AD,可证△PCD△△BCP.可得PD=12BP,当点A,P,D在同一条直线时,AP+12BP的值最小,在Rt△ACD中,由CD=1,CA=6,根据勾股定理AD=2216+=37即可;在AC上取CE=23,△PCE△△ACP.可得PE=13AP,当点B,P,E在同一条直线时,BP+13AP的值最小,在Rt△BCE中,由CE=23,CB=4,根据勾股定理BE=2222374=33⎛⎫+⎪⎝⎭即可.【详解】解:如图,连接CP,在CB上取点D,使CD=1,连结AD,△CP=2,BC=4,△CD121=,CP242CPBC==,△CD1=CP2CPBC=,又△△PCD=△BCP,△△PCD△△BCP.△12PDBP=,△PD=12BP,△AP+12BP=AP+PD,当点A,P,D在同一条直线时,AP+12BP的值最小,在Rt△ACD中,△CD=1,CA=6,△AD=2216+=37,△AP+12BP的最小值为37.故答案为:37在AC上取CE=23,连接CP,PE△21213==,2363CE CP CP AB ==△13CE CP CP AB == 又△△PCE =△ACP ,△△PCE △△ACP .△13PE AP =,△PE =13AP ,△BP +13AP =BP +PE , 当点B ,P ,E 在同一条直线时,BP +13AP 的值最小, 在Rt △BCE 中,△CE =23,CB =4,△BD =2222374=33⎛⎫+ ⎪⎝⎭, △BP +13AP 的最小值为2373.故答案为:2373. 【点睛】本题考查圆的性质,构造相似三角形解决比例问题,勾股定理,掌握圆的性质,相似三角形的判定与性质,勾股定理,关键是引辅助线准确作出图形是解题关键.11.(2022·重庆·九年级专题练习)(1)如图1,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么PD +23PC 的最小值为__,PD ﹣23PC 的最大值为__. (2)如图2,已知菱形ABCD 的边长为4,△B =60°,圆B 的半径为2,点P 是圆B 上的一个动点,那么PD +12PC 的最小值为__,PD ﹣12PC 的最大值为__.【答案】 106 106 37 37【分析】(1)如图3中,在BC 上取一点G ,使得4BG =,先证明PBG CBP ,得到23PG PC =,所以32PD PC PD PG +=+,而PD PG DG +≥(当且仅当G 、P 、D 共线时取等号),从而计算出DG 得到23PD PC +的最小值,32PD PC PD PG -=-,而PD PG DG -≤(当且仅当G 、P 、D 共线时取等号),从而计算出DG 得到23PD PC -的最大值; (2)如图4中,在BC 上取一点G ,使得1BG =,作DF BC ⊥交于点F ,解法同(1).【详解】(1)如图3中,在BC 上取一点G ,使得4BG =,6342PB BG ==,9362BC PB ==,PBG PBC ∠=∠, PBG CBP ∴,23PG BG PC PB ∴==, 23PG PC ∴=,32PD PC PD PG ∴+=+, PD PG DG +≥(当且仅当G 、P 、D 共线时取等号),PD PG ∴+的最小值为2259106DG =+=,32PD PC +的最小值为106,32PD PC PD PG DG -=-≤, 23PD PC ∴-的最大值为106,故答案为:106,106; (2)如图4中,在BC 上取一点G ,使得1BG =,作DF BC ⊥交于点F ,221PB BG ==,422BC PB ==,PBG PBC ∠=∠, PBG CBP ∴,12PG BG PC PB ∴==,12PG PC ∴=,12PD PC PD PG ∴+=+, PD PG DG +≥(当且仅当G 、P 、D 共线时取等号),PD PG ∴+的最小值为DG , 12PD PC ∴+的最小值为DG , 在Rt CDF 中,60DCF ∠=︒,4CD =,sin 6023DF CD ∴=⋅︒=,2CF =,在Rt GDF 中,22(23)537DG =+=,12PD PC ∴+的最小值为37, 12PD PC PD PG DG -=-≤,12PD PC ∴-的最大值为37,故答案为:37,37. 【点睛】本题考查圆的综合题、正方形的性质、菱形的性质、相似三角形的判定与性质,解决问题的关键是学会构建相似三角形解决问题.12.(2022·江苏淮安·九年级期中)问题提出:如图1,在等边△ABC 中,AB =12,△C 半径为6,P 为圆上一动点,连结AP ,BP ,求AP +12BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD=3,则有CDCP=CPCB=12,又△△PCD=△BCP,△△PCD△△BCP,△PDBP=12,△PD=12BP,△AP+12BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+12BP的最小值为.(2)自主探索:如图1,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,13AP+PC的最小值为.(3)拓展延伸:如图2,扇形COD中,O为圆心,△COD=120°,OC=4,OA=2,OB=3,点P是CD上一点,求2PA+PB的最小值,画出示意图并写出求解过程.【答案】(1)AP+12BP的最小值为313;(2)13AP+PC的值最小值为52;(3)2PA+PB的最小值为97,见解析.【分析】(1)由等边三角形的性质可得CF=6,AF=63,由勾股定理可求AD的长;(2)在AB上截取BF=1,连接PF,PC,由PB1BFAB3BP==,可证△ABP△△PBF,可得PF=13AP,即13AP+PC=PF+PC,则当点F,点P,点C三点共线时,13AP+PC的值最小,由勾股定理可求13AP+PC的值最小值;(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB△OD于点M,由OA1OPOP2OF==,可得△AOP△△POF,可得PF=2AP,即2PA+PB=PF+PB,则当点F,点P,点B三点共线时,2AP+PB的值最小,由勾股定理可求2PA+PB的最小值.【详解】解:(1)解:(1)如图1,连结AD,过点A作AF△CB于点F,△AP+12BP=AP+PD,要使AP+12BP最小,△AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+12BP最小值为AD,△AC=12,AF△BC,△ACB=60°△CF=6,AF=63△DF=CF-CD=6-3=3△AD=22AF DF+=313△AP+12BP的最小值为313(2)如图,在AB上截取BF=1,连接PF,PC,△AB=9,PB=3,BF=1△PB1BFAB3BP==,且△ABP=△ABP,△△ABP△△PBF,△FP BP1AP AB3==△PF=13AP△13AP+PC=PF+PC,△当点F,点P,点C三点共线时,13AP+PC的值最小,△CF=22BF BC +=149+=52△13AP+PC 的值最小值为52,(3)如图,延长OC ,使CF=4,连接BF ,OP ,PF ,过点F 作FB△OD 于点M , △OC=4,FC=4,△FO=8,且OP=4,OA=2, △OA 1OPOP 2OF==,且△AOP=△AOP△△AOP△△POF △AP OA 1PF OF 2==△PF=2AP△2PA+PB=PF+PB , △当点F ,点P ,点B 三点共线时,2AP+PB 的值最小, △△COD=120°,△△FOM=60°,且FO=8,FM△OM △OM=4,FM=43△MB=OM+OB=4+3=7△FB=22FM MB +=97△2PA+PB 的最小值为97.【点睛】此题是圆的综合题,主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出相似三角形,也是解本题的难点.13.(2022·湖北·九年级专题练习)(1)如图1,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +24PD PC +的最小值,12PD PC -的最大值.(2)如图2,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,求23PD PC+的最小值,23PD PC -的最大值,2PC PD 的最小值.(3)如图3,已知菱形ABCD 的边长为4,=60B ∠︒,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值和12PD PC -的最大值.3PC 的最小值【答案】见详解【分析】(1)如图1中,在BC 上取一点G ,使得BG=1.由△PBG△△CBP ,推出12PG BG PC PB ==,推出PG=12PC ,推出PD+12PC=DP+PG ,由DP+PG≥DG ,当D 、G 、P 共线时,PD+12PC 的值最小,最小值为DG=2243+=5.由PD-12PC=PD-PG≤DG ,当点P 在DG 的延长线上时,PD-12PC 的值最大(如图2中),最大值为DG=5;可以把24PD PC +转化为4(24PD PC +),这样只需求出24PD PC +的最小值,问题即可解决。

(完整版)阿波罗尼斯圆问题

(完整版)阿波罗尼斯圆问题

APB阿波罗尼斯圆问题一【问题背景】苏教版《数学必修2》P.112第12题:已知点(,)M x y 与两个定点(0,0),(3,0)O A 的距离之比为12,那么点M 的坐标应满足什么关系?画出满足条件的点M 所构成的曲线.二、【阿波罗尼斯圆】公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius )在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:到两定点距离之比等于已知数的动点轨迹为直线或圆. 如图,点B A ,为两定点,动点P 满足PB PA λ=,则1=λ时,动点P 的轨迹为直线;当1≠λ时,动点P 的轨迹为圆, 后世称之为阿波罗尼斯圆.证:设PB PA m m AB λ=>=,02)(.以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(0m A -),(0m B . 又设),(y x C ,则由PB PA λ=得2222)()(y m x y m x +-=++λ,两边平方并化简整理得)()()()(222222211121λλλλ-=-++--m y x m x ,当1=λ时,0=x ,轨迹为线段AB 的垂直平分线;当1>λ时,22222222)1(4)11(-=-+-λλλλm y m x ,轨迹为以点)0,11(22m -+λλ为圆心,122-λλm 长为半径的圆.上述课本习题的一般化情形就是阿波罗尼斯定理.三、【范例】例1 满足条件BC AC AB 2,2==的三角形ABC 的面积的最大值是 .解:以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(01-A ),(01B ,设),(y x C ,由BC AC 2=得2222121y x y x +-⋅=++)()(,平方化简整理得88316222≤+--=-+-=)(x x x y ,∴22≤y ,则 22221≤⋅⨯=∆y S ABC ,∴ABC S ∆的最大值是22. 变式 在ABC ∆中,边BC 的中点为D ,若AD BC AB 2,2==,则ABC ∆的面积的最大值是 .解:以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(01-A ),(01B , 由AD BC CD BD 2,==知,BD AD 2=,D 的轨迹为阿波罗尼斯圆,方程为8322=+-y x )(,设),(y x C ,BC 的中点为D 得)2,21(yx D +,所以点C 的轨迹方程为 8)2(32122=+-+y x )(,即32522=+-y x )(, ∴2432221=≤=⋅⨯=∆y y S ABC ,故ABC S ∆的最大值是24.例2 在平面直角坐标系xOy 中,设点(1,0),(3,0),(0,),(0,2)A B C a D a +,若存在点P ,使得,PA PC PD ==,则实数a 的取值范围是 .解:设(,)P x y =,整理得22(5)8x y -+=,即动点P 在以(5,0)为圆心,为半径的圆上运动. 另一方面,由PC PD =知动点P 在线段CD 的垂直平分线1y a =+上运动,因而问题就转化为直线1y a =+与圆22(5)8x y -+=有交点,所以1a +≤a 的取值范围是[1,1]-.例3 在平面直角坐标系xOy 中,点()03A ,,直线24l y x =-:.设圆的半径为1 ,圆心在l 上.若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.解: 设(),24C a a -,则圆方程为()()22241x a y a -+-+= 又设00(,)M x y ,2MA MO = ()22220000344x y x y ∴+-=+, 即()220014x y ++=这说明M 既在圆()()22241x a y a -+-+=上,又在圆()2214x y ++=上,因而这两个圆必有交点,即两圆相交或相切,2121∴-≤≤+,解得1205a ≤≤,即a 的取值范围是12[0,]5. 例4 已知⊙22:1O x y +=和点(4,2)M . (1)过点M 向⊙O 引切线l ,求直线l 的方程;(2)求以点M 为圆心,且被直线21y x =-截得的弦长为4的⊙M 的方程;(3)设P 为(2)中⊙M 上任一点,过点P 向⊙O 引切线,切点为Q . 试探究:平面内是否存在一定点R ,使得PQPR为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.解:(1)设切线l 方程为)4(2-=-x k y ,易得11|24|2=+-k k ,解得815k ±=,∴切线l 方程为24)y x -=-. (2)圆心到直线12-=x y r ,则9)5(2222=+=r∴⊙M 的方程为9)2()4(22=-+-y x(3)假设存在这样的点),(b a R ,点P 的坐标为),(y x ,相应的定值为λ,根据题意可得122-+=y x PQ ,∴λ=-+--+2222)()(1b y a x y x ,即)22(12222222b a by ax y x y x ++--+=-+λ (*),又点P 在圆上∴9)2()4(22=-+-y x ,即114822-+=+y x y x ,代入(*)式得:[])11()24()28(1248222-++-+-=-+b a y b x a y x λ若系数对应相等,则等式恒成立,∴⎪⎩⎪⎨⎧-=-+=-=-12)11(4)24(8)28(22222b a b a λλλ,解得310,51,522,1,2======λλb a b a 或,∴可以找到这样的定点R ,使得PRPQ为定值. 如点R 的坐标为)1,2(时,比值为2; 点R 的坐标为)51,52(时,比值为310. 四、【练习】1.如图,在等腰ABC ∆中,已知AC AB =,)0,1(-B ,AC 边的中点为)0,2(D ,点C 的轨迹所包围的图形的面积等于 .解:∵AD AB 2=,所以点A 的轨迹是阿波罗尼斯圆,易知其 方程为4)3(22=+-y x ,设),(y x C ,由AC 边的中点为)0,2(D 知),4(y x A --,所以C 的轨迹方程为4)()34(22=-+--y x ,即4)1(22=+-y x ,面积为π4.2.如图,已知平面α⊥平面β,A 、B 是平面α与 平面β的交线上的两个定点,,DA CB ββ⊂⊂,且DA α⊥,CB α⊥,4AD =,8BC =,6AB =,在平面α上有一个动点P ,使得APD BPC ∠=∠,求PAB ∆的面积的最大值. 解:将空间几何体中的线、面、角的关系转化 为平面内点P 所满足的几何条件.DA α⊥ DA PA ∴⊥,∴在PAD Rt ∆中, APAP AD APD 4tan ==∠, 同理8tan BC BPC BP BP∠==, APD BPC ∠=∠AP BP 2=∴ ,这样就转化为题3的题型.在平面α上,以线段AB 的中点为原点,AB 所在的直线为x 轴,建立平面直角坐标系,则)0,3(),0,3(B A -,设),(y x P 0)y =≠ 化简得:16)5(22=++y x ,2216(5)16y x ∴=-+≤,||4y ∴≤, PAB ∆的面积为1||||3||122PAB S y AB y ∆=⋅=≤,当且仅当5,4x y =-=±等号取得,则PAB ∆的面积的最大值是12.AP BDCβα3.圆1O 与圆2O 的半径都是1,421=O O ,过动点P 分别作圆1O 、圆2O 的切线PN PM ,(N M ,分别为切点),使得PN PM 2=.试建立适当的坐标系,并求动点P 的轨迹方程.解:以1O ,2O 的中点O 为原点,1O ,2O 所在直线为x 轴,建立如图所示平面直角坐标系,则)0,2(1-O ,,2(2O ,因为两圆的半径都为1,所以有:)1(212221-=-PO PO ,设P (x,y ),则]1)2[(21)2(2222-+-=-++y x y x , 即33)6(22=+-y x ,此即P 的轨迹方程.4.已知定点)0,0(O ,点M 是圆4)1(22=++y x 上任意一点,请问是否存在不同于O 的定点A 使都为MAMO常数?若存在,试求出所有满足条件的点A 的坐标,若不存在,请说明理由.解:假设存在满足条件的点),(n m A ,设),(y x M ,0>=λMAMO. 则λ=-+-+2222)()(n y m x y x , 又),(y x M 满足4)1(22=++y x ,联立两式得0)3(32)222(222222=++-++-+n m y x m λλλλ ,由M 的任意性知⎪⎩⎪⎨⎧=++-==-+0)3(3020222222222n m y m λλλλ,解得)0,3(A ,21=λ.。

阿波罗尼斯圆和蒙日圆的问题 解析版

阿波罗尼斯圆和蒙日圆的问题 解析版

阿波罗尼斯圆和蒙日圆的问题一、知识点梳理一、阿波罗尼斯圆1.阿波罗尼斯圆的定义在平面上给定两点A ,B ,设P 点在同一平面上且满足PAPB=λ,当λ>0且λ≠1时,P 点的轨迹是个圆,称之为阿波罗尼斯圆.(λ=1时P 点的轨迹是线段AB 的中垂线)2.阿波罗尼斯圆的证明设P x ,y ,A 1-a ,0 ,B a ,0 .若PA PB =λ(λ>0且λ≠1),则点P 的轨迹方程是x -λ2+1λ2-1a2+y 2=2aλλ2-12,其轨迹是以λ2+1λ2-1a ,0为圆心,半径为r =2aλλ2-1的圆.证明:由PA =λPB 及两点间距离公式,可得x +a 2+y 2=λ2x -a 2+y 2 ,化简可得1-λ2 x 2+1-λ2 y 2+21+λ2 ax +1-λ2 a 2=0①,(1)当λ=1时,得x =0,此时动点的轨迹是线段AB 的垂直平分线;(2)当λ≠1时,方程①两边都除以1-λ2得x 2+y 2+2a 1+λ2 x 1-λ2+a 2=0,化为标准形式即为:x -λ2+1λ2-1a2+y 2=2aλλ2-12,∴点P 的轨迹方程是以λ2+1λ2-1a ,0为圆心,半径为r =2aλλ2-1的圆.图① 图② 图③【定理】A ,B 为两已知点,M ,N 分别为线段AB 的定比为λλ≠1 的内外分点,则以MN 为直径的圆C 上任意点P 到A ,B 两点的距离之比为λ.证明:以λ>1为例.如图②,设AB =2a ,AM MB =AN NB =λ,则AM =2aλ1+λ,BM =2a -2aλ1+λ=2a1+λ,AN =2aλλ-1,BN =2aλλ-1-2a =2aλ-1.过B 作AB 的垂线圆C 交于Q ,R 两点,由相交弦定理及勾股定理得QB 2=MB ⋅BN =4a 2λ2-1,QA 2=AB 2+QB 2=4a 2λ2λ2-1,于是QB =2aλ2-1,QA =2aλ2-1,∴QA QB =λ.∵M ,Q ,N 同时在到A ,B 两点距离之比等于λ的圆上,而不共线的三点所确定的圆是唯一的,∴圆C 上任意一点P 到A ,B 两点的距离之比恒为λ.同理可证0<λ<1的情形.3.阿波罗尼斯圆的相关结论【结论1】当λ>1时,点B 在圆C 内,点A 在圆C 外;当0<λ<1时,点A 在圆C 内,点B 在圆C 外.【结论2】因AQ 2=AM ⋅AN ,故AQ 是圆C 的一条切线.若已知圆C 及圆C 外一点A ,可以作出与之对应的点B ,反之亦然.【结论3】所作出的阿波罗尼斯圆的直径为MN =4aλλ2-1 ,面积为4πa 2λ2λ2-12.【结论4】过点A 作圆C 的切线AQ (Q 为切点),则QM ,QN 分别为∠AQB 的内、外角平分线.【结论5】阿波罗尼斯圆的直径两端是按比例内分AB 和外分AB 所得的两个分点,如图所示,M 是AB 的内分点,N 是AB 的外分点,此时必有PM 平分∠APB ,PN 平分∠APB 的外角.证明:如图①,由已知可得PA PB =MA MB =NA NB =λ(λ>0且λ≠1),∵S ΔPAM S ΔPBM =MA MB=λ,又S ΔPAM =12PA ⋅PM sin ∠APM ,S ΔPBM =12PB ⋅PM sin ∠BPM ,∴PA ⋅PM sin ∠APMPB ⋅PM sin ∠BPM=λ,∴sin ∠APM =sin ∠BPM ,∴∠APM =∠BPM ,∴PM 平分∠APB .由等角的余角相等可得∠BPN =∠DPN ,∴PN 平分∠APB 的外角.【结论6】过点B 作圆C 不与QR 重合的弦EF ,则AB 平分∠EAF .证明:如图③,连结ME ,MF ,由已知FA FB =EA EB =λ,∴EB FB =EA FA.∵S ΔABE S ΔABF =EBFB (λ>0且λ≠1),又S ΔABE=12AB ⋅AE sin ∠BAE ,S ΔABF =12AB ⋅AF sin ∠BAF ,∴AB ⋅AE sin ∠BAE AB ⋅AF sin ∠BAF =EB FB =AEAF,∴sin ∠BAE =sin ∠BAF ,∴∠BAE =∠BAF ,∴AB 平分∠EAF .∴sin ∠BAE =sin ∠BAF ,∴∠BAE =∠BAF ,∴AB 平分∠EAF .二、蒙日圆1.蒙日圆的定义在椭圆上,任意两条相互垂直的切线的交点都在同一个圆上,它的圆心是椭圆的中心,半径等于椭圆长半轴短半轴平方和的几何平方根,这个圆叫蒙日圆,如图1.证明:设椭圆的方程为x 2a 2+y 2b 2=1a >b >0 ,则椭圆两条互相垂直的切线PA ,PB 交点P 的轨迹是蒙日圆:x 2+y 2=a 2+b 2.①当题设中的两条互相垂直的切线PA ,PB 斜率均存在且不为0时,可设P x 0,y 0 (x 0≠±a 且y 0≠±b ),过P 的椭圆的切线方程为y -y 0=k x -x 0 k ≠0 ,由y -y 0=k x -x 0 ,x 2a2+y 2b2=1,得a 2k 2+b 2 x 2-2ka 2kx 0-y 0 x +a 2kx 0-y 0 2-a 2b 2=0,由其判别式值为0,得x 20-a 2 k 2-2x 0y 0k +y 20-b 2=0x 20-a 2≠0 ,∵k PA ,k PB 是这个关于k 的一元二次方程的两个根,∴k PA ⋅k PB =y 20-b2x 20-a2,由已知PA ⊥PB ,∴k PA ⋅k PB =-1,∴y 20-b 2x 20-a2=-1,∴x 20+y 20=a 2+b 2,∴点P 的坐标满足方程x 2+y 2=a 2+b 2.②当题设中的两条互相垂直的切线PA ,PB 有斜率不存在或斜率为0时,可得点P 的坐标为±a ,b 或a ,±b ,此时点P 也在圆x 2+y 2=a 2+b 2上.综上所述:椭圆x 2a 2+y 2b 2=1a >b >0 两条互相垂直的切线PA ,PB 交点P 的轨迹是蒙日圆:x 2+y 2=a 2+b 2.2.蒙日圆的几何性质【结论1】过圆x 2+y 2=a 2+b 2上的动点P 作椭圆x 2a 2+y 2b2=1a >b >0 的两条切线PA ,PB ,则PA ⊥PB .证明:设P 点坐标x 0,y 0 ,由x 2a 2+y 2b 2=1y -y 0=k x -x 0,得a 2k 2+b 2x 2-2ka 2kx 0-y 0x +a 2kx 0-y 0 2-a 2b 2=0,由其判别式的值为0,得x 20-a 2 k 2-2x 0y 0k +y 20-b 2=0x 20-a 2≠0 ,∵k PA ,k PB 是这个关于k 的一元二次方程的两个根,∴k PA ⋅k PB =y 20-b 2x 20-a 2,x 20+y 20=a 2+b 2,k PA ⋅k PB =y 20-b 2x 20-a2=-1,PA ⊥PB .【结论2】设P 为蒙日圆O :x 2+y 2=a 2+b 2上任一点,过点P 作椭圆x 2a 2+y 2b2=1的两条切线,交椭圆于点A ,B,O为原点,则OP,AB的斜率乘积为定值k OP⋅k AB=-b2a2.【结论3】设P为蒙日圆O:x2+y2=a2+b2上任一点,过点P作椭圆x2a2+y2b2=1的两条切线,切点分别为A,B,O为原点,则OA,PA的斜率乘积为定值k OA⋅k PA=-b2a2,且OB,PB的斜率乘积为定值k OB⋅k PB=-b2a2(垂径定理的推广).【结论4】过圆x2+y2=a2+b2上的动点P作椭圆x2a2+y2b2=1a>b>0的两条切线,O为原点,则PO平分椭圆的切点弦AB.证明:P点坐标x0,y0,直线OP斜率k OP=y0x0,由切点弦公式得到AB方程x0xa2+y0yb2=1,k AB=-b2x0a2y0,k OP⋅k AB=-b2a2,由点差法可知,OP平分AB,如图M是中点.【结论5】设P为蒙日圆O:x2+y2=a2+b2上任一点,过点P作椭圆x2a2+y2b2=1a>b>0的两条切线,交蒙日圆O于两点C,D,则OP,CD的斜率乘积为定值k OP⋅k CD=-b2a2.【结论6】设P为蒙日圆x2+y2=a2+b2上任一点,过点P作椭圆x2a2+y2b2=1a>b>0的两条切线,切点分别为A,B,O为原点,则OA,OB的斜率乘积为定值:k OP⋅k CD=-b4a4.【结论7】设P为蒙日圆x2+y2=a2+b2上任一点,过点P作椭圆x2a2+y2b2=1a>b>0的两条切线,切点分别为A,B,O为原点,则SΔAOB的最大值为ab2,SΔAOB的最小值为a2b2a2+b2.【结论8】设P为蒙日圆x2+y2=a2+b2上任一点,过点P作椭圆x2a2+y2b2=1a>b>0的两条切线,切点分别为A,B,则SΔAPB的最大值为a4a2+b2,SΔAPB的最小值为b4a2+b2.二、题型精讲精练1设A ,B 是平面上两点,则满足PA PB=k (其中k 为常数,k ≠0且k ≠1)的点P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿波罗尼斯圆,简称阿氏圆,已知A 6,0 ,B 62,0,且k =2.(1)求点P 所在圆M 的方程.(2)已知圆Ω:x +2 2+y -2 2=5与x 轴交于C ,D 两点(点C 在点D 的左边),斜率不为0的直线l 过点D 且与圆M 交于E ,F 两点,证明:∠ECD =∠FCD .【详解】(1)解:由题意可得,PA PB=2,即PA =2PB ,则x -6 2+y 2=2x -622+y 2,整理得x 2+y 2=3,即圆M 的方程为x 2+y 2=3.(2)证明:对于圆Ω,令y =0,得x =-1或x =-3,所以C -3,0 ,D -1,0 .设直线l 的方程为x =ty -1,E x 1,y 1 ,F x 2,y 2 .由x =ty -1,x 2+y 2=3,得1+t 2 y 2-2ty -2=0,则y 1+y 2=2t 1+t 2,y 1y 2=-21+t 2.k CE +k CF =y 1x 1+3+y 2x 2+3=y 1x 2+3 +y 2x 1+3 x 1+3 x 2+3=y 1y 2t +2 +y 2ty 1+2 x 1+3 x 2+3 =2×ty 1y 2+y 1+y 2x 1+3 x 2+3 =2×-2t 1+t 2+2t 1+t 2x 1+3 x 2+3 =0则直线EC 与FC 关于x 轴对称,即∠ECD =∠FCD .2已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的一个焦点为5,0 ,离心率为53.(I )求椭圆C 的标准方程;(II )若动点P x 0,y 0 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【详解】(I )可知c =5,又e =c a =5a =53,∴a =3,b 2=a 2-c 2=9-5=4,故椭圆C 的标准方程为x 29+y 24=1.(II )设两切线为l 1,l 2,①当l 1⊥x 轴或l 1⎳x 轴时,对应l 2⎳x 轴或l 2⊥x 轴,可知P ±3,2 或P 3,±2 .②当l 1与x 轴不垂直且不平行时,x 0≠±3,设l 1的斜率为k ,则k ≠0,l 2的斜率为-1k,l 1的方程为y -y 0=k x -x 0 ,联立x 29+y 24=1,得9k 2+4 x 2+18k y 0-kx 0 x +9y 0-kx 0 2-4 =0,∵直线与椭圆相切,∴Δ=0,得18k 2y 0-kx 02-36y 0-kx 0 2-4 9k 2+4 =0,∴4y 0-kx 0 2-49k 2+4 =0,整理得x 20-9 k 2-2x 0y 0k +y 02-4=0(*),∴k 是方程(*)的一个根,同理-1k是方程(*)的另一个根,其中x 0≠±3,∴点P 的轨迹方程为x 2+y 2=13x ≠±3 ,又P ±3,2 或P 3,±2 满足上式.综上知:点P 的轨迹方程为x 2+y 2=13.【题型训练-刷模拟】1.阿波罗尼斯圆一、单选题1.(2023·全国·高三专题练习)我们都知道:平面内到两定点距离之比等于定值(不为1)的动点轨迹为圆.后来该轨迹被人们称为阿波罗尼斯圆.已知平面内有两点A -1,0 和B 2,1 ,且该平面内的点P 满足|PA |=2|PB |,若点P 的轨迹关于直线mx +ny -2=0(m ,n >0)对称,则2m +5n的最小值是()A.10B.20C.30D.40【答案】B【分析】点P 的轨迹为圆,直线mx +ny -2=0过圆心,得5m +2n =2,利用基本不等式求2m +5n的最小值.【详解】设点P 的坐标为x ,y ,因为PA =2PB ,则PA 2=2PB 2,即x +1 2+y 2=2x -2 2+y -1 2 ,所以点P 的轨迹方程为(x -5)2+(y -2)2=20,因为P 点的轨迹关于直线mx +ny -2=0m >0,n >0 对称,所以圆心5,2 在此直线上,即5m +2n =2,所以2m +5n =125m +2n 2m +5n =1220+4n m +25m n ≥10+12×24n m ⋅25m n=20,当且仅当4n m =25m n ,即m =15,n =12时,等号成立,所以2m +5n的最小值是20.故选:B .2.(2023·全国·高三专题练习)古希腊数学家阿波罗尼斯的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (k >0且k ≠1)的点的轨迹是圆,后人将之称为阿波罗尼斯圆.现有椭圆T :x 2a 2+y 2b 2=1(a >b>0),A ,B 为椭圆T 长轴的端点,C ,D 为椭圆T 短轴的端点,E ,F 分别为椭圆T 的左右焦点,动点M 满足ME MF=2,△MAB 面积的最大值为46,△MCD 面积的最小值为2,则椭圆T 的离心率为()A.63B.33C.22D.32【答案】A【分析】由题可得动点M 的轨迹方程x -5c 3 2+y 2=16c 29,可得12×2a ×43c =46,12×2b ×13c =2,即求.【详解】设M x ,y ,E -c ,0 ,F c ,0 ,由ME MF=2,可得x +c2+y 2=2x -c 2+y 2=2,化简得x -5c 3 2+y 2=16c 29.∵△MAB 面积的最大值为46,△MCD 面积的最小值为2,∴12×2a ×43c =46,12×2b ×13c =2,∴b 2=13a 2=a 2-c 2,即c 2=23a 2,∴e =63.故选:A .3.(2023秋·江西宜春·高三江西省丰城中学校考期中)阿波罗尼斯是古希腊著名的数学家,对圆锥曲线有深刻而系统的研究,阿波罗尼斯圆就是他的研究成果之一,指的是:已知动点M 与两定点Q ,P 的距离之比MQ MP=λλ>0,λ≠1 ,那么点M 的轨迹就是阿波罗尼斯圆.已知动点M 的轨迹是阿波罗尼斯圆,其方程为x 2+y 2=1,定点Q 为x 轴上一点,P -12,0 且λ=2,若点B 1,1 ,则2MP +MB 的最小值为()A.6B.7C.10D.11【答案】C【分析】根据点M 的轨迹方程可得Q -2,0 ,结合条件可得2MP +MB =MQ +MB ≥QB ,即得.【详解】设Q a ,0 ,M x ,y ,所以MQ =x -a2+y 2,又P -12,0 ,所以MP =x +122+y 2.因为MQ MP=λ且λ=2,所以x -a2+y 2x +122+y 2=2,整理可得x 2+y 2+4+2a 3x =a 2-13,又动点M 的轨迹是x 2+y 2=1,所以4+2a3=0a 2-13=1,解得a =-2,所以Q -2,0 ,又MQ =2MP ,所以2MP +MB =MQ +MB ,因为B 1,1 ,所以2MP +MB 的最小值为BQ =1+22+1-0 2=10.故选:C .4.(2023·广西·统考模拟预测)阿波罗尼斯是古希腊著名数学家,与阿基米德、欧几里得并称为亚历山大时期数学三巨匠,他研究发现:如果一个动点P 到两个定点的距离之比为常数λ(λ>0且λ≠1),那么点P 的轨迹为圆,这就是著名的阿波罗尼斯圆.若点P 到A 2,0 ,B -2,0 的距离比为3,则点P 到直线l :22x -y -2=0的距离的最大值是()A.32+23B.2+23C.43D.63【答案】A【分析】先由题意求出点P 的轨迹方程,再由直线和圆的位置关系求解即可.【详解】由题意,设点P x ,y ,则PA PB=x -22+y 2x +2 2+y2=3,∴x -22+y 2x +2 2+y 2=3,化简得点P 的轨迹方程为x +4 2+y 2=12,∴点P 的轨迹是以-4,0 为圆心,半径r =23的圆.圆心-4,0 到直线l :22x -y -2=0的距离d =-82-222 2+-12=32,∴点P 到直线l 最大距离为d +r =32+2 3.故选:A .5.(2023·湖北襄阳·襄阳四中校考模拟预测)数学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数λ(λ>0且λ≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,A -2,0 ,动点M 满足MA =2MO ,得到动点M 的轨迹是阿氏圆C .若对任意实数k ,直线l :y =k x -1 +b 与圆C 恒有公共点,则b 的取值范围是()A.-133,133B.-143,143C.-153,153D.-43,43【答案】C【分析】设点M x ,y ,求出动点M 的轨迹圆C 的方程,再求出直线l 过定点坐标,依题意点1,b 在圆C 的内部,即可得到不等式,解得即可.【详解】设点M x ,y ,∵MA =2MO ,∴(x +2)2+y 2=4x 2+4y 2,所以动点M 的轨迹为阿氏圆C :3x 2+3y 2-4x -4=0,又直线l :y =k x -1 +b 恒过点1,b ,若对任意实数k 直线l :y =k x -1 +b 与圆C 恒有公共点,∴1,b 在圆C 的内部或圆上,所以3+3b 2-8≤0,所以3b 2≤5,解得-153≤b ≤153,即b 的取值范围为-153,153.故选:C6.(2023·全国·校联考模拟预测)阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,阿波罗尼斯发现:平面内到两个定点A ,B 的距离之比为定值λ(λ>0,且λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A -2,0 ,B 4,0 ,点P 满足PA PB=12.设点P 的轨迹为曲线C ,则下列说法错误的是()A.C 的方程为(x +4)2+y 2=16B.当A ,B ,P 三点不共线时,则∠APO =∠BPOC.在C 上存在点M ,使得|MO |=2|MA |D.若D 2,2 ,则PB +2PD 的最小值为45【答案】C【分析】根据已知条件及两点之间的距离公式,利用三角形的角平分线定理及圆与圆的位置关系,结合三点共线时线段取得最短即可求解.【详解】设P x ,y ,由PAPB =12,得x +2 2+y 2x -42+y 2=12,化简得(x +4)2+y 2=16,故A 正确;当A ,B ,P 三点不共线时,OA OB =12=PA PB,所以PO 是∠APB 的角平分线,所以∠APO =∠BPO ,故B 正确;设M x ,y ,则x 2+y 2=2x +2 2+y 2,化简得x +832+y 2=169,因为-4+832+0-02=43<4-43,所以C 上不存在点M ,使得|MO |=2|MA |,故C 错误;因为PA PB=12,所以PB =2PA ,所以PB +2PD =2PA +2PD ≥2AD =45,当且仅当P 在线段AD 上时,等号成立,故D 正确.故选:C .7.(2023·四川成都·石室中学校考模拟预测)已知平面上两定点A ,B ,则所有满足PA PB=λ(λ>0且λ≠1)的点P 的轨迹是一个圆心在直线AB 上,半径为λ1-λ2⋅AB 的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称作阿氏圆.已知动点P 在棱长为6的正方体ABCD -A 1B 1C 1D 1的一个侧面ABB 1A 1上运动,且满足PA =2PB ,则点P 的轨迹长度为()A.8π3B.4π3C.3πD.15π2【答案】B【分析】根据阿氏圆的定义分析得P 点轨迹为球与侧面的交线,计算其弧长即可【详解】在图1中,以B 为原点建立平面直角坐标系xBy ,如图2所示,设阿氏圆圆心为O a ,0 ,半径为r .因为PA =2PB ,所以PA PB=2,所以r =21-22⋅AB =23×6=4.设圆O 与AB 交于点M .由阿氏圆性质,知MA MB=λ=2.又MB =4-BO =4-a ,所以MA =2MB =8-2a .又MA +MB =6,所以8-2a +4-a =6,解得a =2,所以O 2,0 ,所以点P 在空间内的轨迹为以O 为球心,半径为4的球.当点P 在侧面ABB 1A 1内部时,如图2所示,截面圆与AB ,BB 1分别交于点M ,R ,所以点P 在侧面ABB 1A 1内的轨迹为MR.因为在Rt △RBO 中,RO =4,BO =2,所以∠ROB =π3,所以MR=π3×4=4π3,所以点P 在侧面ABB 1A 1内部的轨迹长为4π3.故选:B.二、多选题8.(2023秋·云南保山·高三统考期末)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A,B的距离之比为定值λ(λ>0且λ≠1)的点的轨迹是一个圆,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy中,A-1,0,B2,0,点P满足PAPB=12,设点P的轨迹为曲线C,下列结论正确的是()A.曲线C的方程为(x+2)2+y2=4B.曲线C与圆C :x2+(y-2)2=4外切C.曲线C被直线l:x+y=0截得的弦长为22D.曲线C上恰有三个点到直线m:x+3y=0的距离为1【答案】ACD【分析】对于A,设点P x,y,由两点间距离公式代入化简判断;对于B,根据圆心距与两半径和的关系进行判断;对于C,先求出点到直线的距离,再结合勾股定理求出弦长;对于D,结合点到直线的距离以及圆C 的半径分析判断.【详解】对于A,设P x,y,由定义PAPB=12,得(x+1)2+y2(x-2)2+y2=12,化简整理得(x+2)2+y2=4,故A正确;对于B,C的圆心为-2,0,半径r1=2;C 的圆心为0,2,半径r2=2;圆心距CC =22≠r1+r2,故B错误;对于C,圆心C-2,0到直线l:x+y=0的距离d=22=2,所以弦长为2r12-d2=22,故C正确;对于D,圆心C-2,0到直线m:x+3y=0的距离d=22=1,半径r=2,所以圆C上恰有三个点到直线m的距离为1,故D正确.故选:ACD.9.(2024·全国·高三专题练习)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:“平面内到两个定点A,B的距离之比为定值λ(λ≠1)的点的轨迹是圆.”后来人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系xOy中,A(1,0),B(3,0),点P满足PAPB=2,点P的轨迹为曲线C,下列结论正确的是()A.曲线C的方程为x2+y2-10x+17=0B.直线3x+4y=0与曲线C有公共点C.曲线C被x轴截得的弦长为42D.△ABP面积的最大值为22【答案】ACD【分析】通过阿氏圆的定义结合PAPB=2,设P x,y,从而可以得到曲线C的方程;通过计算圆心到直线3x+4y=0的距离是否小于等于半径,从而判断B的正确性;计算圆心到x轴的距离d,结合d2+l22=r2,得到曲线C被x轴截得的弦长l,从而判断C的正确性;AB的长度确定,所以△ABP面积的最大值即为点P到AB距离的最大值,从而判断C的正确性.【详解】设P x,y,对于选项A,因为PAPB=2,所以x-12+y2x-32+y2=2,化简得x2+y2-10x+17=0,故A正确;对于选项B,因为曲线C为x2+y2-10x+17=0,所以圆心为5,0,半径为22,计算圆心5,0到直线3x +4y=0的距离为d=3>22,所以直线3x+4y=0与曲线C没有公共点,故B错误;对于选项C,曲线C的圆心在x轴上,所以被x轴截得的弦即为直径,所以曲线C被x轴截得的弦长为42,故C正确;对于选项D,因为A(1,0),B(3,0),所以AB=2,故S△ABP=12⋅AB⋅y p =y p ,而曲线C为x2+y2-10x+17=0,所以y p∈-22,22,即S△ABP的最大值为22,故D正确.故选:ACD10.(2023·全国·高三专题练习)古希腊著名数学家阿波罗尼斯发现:平面内到两个定点A,B的距离之比为定值λλ≠1的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy中,A-2,0,B4,0,点P满足PAPB=12.设点P的轨迹为C,则( ).A.轨迹C的方程为x+42+y2=9B.在x轴上存在异于A,B的两点D,E,使得PDPE=12C.当A,B,P三点不共线时,射线PO是∠APB的角平分线D.在C上存在点M,使得MO=2MA【答案】BC【分析】利用求轨迹方程的方法确定轨迹C的方程可判断A;设D m,0,E n,0,由两点间的距离公式结合轨迹C的方程可判断B;由角平分线的定义可判断C;设M x,y,由MO=2MA求出点M的轨迹方程与x2+y2+8x=0联立,可判断D.【详解】对于A,在平面直角坐标系xOy中,A-2,0,B4,0,点P满足PAPB=12,设P x,y,则x+22+y2x-42+y2=12,化简得x2+y2+8x=0,即x+42+y2=16,所以A错误;对于B,假设在x轴上存在异于A,B的两点D,E,使得PDPE=12,设D m,0,E n,0,则x-n2+y2=2x-m2+y2,化简得3x2+3y2-8m-2nx+4m2-n2=0,由轨迹C的方程为x2+y2+8x=0,可得8m-2n=-24,4m2-n2=0,解得m=-6,n=-12或m=-2,n=4(舍去),所以B正确;对于C,当A,B,P三点不共线时,OAOB =12=PAPB,可得射线PO是∠APB的角平分线,所以C正确;对于D,若在C上存在点M,使得MO=2MA,可设M x,y,则x2+y2=2x+22+y2,化简得x2+y2+163x+163=0,与x2+y2+8x=0联立,方程组无解,故不存在点M,所以D错误.故选:BC.11.(2023春·湖南长沙·高三湖南师大附中校联考阶段练习)阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,阿波罗尼斯发现:平面内到两个定点A,B的距离之比为定值λ(λ>0,且λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy中,A-2,0,B4,0,点P满足PAPB=12.设点P的轨迹为曲线C,则下列说法正确的是()A.C 的方程为x +4 2+y 2=16B.当A ,B ,P 三点不共线时,则∠APO =∠BPOC.在C 上存在点M ,使得MO =2MAD.若D 2,2 ,则PB +2PD 的最小值为45【答案】ABD【分析】对于A ,通过直接法求出点P 的轨迹方程即可判断;对于B ,由题意,结合三角形内角平分线定理进行判断即可;对于C ,由“阿波罗尼斯圆”定义,求点M 轨迹方程,用圆与圆的位置关系进行判断即可;对于D ,将PB +2PD 转化为2PA +2PD 进行判断即可.【详解】设P x ,y ,(P 不与A ,B 重合)∵A -2,0 ,B 4,0 ,∴PA =x +22+y 2,PB =x -42+y 2,∴PAPB=12,得x +2 2+y 2x -42+y 2=12,化简得x +4 2+y 2=16,∴点P 的轨迹曲线C 是以C -4,0 为圆心,半径r =4的圆,对于A ,曲线C 的方程为x +4 2+y 2=16,故选项A 正确;对于B ,由已知,OA =2,OB =4,∴OA OB=12=PA PB,∴当A ,B ,P 三点不共线时,由三角形内角平分线定理知,PO 是△APB 内角∠APB 的角平分线,∴∠APO =∠BPO ,故选项B 正确;对于C ,若MO =2MA ,则MO MA=2,由题意,M 点轨迹是圆,设M x ,y ,由MO MA=2得x 2+y 2x +22+y 2=2,化简得点M 轨迹方程为x +832+y 2=169,即点M 的轨迹是圆心为C -83,0 ,半径r =43的圆,圆C 与圆C 的圆心距CC =-4+832+0-0 2=43<r -r =83,∴圆C 与圆C 的位置关系为内含,圆C 与圆C 无公共点,∴C 上不存在点M ,使得MO =2MA ,故选项C 错误;对于D ,∵PA PB=12,∴PB =2PA ,∴PB +2PD =2PA +2PD =2PA +PD ≥2AD =2×-2-22+0-2 2=45,当且仅当P 在线段AD 上时,等号成立,故选项D 正确.故选:ABD .三、填空题12.(2023·全国·高三专题练习)阿波罗尼斯(约前262-前190年)证明过这样一个命题:平面内到两定点距离之比为常数k k >0,k ≠1 的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点O 0,0 ,A 3,0 ,动点P 满足PO PA=12,则点P 的轨迹方程是.【答案】x +1 2+y 2=4【分析】直接设点P 的坐标,利用两点间距离公式代入化简整理可求点P 的轨迹方程.【详解】设P x ,y ,PO PA=12即x 2+y 2x -32+y 2=12,整理得:x 2+y 2+2x -3=0即x +1 2+y 2=4.故答案为:x +1 2+y 2=4.13.(2023春·上海闵行·高三上海市七宝中学校考开学考试)阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点A ,B 间的距离为3,动点P 满足PA PB=2,则PA ⋅PB的范围为.【答案】-2,18【分析】以AB 中点为原点O ,以AB 所在直线为x 轴,以AB 的垂直平分线为y 轴,建立平面直角坐标系xOy ,则A -32,0 ,B 32,0 .设P x ,y ,由题可得点P 轨迹方程,后可得答案.【详解】以AB 中点为原点O ,以AB 所在直线为x 轴,以AB 的垂直平分线为y 轴,建立平面直角坐标系xOy ,因为AB =3,所以A -32,0 ,B 32,0 .设P x ,y ,因为PA PB=2,所以x +322+y 2=2⋅x -322+y 2,整理得x 2+y 2-5x +94=0,即x -522+y 2=4.y 2=4-x -522≥0⇒x ∈12,92.又PA =-32-x ,-y ,PB =32-x ,-y ,则PA ⋅PB =x 2+y 2-94=x 2+4-x -52 2-94=5x -92,则PA ⋅PB ∈-2,18 .故答案为:-2,1814.(2023·全国·高三专题练习)阿波罗尼斯的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (k >0且k ≠1)的点的轨迹是圆,后人将这个圆称为阿氏圆,现有△ABC ,BC =6,sin B =12sin C ,当△ABC 的面积最大时,则AC 的长为.【答案】25【分析】利用正弦定理将角化边,即可求得点A 的轨迹方程,然后确定三角形面积的最大值和点A 的坐标,最后求解AC 的长度即可.【详解】解:因为sin B =12sin C ,由正弦定理可得b =12c ,即c =2b ,因为BC =6,不妨令B (-3,0),C (3,0),建立如图所示的平面直角坐标系,设点A 的坐标为A x ,y y ≠0 ,点A 的轨迹方程满足:(x +3)2+y 2=2(x -3)2+y 2,整理可得:(x -5)2+y 2=16,y ≠0 ,即点A 的轨迹是以(5,0)为圆心,4为半径的圆(除与x 轴两交点外),当点A 的坐标A (5,4)或A (5,-4)时三角形的面积最大,其最大值为S =12×6×4=12,由勾股定理可得AC =22+42=25.故答案为:25.15.(2023·河北衡水·校联考二模)希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A ,B 的距离之比为定值λλ≠1 的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,A -3,1 ,B -3,6 ,点P 是满足λ=63的阿氏圆上的任一点,若抛物线y =16x 2的焦点为F ,过点F 的直线与此阿氏圆相交所得的最长弦与最短弦的和为.【答案】106+123【分析】由阿氏圆的定义得到点P 的轨迹方程,即阿氏圆的方程,然后由圆的性质即可求解.【详解】设P x ,y ,由阿氏圆的定义可得PA PB=63,即(x +3)2+(y -1)2(x +3)2+(y -6)2=23,化简得x 2+y 2+6x +18y -60=0.所以(x +3)2+(y +9)2=150,所以点P 在圆心为-3,-9 ,半径为56的圆上,因为抛物线C :y =16x 2的焦点为F .所以F 0,32,因为(0+3)2+32+92=4774<150.所以点F 在圆(x +3)2+(y +9)2=150内,因为点F 到与圆心的距离为4774=4772,所以过点F 的最短弦长为2150-4774=123,过点F 的最长弦长为2150=106,所以过点F 的最长弦与最短弦的和为106+123.故答案为:106+12316.(2023·湖南长沙·长沙市实验中学校考三模)已知平面上两定点A 、B ,则所有满足PA PB=λ(λ>0且λ≠1)的点P 的轨迹是一个圆心在直线AB 上,半径为λ1-λ2⋅AB 的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称作阿氏圆.已知棱长为3的正方体ABCD -A 1B 1C 1D 1表面上动点P 满足PA =2PB ,则点P 的轨迹长度为.【答案】43π+32π【分析】以B 为原点建立平面直角坐标系xBy ,结合题意可得点P 在空间内的轨迹为以O 1,0 为球心,半径为2的球.再根据球的性质求解即可.【详解】在图1中,以B 为原点建立平面直角坐标系xBy 如图2所示,设阿氏圆圆心为O a ,0 ,半径为r ,因为PA =2PB ,所以PA PB=2,所以r =21-22⋅AB =23×3=2,设圆O 与AB 交于点M ,由阿氏圆性质,知MA MB=λ=2,又MB =2-BO =2-a ,所以MA =2MB =4-2a ,又MA +MB =3,所以4-2a +2-a =3,解得a =1,所以O 1,0 ,所以点P 在空间内的轨迹为以O 为球心,半径为2的球,当点P 在面ABB 1A 1内部时,如图2所示,截面圆与AB ,BB 1分别交于点M ,R ,所以点P 在面ABB 1A 1内的轨迹为MR,因为在Rt △RBO 中,RO =2,BO =1,所以∠ROB =π3,所以MR=π3×2=2π3,所以点P 在面ABB 1A 1内部的轨迹长为2π3,同理,点P 在面ABCD 内部的轨迹长为2π3,当点P 在面BCC 1B 1内部时,如图3所示,因为OB ⊥平面BCC 1B 1,所以平面BCC 1B 1截球所得小圆是以B 为圆心,以BP 长为半径的圆,截面圆与BB 1,BC 分别交于点R ,Q ,且BP =OP 2-OB 2=4-1=3,所以点P 在面BCC 1B 1内的轨迹为RQ,且RQ=π2×3=32π,综上,点P 的轨迹长度为2π3+2π3+32π=43π+32π.故答案为:43π+32π.【点睛】方法点睛:求球与平面公共点轨迹长度时先求出平面截球所得圆面的半径,当截面为完整的圆时可直接求圆周长,当截面只是圆的一部分时先求圆心角的大小再计算弧长.四、解答题17.(2023·全国·高三专题练习)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:“平面内到两个定点A ,B 的距离之比为定值λ(λ>0且λ≠1)的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系xOy 中,A (-2,0),B (4,0),动点P 满足|PA ||PB |=12.设点P 的轨迹为C 1.(1)求曲线C 1的方程;(2)若曲线C 1和⊙C 2:(x -4)2+(y -6)2=r 2(r >0)无公共点,求r 的取值范围.【答案】(1)(x +4)2+y 2=16(2)(0,6)∪(14,+∞)【分析】(1)设P (x ,y ),然后根据|PA ||PB |=12列方程化简计算即可得曲线C 1的方程,(2)先求出两圆的圆心和半径,再由题意可得两圆外离或内含,从而可得C 1C 2 >4+r 或C 1C 2 <r -4,从而可求出r 的取值范围(1)设P (x ,y ),因为A (-2,0),B (4,0),动点P 满足|PA ||PB |=12,所以(x +2)2+y 2(x -4)2+y 2=12,化简得x 2+y 2+8x =0,即(x +4)2+y 2=16,所以曲线C 1的方程为(x +4)2+y 2=16,(2)曲线C 1的圆心为C 1(-4,0),半径为4,⊙C 2:(x -4)2+(y -6)2=r 2(r >0)的圆心为C 2(4,6),半径为r ,因为曲线C 1和⊙C 2:(x -4)2+(y -6)2=r 2(r >0)无公共点,所以两圆外离或内含,所以C 1C 2 >4+r 或C 1C 2 <r -4,所以(-4-4)2+(0-6)2=10>4+r 或(-4-4)2+(0-6)2=10<r -4,所以0<r <6或r >14,所以r 的取值范围为(0,6)∪(14,+∞)18.(2023·全国·高三专题练习)平面上两点A 、B ,则所有满足PA PB=k 且k 不等于1的点P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆.已知圆C 1上的动点P 满足:PO PA=2(其中O 为坐标原点,A 点的坐标为0,3 .(1)直线L ︰y =x 上任取一点Q ,作圆C 1的切线,切点分别为M ,N ,求四边形QMC 1N 面积的最小值;(2)在(1)的条件下,证明:直线MN 恒过一定点并写出该定点坐标.【答案】(1)4;(2)证明见解析,1,3 .【分析】(1)设点P 的坐标为x ,y ,求出点P 的轨迹方程为x 2+(y -4)2=4,求出S QMC 1N =2S △QMC 1=2QM ,QM =|C 1Q |2-4,求出|QM |最小值即得解;(2)设Q a ,a ,两圆方程相减可得MN 的方程为a x +y -4 -4y -12 =0,即得解.【详解】(1)解:设点P 的坐标为x ,y ,根据题设条件有P ∈P PO =2PA , 所以有x 2+y 2=2x 2+y -3 2,化简得x 2+(y -4)2=4. 所以S QMC 1N =2S △QMC 1=2×12C 1M ⋅QM =2QM QM =C 1Q |2- C 1M |2=|C 1Q |2-4,由题知,当C 1Q ⊥L 时,此时C 1Q =d =0-42=22,|QM |最小,即四边形QMC 1N 面积取得最小值4.(2)解;设Q a ,a ,由几何性质,可知M ,N 两点在以C 1Q 为直径的圆上,此圆的方程为x x -a +y -4 y -a =0,而直线MN 是此圆与圆C 1的相交弦所在直线,相减可得MN 的方程为a x +y -4 -4y -12 =0,所以直线MN 恒过定点1,3 .19.(2023秋·重庆沙坪坝·高三重庆南开中学校考期末)阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点M 与两定点Q ,P 的距离之比MQ MP=λλ>0,λ≠1 ,λ是一个常数,那么动点M 的轨迹就是阿波罗尼斯圆,圆心在直线PQ 上.已知动点M 的轨迹是阿波罗尼斯圆,其方程为x 2+y 2=4,定点分别为椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点F 与右顶点A ,且椭圆C 的离心率为e =12.(1)求椭圆C 的标准方程;(2)如图,过右焦点F 斜率为k k >0 的直线l 与椭圆C 相交于B ,D (点B 在x 轴上方),点S ,T 是椭圆C 上异于B ,D 的两点,SF 平分∠BSD ,TF 平分∠BTD .①求BS DS的取值范围;②将点S 、F 、T 看作一个阿波罗尼斯圆上的三点,若△SFT 外接圆的面积为81π8,求直线l 的方程.【答案】(1)x 28+y 26=1;(2)①13,1 ;②y =52x -102.【分析】(1)方法1,利用特殊值法,求得椭圆方程,方法2,利用定义整理得x 2+y 2+2x -2aλ2λ2-1x +λ2a 2-c 2λ2-1=0,再根据条件列式求得椭圆方程;方法3,利用定义进行整理,由MF MA为常数,求得系数,得到椭圆方程;(2)①首先由面积比值求得BS DS=BF DF,令BF DF=λ,则BF =λFD,利用坐标表示向量,求得λ=35-2x 0,再求范围;②由阿波罗尼斯圆定义知,S ,T ,F 在以B ,D 为定点得阿波罗尼斯圆上,由几何关系列式得BF DF=2r -BF 2r +DF,求得r ,再根据1BF-1DF=2-2x 0322-12x 0=229,求得x 0,y 0,即可计算直线方程.【详解】(1)方法(1)特殊值法,令M ±2,0 ,c -2a -2=c +2a +2,且a =2c ,解得c 2=2∴a 2=8,b 2=a 2-c 2=6,椭圆C 的方程为x 28+y 26=1方法(2)设M x ,y ,由题意MF MA=x -c2+y 2x -a 2+y2=λ(常数),整理得:x 2+y 2+2x -2aλ2λ2-1x +λ2a 2-c 2λ2-1=0,故2c -2aλ2λ2-1=0λ2a 2-c 2λ2-1=-4,又c a =12,解得:a =22,c =2.∴b 2=a 2-c 2=6,椭圆C 的方程为x 28+y 26=1.方法(3)设M x ,y ,则x 2+y 2=4.由题意MF MA=x -c 2+y 2x -a2+y2=x -c 2+4-x 2x -a2+4-x2=c 2+4-2cxa 2+4-2ax∵MF MA为常数,∴c 2+4a 2+4=c a ,又c a =12,解得:a 2=8,c 2=2,故b 2=a 2-c 2=6∴椭圆C 的方程为x 28+y 26=1(2)①由S △SBF S △SDF =12SB ⋅SF ⋅sin ∠BSF 12SD⋅SF ⋅sin ∠DSF =SB SD ,又S △SBF S △SDF =BF DF ,∴BS DS=BF DF(或由角平分线定理得)。

培优点 隐圆(阿波罗尼斯圆)问题

培优点 隐圆(阿波罗尼斯圆)问题

培优点隐圆(阿波罗尼斯圆)问题隐圆问题近几年在高考题和各地模拟题中都出现过,难度为中高档,在题设中没有明确给出圆的相关信息,而是隐含在题目中,要通过分析、转化、发现圆(或圆的方程),从而最终利用圆的知识来求解,我们称这类问题为“隐圆问题”.考点一 利用圆的定义、方程确定隐形圆例1 (1)(2022·滁州模拟)已知A ,B 为圆C :x 2+y 2-2x -4y +3=0上的两个动点,P 为弦AB 的中点,若∠ACB =90°,则点P 的轨迹方程为( ) A .(x -1)2+(y -2)2=14B .(x -1)2+(y -2)2=1C .(x +1)2+(y +2)2=14D .(x +1)2+(y +2)2=1 答案 B解析 圆C 即(x -1)2+(y -2)2=2,半径r =2,因为CA ⊥CB , 所以|AB |=2r =2, 又P 是AB 的中点, 所以|CP |=12|AB |=1,所以点P 的轨迹方程为(x -1)2+(y -2)2=1.(2)(2022·茂名模拟)已知向量a ,b 满足|a |=1,|b |=2,a ·b =0,若向量c 满足|a +b -2c |=1,则|c |的取值范围是( ) A .[1,5-1] B.⎣⎢⎡⎦⎥⎤3-12,3+12 C.⎣⎢⎡⎦⎥⎤5-12,5+12D.⎣⎢⎡⎦⎥⎤5+12,52答案 C解析 |a |=1,|b |=2,a ·b =0,以a 为y 轴,b 为x 轴,建立平面直角坐标系, 设OA →=a =(0,1),OB →=b =(2,0), OC →=c =(x ,y ),所以a +b -2c =(2-2x ,1-2y ), 由|a +b -2c |=1,可得(2-2x )2+(1-2y )2=1, 化简可得(x -1)2+⎝⎛⎭⎫y -122=⎝⎛⎭⎫122, 所以点C 的轨迹是以⎝⎛⎭⎫1,12为圆心,以r =12为半径的圆,原点(0,0)到⎝⎛⎭⎫1,12的距离为d =12+⎝⎛⎭⎫122=52,所以|c |=x 2+y 2的取值范围是[d -r ,d +r ],即⎣⎢⎡⎦⎥⎤5-12,5+12.规律方法 对于动点的轨迹问题,一是利用曲线(圆、椭圆、双曲线、抛物线等)的定义识别动点的轨迹,二是利用直接法求出方程,通过方程识别轨迹.跟踪演练1 (2022·平顶山模拟)已知M ,N 为圆C :x 2+y 2-2x -4y =0上两点,且|MN |=4,点P 在直线l :x -y +3=0上,则|PM →+PN →|的最小值为( ) A .22-2 B .2 2 C .22+2 D .22- 5答案 A解析 设线段MN 的中点为D ,圆C :x 2+y 2-2x -4y =0的圆心为C (1,2),半径为 5.则圆心C 到直线MN 的距离为(5)2-⎝⎛⎭⎫422=1,所以|CD |=1,故点D 的轨迹是以C 为圆心,半径为1的圆,设点D 的轨迹为圆D ,圆D 上的点到直线l 的最短距离为t =|1-2+3|2-1=2-1.所以|PM →+PN →|=|2PD→|=2|PD →|≥2t =22-2.考点二 由圆周角的性质确定隐形圆例2 (1)已知点P (2,t ),Q (2,-t )(t >0),若圆C :(x +2)2+(y -3)2=1上存在点M ,使得∠PMQ =90°,则实数t 的取值范围是( )A .[4,6]B .(4,6)C .(0,4]∪[6,+∞)D .(0,4)∪(6,+∞)答案 A解析 由题意知,点P (2,t ),Q (2,-t )(t >0), 可得以PQ 为直径的圆的方程为(x -2)2+y 2=t 2, 则圆心C 1(2,0),半径R =t , 又由圆C :(x +2)2+(y -3)2=1, 可得圆心C (-2,3),半径r =1,两圆的圆心距为|CC 1|=(2+2)2+(0-3)2=5,要使得圆C :(x +2)2+(y -3)2=1上存在点M ,使得∠PMQ =90°,即两圆存在公共点,则满足⎩⎪⎨⎪⎧R +r ≥5,R -r ≤5,即⎩⎪⎨⎪⎧t +1≥5,t -1≤5,解得4≤t ≤6, 所以实数t 的取值范围是[4,6].(2)(2022·长沙雅礼中学质检)已知直线l :x -y +4=0上动点P ,过P 点作圆x 2+y 2=4的两条切线,切点分别为C ,D ,记M 是CD 的中点,则直线CD 过定点________,点M 的轨迹方程为______________________________. 答案 (-1,1) ⎝⎛⎭⎫x +122+⎝⎛⎭⎫y -122=12 解析 如图,连接PO ,CO ,DO ,因为PD ⊥DO ,PC ⊥CO ,所以P ,D ,O ,C 在以PO 为直径的圆上, 设P (x 0,x 0+4),则以OP 为直径的圆的方程为⎝⎛⎭⎫x -x 022+⎝⎛⎭⎫y -x 0+422=x 20+(x 0+4)24, 化简得x 2-x 0x -(x 0+4)y +y 2=0, 与x 2+y 2=4联立,可得CD 所在直线的方程为x 0x +(x 0+4)y =4⇒x 0(x +y )=4(1-y )⇒⎩⎪⎨⎪⎧ 1-y =0,x +y =0⇒⎩⎪⎨⎪⎧y =1,x =-1,直线CD 过定点Q (-1,1),又OM ⊥CD ,所以OM ⊥MQ ,所以点M 在以OQ 为直径的圆上, 所以点M 的轨迹为⎝⎛⎭⎫x +122+⎝⎛⎭⎫y -122=12. 规律方法 利用圆的性质,圆周角为直角,即可得到:若P A ⊥PB 或∠APB =90°,则点P 的轨迹是以AB 为直径的圆.注意轨迹中要删除不满足条件的点.跟踪演练2 (2022·北京海淀区模拟)在平面直角坐标系中,直线y =kx +m (k ≠0)与x 轴和y 轴分别交于A ,B 两点,|AB |=22,若CA ⊥CB ,则当k ,m 变化时,点C 到点(1,1)的距离的最大值为( )A .4 2B .3 2C .2 2 D. 2 答案 B解析 由y =kx +m (k ≠0)得A ⎝⎛⎭⎫-mk ,0,B (0,m ), 因为CA ⊥CB ,所以点C 的轨迹是以AB 为直径的圆,其方程为⎝⎛⎭⎫x +m 2k 2+⎝⎛⎭⎫y -m 22=m 24k 2+m24,设该动圆的圆心为(x ′,y ′),则x ′=-m 2k ,y ′=m2,整理得k =-y ′x ′,m =2y ′,代入到⎝⎛⎭⎫-mk 2+m 2=8中,得x ′2+y ′2=2, 即点C 轨迹的圆心在圆x ′2+y ′2=2上,故点(1,1)与该圆上的点(-1,-1)的连线的距离加上圆的半径即为点C 到点(1,1)的距离的最大值,最大值为[1-(-1)]2+[1-(-1)]2+2=3 2.考点三 阿波罗尼斯圆例3 (多选)古希腊著名数学家阿波罗尼斯发现“若A ,B 为平面上相异的两点,则所有满足:|P A ||PB |=λ(λ>0,且λ≠1)的点P 的轨迹是圆,后来人们称这个圆为阿波罗尼斯圆.在平面直角坐标系中,A (-2,0),B (4,0),若λ=12,则下列关于动点P 的结论正确的是( )A .点P 的轨迹方程为x 2+y 2+8x =0B .△APB 面积的最大值为6C .在x 轴上必存在异于A ,B 的两定点M ,N ,使得|PM ||PN |=12D .若点Q (-3,1),则2|P A |+|PQ |的最小值为5 2 答案 ACD解析 对于选项A ,设P (x ,y ), 因为P 满足|P A ||PB |=12,所以(x +2)2+y 2(x -4)2+y 2=12, 化简得x 2+y 2+8x =0,故A 正确; 对于选项B ,由选项A 可知, 点P 的轨迹方程为x 2+y 2+8x =0,即(x +4)2+y 2=16,所以点P 的轨迹是以(-4,0)为圆心,4为半径的圆, 又|AB |=6,且点A ,B 在直径所在直线上,故当点P 到圆的直径所在直线的距离最大时,△P AB 的面积取得最大值, 因为圆上的点到直径的最大距离为半径,即△P AB 的高的最大值为4, 所以△P AB 面积的最大值为12×6×4=12,故B 错误;对于选项C ,假设在x 轴上存在异于A ,B 的两定点M ,N ,使得|PM ||PN |=12,设M (m ,0),N (n ,0),故(x -m )2+y 2(x -n )2+y 2=12,即(x -n )2+y 2=2(x -m )2+y 2, 化简可得x 2+y 2-8m -2n 3x +4m 2-n 23=0, 又点P 的轨迹方程为x 2+y 2+8x =0, 可得⎩⎨⎧-8m -2n3=8,4m 2-n23=0,解得⎩⎪⎨⎪⎧ m =-6,n =-12或⎩⎪⎨⎪⎧m =-2,n =4(舍去),故存在异于A ,B 的两定点M (-6,0),N (-12,0), 使得|PM ||PN |=12,故C 正确;对于选项D ,因为|P A ||PB |=12,所以2|P A |=|PB |,所以2|P A |+|PQ |=|PB |+|PQ |,又点P 在圆x 2+8x +y 2=0上,如图所示,所以当P ,Q ,B 三点共线时2|P A |+|PQ |取得最小值,此时(2|P A |+|PQ |)min =|BQ | =[4-(-3)]2+(0-1)2=52,故D 正确.规律方法 “阿波罗尼斯圆”的定义:平面内到两个定点A (-a ,0),B (a ,0)(a >0)的距离之比为正数λ(λ≠1)的点的轨迹是以C ⎝ ⎛⎭⎪⎫λ2+1λ2-1a ,0为圆心,⎪⎪⎪⎪2aλλ2-1为半径的圆,即为阿波罗尼斯圆.跟踪演练3 若平面内两定点A ,B 间的距离为2,动点P 满足|P A ||PB |=3,则|P A |2+|PB |2的最大值为( ) A .16+8 3 B .8+4 3 C .7+4 3 D .3+ 3答案 A解析 由题意,设A (-1,0),B (1,0),P (x ,y ), 因为|P A ||PB |=3,所以(x +1)2+y 2(x -1)2+y 2=3,即(x -2)2+y 2=3,所以点P 的轨迹是以(2,0)为圆心,半径为3的圆,因为|P A |2+|PB |2=(x +1)2+y 2+(x -1)2+y 2=2(x 2+y 2+1),其中x 2+y 2可看作圆(x -2)2+y 2=3上的点(x ,y )到原点(0,0)的距离的平方, 所以(x 2+y 2)max =(2+3)2=7+43, 所以[2(x 2+y 2+1)]max =16+83, 即|P A |2+|PB |2的最大值为16+8 3.专题强化练1.已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -2)2=2.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得P A ⊥PB ,则实数a 的取值范围为( ) A .[0,2]B .[-52,1]C .[-2,2]D .[-2,2]答案 D解析 由题意可知四边形P AOB 为正方形, |OP |=2,∴点P 在以O 为圆心,以2为半径的圆上,其方程为x 2+y 2=2, 若圆M 上存在这样的点P ,则圆M 与x 2+y 2=2有公共点, 则有2-2≤a 2+4≤2+2, 解得-2≤a ≤2.2.已知点A (-5,-5)在动直线mx +ny -m -3n =0上的射影为点B ,若点C (5,-1),那么|BC |的最大值为( )A .16B .14C .12D .10 答案 C解析 由动直线方程化为m (x -1)+n (y -3)=0,可知其恒过定点Q (1,3). 又∵点A (-5,-5)在动直线mx +ny -m -3n =0上的射影为点B , ∴∠ABQ =90°,则点B 的轨迹是以AQ 为直径的圆, ∴圆心为AQ 的中点M (-2,-1), 圆的半径r =12|AQ |=5.又|MC |=(5+2)2+(-1+1)2=7>r =5, ∴点C (5,-1)在圆M 外,故|BC |的最大值为r +|MC |=7+5=12.3.(2022·武汉模拟)已知O 为坐标原点,点A (cos α,sin α),B ⎝⎛⎭⎫cos ⎝⎛⎭⎫α+π3,sin ⎝⎛⎭⎫α+π3,以OA ,OB 为邻边作平行四边形AOBP ,Q (-2,0),则∠PQO 的最大值为( ) A.π6 B.π4 C.π3 D.π2 答案 C解析 已知圆O :x 2+y 2=1,A ,B 是圆O 上两动点,且∠AOB =π3,所以△AOB 为等边三角形, 又|AB |=|OA |=1, 取AB 的中点M ,则|OM |=32, 所以|OP |=3,所以点P 的轨迹方程为x 2+y 2=3, 当PQ 与x 2+y 2=3相切时,∠PQO 最大,此时sin ∠PQO =32, 则∠PQO =π3.4.已知△ABC 是等边三角形,E ,F 分别是AB 和AC 的中点,P 是△ABC 边上一动点,则满足PE →·PF →=BE →·CF →的点P 的个数为( ) A .1 B .2 C .3 D .4 答案 D解析 以BC 的中点O 为坐标原点,BC ,OA 所在直线为x 轴、y 轴,建立如图所示的平面直角坐标系.设△ABC 的边长为4,则B (-2,0),C (2,0),A (0,23),E (-1,3), F (1,3),BE →=(1,3),CF →=(-1,3), 设P (x ,y ),则PE →=(-1-x ,3-y ), PF →=(1-x ,3-y ), 由PE →·PF →=BE →·CF →得,(-1-x ,3-y )·(1-x ,3-y ) =(1,3)·(-1,3), 所以x 2+(y -3)2=3,即点P 的轨迹是以(0,3)为圆心,3为半径的圆,也就是以AO 为直径的圆,易知该圆与△ABC 的三边有4个公共点.5.(多选)已知AB 为圆O :x 2+y 2=49的弦,且点M (4,3)为AB 的中点,点C 为平面内一动点,若AC 2+BC 2=66,则( ) A .点C 构成的图象是一条直线 B .点C 构成的图象是一个圆 C .OC 的最小值为2 D .OC 的最小值为3 答案 BC解析 ∵点M (4,3)为AB 的中点,∴OM ⊥AB , |OM |=42+32=5,∴|AM |=|BM |=49-52=26, ∵AC 2+BC 2=66, ∴AC →2+BC →2=66,则(AM →+MC →)2+(BM →+MC →)2=66,即AM →2+2AM →·MC →+MC →2+BM →2+2BM →·MC →+MC →2=66, ∵AM →=-BM →,则可得2AM →2+2MC →2=66, 可解得|MC |=3,∴点C 构成的图象是以M 为圆心,3为半径的圆,故A 错误,B 正确; ∴可得OC 的最小值为|OM |-3=5-3=2,故C 正确,D 错误.6.(多选)(2022·福州模拟)已知A (-3,0),B (3,0),动点C 满足|CA |=2|CB |,记C 的轨迹为Γ.过A 的直线与Γ交于P ,Q 两点,直线BP 与Γ的另一个交点为M ,则( ) A .Q ,M 关于x 轴对称B .△P AB 的面积的最大值为6 3C .当∠PMQ =45°时,|PQ |=4 2D .直线AC 的斜率的范围为[-3,3] 答案 AC解析 设C (x ,y ),由|CA |=2|CB |得, (x +3)2+y 2=2(x -3)2+y 2,整理得Γ的方程为(x -5)2+y 2=16,其轨迹是以D (5,0)为圆心,半径r =4的圆.由图可知,由于AB =6,所以当DP 垂直于x 轴时,△P AB 的面积有最大值,所以(S △P AB )max =12|AB |·r =12×6×4=12,选项B 错误;因为|P A |=2|PB |,|MA |=2|MB |, 所以|P A ||MA |=|PB ||MB |,所以∠P AB =∠MAB ,又C 的轨迹Γ关于x 轴对称,所以Q ,M 关于x 轴对称,选项A 正确; 当∠PMQ =45°时,∠PDQ =45°×2=90°, 则△DPQ 为等腰直角三角形,|PQ |=2r =42, 选项C 正确;当直线AC 与圆D 相切时,CD ⊥AC ,此时|AD |=8=2r =2|CD |,所以sin ∠DAC =12,所以切线AC 的倾斜角为30°和150°, 由图可知,直线AC 的斜率的取值范围为⎣⎡⎦⎤-33,33,选项D 错误. 7.已知等边△ABC 的边长为2,点P 在线段AC 上,若满足P A →·PB →-2λ+1=0的点P 恰有两个,则实数λ的取值范围是______________. 答案 ⎝⎛⎦⎤38,12解析 如图,以AB 的中点O 为坐标原点,AB ,OC 所在直线为x 轴、y 轴,建立平面直角坐标系,则A (-1,0),B (1,0), 设P (x ,y ).则P A →·PB →-2λ+1=0,即为(-1-x )(1-x )+y 2-2λ+1=0,化简得x 2+y 2=2λ(λ>0),故所有满足P A →·PB →-2λ+1=0的点P 在以O 为圆心,2λ为半径的圆上. 过点O 作OM ⊥AC ,垂足为点M ,由题意知,线段AC 与圆x 2+y 2=2λ有两个交点, 所以|OM |<2λ≤|OA |,即32<2λ≤1,解得38<λ≤12. 8.已知⊙M :x 2+y 2-2x -2y -2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作⊙M 的切线P A ,PB ,切点为A ,B ,当|PM |·|AB |取得最小值时,直线AB 的方程为________________. 答案 2x +y +1=0解析 ⊙M :(x -1)2+(y -1)2=4,①则圆心M (1,1),⊙M 的半径为2.如图,由题意可知PM ⊥AB ,∴S 四边形P AMB =12|PM |·|AB | =|P A |·|AM |=2|P A |,∴|PM |·|AB |=4|P A |=4|PM |2-4.当|PM |·|AB |最小时,|PM |最小,此时PM ⊥l .故直线PM 的方程为y -1=12(x -1), 即x -2y +1=0.由⎩⎪⎨⎪⎧ x -2y +1=0,2x +y +2=0,得⎩⎪⎨⎪⎧x =-1,y =0, ∴P (-1,0).依题意知P ,A ,M ,B 四点共圆,且PM 为圆的直径,∴该圆方程为x 2+⎝⎛⎭⎫y -122=54,② 由①-②整理得2x +y +1=0,即直线AB 的方程为2x +y +1=0.。

阿波罗尼斯圆例题

阿波罗尼斯圆例题

阿波罗尼斯圆(Apollonian Circle)是一个由古希腊数学家阿波罗尼斯发现的几何图形。

在这个轨迹中,一个点到两个定点的距离之比等于一个常数。

下面是一个关于阿波罗尼斯圆的例题:
在△ABC中,AB=AC=5,BC=8,点D在BC上,且BD=2,求点D 到AC边的距离。

解法:
我们可以利用阿波罗尼斯圆的性质来解这个问题。

首先,我们以点A为圆心,以AC为半径画一个圆,与BC交于点D'。

根据阿波罗尼斯圆的定义,点D'到A的距离与到C的距离之比等于BC与BD'的距离之比,即:
$\frac{AD^{\prime}}{AC} = \frac{BC}{BD^{\prime}}$
由于AB=AC=5,BC=8,BD'=BC-BD=8-2=6,我们可以得到:
$\frac{AD^{\prime}}{5} = \frac{8}{6}$
解得:$AD^{\prime} = \frac{20}{3}$
然后,我们在△ABC中,利用面积相等的方法可以得到:
$\frac{AD^{\prime} \times AC}{2} = \frac{AB \times CD}{2}$
将上面求得的$AD^{\prime} = \frac{20}{3}$代入得:
$\frac{\frac{20}{3} \times 5}{2} = \frac{5 \times CD}{2}$
解得:$CD = \frac{20}{3}$
所以,点D到AC的距离为$\frac{20}{3}$。

完整版阿氏圆问题归纳

完整版阿氏圆问题归纳

阿氏圆题型的解题方法和技巧以阿氏圆〔阿波罗尼斯圆〕为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要 .阿氏圆定理〔全称:阿波罗尼斯圆定理〕,具体的描述:一动点P到两定点A、B的距离之比等于定比n〔丰1〕,那么P点的轨迹,是以定比n内分和外分定线段AB的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB 〔k丰1〕P点的运动轨迹是圆或者圆弧的题型.PA+kPB,〔k丰1〕P点的运动轨迹是圆或圆弧的题型阿氏圆根本解法:构造母子三角形相似【问题】在平面直角坐标系xOy中,在x轴、y轴分别有点C〔m, 0〕 , D〔0, n〕.点P是平面内一动点,且OP=r,求PC+kPD勺最小值.阿氏圆一般解题步骤:第一步:确定动点的运动轨迹〔圆〕,以点.为圆心、r为半径画圆;〔假设圆已经画出那么可省略这一步〕第二步:连接动点至圆心0〔将系数不为1的线段的固定端点与圆心相连接〕,即连接OR OD第三步:计算出所连接的这两条线段OR OD长度;第四步:计算这两条线段长度的比k;第五步:在OD上取点M,使得OM:OP=OP:OD=k第六步:连接CM与圆.交点即为点P.此时CMgP所求的最小值.一…,括号外边,将其中一条线段的系数化成;,再构造△相似进行计算】习题【旋转隐圆】如图,在Rt A ABC中,/ ACB=90 , D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),假设AC=4, BC=3那么在旋转过程中,线段C咔度的取值范围是.1.Rt △ ABC中,/ ACB=90 , AC=4 BC=3 点.为^ ABC内一动点,满足CD=2 贝U AD+2 BD3 的最小值为.2.如图,菱形ABCD勺边长为2,锐角大小为60° , O A与BC相切于点E,在O A上任取一-3……点P,贝U PB+业3 PD的最小值为2【旅转隐圆】第1鞭第2题3.如图,菱形ABCD勺边长为4, / B=60° ,圆B的半径为2, P为圆B上一动点,贝U PD+11 PC的最小值为.24.如图,点A, B在O.上,OA=OB=12,OA OB点C是OA的中点,点D在OB上,OD=10.动.,, …1…点P在③.上,贝U PC+— PD的最小值为.25.如图,等边△ ABC的边长为6,内切圆记为.O P是圆上动点,求2PB+PC勺最小值.第3题第4题第5题6.如图,边长为4的正方形,内切圆记为③ O, P是圆上的动点,求J2PA+PB勺最小值.7.如图,边长为4的正方形,点P 是正方形内部任意一点,且BP=2那么PD+1PC的最小值2为; <2 PD+4PC勺最小值为.8.在平面直角坐标系xOy中,A(2 , 0) , B(0,2) , C(4, 0), D(3, 2) , ?是左AOB7卜部的第象限内一动点,且/ BPA=135 ,贝U 2PD+PC勺最小值是.10.如图,在 Rt△ ABC 中,/ A=30° , AC=8,以 C 为圆心,⑴试判断O C 与AB 的位置关系,并说明理由;⑵点F 是③C 上一动点,点 D 在AC 上且CD=2试说明△ FCL^A ACF 1 ……EF+— FA 的最小值.211.(1)如图1,正方形 ABCD 勺边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求PD+1 PC 的最小值和PD-1PC 的最大值;22⑵如图2,正方形 ABCD 勺边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那 ,2,, 一…2…,…么PD+—PC 的最小值为 , PD-—PC 的最大值为 .3 3⑶如图3,菱形 ABCD 勺边长为4, Z B=60° ,圆B 的半径为2,点P 是圆B 上的一个 动点,那么PD+1PC 的最小值为 , PD-1PC 的最大值为 .22ZABC=60 , O A 的半径为6, P 是O A 上的动点, 连接PB PC,4为半径作O C.9,在^ ABC 中,AB=& BC=8那么3PC+2PB 勺最小值为⑶ 点E 是AB 上任意一点,在(2)的情况下,试求出B•••PD=1BP, ••• AP+1 BP=AP+PD221……,请你完成余下的思考,并直接写出答案:AP+—BP 的最小值为 .2⑵自主探索:在“问题提出〞的条件不变的情况下,-AP+BP 的最小值为 .3⑶ 拓展延伸:扇形 COW, / COD=90 , OC=6 OA=3 OB=5,点P 是弧CD 上一点,求 2PA+PB 的最小值.【二次函数结合阿氏圆题型】13.如图1,抛物线y=ax2+(a+3)x+3 (a丰0)与x 轴交于点 A (4, 0),与y 轴交于点B,在 x 轴上有一动点E (m 0) ( 0v rnK 4),过点E 作x 轴的垂线交直线 AB 于点N,交抛物线 于点P,过点P 作P 机AB 于点M⑴求a 的值和直线AB 的函数表达式;⑵设△ PMN!勺周长为 C1, △ AEN 的周长为 C2, 假设C6,求m 的值; C25⑶如图2,在(2)条件下,将线段 OE 绕点O 逆时针旋转得到 OE',旋转角为a ( 0° Va V90° ),连接E' A 、E' B,求 E' A+2E' B 的最小值.3问题背景:如图1,在^ ABC中,BC=4, AB=2AC问题初探:请写出任意一对满足条件的AB与AC的值:AB=问题再探:如图2,在AC右侧作/ CADW B,交BC的延长线于点问题解决:求△ ABC的面积的最大值.,AC=D,求CD的长.1.小明的数学探究小组进行了系列探究活动.类比定义:类比等腰三角形给出如下定义:有一组邻边相等的凸四边形叫做邻等四边形.探索理解:⑴如图1,A、B C在格点(小正方形的顶点)上,请你协助小明用两种不同的方法画出格点D,连接DA DC 使四边形ABCC^邻等四边形;r_r T-r -i r ~r~r ~r _r _i尝试体验:⑵如图2,邻等四边形ABCW, AD=CD Z ABC=120 , / ADC=60 , AB=2, BC=1,求四边形ABCD勺面积.解决应用:⑶如图3,邻等四边形ABCW, AD=CD Z ABC=75 , Z ADC=60 , BD=4小明爸爸所在的工厂,需要裁取某种四边形的材料板,这个材料板的形状恰巧是符合如图3条件的邻等四边形, 要求尽可能节约.你能求出这种四边形面积的最小值吗如果能,请求出此时四边形ABCE®积的最小值;如果不能,请说明理由.2.我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形〞.(1)如图1,在四边形ABC/,添加一个条件使得四边形ABCD是“等邻边四边形〞.请写出你添加的一个条件.⑵如图2,等邻边四边形ABCg, AB=AD Z BAD% BCD=90 , AG BD为对角线,AC^2AR试探究BC, BD的数量关系.(3)如图3,等邻边四边形ABC" AB=AD AC=2, / BAD=^ BCD=60 ,求等邻边四边形ABCD 面积的最小值.S'。

微专题16 阿波罗尼斯圆问题梳理及其运用

微专题16 阿波罗尼斯圆问题梳理及其运用

在平面直角坐标系 xOy 中,已知圆 C 经过 A(0,2),O(0,0),D(t, 0)(t>0)三点,M 是线段 AD 上的动点,l1,l2 是过点 B(1,0)且互相垂直 的两条直线,其中 l1 交 y 轴于点 E,l2 交圆 C 于 P,Q 两点. (1)若 t=PQ=6,求直线 l2 的方程; (2)若 t 是使 AM≤2BM 恒成立的最小正整数,求三角形 EPQ 的面 积的最小值.
2
2
2
2
串讲 2 已知点 P 是圆 O:x2+y2=25 上任意一点,平面上有两个定点 13 1 M(10,0),N( 2 ,3),则 PN+2PM 的最小值为
5

解析: 设 x 轴上一定点 Q(m, 0), 记 PM∶PQ=λ, P(x, y), 由 PM∶PQ =λ 得(x-10)2+y2=λ2[(x-m)2+y2],化简得(λ2-1)x2+(λ2-1)y2+(20 -2mλ2)x+(λ2m2-100)=0,因为 x2+y2=25,所以
2 解析:依题意,PA2=PO2-12,PB2=PO2 - 2 ,因为 PB=2PA,所 1 2 2 2 2 以 PB2=4PA2,所以 PO2 - 4 = 4( PO - 1 ) , 可得 PO = 4 PO ,设 P(x, 1 1
4 2 2 64 y),可得(x-4 )+y =4(x +y )化简得(x+3) +y = 9 .所以满足条件的
2 2 2 2
4 8 点 P 在以(-3,0)为圆心,3为半径的圆上,又因为点 P 在直线 x+ 3y 4 |-3-b| 8 -b=0 上,且恰有两个点,所以直线和圆应该相交,所以 <3, 1+ 3 20 解得- 3 <b<4.
变式 2 已知点 A(-2,0),B(4,0),圆 C:(x+4) +(y+b) =16,点 P PA 是圆 C 上任意一点,若PB为定值,则 b 的值为 0 .

微专题16 阿波罗尼斯圆问题梳理及其运用答案

微专题16 阿波罗尼斯圆问题梳理及其运用答案

微专题161.答案:(-∞,0]∪⎣⎡⎭⎫43,+∞.解析:设M (x ,y ),则由2MA=MB得2(x -1)2+y 2= (x -4)2+y 2,化简得x 2+y 2=4,设直线l :y=k (x -1)-2,则|-k -2|1+k 2≤2,整理得3k 2-4k ≥0,解得k ≤0或k ≥43.2.答案:[0,125].解析:因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1.设点M (x ,y ),因为MA =2MO ,所以x 2+(y -3)2= 2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以圆心M 在以D (0,-1)为圆心,2为半径的圆上.由题意得,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则2-1≤CD ≤2+1,即1≤a 2+(2a -3)2≤3.由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125.所以圆心C 的横坐标a 的取值范围为[0,125].3.答案:{22,-22}. 解析:设P (x ,x +m ),则由P A PB =12可知(x -1)2+(x +m )2(x -4)2+(x +m )2=14,化简得到2x 2+2mx +m 2-4=0,由题意可知Δ=4m 2-4×2×(m 2-4)=0,即m 2=8,则实数m 的取值集合为{22,-22}.4.答案:52.解析:记12PB =PC ,那么PC PB =12,其中B (2,0),下面研究点C 的位置.设C (a ,b ),P (cos θ,sin θ),则由PC PB =12得 错误!=12,化简得(4-8a )cos θ-8b sin θ+4a 2+4b 2-1=0①,由于①式对任意θ都成立,则⎩⎨⎧4-8a =0,b =0,4a 2+4b 2-1=0,解得C (12,0).因此,P A +12PB =P A +PC ≥AC =52.5.答案:⎝⎛⎭⎫53,73. 解析:如图,设AB =3,AC =1,AD =k ,以点C 为原点,线段AC 所在直线为x 轴建立直角坐标系xCy ,则点A 的坐标为(1,0),因为AB =3,所以点B 在以点A 为圆心,3为半径的圆上,圆的方程为(x -1)2+y 2=9(*).设D (x ,y ),由CD =2DB 得B (32x ,32y ),代入(*)式得(32x -1)2+(32y )2=9,化简得(x -23)2+y 2=4,所以r -13<k <13+r ,从而53<k <73.6.答案:l 22(1-k 2).解析:如图,以B 为原点,BD 为x 轴建立直角坐标系xBy .设A (x ,y ),y >0.因AD =kAC =kAB ,故AD 2=k 2AB 2,于是(x -l )2+y 2=k 2(x 2+y 2).所以y 2=-(1-k 2)x 2+2lx -l 21-k 2=错误!≤k 2l2(1-k 2)2,于是,y max =kl1-k 2,(S △ABD )max =kl 22(1-k 2),所以,(S △ABC )max=1k(S △ABD )max =l 22(1-k 2).7.答案:2+ 3. 解析:易知点B 的轨迹是阿波罗尼斯圆,记圆与线段AC 的交点为F ,圆心为D ,则AB BC =AFFC=m ,从而BF 为∠ABC 的平分线,即∠ABF =∠CBF =π6,此时∠BCD =∠BFC +∠CBF =5π12,∠CAB =π12,∠ACB =7π12.在△ABC 中,由正弦定理得m =AB BC =sin ∠ACB sin ∠CAB=2+ 3.8.答案:存在;λ=12,理由略.解析:假设存在点P (x ,y )满足题意,则x 2+y 2+8x =0,所以P A 2=(x +2)2+y 2,PB 2=(x -4)2+y 2,由P A 2=λ2·PB 2,可得x 2+y 2+4x +4=λ2(x 2+y 2-8x +16),整理得(1-x )(1-4λ2)=0,由点P (x ,y )为圆C 上任意一点,且λ>0,于是取λ2=14,即有λ=12.。

阿波罗尼斯圆结论

阿波罗尼斯圆结论

阿波罗尼斯圆结论阿波罗尼斯圆结论是17世纪德国数学家阿波罗尼斯提出的一个重要定理,它说明,当链类曲线延伸到无穷远时,其面积会接近一个圆,这关乎到几何学上著名的面积定理:“圆的面积等于其半径的平方乘以π等于$$pi r^2$$”。

除了阿波罗尼斯圆结论,还有一些相关的结论:一、半径的变化。

圆的面积随着半径的变化而变化,半径越小,面积越小,反之亦然。

二、角度的变化。

阿波罗尼斯圆结论表明,当圆的曲线角度变化时,其面积也会发生变化,曲线越接近直线,面积越大。

三、圆的形状。

曲线一次经过圆心两次时,其形状就ok圆,曲线在圆周上也可以形成圆,而曲线一次经过圆心一次,其形状就不是圆,这个曲线可能是半圆、椭圆等。

阿波罗尼斯圆结论引出了一系列问题,比如如何求出圆心到曲线之间的距离、如何计算由某种曲线求得的圆的面积等。

此外,阿波罗尼斯圆结论也为数学家们提供了思考圆形的精确性方法,因此,他们可以更准确地研究出比较精确的圆形。

阿波罗尼斯圆结论也鼓励学者们研究圆圈与比例关系,并结合数学学习,使学生们更好地理解几何学中的圆圈。

例如,当学生们学习计算圆面积时,他们就可以结合阿波罗尼斯圆结论,利用几何类的曲线计算出圆的面积,这将会让学生们学习到更多几何学的内容。

此外,阿波罗尼斯圆结论也促进了其他科学领域的发展,例如,天文学中的太阳系模型使用了阿波罗尼斯圆结论,物理学家也可以利用阿波罗尼斯圆结论来研究圆周运动。

阿波罗尼斯圆结论不仅在古代数学家中受到赞誉,也在现代人们中得到了重视。

在现代数学中,几何学家依然在学习并使用阿波罗尼斯圆结论,并以此作为研究其他几何形状的基础。

它的影响力深远,不仅引领了几何学的发展,而且对现代科学的发展也有所贡献。

因此,我们可以看出,虽然阿波罗尼斯圆结论已经出现了数百年,但是它仍然具有重要的指导意义,在现代数学中也仍然占有重要的地位,其影响力远远超过它在古代数学家中的知名度。

阿波罗尼斯圆

阿波罗尼斯圆

阿波罗尼斯圆
1.一个轨迹问题
已知,,若动点满足,求动点的轨迹。

解:由题可知,设,则
化简整理可得
∴动点的轨迹为以为圆心,为半径
的圆,该圆与直线的两交点分别为。

2.阿波罗尼斯圆
早在两千多年前古希腊数学家阿波罗尼斯在其巨著《圆锥曲线论》中已经发现了一个规律:一般地,平面上到两个定点距离之比为一个不
等于1的常数的动点的轨迹是一个圆。

这种圆因而被称为阿波罗尼斯
.....圆.。

一般地,已知,,若动点满足,则动点的轨迹方程为
其圆心为,半径。

3.阿波罗尼斯的一个性质
设,为平面上两定点,动点满足
,则动点的轨迹为圆。

设圆与直线的两交点为,则
即分别为分线段的定比绝对值为的内外分点。

模型17 阿氏圆最值问题(解析版)

模型17 阿氏圆最值问题(解析版)

模型介绍背景故事:“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.模型建立:当点P在一个以O为圆心,r为半径的圆上运动时,如图所示:易证:△BOP∽△POA,∴对于圆上任意一点P都有.对于任意一个圆,任意一个k的值,我们可以在任意一条直径所在直线上,在同侧适当的位置选取A、B点,则需+ 的最小值时,利用两边成比例且夹角相等构造母子型相似 【技巧总结】计算PA k PB三角形+ 的值最小,解决步骤具体如下:问题:在圆上找一点P使得PA k PB①如图,将系数不为1的线段两端点与圆心相连即OP,OB②计算出这两条线段的长度比OP k OB=③在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB=,PC k PB = ④则=PA k PB PA PC AC ++≥ ,当A 、P 、C 三点共线时可得最小值例题精讲【例1】.如图,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连接AP ,BP ,则AP +BP 的最小值为________.解:如图1,连接CP ,在CB 上取点D ,使CD =1,则有==,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP ,∴=,∴PD =BP ,∴AP +BP =AP +PD .要使AP +BP 最小,只要AP +PD 最小,当点A ,P ,D 在同一条直线时,AP +PD 最小,即:AP +BP 最小值为AD ,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为变式训练【变式1-1】.如图,正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上的动点,则PD+PC 的最小值等于5.解:如图,在BC上截取BE=1,连接BP,PE,∵正方形ABCD的边长为4,⊙B的半径为2,∴BC=4=CD,BP=2,EC=3∵,且∠PBE=∠PBE∴△PBE∽△CBP∴∴PE=PC∴PD+PC=PD+PE∴当点D,点P,点E三点共线时,PD+PE有最小值,即PD+PC有最小值,∴PD+PC最小值为DE==5故答案为:5【变式1-2】.如图,在△ABC中,∠A=90°,AB=AC=4,点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,则的最小值为.解:如图,在AB上截取AQ=1,连接AP,PQ,CQ,∵点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,∴,∵AP=2,AQ=1,∴,∵∠PAQ=∠BAP,∴△APQ∽△ABP,∴PQ=PB,∴PB+PC=PC+PQ≥CQ,在Rt△ACQ中,AC=4,AQ=1,∴QC===.,∴PB+PC的最小值.,故答案为:.【变式1-3】.如图,在直角坐标系中,以原点O为圆心作半径为4的圆交x轴正半轴于点A,点M的坐标为(6,3),点N的坐标为(8,0),点P在圆上运动.则PM+PN的最小值是5.解:如图,作MB⊥ON于B,则BM=3,OB=6,取OA的中点I,连接OP,PI,IM,∴OI=2,OP=4,∴==,==,∴,又∠POI是公共角,∴△POI∽△NOP,∴,∴PI=PN,∴PM+PN=PM+PI≥IM,∴当M、P(图中Q点)、I在一条直线上时,PM+PI最小=MI===5,故答案是5.【例2】.如图,在⊙O中,点A、点B在⊙O上,∠AOB=90°,OA=6,点C在OA上,且OC=2AC,点D是OB的中点,点M是劣弧AB上的动点,则CM+2DM的最小值为.解:延长OB到T,使得BT=OB,连接MT,CT.∵OM=6,OD=DB=3,OT=12,∴OM2=OD•OT,∴=,∵∠MOD=∠TOM,∴△MOD∽△TOM,∴==,∴MT=2DM,∵CM+2DM=CM+MT≥CT,又∵在Rt△OCT中,∠COT=90°,OC=4,OT=12,∴CT===4,∴CM+2DM≥4,∴CM+2DM的最小值为4,∴答案为4.变式训练【变式2-1】.⊙O半径为2,AB,DE为两条直线.作DC⊥AB于C,且C为AO中点,P 为圆上一个动点.求2PC+PE的最小值.解:延长OA到K,使AK=AO=2.∵C是AO的中点,∴OC=OA=1,∴=.又∵∠COP=∠POK,∴△COP∽△POK,∴,即PK=2PC.∴2PC+PE=PE+PK≥EK.作EH⊥BC于点H.∵在直角△COD中,cos∠DOC=,∴∠DOC=60°,∴∠EOH=∠DOC=60°,∴HE=OE•sin60°=2×,∴EK=.即最小值是2.故答案是:2.【变式2-2】.如图,在扇形OCD中,∠COD=90°,OC=3,点A在OD上,AD=1,点B为OC的中点,点E是弧CD上的动点,则AE+2EB的最小值是2.解:如图,延长OC至F,使得CF=OC=3.连接EF,OE,∵∠EOB为公共角∴△OBE∽△OEF∴∴2BE=EF∴AE+2BE=AE+EF即A、E、F三点共线时取得最小值即由勾股定理得AF==故答案为【变式2-3】.如图,等边△ABC的边长6,内切圆记为⊙O,P是⊙O上一动点,则2PB+PC的最小值为3.解:如图,连接OC交⊙O于点D,取OD的中点F,作OE⊥BC于E,FG⊥BC于G,∴==,∵∠FOP=∠POC,∴△OPF∽△OCP,∴CP=2PF,∴2PB+PC=2(PC+PB)=2(PB+PF),∵PB+PF≥BF,∴PB+PF的最小值为BF,∵BC=6,∠OCE=30°,∴CE=3,OE=,OC=2,∴CF=,∴GF=,CG=,∴BG=BC﹣CG=,由勾股定理得,BF=,∴2PB+PC的最小值为2BF=3.故答案为:3.1.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则PA+PB的最小值为2.解:设⊙O半径为r,OP=r=BC=2,OB=r=2,取OB的中点I,连接PI,∴OI=IB=,∵,,∴,∠O是公共角,∴△BOP∽△POI,∴,∴PI=PB,∴AP+PB=AP+PI,∴当A、P、I在一条直线上时,AP+PB最小,作IE⊥AB于E,∵∠ABO=45°,∴IE=BE=BI=1,∴AE=AB﹣BE=3,∴AI==,∴AP+PB最小值=AI=,∵PA+PB=(PA+PB),∴PA+PB的最小值是AI==2.故答案是2.2.如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是上一动点,则PC+PD的最小值为.解:如图,延长OA使AE=OB,连接EC,EP,OP,∵AO=OB=6,C分别是OA的中点,∴OE=12,OP=6,OC=AC=3,∴==,且∠COP=∠EOP∴△OPE∽△OCP∴==,∴EP=2PC,∴PC+PD=(2PC+PD)=(PD+PE),∴当点E,点P,点D三点共线时,PC+PD的值最小,∵DE===13,∴PD+PE≥DE=13,∴PD+PE的最小值为13,∴PC+PD的值最小值为.故答案为:.3.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为弧AB上一动点,则PC+PD的最小值为.解:∵AC是⊙O的切线,∴∠OAC=90°,∴OC==,取OC的中点I,连接PI,DI,∵,,∴,又∠O是公共角,∴△POI∽△COP,∴==,∴PI=PC,∴PC+PD=PI+PD,∴当D、P、I在一条直线上时,PC+PD最小=DI,作IF⊥AB于F,IE⊥BD于E,∵BE=IF=AC=,∴DE=BD﹣BE=,IE=BF=OB+OF=,∴DI==,∴PC+PD最小=DI=.故答案是:.4.在Rt△AOB中,∠AOB=90°,OA=8,OB=10,以O为圆心,4为半径作圆O,交两边于点C,D,P为劣弧CD上一动点,则PA+PB最小值为2.解:如图,连接OP,取OC的中点E,∵,∠POE=∠AOP,∴△POE∽△AOP,∴=,∴PA+PB=PE+PB,∵PE+PB≥BE,∴当B、P、E共线时,PE+PB最小,∵OE=OC=2,OB=10,∴BE===2,∴PA+PB的最小值是2.5.如图,在边长为6的正方形ABCD中,M为AB上一点,且BM=2,N为边BC上一动点,连接MN,点B关于MN对称,对应点为P,连接PA,PC,则PA+2PC的最小值为6.解:∵B、P关于MN对称,BM=2,∴PM=2,如图所示,则点P在以M为圆心,BM为半径的圆上,在线段MA上取一个点E,使得ME=1,又∵MA=6﹣2=4,MP=2,∴,,∴,又∵∠EMP=∠PMA,∴△EMP∽△PMA,∴,∴,∴PA+2PC=2()=2(PC+PE)≥2CE,如图所示,当且仅当P、C、E三点共线时取得最小值2CE,∵CE=,∴PA+2PC的最小值为6.6.如图,矩形ABCD中,AB=2,AD=4,M点是BC的中点,A为圆心,AB为半径的圆交AD于点E.点P在上运动,则PM+DP的最小值为.解:取AE的中点K,连接PK,KM,作KH⊥BC于H,则四边形ABHK是矩形.可得AK=BH=1,HK=AB=2.∵AP=2,AK=1,AD=4,∴PA2=AK•AD,∴=,∵∠KAP=∠PAD,∴△PAK∽△DAP,∴==,∴PK=PD,∴PM+PD=PM+PK,∵PM+PK≥KM,KM==,∴PM+PK≥,∴PM+DP的最小值为,故答案为.7.如图,在△ABC中,∠A=90°,AB=3,AC=4,D为AC的中点,以A为圆心,AD为半径作OA交AB于点E,P为劣弧DE上一动点,连接PB、PC,则PC+PB的最小值为.解:在AB上取F,使AF=,连接CF与⊙A的交点即是满足条件的点P,连接AP,如图:∵AD=AC=2,∴AP=AD=2,∵AB=3,AF=,∴AP2=AF•AB,∵∠PAB=∠FAP,∴△PAB∽△FAP,∴==,∴PF=PB,∴PC+PB=PC+PF=CF,根据两点之间线段最短,此时PC+PB=CF最小,∴PC+PB最小值为CF===,故答案为:.8.如图,在平面直角坐标系中,A(2,0)、B(0,2)、C(4,0)、D(3,2),P是△AOB外部的第一象限内一动点,且∠BPA=135°,则2PD+PC的最小值是4.解:如图,取一点T(1,0),连接OP,PT,TD,∵A(2,0)、B(0,2)、C(4,0),∴OA=OB=2,OC=4,以O为圆心OA为半径作⊙O,在优弧AB上取一点Q,连接QB,QA,∵∠Q=AOB=45°,∠APB=135°,∴∠Q+∠APB=180°,∴A、P、B、Q四点共圆,∴OP=OA=2,∵OP=2,OT=1,OC=4,∴OP2=OC•OT,∴,∵∠POT=∠POC,∴△POT∽△POC,∴,∴PT=,∴2PD+PC=2(PD+PC)=2(PD+PT),∵PD+PT≥DT,DT==2,∴2PD+PC,∴2PD+PC的最小值是4.故答案为:4.9.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,⊙O的半径为1,M为⊙O上一动点,求AM+BM的最小值.解:如图,连接OM,在OB上取点C,使OC=,连接MC,AC,∵OB=2,⊙O的半径为1,∴,∵∠MOC=∠COM,∴△OMC∽△OBM,∴,∴MC=,∴AM+BM=AM+MC,∴AM+BM的最小值即为AM+MC的最小值,∴A、M、C三点共线时,AM+MC最小,在Rt△AOC中,由勾股定理得:AC=.∴AM+BM的最小值为.10.问题提出:如图1,在等边△ABC中,AB=12,⊙C半径为6,P为圆上一动点,连接AP,BP,求AP+BP的最小值.(12,连接CP,在CB 上取点D,使CD=3,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为3.(2)自主探索:如图3,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,AP+PC的最小值为5.(3)拓展延伸:如图4,扇形COD中,O为圆心,∠COD=120°,OC=4,OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.解:(1)解:(1)如图1,连接AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,∵AC=12,AF⊥BC,∠ACB=60°,∴CF=6,AF=6,∴DF=CF﹣CD=6﹣3=3,∴AD==3,∴AP+BP的最小值为3;(2)如图,在AB上截取BF=1,连接PF,PC,∵AB=9,PB=3,BF=1,∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴,∴PF=AP,∴AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF===5,∴AP+PC的值最小值为5;(3)如图,延长OC,使CF=4,连接BF,OP,PF,过点F作FM⊥OD于点M,∵OC=4,FC=4,∴FO=8,且OP=4,OA=2,∴,且∠AOP=∠AOP,∴△AOP∽△POF,∴,∴PF=2AP,∴2PA+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM,∴OM=4,FM=4,∴MB=OM+OB=4+3=7,∴FB==,∴2PA+PB的最小值为.11.(1)如图1,已知正方形ABCD的边长为6,圆B的半径为3,点P是圆B上的一个动点,则PD+PC的最小值为,PD﹣PC的最大值为.(2)如图2,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B 上的一个动点,求PD+PC的最小值,以及PD﹣PC的最大值.解:(1)如图1,在BC上截取BE=,∴,∵∠PBE=∠PBC,∴△PBE∽△CBP,∴,∴PE=PC,∴PD+PC=PD+PE≥DE,PD﹣PC=PD﹣PE≤DE,∵四边形ABCD是正方形,∴∠BCD=90°,∴DE===,∴PD+PC的最小值为:,此时点P在P′处,PD﹣PC的最大值为:,此时点P在P″处,故答案为:,;(2)如图2,在BC上截取BE=1,作DF⊥BC交BC的延长线于F,∴,∵∠PBE=∠PBC,∴△PBE∽△CBP,∴,∴PE=PC,∴PD+PC=PD+PE≥DE,PD﹣PC=PD﹣PE≤DE,在Rt△DCF中,∠DCF=∠ABC=60°,CD=4,∴CF=4•cos60°=2,DF=4•sin60°=2,在Rt△DEF中,DF=2,EF=CE+CF=3+2=5,∴DE==,∴PD+PC的最小值为:,此时点P在P′处PD﹣PC的最大值为:,此时点P在P″处12.阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+BD的最小值.解(1)在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.∴MP:PD=k,∴MP=kPD,∴PC+kPD=PC+MP,当PC+kPD取最小值时,PC+MP有最小值,即C,P,M三点共线时有最小值,利用勾股定理得.(2)∵AC=m=4,=,在CB上取一点M,使得CM=CD=,∴的最小值为.13.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+的最小值和PD﹣的最大值;(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.解:(1)如图1中,在BC上取一点G,使得BG=1.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==5.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5.(2)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(3)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.14.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2∴G(﹣2,4).(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣x﹣6,∴F(a,﹣a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣x﹣6,∴AB⊥AC,∴EF为对角线,∴EF与AH互相平分,∴(﹣4+0)=(a+a),(﹣4+p)=(2a+4﹣a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=,AE=2,设AE交⊙E于G,取EG的中点P,∴PE=,连接PC交⊙E于M,连接EM,∴EM=EH=,∴=,∵=,∴=,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴,∴PM=AM,∴AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=,∴5(p+2)2=,∴p=﹣或p=﹣(由于E(﹣2,0),所以舍去),∴P(﹣,﹣1),∴PC==,即:AM+CM的最小值为.15.如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B (8,0).(1)求二次函数的表达式;(2)求顶点A的坐标及直线AB的表达式;(3)判断△ABO的形状,试说明理由;(4)若点P为⊙O上的动点,且⊙O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB 匀速运动到点B后停止运动,求点E的运动时间t的最小值.解:(1)∵二次函数y=ax2+bx+c(a≠0)的图象经过C(2,﹣3),且与x轴交于原点∴c=0,二次函数表达式可设为:y=ax2+bx(a≠0),将C(2,﹣3),B(8,0)代入y=ax2+bx得:,解得:,∴二次函数的表达式为;(2)∵=(x﹣4)2﹣4,∴抛物线的顶点A(4,﹣4),设直线AB的函数表达式为y=kx+m,将A(4,﹣4),B(8,0)代入,得:,解得:,∴直线AB的函数表达式为y=x﹣8;(3)△ABO是等腰直角三角形.方法1:如图1,过点A作AF⊥OB于点F,则F(4,0),∴∠AFO=∠AFB=90°,OF=BF=AF=4,∴△AFO、△AFB∴OA=AB=4,∠OAF=∠BAF=45°,∴∠OAB=90°,∴△ABO是等腰直角三角形.方法2:∵△ABO的三个顶点分别是O(0,0),A(4,﹣4),B(8,0),∴OB=8,OA===,AB===,且满足OB2=OA2+AB2,∴△ABO是等腰直角三角形;(4)如图2,以O为圆心,2为半径作圆,则点P在圆周上,依题意知:动点E的运动时间为t=AP+PB,在OA上取点D,使OD=,连接PD,则在△APO和△PDO中,满足:==2,∠AOP=∠POD,∴△APO∽△PDO,∴==2,从而得:PD=AP,∴t=AP+PB=PD+PB,∴当B、P、D三点共线时,PD+PB取得最小值,过点D作DG⊥OB于点G,由于,且△ABO为等腰直角三角形,则有DG=1,∠DOG=45°∴动点E的运动时间t的最小值为:t=DB===5.。

(完整版)阿氏圆问题归纳

(完整版)阿氏圆问题归纳

阿氏圆题型的解题方法和技巧以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要.具体内容如下:阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、B 的距离之比等于定比n m (≠1),则P 点的轨迹,是以定比n m内分和外分定线段AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型.PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型阿氏圆基本解法:构造母子三角形相似【问题】在平面直角坐标系xOy 中,在x 轴、y 轴分别有点C(m ,0),D(0,n).点P 是平面内一动点,且OP=r ,求PC+kPD 的最小值.阿氏圆一般解题步骤:第一步:确定动点的运动轨迹(圆),以点O 为圆心、r 为半径画圆;(若圆已经画出则可省略这一步) 第二步:连接动点至圆心O(将系数不为1的线段的固定端点与圆心相连接),即连接OP 、OD ; 第三步:计算出所连接的这两条线段OP 、OD 长度; 第四步:计算这两条线段长度的比k ;第五步:在OD 上取点M ,使得OM:OP=OP:OD=k ;第六步:连接CM ,与圆O 交点即为点P .此时CM 即所求的最小值.习题【旋转隐圆】如图,在Rt △ABC 中,∠ACB=90°,D 为AC 的中点,M 为BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始终保持点M 为BD 的中点),若AC=4,BC=3,那么在旋转过程中,线段CM 长度的取值范围是___________.1.Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+32BD 的最小值为_______.2.如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+23PD 的最小值为________.3.如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+1PC 的最小值为_________.6.如图,边长为47.如图,边长为4的正方形,点P 是正方形内部任意一点,且BP=2,则PD+21PC 的最小值为______;2PD+4PC 的最小值为______.8.在平面直角坐标系xOy 中,A(2,0),B(0,2),C(4,0),D(3,2),P 是△AOB 外部的第一象限内一动点,且∠BPA=135°,则2PD+PC 的最小值是_______.9.在△ABC 中,AB=9,BC=8,∠ABC=60°,⊙A 的半径为6,P 是⊙A 上的动点,连接PB 、PC ,则3PC+2PB 的最小值为_______.10.如图,在Rt △ABC 中,∠A=30°,AC=8,以C 为圆心,4为半径作⊙C . (1)试判断⊙C 与AB 的位置关系,并说明理由;(2)点F 是⊙C 上一动点,点D 在AC 上且CD=2,试说明△FCD ~△ACF ; (3)点E 是AB 上任意一点,在(2)的情况下,试求出EF+21FA 的最小值.11.(1)如图1,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求PD+21PC 的最小值和PD-21PC 的最大值; (2)如图2,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么PD+32PC 的最小值为______,PD-32PC 的最大值为______. (3)如图3,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,点P 是圆B 上的一个动点,那么PD+21PC 的最小值为______,PD-21PC 的最大值为________.2PA+PB 的最小值.【二次函数结合阿氏圆题型】13.如图1,抛物线y=ax ²+(a+3)x+3(a ≠0)与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点E (m ,0)(0<m <4),过点E 作x 轴的垂线交直线AB 于点N ,交抛物线于点P ,过点P 作PM ⊥AB 于点M .(1)求a 的值和直线AB 的函数表达式; (2)设△PMN 的周长为C1,△AEN 的周长为C2,若5621=C C ,求m 的值; (3)如图2,在(2)条件下,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°),连接E ′A 、E ′B ,求E ′A+32E ′B 的最小值.问题背景:如图1,在△ABC中,BC=4,AB=2AC.问题初探:请写出任意一对满足条件的AB与AC的值:AB=_____,AC=_______.问题再探:如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.问题解决:求△ABC的面积的最大值.1.小明的数学探究小组进行了系列探究活动.类比定义:类比等腰三角形给出如下定义:有一组邻边相等的凸四边形叫做邻等四边形.探索理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请你协助小明用两种不同的方法画出格点D,连接DA、DC,使四边形ABCD为邻等四边形;尝试体验:(2)如图2,邻等四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.解决应用:(3)如图3,邻等四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,BD=4.小明爸爸所在的工厂,需要裁取某种四边形的材料板,这个材料板的形状恰巧是符合如图3条件的邻等四边形,要求尽可能节约.你能求出这种四边形面积的最小值吗?如果能,请求出此时四边形ABCD面积的最小值;如果不能,请说明理由.2.我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)如图2,等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC、BD为对角线,AC=2 AB,试探究BC,BD的数量关系.(3)如图3,等邻边四边形ABCD中,AB=AD,AC=2,∠BAD=2∠BCD=60°,求等邻边四边形ABCD 面积的最小值.。

压轴题型07 阿波罗尼斯圆问题(解析版)-2023年高考数学压轴题专项训练

压轴题型07 阿波罗尼斯圆问题(解析版)-2023年高考数学压轴题专项训练

压轴题07阿波罗尼斯圆问题在近几年的高考中,以阿波罗尼斯圆为背景的考题不断出现,备受命题者的青睐,下面我们通过一例高考题,讲解如何运用阿波罗尼斯圆进一步加强对与此圆与关试题的认识。

背景展示阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一.求证:到两定点的距离的比值是不等于1的常数的点的轨迹是圆.如图,点B A ,为两定点,动点P 满足PB P A λ=,则1=λ时,动点P 的轨迹为直线;当1≠λ时,动点P 的轨迹为圆,后世称之为阿波罗尼斯圆.证明:设PB P A m m AB λ=>=,02)(.以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(0m A -),(0m B .又设),(y x C ,则由PB P A λ=得:2222)()(y m x ym x +-=++λ,两边平方并化简整理得:)()()()(222222211121λλλλ-=-++--m y x m x ,当1=λ时,0=x ,轨迹为线段AB 的垂直平分线;当1>λ时,22222222)1(4)11(-=+-+-λλλλm y m x ,轨迹为以点)0,11(22m -+λλ为圆心,以122-λλm 长为半径的圆.○热○点○题○型隐形的阿波罗尼斯圆典型例题例1、如图,圆C与x轴相切于点(1,0)T,与y轴正半轴交于两点,A B(B在A的上方),且2AB=.(Ⅰ)圆C的标准..方程为;(Ⅱ)过点A任作一条直线与圆22:1O x y+=相交于,M N两点,下列三个结论:①NA MANB MB=;②2NB MANA MB-=;③NB MANAMB+=其中正确结论的序号是.(写出所有正确结论的序号)解析:(Ⅰ)易知半径r=()(2212x y-+-=;(Ⅱ)方法一:因为圆心)2,1(C,)2,0(E∴又因为2AB=,且E为AB中点,所以()()1,1A B因为,M N在圆22:1O x y+=上,可设)sin,(cosααM,)sin,(cosββN所以:22)]12([sin)0(cos--+-=ββNA所以:12)sin2)(12(2)sin2)(12(2-=-+--=ββNBNA,同理:12-=MBMA,所以:NA MANB MB=1-2=,①正确;2)12(121-=---=MBMANANB,②正确22)12(121=-+-=+MBMANANB,③正确所以:①、②、③正确方法一可以改进为:设(),P x y为圆C上任意一点,则有:12)12(2224)12(2224)12()12(2222-=+-+---=--++-+=yy y x y x PBP A ,①正确;同理2)12()12(-=--+=MBMA NA NB,②正确;22)12()12(=-++=+MBMA NANB ,③正确.这里的第(Ⅰ)问并不很难,只要考生有一定平面几何基础既能轻易解出.但第(Ⅱ)问有难度.这是因为当圆O 的弦MN 绕定点A 旋转时,各有关线段的长度都在变化,从而相应线段的比值也就难于确定,方法一运算量较大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

APB阿波罗尼斯圆问题一【问题背景】苏教版《数学必修2》第12题:已知点(,)M x y 与两个定点(0,0),(3,0)O A 的距离之比为12,那么点M 的坐标应满足什么关系画出满足条件的点M 所构成的曲线.二、【阿波罗尼斯圆】公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius )在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:到两定点距离之比等于已知数的动点轨迹为直线或圆. 如图,点B A ,为两定点,动点P 满足PB PA λ=,则1=λ时,动点P 的轨迹为直线;当1≠λ时,动点P 的轨迹为圆, 后世称之为阿波罗尼斯圆.证:设PB PA m m AB λ=>=,02)(.以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(0m A -),(0m B . 又设),(y x C ,则由PB PA λ=得2222)()(y m x y m x +-=++λ,两边平方并化简整理得)()()()(222222211121λλλλ-=-++--m y x m x ,当1=λ时,0=x ,轨迹为线段AB 的垂直平分线;当1>λ时,22222222)1(4)11(-=-+-λλλλm y m x ,轨迹为以点)0,11(22m -+λλ为圆心,122-λλm 长为半径的圆.上述课本习题的一般化情形就是阿波罗尼斯定理.三、【范例】例1 满足条件BC AC AB 2,2==的三角形ABC 的面积的最大值是 .解:以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(01-A ),(01B ,设),(y x C ,由BC AC 2=得2222121y x y x +-⋅=++)()(,平方化简整理得88316222≤+--=-+-=)(x x x y ,∴22≤y ,则 22221≤⋅⨯=∆y S ABC ,∴ABC S ∆的最大值是22. 变式 在ABC ∆中,边BC 的中点为D ,若AD BC AB 2,2==,则ABC ∆的面积的最大值是 .解:以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(01-A ),(01B , 由AD BC CD BD 2,==知,BD AD 2=,D 的轨迹为阿波罗尼斯圆,方程为8322=+-y x )(,设),(y x C ,BC 的中点为D 得)2,21(yx D +,所以点C 的轨迹方程为 8)2(32122=+-+y x )(,即32522=+-y x )(, ∴2432221=≤=⋅⨯=∆y y S ABC ,故ABC S ∆的最大值是24.例2 在平面直角坐标系xOy 中,设点(1,0),(3,0),(0,),(0,2)A B C a D a +,若存在点P ,使得,PA PC PD ==,则实数a 的取值范围是 .解:设(,)P x y =,整理得22(5)8x y -+=,即动点P 在以(5,0)为圆心,为半径的圆上运动. 另一方面,由PC PD =知动点P 在线段CD 的垂直平分线1y a =+上运动,因而问题就转化为直线1y a =+与圆22(5)8x y -+=有交点,所以1a +≤a 的取值范围是[1,1]-.例3 在平面直角坐标系xOy 中,点()03A ,,直线24l y x =-:.设圆的半径为1 ,圆心在l 上.若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.解: 设(),24C a a -,则圆方程为()()22241x a y a -+-+= 又设00(,)M x y , 2MA MO =Q ()22220000344x y x y ∴+-=+, 即()220014x y ++=这说明M 既在圆()()22241x a y a -+-+=上,又在圆()2214x y ++=上,因而这两个圆必有交点,即两圆相交或相切,2121∴-≤≤+,解得1205a ≤≤,即a 的取值范围是12[0,]5. 例4 已知⊙22:1O x y +=和点(4,2)M . (1)过点M 向⊙O 引切线l ,求直线l 的方程;(2)求以点M 为圆心,且被直线21y x =-截得的弦长为4的⊙M 的方程;(3)设P 为(2)中⊙M 上任一点,过点P 向⊙O 引切线,切点为Q . 试探究:平面内是否存在一定点R ,使得PQPR为定值若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.解:(1)设切线l 方程为)4(2-=-x k y ,易得11|24|2=+-k k ,解得815k ±=,∴切线l 方程为24)y x -=-. (2)圆心到直线12-=x y r ,则9)5(2222=+=r∴⊙M 的方程为9)2()4(22=-+-y x(3)假设存在这样的点),(b a R ,点P 的坐标为),(y x ,相应的定值为λ,根据题意可得122-+=y x PQ ,∴λ=-+--+2222)()(1b y a x y x ,即)22(12222222b a by ax y x y x ++--+=-+λ (*),又点P 在圆上∴9)2()4(22=-+-y x ,即114822-+=+y x y x ,代入(*)式得:[])11()24()28(1248222-++-+-=-+b a y b x a y x λ若系数对应相等,则等式恒成立,∴⎪⎩⎪⎨⎧-=-+=-=-12)11(4)24(8)28(22222b a b a λλλ,解得310,51,522,1,2======λλb a b a 或,∴可以找到这样的定点R ,使得PRPQ为定值. 如点R 的坐标为)1,2(时,比值为2; 点R 的坐标为)51,52(时,比值为310. 四、【练习】1.如图,在等腰ABC ∆中,已知AC AB =,)0,1(-B ,AC 边的中点为)0,2(D ,点C 的轨迹所包围的图形的面积等于 .解:∵AD AB 2=,所以点A 的轨迹是阿波罗尼斯圆,易知其 方程为4)3(22=+-y x ,设),(y x C ,由AC 边的中点为)0,2(D 知),4(y x A --,所以C 的 轨迹方程为4)()34(22=-+--y x ,即4)1(22=+-y x ,面积为π4.2.如图,已知平面α⊥平面β,A 、B 是平面α与 平面β的交线上的两个定点,,DA CB ββ⊂⊂,且DA α⊥,CB α⊥,4AD =,8BC =,6AB =,在平面α上有一个动点P ,使得APD BPC ∠=∠,求PAB ∆的面积的最大值. 解:将空间几何体中的线、面、角的关系转化 为平面内点P 所满足的几何条件.ΘDA α⊥ DA PA ∴⊥,∴在PAD Rt ∆中, APAP AD APD 4tan ==∠, 同理8tan BC BPC BP BP∠==, ΘAPD BPC ∠=∠AP BP 2=∴ ,这样就转化为题3的题型.在平面α上,以线段AB 的中点为原点,AB 所在的直线为x 轴,建立平面直角坐标系,则)0,3(),0,3(B A -,设),(y x P 0)y =≠ 化简得:16)5(22=++y x ,2216(5)16y x ∴=-+≤,||4y ∴≤, PAB ∆的面积为1||||3||122PAB S y AB y ∆=⋅=≤,当且仅当5,4x y =-=±等号取得,则PAB ∆的面积的最大值是12.AP BDCβα3.圆1O 与圆2O 的半径都是1,421=O O ,过动点P 分别作圆1O 、圆2O 的切线PN PM ,(N M ,分别为切点),使得PN PM 2=.试建立适当的坐标系,并求动点P 的轨迹方程.解:以1O ,2O 的中点O 为原点,1O ,2O 所在直线为x 轴,建立如图所示平面直角坐标系,则)0,2(1-O ,,2(2O ,因为两圆的半径都为1,所以有:)1(212221-=-PO PO ,设P (x,y ),则]1)2[(21)2(2222-+-=-++y x y x , 即33)6(22=+-y x ,此即P 的轨迹方程.4.已知定点)0,0(O ,点M 是圆4)1(22=++y x 上任意一点,请问是否存在不同于O 的定点A 使都为MAMO常数若存在,试求出所有满足条件的点A 的坐标,若不存在,请说明理由.解:假设存在满足条件的点),(n m A ,设),(y x M ,0>=λMAMO. 则λ=-+-+2222)()(n y m x y x , 又),(y x M 满足4)1(22=++y x ,联立两式得0)3(32)222(222222=++-++-+n m y x m λλλλ ,由M 的任意性知⎪⎩⎪⎨⎧=++-==-+0)3(3020222222222n m y m λλλλ,解得)0,3(A ,21=λ.。

相关文档
最新文档