高中数学-集合的运算测试题
高中数学--《集合与逻辑》测试题(含答案)
高中数学--《集合与逻辑》测试题(含答案)1.已知集合A={0,1,2},集合B={x|x﹣1≥0},则A∩B的真子集个数为()A.1 B.2 C.3 D.4【答案解析】C解:因为集合A={0,1,2},集合B={x|x﹣1≥0}={x|x≥1},所以A∩B={1,2},故A∩B的真子集个数为22﹣1=3.故选:C.2.设集合A={y|y=3x,x∈R},B={x|y=,x∈R},则A∩B=.【答案解析】解:因为集合A={y|y=3x,x∈R}={y|y>0},B={x|y=,x∈R}={x|},所以A∩B=.故答案为:.3.设z是复数,则“z2=1”是“|z|=1”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.非充分非必要条件【答案解析】A解:设z=x+yi(x,y∈R),①若z2=1时,则z2=(x+yi)2=x2﹣y2+2xyi=1,∴,∴,∴|z|=1,∴充分性成立,②若z=+i,满足|z|=1,但z2==﹣+i,∴必要性不成立,∴z2=1是|z|=1的充分不必要条件,故选:A.4.已知集合A={m|m=x2﹣y2,x、y∈Z),将A中的正整数从小到大排列为:a1,a2,a3,….若an=2021,则正整数n=.【答案解析】1516解:m=x2﹣y2=(x+y)(x﹣y),当x﹣y=1时,m=2y﹣1表示奇数;当x﹣y=2时,m=4y+4表示4的倍数,所以A中的整数从小到大排列为:1,3,4,5,7,8,9,11,12,13……即数列{an}满足a3k=4k(k∈N+),又2021=505×4+1,所以n=505×3+1=1516.故答案为:1516.5.已知函数f(x)=2sin(x+φ),则“”是“f(x)为偶函数”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件【答案解析】A解:①当φ=时,f(x)=2sin(x+)=2cosx,∵f(﹣x)=2cos(﹣x)=2cosx=f(x),∴f(x)为偶函数,②当f(x)为偶函数时,φ=+kπ,k∈Z,综上所述,φ=是f(x)为偶函数的充分不必要条件.故选:A.6.“0<a+b≤4”是“ab≤4”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案解析】A解:当a+b>0,ab<0时,显然ab≤4成立,反之不成立,当a>0,b>0时,则4≥a+b≥2,故≤2,ab≤4,充分性成立,令a=4,b=,由ab≤4推不出a+b≤4,故“0<a+b≤4”是“ab≤4”的充分不必要条件,故选:A.7.已知集合A={y|y<1},B={x|3x<1},则()A.A∪B=R B.A∩B={x|x<0} C.A∪B={x|x>1} D.A∩B=∅【答案解析】B解:∵A={y|y<1}={x|x<1},B={x|3x<1}={x|x<0},∴A∪B={x|x<1}∪{x|x<0}={x|x<1},A∩B={x|x<1}∩{x|x<0}={x|x<0}.故选:B.8.给定正整数n(n≥3),集合Un={1,2,…,n}.若存在集合A,B,C,同时满足下列条件:①Un=A∪B∪C,且A∩B=B∩C=A∩C=∅;②集合A中的元素都为奇数,集合B中的元素都为偶数,所有能被3整除的数都在集合C 中(集合C中还可以包含其它数);③集合A,B,C中各元素之和分别记为SA,SB,SC,有SA=SB=SC;则称集合Un为可分集合.(Ⅰ)已知U8为可分集合,写出相应的一组满足条件的集合A,B,C;(Ⅱ)证明:若n是3的倍数,则Un不是可分集合;(Ⅲ)若Un为可分集合且n为奇数,求n的最小值.【答案解析】【分析】(I)取A={5,7},B={4,8},C={1,2,3,6},即可满足条件.(II)假设存在n是3的倍数且Un是可分集合.设n=3k,则依照题意{3,6,…,3k}⊆C,可得SC≥3+6+…+3k,而这n个数的和为,即可得出矛盾.(Ⅲ)n=35.由于所有元素和为,又SB中元素是偶数,所以=3SB=6m (m为正整数),可得以n(n+1)=12m,由(Ⅱ)知道,n不是3的倍数,所以一定有n+1是3的倍数.当n为奇数时,n+1为偶数,而n(1+n)=12m,一定有n+1既是3的倍数,又是4的倍数,所以n+1=12k,所以n=12k﹣1,k∈N*.可得:k(12k﹣1)=m.定义集合D={1,5,7,11,…},即集合D由集合Un中所有不是3的倍数的奇数组成,定义集合E={2,4,8,10,…},即集合E由集合Un中所有不是3的倍数的偶数组成,可得k≥3.即可得出.解:(I)依照题意,可以取A={5,7},B={4,8},C={1,2,3,6}.(II)假设存在n是3的倍数且Un是可分集合.设n=3k,则依照题意{3,6,…,3k}⊆C,故SC≥3+6+…+3k=,而这n个数的和为,故SC==,矛盾,所以n是3的倍数时,Un一定不是可分集合.(Ⅲ)n=35.因为所有元素和为,又SB中元素是偶数,所以=3SB=6m(m为正整数),所以n(n+1)=12m,因为n,n+1为连续整数,故这两个数一个为奇数,另一个为偶数.由(Ⅱ)知道,n不是3的倍数,所以一定有n+1是3的倍数.当n为奇数时,n+1为偶数,而n(1+n)=12m,所以一定有n+1既是3的倍数,又是4的倍数,所以n+1=12k,所以n=12k﹣1,k∈N*.…定义集合D={1,5,7,11,…},即集合D由集合Un中所有不是3的倍数的奇数组成,定义集合E={2,4,8,10,…},即集合E由集合Un中所有不是3的倍数的偶数组成,根据集合A,B,C的性质知道,集合A⊆D,B⊆E,此时集合D,E中的元素之和都是24k2,而,此时Un中所有3的倍数的和为,24k2﹣(24k2﹣2k)=2k,(24k2﹣2k)﹣(24k2﹣6k)=4k显然必须从集合D,E中各取出一些元素,这些元素的和都是2k,所以从集合D={1,5,7,11,…}中必须取偶数个元素放到集合C中,所以2k≥6,所以k≥3,此时n≥35而令集合A={7,11,13,17,19,23,25,29,31,35},集合B={8,10,14,16,20,22,26,28,32,34},集合C={3,6,9,12,15,18,21,24,27,30,33,1,5,2,4},检验可知,此时U35是可分集合,所以n的最小值为35.…9.已知数列{an}的通项公式为,则“a2>a1”是“数列{an}单调递增”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案解析】C【分析】数列{an}单调递增⇔an+1>an,可得a的范围.由“a2>a1”可得:2+>1+a,可得a的范围.即可判断出关系.解:数列{an}单调递增⇔an+1>an,可得:n+1+>n+,化为:a<n2+n.∴a<2.由“a2>a1”可得:2+>1+a,可得:a<2.∴“a2>a1”是“数列{an}单调递增”的充要条件,故选:C.10.已知集合A={a1,a2,…,an,n∈N*且n>2},令TA={x|x=ai+aj},ai∈A,aj∈A,1≤i≤j≤n,card(TA)表示集合TA中元素的个数.①若A={2,4,8,16},则card(TA)=;②若ai+1﹣ai=c(1≤i≤n﹣1,c为非零常数),则card(TA)=.【答案解析】6;2n﹣3解:①若A={2,4,8,16},则TA={6,10,18,12,20,24},∴card(TA)=6;②若ai+1﹣ai=c(1≤i≤n﹣1,c为非零常数),说明数列a1,a2,…,an,构成等差数列,取特殊的等差数列进行计算,取A={1,2,3,…,n},则TA={3,4,5,…,2n﹣1},由于(2n﹣1)﹣3+1=2n﹣3,∴TA中共2n﹣3个元素,利用类比推理可得若ai+1﹣ai=c(1≤i≤n﹣1,c为非零常数),则card(TA)=2n﹣3.故答案为:6;2n﹣3.。
高中数学集合测试题(附答案和解析)
高中数学集合测试题(附答案和解析)一、单选题1.已知集合U =R ,{}2230A x x x =--<,则U A ( )A .{}13x x -<<B .{}13x x -≤≤C .{1x x ≤-或3}x ≥D .{1x x <-或3}x >2.已知集合(){}{}|20,|10M x x x N x x =-<=-<,则MN =( ) A .(),2-∞ B .(),1-∞ C .()0,1 D .()1,23.设全集U =R ,集合302x A x x ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()U A B =( ) A .()e,3 B .[]e,3 C .[)2,e - D .()2,e - 4.设集合{}()(){}|32,|130A x x B x x x =-<<=+-≤,则A B =( ) A .{}|12x x -≤< B .{}|33x x -<≤ C .{}|32x x -<≤ D .{}|13x x -≤≤ 5.已知{}33U x x =-≤<,{}23A x x =-≤<,则图中阴影表示的集合是( )A .{}32x x -≤≤-B .][33,)-∞-⋃+∞(,C .{}0x x ≤D .{}32x x -≤<-6.集合{}220A x x x =--≤,{}10B x x =-<,则A B =( ) A .{}1x x ≥B .{}11x x -≤<C .{}1x x <-D .{}21x x -≤<7.已知集合{}|03A x x =<<,{}|14B x x =≤≤,则A B ⋃=( )A .{}|13≤<x xB .{}|04x x <≤C .{}|04x x <<D .{}3|1x x <<8.已知集合{}|21x A x =>,{}22B x y x x ==-∣,则A B =( ) A .()0,+∞ B .(]0,2 C .(]1,2 D .[)2,+∞9.已知集合{}28x A x =≤,{}16B x x =-≤≤,则A B ⋃=( ) A .(,6]-∞ B .[1,6]- C .[1,3]- D .(0,6]10.设全集{}*5U x N x =∈≤,集合{}1,2M =,{}2,3,4N =,则图中阴影部分表示的集合是( )A .{}2B .{}3,4C .{}2,3D .{}2,3,4 11.已知集合{}(5)0A x x x =-<,{}14B x x =-,则A B ⋃=( )A .[1,0)-B .[4,5)C .(0,4]D .[1,5)-12.设集合{}A x x a =>,{}2320B x x x =-+>,若A B ⊆,则实数a 的取值范围是( ).A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞ 13.设全集2,1,0,1,2U,{}2,1,2A =--,{}2,1,0,1B =--,则()U A B =( ) A .{}2,1- B .{}0,1 C .{}1,0,1- D .{}2,1,0,1--14.设集合{}*21230,1A x N x x B x R x ⎧⎫=∈--≤=∈≥⎨⎬⎩⎭∣∣,则A B =( ) A .0,1 B .{}1 C .(]0,1 D .{}0,1 15.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________. 17.若集合406x A x x ⎧⎫-=<⎨⎬+⎩⎭,{}230B x x =+<,则()R A B ⋂=______. 18.已知集合(){}ln 2|A x y x ==-,{}2430|B x x x ≤=-+,则A B ⋃=____________19.若A ={}(,)21x y y x =-,B ={}2(,)x y y x =,则A B =____________ 20.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________.21.若{}31,2a ∈,则实数=a ____________.22.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________23.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.24.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.25.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.三、解答题26.已知集合2111x A x x +⎧⎫=>-⎨⎬-⎩⎭,(){}222B x x m x m B =<-+,不为空集. (1)当1m =时,求()R A B ⋃;(2)若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.27.已知函数()f x =A ,函数()g x 的定义域为集合B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.28.已知集合{}37A x x =≤<,{}210B x x =<<,{}C x x a =<.(1)求A B ,()A B R ;(2)若A C ⋂≠∅,求a 的取值范围.29.已知集合{}12,,,n A a a a =⋅⋅⋅(120n a a a ≤<<⋅⋅⋅<,*n ∈N ,3n ≥)具有性质P :对任意,i j (1i j m ≤≤≤),i j a a +与j i a a -至少一个属于A .(1)分别判断集合{}0,2,4M =,与{}1,2,3N =是否具有性质P ,并说明理由;(2){}123,,A a a a =具有性质P ,当24a =时,求集合A ;(3)①求证:0A ∈;②求证:1232n n n a a a a a +++⋅⋅⋅+=.30.已知集合{}{}222,|540A xa a B x x x x =-≤+=-+≤≥∣. (1)当3a =时,求A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.【参考答案】一、单选题1.C【解析】【分析】根据补集的定义,结合一元二次不等式的解法进行求解即可.【详解】 因为集合{}2230{|13}A x x x x x =--<=-<<, 所以U A {1x x ≤-∣或3}x ≥. 故选:C.2.C 【解析】【分析】分别求出集合M 和集合N ,然后取交集即可.【详解】集合(){}{}|20|02M x x x x x =-<=<<,{}|1N x x =<,则MN ={}()|010,1x x <<=, 故选:C3.D【解析】【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.【详解】 因为{}30232x A x x x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥,所以,{}e U B x x =<,因此,()()2,e U A B =-.故选:D.4.A【解析】【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得;【详解】解:由()()130x x +-≤,解得13x -≤≤,所以()(){}{}|130|13B x x x x x =+-≤=-≤≤,又{}|32A x x =-<<,所以{}|12A B x x ⋂=-≤<.故选:A5.D【解析】【分析】根据韦恩图,写出相应集合即可【详解】由图可知,阴影表示的集合为集合A 相对于全集U 的补集,即阴影表示的集合是U A ,所以{}32U A x x =-≤<-;故选:D6.B【解析】【分析】解不等式可求得集合,A B ,由交集定义可得结果.【详解】{}{}22012A x x x x x =--≤=-≤≤,{}{}101B x x x x =-<=<, {}11A B x x ∴⋂=-≤<.故选:B.7.B【解析】【分析】 根据集合的并集运算即可.【详解】因为{}|03A x x =<<,{}|14B x x =≤≤,所以{}|04A B x x =<≤.故选:B.8.B【解析】【分析】先求出集合A ,B ,再根据交集定义即可求出.【详解】因为{}|0A x x =>,{}|02B x x =≤≤,所以(]0,2A B =.故选:B.9.A【解析】【分析】先解出集合A ,再计算A B 即可.【详解】{}{}283x A x x x =≤=≤,故A B ⋃=(,6]-∞. 故选:A.10.B【解析】【分析】由Venn 图中阴影部分可知对应集合为N()U M ,然后根据集合的基本运算求解即可. 【详解】解:由Venn 图中阴影部分可知对应集合为N ()U M全集*{|5}{1U x N x =∈≤=,2,3,4,5},集合{1M =,2},{2N =,3,4},U M ={}3,4,5,N ()U M ={}3,4.故选:B .11.D【解析】【分析】由一元二次不等式的解法求出集合A ,再根据并集的定义即可求解.【详解】解:因为集合{}{}(5)005A x x x x x =-<=<<,{}14B x x =-,所以{}{}[05141,5)A B x x x x ⋃=<<⋃-=-.故选:D.12.D【解析】【分析】先求出集合B ,再由A B ⊆求出实数a 的范围.【详解】{}{23202B x x x x x =-+>=>或}1x <. 因为集合{}A x x a =>,A B ⊆,所以2a ≥.故选:D13.B【解析】【分析】先求U A ,再求()U A B ⋂即可.【详解】 U A ={0,1},()U A B ={0,1}. 故选:B.14.B【解析】【分析】先求出结合,A B ,再根据集合的交集运算,即可求出结果.【详解】 因为{}{}{}*2*N 230N 131,2,3A x x x x x =∈--≤=∈-≤≤=∣, {}1101B x x x x ⎧⎫=∈≥=∈<≤⎨⎬⎩⎭R R 所以{}1A B =.故选:B.15.A【解析】【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案.【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确;a 是{},,bc a 的元素,所以⑤正确.故选:A.二、填空题16.2-【解析】【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数. 【详解】由()()2140x x ax -++=得10x -=或240x ax ++=所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =-故答案为:2-.17.342x x ⎧⎫-≤<⎨⎬⎩⎭【解析】【分析】先求出集合A 和集合B 的补集,再求两集合的交集即可【详解】 依题意,{}40646x A x x x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,{}32302B x x x x ⎧⎫=+<=<-⎨⎬⎩⎭, 则R 32B x x ⎧⎫=≥-⎨⎬⎩⎭, 故()R 342A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 故答案为:342x x ⎧⎫-≤<⎨⎬⎩⎭18.[)1,+∞ 【解析】【分析】先求出集合A 、B ,再求A B .【详解】集合(){}()2|2ln ,A x y x =+∞==-,{}[]2|1,3430B x x x =≤=-+, 所以()[][)2,1,31,A B +∞⋃=∞⋃+=.故答案为:[)1,+∞19.{(1,1)}【解析】【分析】由集合中的条件组成方程组求解可得.【详解】 将21y x =-代入2yx ,得2210x x -+=,解得1x =,则211y =-=,所以{(1,1)}A B =.故答案为:{(1,1)} 20.(,3][6,)-∞-⋃+∞【分析】根据对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =,可得两个函数值域的包含关系,进而根据关于m 的不等式组,解不等式组即可.【详解】因为()22()4321f x x x x =-+=--,所以函数()f x 的对称轴为2x =,对任意的[]11,4x ∈,记()[]1,3f x ∈-.记[]1,3A =-.由题意知,当0m =时不成立,当0m >时,()52g x mx m =+-在[]1,4上是增函数,所以[]()5,25g x m m ∈-+,记[]5,25B m m =-+由题意知,B A所以m m -≥-+≥⎧⎨⎩15253,解得6m ≥. 当0m <时,()52g x mx m =+-在[]1,4上是减函数,所以[]()25,5g x m m ∈+-,记[]25,5C m m =+-,由题意知,C A ⊇所以251{53m m +≤--≥,解得3m ≤-. 综上所述,实数m 的取值范围是(,3][6,)-∞-⋃+∞.故答案为: (,3][6,)-∞-⋃+∞【点睛】解决本题的关键是将问题转化为对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =, 可得两个函数值域的包含关系,进而分别求两个函数的值域.21.5##32【解析】【分析】根据题中条件,由元素与集合之间的关系,得到23a =求解,即可得出结果.【详解】因为{}31,2a ∈,所以23a =,解得32a =. 故答案为:32. 22.5,66ππ⎛⎫ ⎪⎝⎭【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫ ⎪⎝⎭. 23.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.24.5【解析】【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人.【详解】设第一、二题都没答对的有x 人,则()()206166635x -+-++= ,所以5x =故答案为:525.13,2⎡⎫--⎪⎢⎣⎭ 【解析】【分析】由集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,列出不等式组,能求出a 的取值范围.【详解】集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,∴2185a a <-⎧⎨+⎩, 解得132a -<-.a ∴的取值范围为[3-,1)2-. 故答案为:[3-,1)2-. 三、解答题26.(1)12x x ⎧≤-⎨⎩或}1x ≥ (2)(]2,4-【解析】【分析】(1)分别求出集合,A B ,再根据并集和补集的定义即可得出答案;(2)根据“x A ∈”是“x B ∈”的必要条件,可得B A ⊆且B ≠∅,讨论m 的范围,从而可得出答案.(1)解:当1m =时,{}212112B x x x x x ⎧⎫=<+=-<<⎨⎬⎩⎭, {}211211x A x x x x +⎧⎫=>-=-<<⎨⎬-⎩⎭, 则112A B x x ⎧⎫⋃=-<<⎨⎬⎩⎭, 所以()12R A B x x ⎧⋃=≤-⎨⎩或}1x ≥; (2) 解:(){}()(){}222210B x x m x m x x m x =<-+=+-<, 因为“x A ∈”是“x B ∈”的必要条件,所以B A ⊆且B ≠∅,故2m ≠-, 当12m ->,即2m <-时,12m B x x ⎧⎫=<<-⎨⎬⎩⎭, 因为{}21A x x =-<<,所以A B =∅,不符合题意; 当12m -<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭, 则有222m m >-⎧⎪⎨-≥-⎪⎩,解得24m -<≤, 综上(]2,4m ∈-.27.(1)1{|03A B x x ⋂=-<≤或1}x =;(2)1a ≥或43a ≤-. 【解析】【分析】(1)求解分式不等式和一元二次不等式,解得集合,A B ,再求交集即可; (2)根据p q 是的充分不必要条件可知A 是B 的真子集,列不等式求a 的取值范围即可.(1)要使得()f x 有意义,则1031x x -≥+,得(1)(31)0310x x x -+≥⎧⎨+≠⎩,解得:113x ≤-<, 所以1|13A x x ⎧⎫=-<≤⎨⎬⎩⎭;当0a =时,()g x =()g x 有意义,则20x x -≥,解得:1x ≥或0x ≤, 所以{|1B x x =≥或0}x ≤, 故1{|03A B x x ⋂=-<≤或1}x =. (2)以为22(21)0x a x a a -+++≥,即[]()(1)0x a x a --+≥,解得:1x a ≥+或x a ≤, 所以{|1B x x a =≥+或}x a ≤,由题意可知A 是B 的真子集,所以1a ≥或113a +≤-(等号不同时成立), 得1a ≥或43a ≤-. 28.(1){}210A B x x ⋃=<<,R (){|23A B x x =<<或710}x ≤<;(2)()3,+∞.【解析】【分析】 (1)直接利用集合并集、交集和补集的定义求解;(2)分析A C ⋂≠∅即得解.(1)解:因为A ={x |3≤x <7},B ={x |2<x <10}, 所以{}210A B x x ⋃=<<.因为A ={x |3≤x <7},所以R {|3A x x =<或 7}x ≥则R (){|23A B x x =<<或710}x ≤<. (2)解:因为A ={x |3≤x <7},C ={x |x a <},且A C ⋂≠∅,所以3a >.所以a 的取值范围为()3,+∞.29.(1)集合M 具有,集合N 不具有,理由见详解(2)A {0,4,8}=(3)证明见详解【解析】【分析】(1)利用性质P 的定义判断即可;(2)利用33a a A +∉,330a A a -=∈可得10a =,又23a a A +∉,32a a A -∈,分析可得322a a a -=,即得解;(3)① 由 n n a a A +∉,0n n a A a -=∈,可证明; ② 由110n n n n n a a a a a a -≤<<⋅⋅⋅<---,以及n n i a a A -+∉,n n i a a A --∈可得121321,,,...,n n n n n n n n a a a a a a a a a a a a --=-=-=-=-,将等式左右两边相加可证明.(1)集合{}0,2,4M =具有性质P ,集合{}1,2,3N =不具有性质P 理由如下:对集合{}0,2,4M =,由于202,422,404,000,220,440M -=-=-=-=-=-=∈ 所以集合M 具有性质P ;对集合{}1,2,3N =,由于224N +=∉,故集合N 不具有性质P .(2)由于33333A a a a a a +>∴+∉,故330a A a -=∈10a ∴= 又23323,a a a A a a +>∴+∉,故32a a A -∈又3230<a a a -<,故322a a a -=322=8a a =∴因此集合A {0,4,8}=(3)①由于n n n n n A a a a a a +>∴+∉,故0n n a A a -=∈10a ∴= 0A ∴∈,故得证②由于120n a a a ≤<<⋅⋅⋅<故110n n n n n a a a a a a -≤<<⋅⋅⋅<---又(1,2,...,1)n n i n n n i a a a i n a a A --+>=-∴+∉n n i a a A -∴-∈121321,,,...,n n n n n n n n a a a a a a a a a a a a --∴=-=-=-=- 将各个式子左右两边相加可得:1232n n n a a a a a +++⋅⋅⋅+= 故得证30.(1){|11A B x x ⋂=-≤≤或}45x ≤≤(2)01a <<【解析】【分析】(1)求出集合,A B ,进而可得A B ; (2)根据包含关系列不等式求解即可.(1)∵当3a =时,{}{|15,|1A x x B x x =-≤≤=≤戓}4x ≥, ∴{|11A B x x ⋂=-≤≤或}45x ≤≤;(2)∵{|1B x x =≤或}4x ≥,∴{}|14R B x x =<<, 由“x A ∈”是“R x B ∈的充分不必要条件得A 是B R 的真子集且A ≠∅又{}()|220x A x a a a =-≤+>≤,∴2124a a ->⎧⎨+<⎩∴01a <<.。
高中数学必修一《集合》测试题 (751)
2 36.已知不等式 1−
x
1
的解集为A,不等式
x2
−
(2
+
a)x
+
2a
0
的解集为B
(1)求集合A及B;
(2)若 A B ,求实数a的取值范围。
37.已知 P ={x | −2 x 5}, Q ={x | m −1 x 2m −1}
(1)若 3Q, 且 5Q ,求 m 的取值范围;
(2)若 Q P ,求 m 的取值范围
−1, 0,1
.
14.已知 U=R,A=x | x 0,B=x | x −1,
则 (A Cu B) (B Cu A) =
15 . 设 集 合 U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4}, 则 ( A B) (CU C) =
2,5
.
16.50 名学生做的物理、化学两种实验,已知物理实验做得正确得有 40 人,化学实验做 得正确得有 31 人,两种实验都做错得有 4 人,则这两种实验都做对的有 人.
(−1,1)
32.已知集合U = a,b,c, d,集合 A=a, d,B=b, d,则集合(CU A )∩B=
___________
三、解答题
33.知: 命题 p :函数g(x) 的图象与函数 f (x) = 1− 3x 的图象关于直线 y = x 对称,且
g(a) 2.命题 q : 集合 A = x x2 + (a + 2)x + 1 = 0, x R , B = x x 0 ,且 A B = .
A.1
B.2
C.3
D.4(2008 陕西理)2.
5.已知集合 M
=
高中数学复习:集合的运算
高中数学复习:集合的运算1.集合A =,B =,则图中阴影部分表示的集合的真子集的个数为( )A.7B.8C.15D.162.定义差集A -B ={x |x ∈A ,且x ∉B },现有三个集合A ,B ,C 分别用圆表示,则集合C -(A -B )可表示下列图中阴影部分的为( )A.答案AB.答案BC.答案CD.答案D3.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,求该网店 (1)第一天售出但第二天未售出的商品有多少种? (2)这三天售出的商品最少有多少种?4.设集合I =,A ⊆I ,若把满足M ∪A =I 的集合M 叫做集合A 的配集,则A =的配集有( )A.1个B.2个C.3个D.4个5.设全集为R ,集合{}A |10x x =->,{}B |||2x x =>,则集合()RA B (⋃= )A .{|1}x x ≤B .{|2x x <-或1}x >C .{|12}x x ≤<D .{|1x x ≤或2}x >6.点集A ={(x ,y )|x <0},B ={(x ,y )|y <0},则A ∪B 中的元素不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限7.设集合A ={x |(x +1)(x -2)<0)},集合B ={x |1<x <3},则A ∪B 等于( ) A.{x |-1<x <3} B.{x |-1<x <1} C.{x |1<x <2} D.{x |2<x <3}8.设集合S ={x ||x -2|>3},T ={x |a <x <a +8},S ∪T =R ,则a 的取值范围是( ) A.-3<a <-1 B.-3≤a ≤-1 C.a ≤-3或a ≥-1 D.a <-3或a >-19.已知A ={x |2a ≤x ≤a +3},B ={x |x 2-6x +5>0},是否存在实数a ,使得A ∪B =R ,若存在,求出a 的取值集合,若不存在,说明理由.10.已知集合A ={1,2,3},B ={x |(x +1)(x -2)=0,x ∈Z },则A ∩B 等于( )A.{1}B.{2}C.{-1,2}D.{1,2,3}11.已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N等于( )A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}12.已知集合A={x∈R|≤0},B={x∈R|(x-2a)(x-a2-1)<0}.若A∩B=∅,则实数a的取值范围是( )A.(2,+∞)B.[2,+∞)C.{1}∪[2,+∞)D.(1,+∞)13.已知方程x2+mx-6=0与x2+nx+2=0的解集分别为A和B,且A∩B={2},则m+n=________.14.已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.(1)当a=3时,求A∩B;(2)若A∩B=∅,求实数a的取值范围.15.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是( )A.N⊆MB.M∪N=MC.M∩N=ND.M∩N={2}16.对于集合M、N,定义M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M),设A={y|y=3x,x∈R},B={y|y =-(x-1)2+2,x∈R},则A⊕B等于( )A.[0,2)B.(0,2]C.(-∞,0]∪(2,+∞)D.(-∞,0)∪[2,+∞)17.已知集合A={x|},集合B={m|3>2m-1},求A∩B,A∪B.18.已知集合A={x|x2-8x+15=0},B={x|x2-ax-b=0}.(1)若A∪B={2,3,5},A∩B={3},求a,b的值;(2)若∅B A,求实数a,b的值.19.已知集合M={x|2x-4=0},集合N={x|x2-3x+m=0},(1)当m=2时,求M∩N,M∪N;(2)当M∩N=M时,求实数m的值.20.设集合P={x|x2-x-6<0},Q={x|2a≤x≤a+3}.(1)若P∪Q=P,求实数a的取值范围;(2)若P∩Q=∅,求实数a的取值范围;(3)若P∩Q={x|0≤x<3},求实数a的值.21.已知集合A={0,1,2,3},集合B={x|x=2a,a∈A},则( )A.A∩B=AB.A∩B⊇AC.A∪B=BD.A∩B⊆A22.已知集合A={1,3,},B={1,m},A∪B=A,则m等于( )A.0或B.0或3C.1或D.1或323.已知集合A={x|0<x<2},集合B={x|-1<x<1},集合C={x|mx+1>0},若(A∪B)⊆C,则实数m的取值范围为( )A.{m|-2≤m≤1}B.C.D.24.已知集合A={a,b},集合B满足A∪B={a,b},则满足条件的集合B的个数有( )A.4B.3C.2D.125.已知A={2,5},B={x|x2+px+q=0},A∪B=A,A∩B={5},求p、q的值.26.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A等于( )A.{1,3,5,6}B.{2,3,7}C.{2,4,7}D.{2,5,7}27.若全集U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},则∁U A等于( )A.{x|0<x<2}B.{x|0≤x<2}C.{x|0<x≤2}D.{x|0≤x≤2}28.设U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},则a+b=________.29.已知全集U={|a-1|,(a-2)(a-1),4,6};(1)若∁U(∁U B)={0,1},求实数a的值;(2)若∁U A={3,4},求实数a的值.30.已知全集U=R,集合M={x|-1<x<1},N={x|x>1},则下列说法正确的是( )A.M∩N=NB.M∩(∁U N)=∅C.M∪N=UD.M⊆(∁U N)31.若集合M={y|y=x2,x∈Z},N={x|x2-6x-27≥0,x∈R},全集U=R,则M∩(∁U N)的真子集的个数是( )A.15B.7C.16D.832.关于x的方程:x2+ax+1=0,①x2+2x-a=0,②x2+2ax+2=0,③若三个方程至少有一个有解,求实数a的取值范围.33.已知集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y=x2-x+,0≤x≤3}.(1)若A∩B=∅,求a的取值范围;(2)当取使不等式x2+1≥ax恒成立的a的最小值时,求(∁R A)∩B.答案1.集合A=,B=,则图中阴影部分表示的集合的真子集的个数为( )A.7B.8C.15D.16【答案】C【解析】A=,图中阴影部分表示的集合为A∩B=,∴真子集个数为24-1=15.2.定义差集A-B={x|x∈A,且x∉B},现有三个集合A,B,C分别用圆表示,则集合C-(A-B)可表示下列图中阴影部分的为( )A.答案AB.答案BC.答案CD.答案D 【答案】A【解析】如图所示,A -B 表示图中阴影部分,故C -(A -B )所含元素属于C ,但不属于图中阴影部分,故选A.3.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,求该网店 (1)第一天售出但第二天未售出的商品有多少种? (2)这三天售出的商品最少有多少种?【答案】由Venn 图知,第一天售出但第二天未售出的商品为19-3=16(种).而这三天售出的商品最少时有2+18+9=29(种).4.设集合I =,A ⊆I ,若把满足M ∪A =I 的集合M 叫做集合A 的配集,则A =的配集有( )A.1个B.2个C.3个D.4个 【答案】D 【解析】M 可以是,,,,共4个.5.设全集为R ,集合{}A |10x x =->,{}B |||2x x =>,则集合()RA B (⋃= )A .{|1}x x ≤B .{|2x x <-或1}x >C .{|12}x x ≤<D .{|1x x ≤或2}x >【答案】D【解析】因为{}A |1x x =>,B {x |x 2=<-或x 2}>;R A {x |x 1}∴=≤;()R A B {x |x 1∴⋃=≤或x 2}>.故选D6.点集A ={(x ,y )|x <0},B ={(x ,y )|y <0},则A ∪B 中的元素不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【答案】A7.设集合A ={x |(x +1)(x -2)<0)},集合B ={x |1<x <3},则A ∪B 等于( ) A.{x |-1<x <3} B.{x |-1<x <1} C.{x |1<x <2} D.{x |2<x <3} 【答案】A【解析】A ={x |-1<x <2},B ={x |1<x <3},∴A ∪B ={x |-1<x <3},选A.8.设集合S ={x ||x -2|>3},T ={x |a <x <a +8},S ∪T =R ,则a 的取值范围是( ) A.-3<a <-1 B.-3≤a ≤-1 C.a ≤-3或a ≥-1 D.a <-3或a >-1 【答案】A【解析】根据题意,S ={x ||x -2|>3}={x |x <-1或x >5}, 又有S ∪T =R , 所以⇒-3<a <-1,故选A.9.已知A={x|2a≤x≤a+3},B={x|x2-6x+5>0},是否存在实数a,使得A∪B=R,若存在,求出a的取值集合,若不存在,说明理由.【答案】B={x|x2-6x+5>0}={x|x<1或x>5},假设存在a使A∪B=R,则即∴无解.∴不存在a使A∪B=R.10.已知集合A={1,2,3},B={x|(x+1)(x-2)=0,x∈Z},则A∩B等于( )A.{1}B.{2}C.{-1,2}D.{1,2,3}【答案】B【解析】B=,∴A∩B=.11.已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N等于( )A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}【答案】A【解析】集合M={x|-1<x<3,x∈R},N={-1,0,1,2,3},则M∩N={0,1,2},故选A.12.已知集合A={x∈R|≤0},B={x∈R|(x-2a)(x-a2-1)<0}.若A∩B=∅,则实数a的取值范围是( )A.(2,+∞)B.[2,+∞)C.{1}∪[2,+∞)D.(1,+∞)【答案】C【解析】由≤0,得A={x∈R|-1<x≤4},B={x∈R|(x-2a)(x-a2-1)<0}={x∈R|2a<x<a2+1}.若B≠∅,则在数轴上可以看出2a≥4,所以a≥2;若B=∅,只能a=1.综上选C.13.已知方程x2+mx-6=0与x2+nx+2=0的解集分别为A和B,且A∩B={2},则m+n=________. 【答案】-2【解析】∵A∩B={2},∴2既是方程x2+mx-6=0的根,又是方程x2+mx-6=0的根.∴解得:经检验,当时,适合题意.∴m+n=-2.14.已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.(1)当a=3时,求A∩B;(2)若A∩B=∅,求实数a的取值范围.【答案】(1)∵当a=3时,A={x|-1≤x≤5},B={x|x≤1或x≥4},∴A∩B={x|-1≤x≤1或4≤x≤5}.(2)①若A=∅,此时2-a>2+a,∴a<0,满足A∩B=∅.②当a≥0时,A={x|2-a≤x≤2+a}≠∅,∵A∩B=∅,∴∴0≤a<1.综上可知,实数a的取值范围是a<1.15.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是( )A.N⊆MB.M∪N=MC.M∩N=ND.M∩N={2}【答案】D【解析】∵-2∈N,但-2∉M,∴A,B,C三个选项均不对.16.对于集合M、N,定义M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M),设A={y|y=3x,x∈R},B={y|y =-(x-1)2+2,x∈R},则A⊕B等于( )A.[0,2)B.(0,2]C.(-∞,0]∪(2,+∞)D.(-∞,0)∪[2,+∞)【答案】C【解析】由题可知,集合A={y|y>0},B={y|y≤2},所以A-B={y|y>2},B-A={y|y≤0},所以A⊕B=(-∞,0]∪(2,+∞).故选C.17.已知集合A={x|},集合B={m|3>2m-1},求A∩B,A∪B.【答案】解不等式组得-2<x<3,则A={x|-2<x<3},解不等式3>2m-1得m<2,则B={m|m<2}.用数轴表示集合A和B,如图所示,则A∩B={x|-2<x<2},A∪B={x|x<3}.18.已知集合A={x|x2-8x+15=0},B={x|x2-ax-b=0}.(1)若A∪B={2,3,5},A∩B={3},求a,b的值;(2)若∅B A,求实数a,b的值.【答案】(1)因为A={3,5},A∪B={2,3,5},A∩B={3},所以3∈B,2∈B,故2,3是一元二次方程x2-ax-b=0的两个实数根,所以a=2+3=5,-b=2×3=6,b=-6.(2)由∅B A,且A={3,5},得B={3}或B={5}.当B={3}时,解得a=6,b=-9;当B={5}时,解得a=10,b=-25.综上,或19.已知集合M={x|2x-4=0},集合N={x|x2-3x+m=0},(1)当m=2时,求M∩N,M∪N;(2)当M∩N=M时,求实数m的值.【答案】(1)由题意得M={2}.当m=2时,N={x|x2-3x+2=0}={1,2},则M∩N={2},M∪N={1,2}.(2)∵M∩N=M,∴M⊆N.∵M={2},∴2∈N.∴2是关于x的方程x2-3x+m=0的解,即4-6+m=0,解得m=2.20.设集合P={x|x2-x-6<0},Q={x|2a≤x≤a+3}.(1)若P∪Q=P,求实数a的取值范围;(2)若P∩Q=∅,求实数a的取值范围;(3)若P∩Q={x|0≤x<3},求实数a的值.【答案】(1)由题意知:P={x|-2<x<3},∵P∪Q=P,∴Q⊆P.①当Q=∅时,得2a>a+3,解得a>3.②当Q≠∅时,得-2<2a≤a+3<3,解得-1<a<0.综上,a∈(-1,0)∪(3,+∞).(2)①当Q=∅时,得2a>a+3,解得a>3;②当Q≠∅时,得解得a≤-5或≤a≤3.综上,a∈(,-5]∪[,+∞).(3)P∩Q={x|0≤x<3},则a=0.21.已知集合A={0,1,2,3},集合B={x|x=2a,a∈A},则( )A.A∩B=AB.A∩B⊇AC.A∪B=BD.A∩B⊆A【答案】D【解析】根据集合运算的性质可知,A∩B⊆A恒成立.22.已知集合A={1,3,},B={1,m},A∪B=A,则m等于( )A.0或B.0或3C.1或【答案】B23.已知集合A={x|0<x<2},集合B={x|-1<x<1},集合C={x|mx+1>0},若(A∪B)⊆C,则实数m的取值范围为( )A.{m|-2≤m≤1}B.C.D.【答案】B【解析】由题意,A∪B={x|-1<x<2},∵集合C={x|mx+1>0},(A∪B)⊆C,①当m<0时,x<-,∴-≥2,∴m≥-,∴-≤m<0;②当m=0时,成立;③当m>0时,x>-,∴-≤-1,∴m≤1,0<m≤1.综上所述,-≤m≤1,故选B.24.已知集合A={a,b},集合B满足A∪B={a,b},则满足条件的集合B的个数有( )A.4B.3C.2D.1【答案】A【解析】∵集合A={a,b},集合B满足A∪B={a,b},∴集合B只要是A的子集就可以,∴集合B有22=4个,25.已知A={2,5},B={x|x2+px+q=0},A∪B=A,A∩B={5},求p、q的值. 【答案】∵A∪B=A,∴B⊆A.又A∩B={5},且A={2,5},∴5∈B,且2∉B,∴B={5}.即解得26.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A等于( )A.{1,3,5,6}B.{2,3,7}C.{2,4,7}D.{2,5,7}【答案】C【解析】∵全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},∴∁U A={2,4,7}.27.若全集U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},则∁U A等于( )A.{x|0<x<2}B.{x|0≤x<2}C.{x|0<x≤2}D.{x|0≤x≤2}【答案】C【解析】∵U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},∴∁U A={x|0<x≤2},故选C.28.设U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},则a+b=________.【答案】7【解析】∵U=R,A={x|a≤x≤b},∴∁U A={x|x<a或x>b},又∵∁U A={x|x<3或x>4},∴a=3,b=4.∴a+b=7.29.已知全集U={|a-1|,(a-2)(a-1),4,6};(1)若∁U(∁U B)={0,1},求实数a的值;(2)若∁U A={3,4},求实数a的值.【答案】(1)∵∁U(∁U B)=B={0,1},且B⊆U,∴|a-1|=0,且(a-2)(a-1)=1;或|a-1|=1,且(a-2)(a-1)=0;第一种情况显然不可能,在第二种情况中由|a-1|=1得a=0或a=2,而a=2适合(a-2)(a-1)=0,∴所求a的值是2;(2)依题意知|a-1|=3或(a-2)(a-1)=3,若|a-1|=3,则a=4或a=-2;若(a-2)(a-1)=3,则a=,经检验知a=4时,(4-2)(4-1)=6,与集合中元素的互异性相矛盾,∴所求的a的值是-2或.30.已知全集U=R,集合M={x|-1<x<1},N={x|x>1},则下列说法正确的是( )A.M∩N=NB.M∩(∁U N)=∅C.M∪N=UD.M⊆(∁U N)【答案】D【解析】∁U N={x|x≤1},M={x|-1<x<1},∴M⊆(∁U N).31.若集合M={y|y=x2,x∈Z},N={x|x2-6x-27≥0,x∈R},全集U=R,则M∩(∁U N)的真子集的个数是( )A.15B.7C.16D.8【答案】B【解析】∵N={x|x2-6x-27≥0}={x|x≥9或x≤-3}.∴∁U N={x|-3<x<9},∴M∩(∁U N)={0,1,4}.∴M∩(∁U N)的真子集的个数为23-1=7.故选B.32.关于x的方程:x2+ax+1=0,①x2+2x-a=0,②x2+2ax+2=0,③若三个方程至少有一个有解,求实数a的取值范围.【答案】假设三个方程均无实根,则有即解得<a<-1,∴当a≤或a≥-1时,三个方程至少有一个方程有实根,即a的取值范围为{a|a≤或a≥-1}.33.已知集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y=x2-x+,0≤x≤3}.(1)若A∩B=∅,求a的取值范围;(2)当取使不等式x2+1≥ax恒成立的a的最小值时,求(∁R A)∩B.【答案】A={y|y<a或y>a2+1},B={y|2≤y≤4}.(1)当A∩B=∅时,∴≤a≤2或a≤-.∴a的取值范围是(-∞,-]∪[,2].(2)由x2+1≥ax,得x2-ax+1≥0,依题意Δ=a2-4≤0,∴-2≤a≤2.∴a的最小值为-2.当a=-2时,A={y|y<-2或y>5}. ∴∁R A={y|-2≤y≤5}.∴(∁R A)∩B={y|2≤y≤4}.。
人教A版高中数学必修一 1.3 集合的运算能力专题训练题(附答案)
人教A版高中数学必修一 1.3 集合的运算能力专题训练题(附答案)一、单选题1.设全集M={1,2,3,4,5},N={2,5},则∁M N=()A. {1,2,3}B. {1,3,4}C. {1,4,5}D. {2,3,5}2.如图,U为全集,M,N是集合U的子集,则阴影部分所表示的集合是()A. M∩NB. ∁U(M∩N)C. (∁U M)∩ND. (∁U N)∩M3.若集合M={3,4,5,6,7,8},N={x|x2-5x+4≤0}则M∩N=()A. {3}B. {3,4}C. {3<x≤5}D. {3、4、5}4. A. B. C. D.5.已知全集U={小于10的正整数},集合M={3,4,5},P={1,3,6,9},则集合{2,7,8}=()A. M∪PB. (C U M)∩(C U P)C. M∩PD. (C U M)∪(C U P)6.设全集U=R,集合A={x|y=lgx},B={x|x2﹣3x>4},则A∩(∁U B)=()A. {x|0≤x≤4}B. {x|﹣1≤x≤4}C. {x|﹣1≤x≤0}D. {x|0<x≤4}7.已知全集U是实数集R.如图的韦恩图表示集合M={x|x>2}与N={x|1<x<3}关系,那么阴影部分所表示的集合可能为()A. {x|x<2}B. {x|1<x<2}C. {x|x>3}D. {x|x≤1}8.已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A. [1,2)B. [﹣1,1]C. [﹣1,2)D. [﹣2,﹣1]二、多选题≥1},集合B={x|ax=1},且A∩B=B,则a的值可能为()9.已知集合为A={x∈Z|2−xx+3C. -1D. -2A. 0B. −1210.定义集合运算:A⊗B={z|z=(x+y)×(x−y),x∈A,y∈B},设A={√2,√3},B={1,√2},则()A. 当x=√2,y=√2时,z=1B. x可取两个值,y可取两个值,z=(x+y)×(x−y)对应4个式子C. A⊗B中有4个元素D. A⊗B的真子集有7个E. A⊗B中所有元素之和为411.已知集合A={x|x2+x−2=0},B={x|ax=1},若A∩B=B,则a=()A. −12B. 1C. 0D. 212.已知集合A={x|x2−x−6=0},B={x|mx−1=0},A∩B=B,则实数m取值为()A. 13B. −12C. −13D. 0三、填空题13.A={1,4,x},B={1,x2},且A∩B=B,则x=________.14.若集合A={x|﹣1≤2x+1≤3},B= {x|x−2x≤0},则A∪B=________.15.已知非空集合A={x∈R|x2<a2},B={x|1<x<3},若A∩B={x|1<x<2},则实数a的值为________.16.用集合的交和并表示图中阴影部分为________.四、解答题17.在①A ∪B=B,②A ∩B ≠∅,③B ⊆∁RA这三个条件中任选一个,补充在下面问题中,若问题中的实数a存在,求a的取值范围;若不存在,说明理由.问题:已知集合A={x|(x+2)(x−a)<0,x∈R},B={x|x+2x−2≤0,x∈R},是否存在实数a,使得_________成立.注:如果选择多个条件分别解答,按第一个解答计分.18.已知函数f(x)=m−25x+1.(1)若函数f(x)是R上的奇函数,求m的值;(2)若函数f(x)的值域为D,且D⊆[-3,1],求m的取值范围.19.已知函数y=√x+2+√5−x的定义域是集合Q,集合P={x|a+1≤x≤2a+3},R是实数集. (1)若a=3,求(∁R P)∪(∁R Q);(2)若P∪Q=Q,求实数a的取值范围.20.已知函数f(x)=x2−4x+a+3,a∈R.(1)若函数y=f(x)的图像与x轴无交点,求a的取值范围;(2)若方程f(x)=0在区间[−1,1]上存在实根,求a的取值范围;(3)设函数g(x)=bx+5−2b,b∈R,当a=0时若对任意的x1∈[1,4],总存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范围.21.已知函数f(x)=x−6x+1,且当x∈[0,2]时,函数g(x)=x2−mx+m.(1)判断并证明函数f(x)在区间(0,+∞)上的单调性;(2)若对任意x1∈[0,2],总存在x2∈[1,5],使得g(x1)=f(x2),求实数m的取值范围.22.设n为正整数,集合A={α|α=(t1,t2⋯t n),t k∈{0,1},k=1,2,⋯,n} ,对于集合A中的任意元素α= {x1,x2⋯x n}和β= {y1,y2⋯y n},记M(α,β)= 12[( x1+y1−|x1−y1|)+(x2+y2−|x2−y2|)+ +(x n+y n−|x n−y n|)] (Ⅰ)当n=3时,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值;(Ⅱ)当n=4时,设B是A的子集,且满足;对于B中的任意元素α,β,当a,β相同时,M( α,β)是奇数;当aβ不同时,M( α,β)是偶数,求集合B中元素个数的最大值(Ⅲ)给定不小于2的n,设B是A的子集,且满足;对于B中的任意两个不同的元素α,β,M( α,β)=0,写出一个集合B,使其元素个数最多,并说明理由.答案一、单选题1. B2.D3. B4. A5. B6.D7. D8. D二、多选题9. A,B,C 10. B,D 11. A,B,C 12. A,B,D三、填空题13. -2,0,2 14. {x |﹣1≤x≤2} 15.±2 16. (A∩B)∪C四、解答题17. 解:由题意,B={x|x+2x−2≤0}=[−2,2),A={x|(x+2)(x−a)<0,x∈R}当a>−2时,A= (−2,a);当a=−2时,A=∅;当a<−2时,A=(a,−2);选择①:A∪B=B,则A⊆B,当a>−2时,(−2,a)⊆[−2,2),则a≤2,所以−2<a≤2;当a=−2时,A=∅,满足题意;当a<−2时,A=(a,−2),不满足题意;则实数a的取值范围是[−2,2].选择②:A∩B≠∅,当a>−2时,A=(−2,a),B=[−2,2),满足题意;当a=−2时,A=∅,不满足题意;当a<−2时,A=(a,−2),B=[−2,2),不满足题意;则实数a的取值范围是(−2,+∞). 选择③:B⊆∁R A,当a>−2时,A=(−2,a),∁R A=(−∞,−2]∪[a,+∞),而B=[−2,2),不满足题意;当a=−2时,A=∅,∁R A=R,而B=[−2,2),满足题意;当a<−2时,A=(a,−2),∁R A= (−∞,a]∪[−2,+∞),而B=[−2,2),满足题意;则实数a的取值范围是(−∞,−2].18. (1)解:∵f(x)是R上的奇函数,∴f(0)=0,∴m- 250+1=0,∴m=1,此时f(x)=1−25x+1=5x−15x+1=−5−x−15−x+1=f(−x)为奇函数,满足题意.(2)解:∵5x>0,∴5x+1>1,∴0<25x+1<2,∴-2<- 25x+1<0,∴m-2<m- 25x+1<m,∴D=(m-2,m),∵D⊆[-3,1],∴{m−2≥−3m≤1,∴-1≤m≤1,∴m的取值范围为[-1,1].19. (1)解:Q={x|−2≤x≤5}当a=3,P={x|4≤x≤9},故P∩Q={x|4≤x≤5},(∁R P)∪(∁R Q)=∁R(P∩Q)={x|x4或x5}(2)解:要P∪Q=Q,则要P⊆Q.(i)当a+1≤2a+3时,即a≥−2时,P≠∅,要使得P⊆Q.只需{a≥−2−2≤a+12a+3≤5,解得−2≤a≤1.(ii)当a+1>2a+3时,即a<−2时,P=∅.故P⊆Q.综合(i)(ii),实数a的取值范围为{a|a≤1}.20. (1)解:若函数 y =f(x) 的图象与 x 轴无关点,则方程 f(x)=0 的根的判别式 Δ<0 ,即 16−4(a +3)<0 ,解得 a >1 . 故 a 的取值范围为 {a|a >1} .(2)解:因为函数 f(x)=x 2−4x +a +3 的图象的对称轴是直线 x =2 ,所以 y =f(x) 在 [−1,1] 上是减函数.又 y =f(x) 在 [−1,1] 上存在零点,所以 {f(1)≤0f(−1)≥0 ,即 {a ≤0a +8≥0,解得 −8≤a ≤0 . 故 a 的取值范围为 {a|−8≤a ≤0} .(3)解:若对任意的 x 1∈[1,4] ,总存在 x 2∈[1,4] ,使得 f(x 1)=g(x 2) ,则函数 y =f(x) 在 [1,4] 上的函数值的取值集合是函数 y =g(x) 在 [1,4] 上的函数值的取值集合的子集.当 a =0 时,函数 f(x)=x 2−4x +3 图象的对称轴是直线 x =2 ,所以 y =f(x) 在 [1,4] 上的函数值的取值集合为 [−1,3] .①当 b =0 时, g(x)=5 ,不符合题意,舍去.②当 b >0 时, g(x) 在 [1,4] 上的值域为 [5−b,5+2b] ,只需 {5−b ≤−15+2b ≥3,解得 b ≥6 . ③当 b <0 时, g(x) 在 [1,4] 上的值域为 [5+2b,5−b] ,只需 {5+2b ≤−15−b ≥3,解得 b ≤−3 . 综上, b 的取值范围为 {b|b ≥6 或 b ≤−3} .21. (1)解:函数 f(x) 在 (0,+∞) 递增;证明: ∀x 1,x 2∈(0,+∞) ,且 x 1>x 2>0 ,则 f(x 1)−f(x 2)=x 1−6x 1+1−(x 2−6x 2+1)=(x 1−x 2)[1+6(x 1+1)(x 2+1)] ,因为 x 1−x 2>0,(x 1+1)(x 2+1)>0 ,所以 f(x 1)−f(x 2)>0 ,即 f(x 1)>f(x 2) ,所以 f(x) 在 (0,+∞) 递增(2)解:由已知可得: g(x) 的值域为 f(x) 值域的子集,由(1)知 f(x) 在 [1,5] 上递增,且 f(1)=−2,f(5)=4 ,故 f(x) 的值域为 [−2,4] ,于是原问题转化为 g(x) 在 [0,2] 上的值域 A ⊆[−2,4] ,①当 m 2≤0 即 m ≤0 时, g(x) 在 [0,2] 递增,又 g(0)=m , g(2)=4−m ,故 A =[m,4−m] ,∵ [m,4−m]⊆[−2,4] ,∴ {m ≥−24−m ≤4,解得: m =0 ; ②当 0<m 2≤1 即 0<m ≤2 时, g(x) 在 [0,m 2) 递减,在 (m 2,2] 递增, 故此时 A =[g(m 2),g(2)] ,欲使 A ⊆[−2,4] ,只需 {g(m 2)=−m 24+m ≥−2g(2)=4−m ≤4, 解不等式得: 0≤m ≤2+2√3 ,又 0<m ≤2 ,故此时 0<m ≤2 ;③当 1<m 2<2 即 2<m <4 时, g(x) 在 [0,m 2) 递减,在 (m 2,2] 递增,故此时 A =[g(m 2),g(0)] ,欲使 A ⊆[−2,4] ,只需 {g(m 2)=−m 24+m ≥−2g(0)=m ≤4,解不等式得:2−2√3≤m≤4,又2<m<4,故此时2<m<4;≥2即m≥4时,g(x)在[0,2]递减,于是A=[4−m,m],④当m2∵[4−m,m]⊆[−2,4],故{4−m≥−2m≤4,解得:m=4;综上:实数m的取值范围是[0,4].[(1−1)+2+(1−1)2]=122. 解:(Ⅰ)M(α, α)=2,M(α,β)=12(Ⅱ)当α,β相同时,M(α,β)=x1+x2+x3+x4为奇数,共8种,分别为(0,0,0,1)(0,0,1,0)(0,1,0,0)(1,0,0,0)(0,1,1,1)(1,1,0,1)(1,0,1,1)(1,1,1,0)当α,β不同时,每位次可以相同,可以不同,计算加和为本身,不同位次计算加和为0,∴M(α,β)为偶数,则有如下几种情形四个位次全不同;两个位次相同;两个位次不同,且相同位次同为0或同为1Ⅰ组可以最多4个,Ⅱ组可以同在最多4个,Ⅰ、Ⅱ组均有,则只能四个位次全不同,则最多2个综上所述,最多4个,(Ⅲ)由(Ⅱ)可知,若相同位次,计算加和为本身,只能是0,若不同位次,计算加和也为0,故每个元素最多为1个,其余为0,则B中元素最多n+1个,即(0,0,…,0)(0,1,0…,0)(0,0,1,…,0)(0,0,0…1)。
高三数学集合练习题
高三数学集合练习题1. 设集合A={1,2,3,4,5},集合B={3,4,5,6,7},求:a) A∪Bb) A∩Bc) A-Bd) B-A2. 已知集合A={x | x是三位数},集合B={y | y是偶数},求:a) A∩Bb) A-Bc) A∪B3. 集合A={x | x是正整数,且x ≤ 10},集合B={y | y是奇数},求:a) A∩Bb) A-Bc) A∪B4. 设全集为U={1,2,3,4,5,6,7,8,9,10},集合A={x | x是正整数,且x < 6},集合B={y | y是奇数},求:a) A∩Bb) A∪Bc) A-B5. 设全集为U={-3,-2,-1,0,1,2,3,4,5},集合A={x | x是整数,-2 ≤ x ≤ 2},集合B={y | y是奇数},求:a) A∩Bb) A∪Bc) A-B6. 设全集为U={a,b,c,d,e,f,g,h},集合A={a,b,c},集合B={c,d,e},集合C={b,c,f,g},求:a) (A∩B)∪Cb) (A-B)∩C7. 设全集为U={1,2,3,4,5,6,7,8},集合A={x | x是偶数},集合B={x | x是奇数},集合C={x | x能被3整除},求:a) A∩Bb) A∪Bc) (A∪B)-C8. 设全集为U={a,b,c,d,e,f,g,h,i,j,k,l,m,n},集合A={a,b,c,d,e},集合B={d,e,f,g,h},集合C={a,d,g,j,m},求:a) (A∩B)∪Cb) (A-B)∩Cc) (A∩B)-C9. 设全集为U={x | x是大写英文字母},集合A={x | x是元音字母},集合B={x | x是辅音字母},求:a) A∩Bb) A∪Bc) (A∪B)-U10. 设全集为U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5},求:a) (A-B)∩(B-A)以上是高三数学集合练习题的内容,请按照题目要求计算并得出答案。
高中数学集合习题及详解
高中数学集合习题及详解一、单选题1.设S 是整数集Z 的非空子集,如果任意的,a b S ∈,有ab S ∈,则称S 关于数的乘法是封闭的.若T 、V 是Z 的两个没有公共元素的非空子集,T V ⋃=Z .若任意的,,a b c T ∈,有abc T ∈,同时,任意的,,x y z V ∈,有xyz V ∈,则下列结论恒成立的是( ) A .T 、V 中至少有一个关于乘法是封闭的B .T 、V 中至多有一个关于乘法是封闭的C .T 、V 中有且只有一个关于乘法是封闭的D .T 、V 中每一个关于乘法都是封闭的2.设R U =,1{|2}2x A x =<,{1}B x =,则()U B A ⋂=( ) A .{|0}x x <B .{}|1x x >C .{}|01x x <<D .{}|01x x <≤3.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个 B .2个 C .3个 D .4个 4.已知集合{}{}1,(2)0A x x B x x x =<=-<,则A B ⋃=( )A .(0,1)B .(1,2)C .(,2)-∞D .(0,)+∞5.已知集合{}lg 0A x x =≤,{}22320B x x x =+-≤,则A B ⋃=( ) A .122x x ⎧⎫-≤≤⎨⎬⎩⎭B .{}21x x -≤≤C .102x x ⎧⎫-≤≤⎨⎬⎩⎭D .102x x ⎧⎫<≤⎨⎬⎩⎭ 6.已知集合{|10}M x x =->,集合{|(4)0}N x x x =-<,则集合M N =( )A .{|0}x x >B .{|14}x x <<C .{|0x x <或1}x >D .{|0x x <或4}x > 7.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤<B .{}|15x x ≤<C .{}|15x x -≤<D .{}|13x x ≤≤8.设集合{}A x x a =>,{}2320B x x x =-+>,若A B ⊆,则实数a 的取值范围是( ).A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞9.设集合(){}ln 2A x y x ==-,{}13B x x =≤≤,则A B ⋃=( )A .(]2,3B .[)1,+∞C .()2,+∞D .(],3-∞ 10.已知集合()(){}{}1460,7524||A x x x B x x =+--≤=-≤-≤,则A B ⋃=( )A .1|12x x ⎧⎫⎨⎬⎩⎭≤≤B .{}|26x x -≤≤C .1|52x x ⎧≤≤⎫⎨⎬⎩⎭D .{}|14x x ≤≤ 11.已知集合50{|}A x x =<<-,{}41B x x =-≤≤,则A B ⋃=( )A .AB .BC .(5,1]-D .[4,0)- 12.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,413.已知集合{}2230A x x x =--≤,{}22B x x =-≤<,则A B ⋃=( ) A .{}12x x -≤< B .{}12x x -≤≤ C .{}22x x -<< D .{}23x x -≤≤14.设集合{}{21,2,3|50}A B x x bx =---=++=,.若{}1A B ⋂=-,则B =( ) A .(-1,-3} B .{-1,3} C .{}1,5-- D .{}1,5-15.已知集合{}2|20,A x x x x R =--≤∈,{}|14,B x x x Z =-<<∈,则A B =( ) A .(1,2]-B .(1,2)-C .{}0,2D .{}0,1,2二、填空题16.如图,设集合,A B 为全集U 的两个子集,则A B =____________.17.已知集合{}2,1,2A =-,{}1,B a a =,且B A ⊆,则实数a 的值是___________. 18.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},则a =_______;已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},U B ={-1, 0, 2},则B =_____.19.已知[]x 表示不超过x 的最大整数.例如[2.1]2=,[ 1.3]2-=-,[0]0=,若{[]}A y y x x ==-∣,{0}∣=≤≤B y y m ,y A 是y B ∈的充分不必要条件,则m 的取值范围是______.20.已知集合{}22A x x =-≤≤,若集合{}B x x a =≤满足A B ⊆,则实数a 的取值范围____________.21.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个.22.已知集合{}0,1,2A =,则集合{}3,B b b a a A ==∈=______.(用列举法表示)23.设集合21|,|32A x m x m B x n x n ⎧⎫⎧⎫=≤≤+=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭,且,A B 都是集合{}|01x x ≤≤的子集,如果把b a -叫作集合{}|≤≤x a x b 的“长度”,那么集合A B 的“长度”的最小值是___________.24.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 25.若a 、b 、R x ∈且a 、0b ≠,集合b a B x x a b ⎧⎫⎪⎪==+⎨⎬⎪⎪⎩⎭,则用列举法可表示为______. 三、解答题26.已知集合______,集合{}22,B x m x m m R =<<∈.从下列三个条件中任选一个,补充在上面横线中.①301x A x x ⎧⎫-=<⎨⎬+⎩⎭;②{}12A x x =-<;③{}2230A x x x =--<. (1)当1m =-时,求()R A B ⋂;(2)若A B A ⋃=,求实数m 的取值范围.27.在①{}{}21,22,1,0a a a a ⊆-+-;②关于x 的不等式13ax b <+≤的解集是{}34x x <≤这两个条件中任选一个,补充在下面的问题(1)中并解答,若同时选择两个条件作答,以第一个作答计分.(1)已知______,求关于x 的不等式230ax x a -->的解集A ;(2)在(1)的条件下,若非空集合{}22B x k x k =<≤+,A B A ⋃=,求实数k 的取值范围.28.(1)已知U =R ,且{}|44A x x =-<<,{|1B x x =≤或}3x ≥,求A B ; (2)设{}Z|66A x x =∈-≤≤,{}1,2,3B =,{}3,4,5,6C =,求()()A A B C .29.用描述法写出下面这些区间的含义:[]2,7-;[),a b ;()123,+∞;(],9-∞-.30.把区间[)1,+∞看成全集,写出它的下列子集的补集:()1,A =+∞;{}1B =;{}15C x x =≤<;[)3,D =+∞.【参考答案】一、单选题1.A【解析】【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z 拆分成两个互不相交的非空子集T 、V 的并集,如T 为奇数集,V 为偶数集,或T 为负整数集,V 为非负整数集进行分析排除即可.【详解】若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C ; 若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D ;从而可得T 、V 中至少有一个关于乘法是封闭的,A 正确.故选:A .2.B【解析】【分析】解不等式求得集合A 、B ,由此求得()U B A ⋂.【详解】11222x -<=,由于2x y =在R 上递增,所以1x <-, 即{}|1A x x =<-,{}|1U A x x =≥-,11x >⇒>,所以{}|1B x x =>,所以(){}|1U BA x x =>. 故选:B3.C 【解析】【分析】根据题意,列举出符合题意的集合.【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/,所以{}1,2,3A =或{}1,2A =或{}1,3A =.故选:C4.C【解析】【分析】求出集合B ,由并集的定义即可求出答案.【详解】 因为{}{}(2)002B x x x x x =-<=<<,则}{2A B x x ⋃=<.故选:C.5.B【解析】【分析】解对数不等式以及一元二次不等式,求出集合A,B ,根据集合的并集运算求得答案.【详解】解22320x x +-≤ 可得122x -≤≤ , 故{}{}lg 001A x x x x =≤=<≤,122B x x ⎧⎫=-≤≤⎨⎬⎩⎭, 所以{}21A B x x ⋃=-≤≤,故选:B .6.B【解析】【分析】根据题意分别求出集合M 和N 的解集,求交集运算即可.【详解】根据题意得,{|1}M x x =>,{|04}N x x =<<,所以{|14}MN x x =<<.故选:B.7.D【解析】【分析】求解分式不等式的解集,再由补集的定义求解出A R ,再由交集的定义去求解得答案.【详解】 1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R .故选:D8.D【解析】【分析】先求出集合B ,再由A B ⊆求出实数a 的范围.【详解】{}{23202B x x x x x =-+>=>或}1x <. 因为集合{}A x x a =>,A B ⊆,所以2a ≥.故选:D9.B【解析】【分析】根据对数型函数的性质,结合集合并集的定义进行求解即可. 【详解】因为(2,)A =+∞,{}13B x x =≤≤,所以A B ⋃=[)1,+∞,故选:B10.B【解析】【分析】 化简集合A 和B ,根据集合并集定义,即可求得答案.【详解】()(){}140|6A x x x =+--≤{}{}2=|310=|(5)(02)0x x x x x x ---+≤≤∴{}|25A x x =-≤≤{}{}|=75241221|B x x x x =-≤-≤-≤-≤-∴1|62x x B ⎧⎫=≤⎨⎩≤⎬⎭∴{}{}1|25|6=|262A B x x x x x x ⎧⎫-≤⎨⎬⋃=≤≤⋃≤-≤⎩≤⎭故选:B.11.C【解析】【分析】根据集合并集的概念及运算,正确运算,即可求解.【详解】由题意,集合50{|}A x x =<<-,{}41B x x =-≤≤,根据集合并集的概念及运算,可得{|51}(5,1]A B x x =-<≤=-.故选:C.12.C【解析】【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可.【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==. 故选:C.13.D【解析】【分析】先解一元二次不等式求出集合A ,再按集合的并集运算即可.【详解】 由题意得{}13A x x =-≤≤,因为{}22B x x =-≤<,所以{}23A B x x ⋃=-≤≤. 故选:D.14.C【解析】【分析】根据交集结果得到1B -∈,所以150b -+=,解出6b =,从而解方程,求出B ={}1,5--.【详解】因为{1}A B ⋂=-,所以150b -+=,解得6b =,则2650x x ++=的解为1x =-或5x =-,故B ={}1,5--故选:C15.D【解析】【分析】解不等式后求解【详解】220x x --≤,解得[1,2]A =-,{0,1,2}A B ⋂=故选:D二、填空题16.{}1,2,3,4,5【解析】【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可.【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==,所以{}1,2,3,4,5A B =.故答案为:{}1,2,3,4,517.1【解析】【分析】由子集定义分类讨论即可.【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意.综上,实数a 的值1.故答案为:118. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1【解析】【分析】利用补集的定义,依次分析即得解【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8};若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},故{1,3,4}U U A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},故{1,0,1,2,4}U U A A =⋃=-,U B ={-1, 0, 2},故B ={1, 4} 故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4}19.[)1,+∞【解析】【分析】由题可得{[]}[0,1)A yy x x ==-=∣,然后利用充分不必要条件的定义及集合的包含关系即求.【详解】∵[]x 表示不超过x 的最大整数,∴[]x x ≤,[]01x x ≤-<,即{[]}[0,1)A yy x x ==-=∣, 又y A 是y B ∈的充分不必要条件,{0}∣=≤≤B y y m ,∴A B ,故m 1≥,即m 的取值范围是[)1,+∞.故答案为:[)1,+∞.20.[2,+∞)【解析】【分析】根据A B ⊆结合数轴即可求解.【详解】 ∵{}22A x x =-≤≤≠∅,A B ⊆,∴A 与B 的关系如图:∴a ≥2.故答案为:[2,+∞).21.4【解析】【分析】由题意列举出集合M ,可得集合的个数.【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:422.{0,3,6}【解析】【分析】根据给定条件直接计算作答.【详解】因{}0,1,2A =,而{}3,B b b a a A ==∈,所以{0,3,6}B =.故答案为:{0,3,6}23.16【解析】【分析】根据“长度”定义确定集合,A B 的“长度”,由A B “长度”最小时,两集合位于集合[]0,1左右两端即可确定结果.【详解】由题可知,A 的长度为23 ,B 的长度为12, ,A B 都是集合{|01}x x ≤≤的子集, 当A B 的长度的最小值时,m 与n 应分别在区间[]0,1的左右两端,即0,1m n ==,则|0,213|12A x x B x x ⎧⎫⎧⎫=≤≤=≤≤⎨⎬⎨⎬⎩⎭⎩⎭, 故此时1223A B x x ⎧⎫⋂=≤≤⎨⎬⎩⎭的长度的最小值是:211326-=. 故答案为:16 24.{}|10x x -<≤【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】 集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.25.2,0,2【解析】【分析】分别讨论,a b 正负即可求出.【详解】当0,0a b <<时,112b a x a b =+=--=-, 当0,0a b <>时,110b a x a b =+=-+=, 当0,0a b ><时,110b a x a b =+=-=, 当0,0a b >>时,112b a x a b=+=+=, 所以用列举法可表示为2,0,2.故答案为:2,0,2.三、解答题26.(1)(){}1,1R A B x x x ⋂=≤-≥ (2)122m -≤≤ 【解析】【分析】(1)首先分别求两个集合,再求集合的运算;(2)由条件可知B A ⊆,分B =∅和B ≠∅两种情况,求实数m 的取值范围.(1)若选①301x x -<+,则13x ,所以{}13A x x =-<<, 若选②12212x x -<⇔-<-<,得13x ,若选③()()2230130x x x x --<⇔+-<,得13x ,1m =-时,{}21B x x =-<<,{}11A B x x ⋂=-<<(){}1,1R A B x x x ⋂=≤-≥; (2)B A ⊆当B =∅,22m m ≥,得02m ≤≤当B ≠∅,22221,3m m m m ⎧<⎪≥-⎨⎪≤⎩得102m -≤< ∴122m -≤≤. 27.(1)条件选择见解析,12A x x ⎧=<-⎨⎩或}2x > (2)[)5,1,22∞⎛⎫--⋃ ⎪⎝⎭ 【解析】【分析】(1)若选①,分2122a a =-+和11a =-,求得a ,再利用一元二次不等式的解法求解; 若选②,根据不等式13ax b <+≤的解集为{}34x x <≤,求得a ,b ,再利用一元二次不等式的解法求解;(2)由A B A ⋃=,得到B A ⊆求解;(1)解:若选①,若2122a a =-+,解得1a =,不符合条件.若11a =-,解得2a =,则2222a a -+=符合条件.将2a =代入不等式230ax x a -->并整理得()()2210x x -+>,解得2x >或12x <-,故12A x x ⎧=<-⎨⎩或}2x >. 若选②,因为不等式13ax b <+≤的解集为{}34x x <≤,所以3143a b a b +=⎧⎨+=⎩,解得25a b =⎧⎨=-⎩. 将2a =代入不等式整理得()()2210x x -+>,解得2x >或12x <-. 故12A x x ⎧=<-⎨⎩或}2x >. (2)∵A B A ⋃=,∴B A ⊆,又∵B ≠∅, ∴22122k k k +>⎧⎪⎨+<-⎪⎩或2222k k k +>⎧⎨≥⎩, ∴52k <-或12k ≤<, ∴[)5,1,22k ⎛⎫∈-∞-⋃ ⎪⎝⎭. 28.(1){|41A B x x ⋂=-<≤或}34x ≤<;(2)()(){}6,5,4,3,2,1,0A A B C =------.【解析】【分析】(1)利用集合的交运算即可求解A B ;(2)根据已知集合的描述,应用集合的交并补混合运算求()()A AB C . 【详解】(1){}{|44|1A B x x x x ⋂=-<<⋂≤或}3{|41x x x ≥=-<≤或}34x ≤<.(2)由题意,}{6,5,4,3,2,1,0,1,2,3,4,5,6A =------,且{}1,2,3B =,{}3,4,5,6C =, 所以{}1,2,3,4,5,6B C ⋃=,则(){}6,5,4,3,2,1,0A B C =------. 所以()(){}6,5,4,3,2,1,0A A B C =------.29.{}27x x -≤≤;{}x a x b ≤<;{}123x x >;{}9x x ≤-.【解析】【分析】将区间转化为集合,用描述法写出答案.【详解】[]2,7-用描述法表示为:{}27x x -≤≤;[),a b 用描述法表示为:{}x a x b ≤<;()123,+∞用描述法表示为:{}123x x >;(],9-∞-用描述法表示为:{}9x x ≤-. 30.{}U 1A =,()U 1,B =+∞,[)U 5,C =+∞,[)U 1,3D =【解析】【分析】根据补集的定义计算可得;【详解】解:因为[)1,U =+∞,所以{}U 1A =,()U 1,B =+∞,[)U 5,C =+∞,[)U 1,3D =。
高中数学集合练习题及答案
高中数学集合练习题及答案一、单选题1.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( )A .{}6x e x <<B .{}1,2,3e e e +++C .{}3,4,5D .{}2,3,4,52.已知集合{}22A x x =-≤,{}1,2,3,4,5B =,则A B =( )A .{}1,2,3,4B .{}2,3,4,5C .{}1,2,3D .{}2,3,4 3.已知集合{}11A x Z x =∈-≤≤,{}1,2B =,则A B ⋃=( )A .{}1B .{}0,1,2C .1,0,1,2D .{}1,1,2-4.已知集合{}lg 0A x x =≤,{}22320B x x x =+-≤,则A B ⋃=( ) A .122x x ⎧⎫-≤≤⎨⎬⎩⎭ B .{}21x x -≤≤ C .102x x ⎧⎫-≤≤⎨⎬⎩⎭ D .102x x ⎧⎫<≤⎨⎬⎩⎭ 5.设{}13A x x =-<≤,{}B x x a =>,若A B ⊆,则a 的取值范围是( ) A .{}3a a ≥ B .{}1a a ≤- C .{}3a a > D .{}1a a <- 6.已知集合22{(,)|3,Z,Z}A x y x y x y =+≤∈∈,则A 中元素的个数为( ) A .9 B .8 C .5 D .47.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( ) A .[]1,3- B .[]2,4- C .{}1,2,3 D .{}0,1,2,3 8.已知集合{|12}A x x =-≤≤,{}0B x x =>,则A B ⋃=( )A .{|2}x x ≤B .{|1}x x ≥-C .{}|1x x >D .{}0x x 9.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3- B .[2,3)- C .(2,2)- D .[2,2)- 10.已知集{}23A x x =+≥合,{}3,1,1,3B =--,则A B =( )A .{}3B .{}1,3C .{}3,1--D .{}1,1,3-11.已知集合{}2log 1M x x =<,{}21N x x =≤,则M N ⋃=( ) A .(],1-∞B .(),2-∞C .[)1,2-D .(]0,112.记2{|log (1)3}A x x =-<,N A B =,则B 的元素个数为( )A .6B .7C .8D .9 13.集合A ={x |y =log 2(x +12)},B ={y |y =x 2-2x ,x ∈[0,2]}.则A ∩B =( )A .1,02⎡⎤-⎢⎥⎣⎦B .1,02⎛⎤- ⎥⎝⎦C .1,02⎡⎫-⎪⎢⎣⎭D .(102-,) 14.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}3 15.已知集合A ={1,2,3,4,5},集合B ={1,2},若集合C 满足:B C A ⊆,则集合C的个数为( )A .6个B .7个C .8个D .9个 二、填空题16.已知集合(){}ln 2|A x y x ==-,{}2430|B x x x ≤=-+,则A B ⋃=____________ 17.若全集U =R ,集合{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,则U B A =___________.18.已知{}21,,3A a =,{}22,1,1B a a =+-.若A B =,则=a ______.19.已知集合{}2,1,2A =-,}1,B a =,且B A ⊆,则实数a 的值是___________. 20.若集合(){}2381x A x ==,集合(){}23log 1B x x ==,则A B =_________. 21.已知集合A ={2,log 2m },B ={m ,n }(m ,n ∈R),且{}1A B ⋂=-,则A ∪B =___________.22.已知T 是方程()22040x px q p q ++=->的解集,1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,,则p q +=_____.23.若{}231,13a a ∈--,则=a ______.24.若全集{}22,4,1U a a =-+,且{}1,2A a =+,7A =,则实数=a ______. 25.若集合234|0A x x x ,{}|10B x ax =-=,且“x B ∈”是“x A ∈”的充分非必要条件,则实数a 组成的集合是______.三、解答题26.已知集合*N M ⊆,且M 中的元素个数n 大于等于5.若集合M 中存在四个不同的元素a ,b ,c ,d ,使得a b c d +=+,则称集合M 是“关联的”,并称集合{,,,}a b c d 是集合M 的“关联子集”;若集合M 不存在“关联子集”,则称集合M 是“独立的”.(1)分别判断集合{2,4,6,8,10}与{1,2,3,5,8}是“关联的”还是“独立的”?(2)写出(1)中“关联的”集合的所有的“关联子集”;(3)已知集合{}12345,,,,M a a a a a =是“关联的”,且任取集合{},i j a a M ⊆,总存在M 的“关联子集”A ,使得{},i j a a A ⊆.若12345a a a a a <<<<,求证:1a ,2a ,3a ,4a ,5a 是等差数列.27.设集合{}53A x x =-≤≤,{2B x x =<-或}4x >.(1)求A B ;(2)求R R ()()A B ⋃.28.集合{}30?180120?180,Z A k k k αα︒︒=︒+<<+︒∈,集合{}45?360135?360,Z B k k k ββ=-+<<+∈. (1)求A B ;(2)若全集为U ,求U ()A B ⋂.29.记E 为平面上所有点组成的集合并且A E ∈,B E ∈,说明下列集合的几何意义: (1){}5P E PA ∈<; (2){}P E PA PB ∈=.30.已知集合6|32M x x ⎧⎫=>⎨⎬+⎩⎭,{|53}N x t x t =<<+. (1)当1t =-时,求M N ⋂;(2)若M N ⊆,求实数t 的取值范围.【参考答案】一、单选题1.C【解析】【分析】先化简出结合,A B ,然后再求交集.【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞所以{}3,4,5A B =故选:C2.A【解析】【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得;【详解】 解:由22x -≤,即222x -≤-≤,解得04x ≤≤,所以{}[]220,4A x x =-≤=, 又{}1,2,3,4,5B =,所以{}1,2,3,4A B =.故选:A3.C【解析】【分析】首先用列举法表示集合A ,再根据并集的定义计算可得;【详解】 解:因为{}{}111,0,1A x Z x =∈-≤≤=-,{}1,2B =,所以{}1,0,1,2A B ⋃=-; 故选:C4.B【解析】【分析】解对数不等式以及一元二次不等式,求出集合A,B ,根据集合的并集运算求得答案.【详解】解22320x x +-≤ 可得122x -≤≤ , 故{}{}lg 001A x x x x =≤=<≤,122B x x ⎧⎫=-≤≤⎨⎬⎩⎭, 所以{}21A B x x ⋃=-≤≤,故选:B .5.B【解析】【分析】根据集合的包含关系,列不等关系,解不等式即可.【详解】由题:(,)B a =+∞,A B ⊆,则1a ≤-.故选:B6.A【解析】【分析】根据x ,y 满足的关系式求得x ,y 的可能值,从而求得集合元素个数.【详解】由223x y +≤,得x ≤≤y ≤又Z x ∈,Z y ∈,所以{1,0,1}x ∈-,{1,0,1}∈-y ,易知x 与y 的任意组合均满足条件,所以A 中元素的个数为339⨯=.故选:A.7.D【解析】【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可.【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=, 因为{}14A x x =-≤≤所以A B ={}0,1,2,3故选:D8.B【解析】【分析】进行并集的运算即可.【详解】{|12}A x x =-≤≤,{}0B x x =>,{|1}A B x x ∴⋃=≥-.故选:B .9.D【解析】【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答.【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-,所以[2,2)A B ⋂=-.故选:D10.B【解析】【分析】化简集合A ,由交集定义直接计算可得结果.【详解】化简可得{|1}A x x =≥,又{}3,1,1,3B =--所以{1,3}A B =.故选:B.11.C【解析】【分析】求出集合M ,N ,然后进行并集的运算即可.【详解】 ∵{}02M x x =<<,{}11N x x =-≤≤,∴[1,2)M N ⋃=-.故选:C .12.B【解析】【分析】解对数不等式化简A ,求出B 可得答案.【详解】由()22log 1log 8x -<,得19x <<,即{|19}A x x =<<,所以N B A ={2,3,4,5,6,7,8}=,则B 中元素的个数为7.故选:B13.B【解析】【分析】分别解出A 、B 集合,再求交集即可.【详解】集合A :11 022x x +>⇒>-; 集合B :222(1)1,[0,2]y x x x x =-=--∈,[1,0]y ∈- 所以:1(,0]2A B -=故选:B.【点睛】本题考查集合的交集运算.属于基础题.正确解出A 、B 集合是本题的基础.14.D【解析】【分析】利用补集和交集的定义可求得结果.【详解】由已知可得{}0,3U A =,因此,(){}U 3A B ⋂=,故选:D.15.B【解析】【分析】根据集合间的关系写出所有满足条件的集合C 可得出答案.【详解】根据B C A ⊆,集合C 可写成如下形式: {}{}{}{}{}{}{}12312412512341235124512345,,,,,,,,,,,,,,,,,,,,,,, 所以满足条件的集合C 的个数为7个,选项B 正确.故选:B.二、填空题16.[)1,+∞【解析】【分析】先求出集合A 、B ,再求A B .【详解】集合(){}()2|2ln ,A x y x =+∞==-,{}[]2|1,3430B x x x =≤=-+, 所以()[][)2,1,31,A B +∞⋃=∞⋃+=.故答案为:[)1,+∞17.{}12x x <≤##(]1,2【解析】【分析】由集合A ,以及集合A 与集合B 的并集确定出集合B ,以及求出集合A 的补集,再根据交集运算即可求出结果.【详解】 因为{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,所以{3U x x A =<-或}1x >,{}{}1232x x x B x ⊆<≤⊆-≤≤,所以{}12U B A x x =<≤.故答案为:{}12x x <≤.18.2【解析】【分析】根据集合A 与集合B 相等列式即可求解【详解】因为A B =所以22213a a a ⎧=+⎨-=⎩解之得:2a = 故答案为:219.1【解析】【分析】由子集定义分类讨论即可.【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意.综上,实数a 的值1.故答案为:120.{1,2,33} 【解析】【分析】求解集合,根据集合的并集运算即可.【详解】(){}{}23812x A x ===,(){}231log 13,3B x x ⎧⎫===⎨⎬⎩⎭,则A B ={1,2,33}. 故答案为:{1,2,33}. 21.1,1,22⎧⎫-⎨⎬⎩⎭ 【解析】【分析】根据条件得到2log 1m =-,解出12m =,进而得到1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 【详解】 因为{}1A B ⋂=-,所以1A -∈且1B -∈,所以2log 1m =-,解得:12m =,则1n =-,1,12B ⎧⎫=-⎨⎬⎩⎭,所以1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 故答案为:1,1,22⎧⎫-⎨⎬⎩⎭22.26【解析】【分析】由题知{}4,10T =,再结合韦达定理求解即可.【详解】解:因为240p q ->,所以方程()22040x px q p q ++=->的解集有两个不相等的实数根, 因为1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,, 所以{}4,10T =所以由韦达定理得14p =-,40q =所以26p q +=故答案为:2623.4-【解析】【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解.【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去;若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去.故4a =-.故答案为:4-.24.3【解析】【分析】根据题意21a a -+7=,结合7A =,即可求得a .【详解】因为{}22,4,1U a a =-+,且{}1,2A a =+,7A =,故可得217a a -+=,即()()320a a -+=,解得3a =或2a =-.当2a =-时,{}2,4,7U =,{}1,2A =-,不合题意,故舍去.当3a =时,满足题意.故答案为:3.25.10,1,4⎧⎫-⎨⎬⎩⎭【解析】【分析】解出集合A ,根据题意,集合B 为集合A 的真子集,进而求得答案.【详解】由题意,{}1,4A =-,因为“x B ∈”是“x A ∈”的充分非必要条件,所以集合B 为集合A 的真子集,若a =0,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,所以111a a =-⇒=-或1144a a =⇒=. 故答案为:10,1,4⎧⎫-⎨⎬⎩⎭. 三、解答题26.(1){2,4,6,8,10}是“关联的”,{1,2,3,5,8}是“独立的”;(2){2,4,6,8},{2,4,8,10},{4,6,8,10};(3)证明见解析.【解析】【分析】(1)根据给定定义直接判断作答.(2)由(1)及所给定义直接写出“关联子集”作答.(3)写出M 的所有4元素子集,再利用反证法确定“关联子集”,然后推理作答.(1)集合{2,4,6,8,10}中,因2846+=+,所以集合{2,4,6,8,10}是“关联的”,集合{1,2,3,5,8}中,不存在某两个数的和等于另外两个数的和,所以集合{1,2,3,5,8}是“独立的”.(2)由(1)知,有2846+=+,21048+=+,41068+=+,所以{2,4,6,8,10}的“关联子集”有:{2,4,6,8},{2,4,8,10},{4,6,8,10}.(3)集合M 的4元素子集有5个,分别记为:1234521345{,,,},{,,,}A a a a a A a a a a ==, 312454123551234{,,,},{,,,},{,,,}A a a a a A a a a a A a a a a ===,因此,集合M 至多有5个“关联子集”,若21345{,,,}A a a a a =是“关联子集”,则12345{,,,}A a a a a =不是“关联子集”,否则12a a =,矛盾,若21345{,,,}A a a a a =是“关联子集”,同理可得31245{,,,}A a a a a =,41235{,,,}A a a a a =不是“关联子集”,因此,集合M 没有同时含有元素25,a a 的“关联子集”,与已知矛盾,于是得21345{,,,}A a a a a =一定不是“关联子集”,同理41235{,,,}A a a a a =一定不是“关联子集”,即集合M 的“关联子集”至多为12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =, 若12345{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素35,a a 的“关联子集”,与已知矛盾,若31245{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素15,a a 的“关联子集”,与已知矛盾,若51234{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素13,a a 的“关联子集”,与已知矛盾,因此,12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =都是“关联子集”, 即有25345432a a a a a a a a +=+⇔-=-,15245421a a a a a a a a +=+⇔-=-,14234321a a a a a a a a +=+⇔-=-,从而得54433221a a a a a a a a -=-=-=-,所以1a ,2a ,3a ,4a ,5a 是等差数列.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.27.(1){}52x x -≤<-; (2){5x x <-或}2x ≥-.【解析】【分析】(1)根据给定条件利用交集的定义直接计算作答.(2)利用补集的定义求出R A ,R B ,再利用并集的定义求解作答. (1) 因集合{}53A x x =-≤≤,{2B x x =<-或}4x >,所以{|52}A B x x ⋂=-≤<-.(2) 依题意,R {5A x x =<-或3}x >,{}R 24B x x =-≤≤,所以{R R ()()5A B x x ⋃=<-或}2x ≥-.28.(1){}30?360120?360,Z A B k k k αα⋂=+<<+∈ (2)U ()A B ⋂ {}210?360300?360,Z k k k αα=+<<+∈ 【解析】【分析】(1)先变形集合A ,再求交集;(2)先求补集,再求交集.(1) 解:因为{}30?180120?180,Z A k k k αα︒︒=+<<︒+︒∈ {}30?360120?360210?360300?360,Z k k k k k ααα︒︒︒=︒+︒<<︒+︒+<<+︒∈或所以 {}30?360120?360,Z A B k k k αα︒︒︒⋂=+︒<<+∈; (2)解:由(1),知U B {}135?360315?360,Z k k k γγ︒︒=+≤≤︒+︒∈ 故U ()A B ⋂{}210?360300?360,Z k k k αα=+<<+∈ 29.(1)以A 为圆心,5为半径的圆内部分(2)线段AB 的垂直平分线【解析】【分析】(1)由圆的定义可得;(2)由线段垂直平分线的定义可得.(1)表示到A 点距离小于5的点组成的集合,即以A 为圆心,5为半径的圆内部分;(2)P 到,A B 距离相等,即线段AB 的垂直平分线.30.(1){}|20x x -<< (2)23,5⎡⎤--⎢⎥⎣⎦ 【解析】【分析】(1)解不等式得M ,再求,M N 交集(2)由题意列不等式组求解(1) 由632x >+化简得302x x <+,解得20x -<<,故{}|20M x x =-<<, 当1t =-时,{}52N x x =-<<,因此{}|20MN x x =-<<.(2) 因{}|20M x x =-<<,{}53N x t x t =<<+,M N ⊆, 所以355230t t t t +>⎧⎪≤-⎨⎪+≥⎩,经计算得235t-≤≤-,故实数t的取值范围是2 3.5⎡⎤--⎢⎥⎣⎦,。
高中数学集合测试题(含答案和解析)
高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅2.设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为( )A .2B .4C .8D .163.已知2{|1}A x x ==,1|B x x a ⎧⎫==⎨⎬⎩⎭,若B A ⊆,则a 的值为( )A .1或-1B .0或1或-1C .1-D .14.已知集合{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃=( ) A .{}2,3,4 B .{}1,2,3,4 C .{}15x x ≤≤D .{}05x x <≤5.设集合{}220A x x x =--≤,124x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则()A B ⋃=R( )A .112x x ⎧⎫-<≤-⎨⎬⎩⎭B .{}1x x <-C .12x x ⎧⎫>-⎨⎬⎩⎭D .{}1x x ≥-6.设集合{}{}(,)|20(,)|35A x y x y B x y x y =-==+=,,则A B =( ) A .{1,2} B .{1,2}xyC .(1,2)D .{(1,2)}7.已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是( ) A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭8.已知集合{}{}22540,7100A x x x B x x x =-+<=-+<,则A B ⋃=( )A .()1,2B .()1,5C .()2,4D .()4,5 9.已知集合{}2{63},3100S x x T x x x =∈-<<=--<Z∣∣,则S T ( ) A .{23}x x -<<∣ B .{1,0,1,2}- C .{52}xx -<<∣ D .{2,1,0,1,2}--10.已知集合{},,A a b c =的所有非空真子集的元素之和等于12,则a b c ++的值为( ) A .1B .2C .3D .411.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B =( ) A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,212.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,413.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( )A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<14.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}315.已知集合{}1e 1x M x -=>,{}220N x x x =-<,则MN =( )A .()1,+∞B .()2,+∞C .()0,1D .()1,2二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.已知全集U =R ,集合{}()3,,0A x x B ∞=≤-=-,则A B =________.18.等差数列{}n a 中15141024a a a a ++=+,513a a =. 若集合{}*122nn n N a a a λ∈<+++∣中仅有2个元素,则实数λ的取值范围是______.19.已知集合(){}2,M x y y x ==∣,(){},0N x y y ==,则M N =______.20.满足条件:{}a {},,,M a b c d ⊆的集合M 的个数为______. 21.已知平面上两个点集()(){}22,|12,R,R M x y x y x y x y =+++∈∈,(){},|11,R,R N x y x a y x y =-+-≤∈∈,若MN ≠∅,则实数a的取值范围为___________..22.已知函数()51f x a x=-+-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________.23.集合{}31A x x =-<,{}3782B x x x =-≥-,则A B =___________.24.已知函数()214f x x -A 为函数()f x 的定义域,集合B 为函数()f x 的值域,若定义{,A B x x A -=∈且}x B ∉,()()⊕=--A B A B B A ,则A B ⊕=___________.25.如图所示,U 为全集,A U ⊆,B U ⊆,用A 、B 表示图中的阴影部分的集合是______.三、解答题26.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R . (1)当1a =时,求()U C A B ⋂;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.27.在①A B A ⋃=,②A B ⋂≠∅,③B A ⊆R这三个条件中任选一个,补充在下面问题(3)中,若问题中的实数m 存在,求m 的取值范围;若不存在,说明理由. 已知一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,关于x 的不等式()20ax am b x bm -++<的解集为B (其中m ∈R ).(1)求a ,b 的值; (2)求集合B ;(3)是否存在实数m ,使得_______.(注:如果选择多个条件分别解答,按第一个解答计分).28.在①A B B ⋃=;②“x A ∈”是 “x B ∈”的充分不必要条件;③A B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合{}11A x a x a =-≤≤+,{}2230B x x x =--≤(1)当2a =时,求A B ;(2)若______,求实数a 的取值范围.29.已知集合702x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{}123B x m x m =-≤≤-. (1)当6m =时,求集合A B ;(2)若{}58C x x =<≤,“()x A C ∈⋂”是“x B ∈”的充分条件,求实数m 的取值范围.30.设{}24,21,A a a =--,{}5,1,9B a a =--,已知{}9A B ⋂=,求a 的值.【参考答案】一、单选题 1.A 【解析】 【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂. 【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-, 所以{|14}M N x x ⋂=-≤<. 故选:A 2.B 【解析】 【分析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果. 【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=. 故选:B. 3.A 【解析】 【分析】A ={-1,1},若B A ⊆,则1a=±1,据此即可求解﹒{}2{|1}1,1A x x ===-,11|B x x a a ⎧⎫⎧⎫===⎨⎬⎨⎬⎩⎭⎩⎭, 若B A ⊆,则1a=1或-1,故a =1或-1. 故选:A . 4.D 【解析】 【分析】理解集合的含义,由并集的概念运算 【详解】{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃={}05x x <≤故选:D 5.B 【解析】 【分析】分别化简集合A 与B ,再求A B ,最后求()RA B ⋃【详解】220x x --≤⇒()()120x x +-≤⇒12x -≤≤124x⎛⎫< ⎪⎝⎭222x-⇒<21x ⇒-<12x ⇒>- 即{}|12A x x =-≤≤,1|2B x x ⎧⎫=>-⎨⎬⎩⎭所以{}|1A B x x ⋃=≥- 所以(){}R|1AB x x =<-故选:B6.D 【解析】 【分析】 联立方程求解即可. 【详解】集合A 表示在直线2x -y =0上所有的点,集合B 表示3x +y =5上所有的点,所以联立方程2035x y x y -=⎧⎨+=⎩ ,解得x =1,y =2, ()1,2A B ⋂= ,即A 与B 的交集是点(1,2);故选:D. 7.D 【解析】由题知{}1,0,1A =-,进而根据题意求解即可. 【详解】解:因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<, 所以,实数a 的取值范围是31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D . 8.B 【解析】 【分析】先求出集合,A B ,再求A B 即可. 【详解】{}{}14,25A x x B x x =<<=<<,故A B ⋃=()1,5.故选:B. 9.B 【解析】 【分析】求解一元二次不等式解得集合T ,再求S T 即可. 【详解】因为{63}S x x =∈-<<Z∣{}5,4,3,2,1,0,1,2=-----, {}23100T x x x =--<∣()(){}|520{|25}x x x x x =-+<=-<<,故S T {}1,0,1,2=-. 故选:B. 10.D 【解析】 【分析】根据真子集的定义进行求解即可. 【详解】因为集合{},,A a b c =的所有非空真子集为:{}{}{}{}{}{},,,,,,,,a b c a b a c b c , 所以有123()124a b c a b a c b c a b c a b c ++++++++=⇒++=⇒++=, 故选:D 11.D 【解析】 【分析】解不等式求得集合A ,由此求得A B . 【详解】因为()30x x -<的解为03x <<, 所以{}03A x x =<<,所以{}1,2A B =. 故选:D 12.C 【解析】 【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可. 【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==.故选:C. 13.D 【解析】 【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<.故选:D. 14.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 15.D 【解析】 【分析】根据指数函数的性质解出集合M ,再由二次不等式的解法求出集合N ,最后求交集即可. 【详解】解:由1e 1x ->得10e e x ->,又函数e x y =在R 上单调递增,则10x ->,即{}1M x x =>, 又由220x x -<得02x <<,即{}02M x x =<<, 所以{}12M N x x ⋂=<<.故选:D.二、填空题 16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}117.()3,0-【解析】 【分析】先求出{}3A x x =>-,进而求出交集. 【详解】{}3A x x =>-,()3,0A B =-故答案为:()3,0-18.924⎡⎫⎪⎢⎣⎭,【解析】 【分析】设等差数列{}n a 的公差为d ,由题设列出d 与1a 的方程组,解出d 与1a ,从而可得到212322n n n a a a n n ++⋯++=,令23()2n n nf n +=,得出()f n 的单调性,即可求出λ的取值范围. 【详解】解:设等差数列{}n a 的公差为d ,由题设可知:11111141392443a a d a d a d a d a ++++=++⎧⎨+=⎩,解得:14a =,2d =,212(1)4232n n n a a a n n n -+++=+⨯=+, ∴212322n n na a a n n++⋯++=,令23()2n n n f n +=,则22211(1)3(1)34(1)()222n n n n n n n n n f n f n +++++++-+-=-=-, 当2n <时,()()10f n f n +->, 当2n ≥时,()()10f n f n +-<,f ∴(1)f <(2)f >(3)f >(4)>,又f (1)2=,f (2)52=,f (3)94=,f (4)74=, 集合{}*12N |2n n n a a a λ∈<++⋯+中有2个元素,即集合*12N |2n n a a a n λ++⋯+⎧⎫∈<⎨⎬⎩⎭中有2个元素, [2λ∴∈,9)4.故答案为:924⎡⎫⎪⎢⎣⎭,.19.(){}0,0【解析】 【分析】根据题意,得到两集合均为点集,联立20y x y ⎧=⎨=⎩求解,即可得出结果.【详解】因为集合(){}2,M x y y x ==∣表示直线2y x 上所有点的坐标,集合(){},0N x y y ==,表示直线0y =上所有点的坐标,联立20y x y ⎧=⎨=⎩,解得00x y =⎧⎨=⎩则(){}0,0MN =.故答案为:(){}0,0. 20.7 【解析】 【分析】根据{}a {},,,M a b c d ⊆可知,M 中的元素应该是多于一个不多于{},,,a b c d 中的元素个数,由此可求得答案. 【详解】由{}a {},,,M a b c d ⊆可知,M 中的元素个数多于{}a 中的元素个数,不多于{},,,a b c d 中的元素个数 因此M 中的元素来自于b ,c,d 中,即在b ,c,d 中取1元素时,M 有3个;取2个元素时,有3个;取3个元素时,有1个, 故足条件:{}a {},,,M a b c d ⊆的集合M 的个数有7个, 故答案为:7. 21.16,310⎡⎤-+⎣⎦【解析】 【分析】根据抛物线的定义可知集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,集合N 是以(),1a 为中心的正方形内部的点,数形结合先求出M N ⋂=∅时实数a 的取值范围,再求其补集即可求解.【详解】由()2212x y x y ++≥+可得()()221002x y x y ++≥-+-,点(),x y 到直线10x y ++=的距离大于等于点(),x y 到点()0,0的距离,所以点(),x y 的轨迹是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的部分,即集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,由1x y +≤可得:001x y x y ≥⎧⎪≥⎨⎪+≤⎩或001x y x y <⎧⎪>⎨⎪-+≤⎩或001x y x y >⎧⎪<⎨⎪-≤⎩或001x y x y <⎧⎪<⎨⎪--≤⎩,作出其表示的平面区域如图所示:将该图象向上平移一个单位可得11x y +-≤的图象如图:将其向左或右平移a 个单位可得11x a y -+-≤的表示的平面区域,作出()2212x y x y ++=+对应的抛物线如图:将1y =代入()2212x y x y ++=+2420x x --=,解得:26x = 所以26116a <=M N ⋂=∅,将2y =代入()2212x y x y ++=+2610x x --=,解得:310x =, 当310a >时,M N ⋂=∅, 综上所述:当16310a ≤16,310a ⎡⎤∈⎣⎦时,M N ≠∅,故答案为:16,310⎡⎤⎣⎦. 22.(,8]-∞【解析】【分析】根据集合交集的性质,结合子集的性质进行求解即可.【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞23.{}34x x ≤<【解析】【分析】 求出{}24A x x =<<与{}3B x x =≥,进而求出A B .【详解】31x -<,解得:24x <<,故{}24A x x =<<,3782x x -≥-解得:3x ≥,故{}3B x x =≥,所以A B ={}34x x ≤< 故答案为:{}34x x ≤<24.11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦【解析】【分析】根据()f x =.【详解】要使函数()f x =2140-≥x ,解得1122x -≤≤,所以11,22A ⎡⎤=-⎢⎥⎣⎦,函数()f x =[]0,1B =, {,A B x x A -=∈且}x B ∉102x x ⎧⎫=-≤<⎨⎬⎩⎭,{,B A x x B -=∈且}x A ∉112x x ⎧⎫=<≤⎨⎬⎩⎭. ()()⊕=--A B A B B A 102x x ⎧⎫=-≤<⎨⎬⎩⎭112x x ⎧⎫⋃<≤=⎨⎬⎩⎭11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦. 故答案为:11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦. 25.A B ⋂##B A ⋂【解析】 【分析】根据集合的运算法则求解.【详解】阴影部分是集合A 与集合B 的补集的公共部分,因此表示为:A B ⋂.故答案为:A B ⋂.三、解答题26.(1){}()10U C A B x x ⋂=-≤<(2)4a 或102a ≤≤【解析】【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x B ∈”是“x A ∈”的必要条件等价于A B ⊆.讨论A 是否为空集,即可求出实数a 的取值范围.(1)当1a =时,集合{}|05A x x =≤≤,{|0U C A x x =<或}5x >,{}()|10U C A B x x ⋂=-≤<.(2)若“x B ∈”是“x A ∈”的必要条件,则A B ⊆,①当A =∅时,123,4a a a ->+<-∴;②A ≠∅,则4a ≥-且11,234a a -≥-+≤,102a ∴≤≤. 综上所述,4a 或102a ≤≤. 27.(1)1、2;(2)当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =;(3)若选①:2m ≥;若选②:1m <或2m >;若选③:12m ≤≤.【解析】【分析】(1)由题可知x =1是方程2320ax x -+=的解,由此即可求出a ,从而求出b ;(2)根据a 、b 的值即可分类讨论求解不等式,从而得到B ;(3)若选①,则B ⊆A ,分类讨论m 的范围即可;若选②,则根据题意分类讨论即可;若选③,则先求出A R ,分类讨论即可.(1)由一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,得0a >,且方程2320ax x -+=的两根为1、b , ∴0,31,21,a b ab a ⎧⎪>⎪⎪=+⎨⎪⎪=⨯⎪⎩ 解得1,2.a b =⎧⎨=⎩ (2)由(1)可知()20ax am b x bm -++<即为()2220x m x m -++<,即()()20x m x --<.m <2时,2m x <<;m =2时,不等式无解;m >2时,2x m <<.综上,当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =.(3)由(1)知{1A x x =<或}2x >,若选①:A B A ⋃=,则B A ⊆,当2m <时,(),2B m =,不满足;当2m =时,B =∅,满足;当2m >时,()2,B m =,满足;∴选①,则实数m 的取值范围是2m ≥;若选②:A B ⋂≠∅,当2m <时,(),2B m =,则1m <;当2m =时,B =∅,不满足;当2m >时,()2,B m =,满足;∴选②,则实数m 的取值范围是1m <或2m >;若选③:B A ⊆R ,A R []1,2=,当2m <时,(),2B m =,则m ≥1,∴12m ≤<;当2m =时,B =∅,满足;当2m >时,()2,B m =,不满足.∴选③,则实数m 的取值范围是12m ≤≤.28.(1){}|13A B x x ⋃=-≤≤(2)条件选择见解析,()(),24,-∞-+∞【解析】【分析】(1)化简集合A 与B 之后求二者的并集(2)先判断集合A 与B 的关系,再求a 的取值范围(1)当2a =时,集合{}|13A x x =≤≤,{}|13B x x =-≤≤,所以{}|13A B x x ⋃=-≤≤;(2)若选择①A ∪B =B ,则A B ⊆,因为{}|11A x a x a =-≤≤+,所以A ≠∅,又{}|13B x x =-≤≤, 所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B ,因为{}|11A x a x a =-≤≤+,所以A ≠∅, 又{}|13B x x =-≤≤,所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤,所以实数a 的取值范围是[]0,2.若选择③,A B =∅,因为{}|11A x a x a =-≤≤+,{}|13B x x =-≤≤,所以13a ->或11a +<-,解得4a >或2a <-,所以实数a 的取值范围是()(),24,-∞-+∞. 29.(1){|29}x x -<≤(2)56m ≤≤【解析】【分析】(1)先化简集合A ,由6m =解得集合B ,然后利用并集运算求解.(2)根据“()x A C ∈⋂”是“x B ∈”的充分条件,转化为A B ⊆求解.(1) 由702x x -≤+得:27x -<≤,即27{|}A x x =-<≤, 当6m =时,{|59}B x x =≤≤,所以{|29}A B x x ⋃=-<≤.(2) 因为{}58C x x =<≤,所以{}57A C x x ⋂=<≤,由“A C ”是“x B ∈”的充分条件,则()A C B ⋂⊆,则2312237556156m m m m m m m m -≥-≥⎧⎧⎪⎪-≥⇒≥⇒≤≤⎨⎨⎪⎪-≤≤⎩⎩, 实数m 的取值范围是56m ≤≤.30.-3【解析】【分析】根据{}9A B ⋂=,分219a -=和29a =,讨论求解.【详解】解:因为{}24,21,A a a =--,{}5,1,9B a a =--,且{}9A B ⋂=,所以当219a -=时,解得5a =,此时{}{}4,9,25,0,4,9A B =-=-,不符合题意; 当29a =时,解得3a =或3a =-,若3a =,则{}{}4,52,9,9,,2B A =--=-,不成立;若3a =-,则{}{}4,7,9,8,4,9A B =--=-,成立;所以a 的值为-3.。
高中数学集合测试题(附答案和解析)
高中数学集合测试题(附答案和解析)一、单选题1.已知全集{}1,2,3,4,5U =,集合{}3,4,5A =,{}2,3,4B =,则()U AB =( )A .{}1,3,5B .{}1,2,5C .{}1,5D .{}2,5 2.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( )A .16B .15C .8D .7 3.如图,已知集合{A =1-,0,1,2},{|128}x B x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2} 4.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 5.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( )A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1-6.已知集合{}20A x x =-≤≤,{}21B x x =>,则A B ⋃=( ) A .[)2,1--B .[]()2,01,-⋃+∞C .(](),01,-∞⋃+∞D .[)2,1-7.已知集合{}21A x x =<,{}e 2x B x =<,则A B =( ) A .()1,1- B .()1,ln 2- C .()0,ln 2 D .()ln 2,1 8.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( )A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,2 9.已知集合11A x x x ⎧⎫-=<⎨⎬+⎩⎭,{}log 4x y x =-,则A B =( ) A .{}41xx -<<∣ B .{}14x x -<< C .{}14x x << D .{}1x x ≥-10.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<11.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞12.已知集合{}22280,03x A x x x B x x -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤B .{42x x -≤≤且3}x ≠-C .{}34x x -≤≤ D .{34}x x -<≤ 13.已知全集{}0,1,2,3,4,5U A B ==,(){}1,2,4U AB =,B =( ) A .{}0B .{}3,5C .{}0,3,5D .{}1,2,4 14.已知集合{|13}A x x =-<<,1,{}1,2B =-,则A B =( ) A .{}1,2B .{}1,1,2-C .{}0,1,2D .{}1,0,1,2,3- 15.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.已知(){}22,1,01M x y x y y =+=<≤,(){},,N x y y x b b R ==+∈,如果M N ≠∅,那么b 的取值范围是______.17.集合*83A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 18.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.19.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.20.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)21.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 22.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.23.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.24.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______.25.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( )(2){}1是集合{}1,2,3的元素;( )(3)2是集合{}1,2,3的子集;( )(4)满足{}{}00,1,2,3A 的集合A 的个数是322-个.( )三、解答题26.已知{}28200P x x x =--≤,非空集合{}11S x m x m =-≤≤+.若x P ∈是x S ∈的必要不充分条件,求实数m 的取值范围.27.已知集合{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>.(1)若A B A ⋃=,求实数m 的取值范围;(2)若x A ∈是x B ∈的充分条件,求m 的取值范围.28.已知函数2()327mx n h x x +=+为奇函数,||1)3x m k x ﹣()=( ,其中R m n ∈、 . (1)若函数h (x )的图象过点A (1,1),求实数m 和n 的值;(2)若m =3,试判断函数11()+()()f x h x k x =在[3x ∈+∞,)上的单调性并证明; (3)设函数()()(),39,3h x x g x k x x ⎧≥⎪=⎨<⎪⎩,若对每一个不小于3的实数1x ,都恰有一个小于3的实数2x ,使得12g x g x ()=() 成立,求实数m 的取值范围.29.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.30.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .【参考答案】一、单选题1.B【解析】【分析】根据给定条件,利用交集、补集的定义直接计算作答.【详解】集合{}3,4,5A =,{}2,3,4B =,则{3,4}A B =,而全集{}1,2,3,4,5U =,所以(){1,2,5}U A B ⋂=. 故选:B2.D【解析】【分析】求出集合M 中的元素,再由子集的定义求解.【详解】由题意{|04}{1,2,3}M x Z x =∈<<=,因此其真子集个数为3217-=.故选:D .3.B【解析】【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可.【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =,因为{A =1-,0,1,2},所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-.故选:B4.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.5.C【解析】【分析】求出集合A 的解集,取交集运算即可.【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =.故选:C.6.C【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()21,110x x x >+->,解得1x <-或1x >,所以()(),11,B =-∞-⋃+∞,所以(](),01,A B ⋃=-∞⋃+∞.故选:C7.B【解析】【分析】由已知,分别求解出集合A 、集合B 的范围,然后直接求解交集即可.【详解】 由已知,集合{}21A x x =<,即集合{}11A x x =-<<, 集合{}2x B x e =<,即集合{}ln 2B x x =<, 因为11ln ln 21ln e e-=<<=,所以A B ={}1ln 2x x -<<.故选:B.8.D【解析】【分析】先化简集合A ,继而求出A B .【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2.故选:D.9.B【解析】【分析】先求出集合A ,B ,再求两集合的交集即可【详解】 解:由11x x -<+得2101x x x ++>+, 因为210x x ++>恒成立,所以1x >-,即{}1A x x =>-.由函数2log y =4x <,即{}4B x x =<. 所以{}14A B x x ⋂=-<<.故选:B10.B【解析】【分析】根据集合的并集计算即可.【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤,故选:B11.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围. 【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭,当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C12.D【解析】【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可.【详解】 因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤,故选:D.13.C【解析】【分析】根据条件可得1,2,4∈U B ,则1,2,4B ∉,结合条件即可得答案. 【详解】因为(){}1,2,4U A B =,所以1,2,4∈U B ,则1,2,4B ∉,又{}0,1,2,3,4,5U A B ==,所以0,3,5B ∈,即{}0,3,5B =.故选:C14.A【解析】【分析】根据交集运算求A B【详解】{|13}A x x =-<<,1,{}1,2B =-,{1,2}A B ∴=,故选:A15.D【解析】【分析】根据集合的定义分析判断即可.【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合;对于B ,长寿也不是一个明确的定义,故不能构成集合;对于C ,π 的近似值没有明确近似到小数点后面几位,不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合;故选:D.二、填空题16.(1,2⎤-⎦【解析】【分析】数形结合,进行求解.【详解】M 是以原点为圆心,1为半径的圆位于x 轴上方部分上的点,N 为直线y x b =+上的点,如图,当直线过点()1,0时,此时11b =-,当直线与半圆相切时,此时圆心到直线距离111bd ==+,解得:22b =±,因为直线与y 轴交点在y 轴正半轴,故22b =,由图可知:b 的取值范围是(1,2⎤-⎦.故答案为:(2-17.{1,2}##{2,1}【解析】【分析】根据集合元素属性特征进行求解即可.【详解】因为83N x *∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}18.1【分析】利用交集的定义直接求解.【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭, ∴A B 中元素个数为1.故答案为:1.19.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.20.⊂【解析】【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决.【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂ 故答案为:⊂21.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.22.102m -≤≤【解析】【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答.令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤, 所以实数m 的取值范围为102m -≤≤. 故答案为:102m -≤≤ 23.5【解析】【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =.故答案为:524.{}0,1,4【解析】【分析】根据集合的运算法则计算.【详解】 由已知{4}A =,{0,1}B =,所以{0,1,4}A B =.故答案为:{0,1,4}.25. 假 假 假 真【解析】【分析】(1)利用真子集的定义即可判断.(2)由集合与集合的关系即可判断真假.(3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数.【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题.(3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题.(4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A ,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题. 故答案为:假;假;假;真三、解答题26.[]0,3.【解析】【分析】先解出集合P ,由x P ∈是x S ∈的必要不充分条件得出S P ,又S 为非空集合,解不等式求出m 的取值范围即可.【详解】由28200x x --≤,得210x -≤≤,∴{}210P x x =-≤≤.∵S 为非空集合,∴11m m -≤+,解得0m ≥. 又∵x P ∈是x S ∈的必要不充分条件,则S P , ∴12,110,m m -≥-⎧⎨+≤⎩且不能同时取等,解得3m ≤. 综上,m 的取值范围是[]0,3.27.(1)(0,3](2)[5,)+∞【解析】【分析】(1)根据A B A ⋃=,由B A 求解;(2)根据x A ∈是x B ∈的充分条件,由A B 求解.(1) 解:因为{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>,且 A B A ⋃=,所以B A ,则01216m m m >⎧⎪-≥-⎨⎪+≤⎩, 解得03m <≤,所以实数m 的取值范围是(0,3];(2)因为x A ∈是x B ∈的充分条件,所以A B ,则01216m m m >⎧⎪-≤-⎨⎪+≥⎩, 解得5m ≥,所以m 的取值范围是 [5,)+∞.28.(1)30,0m n ==(2)单调递增,证明见解析(3)(0,6)【解析】【分析】(1)运用奇函数的定义可得0n =,再由()h x 图象经过点(1,1),解方程可得m ; (2)39()3x f x x x-=++在[3,)∞+递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当3x 时,2()()273273mx m g x h x x x x ===++;当3x <时,||1()9()9()3x m g x k x -==⋅;分别讨论0m ,03m <<,3m ,运用基本不等式和函数的单调性,求得m 的范围.(1) 函数2()327mx n h x x +=+为奇函数, 可得()()h x h x -=-,即22327327mx n mx n x x -++=-++,则0n =, 由()h x 的图象过(1,1)A ,可得h (1)1=,即130m n +=, 解得30m =,故30,0m n ==;(2)3m =,可得39()3x f x x x -=++,[3,)x ∈+∞,()f x 在[3,)+∞ 上递增.证明:设123x x <,则123312121299()()33x x f x f x x x x x ---=++--- 12331221129()33x x x x x x x x ---=-⋅+-, 由123x x <,可得210x x ->,129x x >,1233330x x ---<,则12())0(f x f x -<,即12()()f x f x <,可得()f x 在[3,)∞+递增;(3)当3x 时,2()()273273mx m g x h x x x x===++;当3x <时,||1()9()9()3x m g x k x -==⋅.①0m 时,13x ∀时,1111()()0273m g x h x x x ==+;23x ∀<时,2||221()9()9)30(x m g x k x -==>⋅不满足条件,舍去;②当03m <<时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||0x m -≥,2||221()9()9()(03x m g x k x -==⋅∈,9], 由题意可得(0,](018m ⊆,9],可得918m ,即162m ; 综上可得03m <<; ③当3m 时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||30x m m ->-,2||221()9()9()(03x m g x k x -==⋅∈,319())3m -⋅, 由题意可得(0,](018m ⊆,319())3m -⋅, 可得5318m m -<,可令5()318x x H x -=-,则()H x 在R 上递减,(6)0H =, 故由5318m m -<,可得6m <,即36m <, 综上可得06m <<,所以m 的取值范围是(0,6).【点睛】本题考查函数的奇偶性和单调性的定义和运用,考查分类讨论思想方法和化简整理的运算能力,属于难题.29.(1)[]1,2-(2)()(),45,-∞-+∞【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解;(2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.30.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<<【解析】【分析】先化简集合A 、B ,再去求A B 、A B 即可解决.【详解】{}{}2=16044A x x x x -<=-<< {}{}2=318036B x x x x x -++>=-<< 则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<< {}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<<。
高中集合练习题及答案
高中集合练习题及答案集合是数学中一个非常重要的概念,它在高中数学中占有重要地位。
集合论是研究集合的数学分支,它提供了一种描述和处理数学对象的方式。
在高中数学中,学生需要掌握集合的基本概念、运算以及集合在解决数学问题中的应用。
以下是一些高中集合练习题及答案,供同学们练习和参考。
练习题1:设集合A={x|x<5},B={x|x>3},求A∩B。
答案:集合A表示所有小于5的实数的集合,集合B表示所有大于3的实数的集合。
A与B的交集A∩B就是同时满足小于5且大于3的实数的集合,即A∩B={x|3<x<5}。
练习题2:已知集合M={1,2,3},N={2,3,4},求M∪N。
答案:集合M表示元素为1,2,3的集合,集合N表示元素为2,3,4的集合。
M与N的并集M∪N就是包含M和N所有元素的集合,即M∪N={1,2,3,4}。
练习题3:设A={x|-1≤x≤2},B={x|x>1},求A-B。
答案:集合A表示闭区间[-1,2]中的所有实数的集合,集合B表示大于1的所有实数的集合。
A-B表示A中所有不属于B的元素组成的集合,即A-B={x|-1≤x≤1}。
练习题4:如果A={x|x<0或x>5},B={x|-3≤x≤4},求A∩B。
答案:集合A表示所有小于0或大于5的实数的集合,集合B表示闭区间[-3,4]中的所有实数的集合。
A与B的交集A∩B就是同时满足小于0或大于5且在闭区间[-3,4]中的实数的集合,即A∩B={x|-3≤x<0}。
练习题5:设A={1,2,3},B={x|x∈A且x≠2},求B。
答案:集合A表示元素为1,2,3的集合。
B是A中所有不等于2的元素组成的集合,即B={1,3}。
练习题6:已知A={x|-2<x<3},B={x|-1<x<4},求A∪B。
答案:集合A表示开区间(-2,3)中的所有实数的集合,集合B表示开区间(-1,4)中的所有实数的集合。
高考(高中)数学 集合的运算 100道练习题 有答案
高中(高考)数学集合的运算练习卷试卷排列:题目答案上下对照难度:中等以上版本:适合各地版本题型:填空题31多道,选择题32多道,解答题37多道,共100道有无答案:均有答案或解析价格:6元,算下来每题6分钱。
页数:79页1.已知命题:p 对任意x R ∈,总有||0x ≥;:1q x =是方程20x +=的根,则下列命题为真命题的是A.p q ∧⌝B.p q ⌝∧C.p q ⌝∧⌝D.p q ∧ 【答案】A 【解析】试题分析:因为命题:p “对任意x R ∈,总有0x ≥”为真命题; 命题q :“1x =是方程20x +=的根”是假命题;所以q ⌝是真命题,所以p q ∧⌝为真命题,故选A. 考点:1、命题;2、充要条件.2.已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】A【解析】当1a b ==时,()()2212a bi i i +=+=,反过来()22222a bi a b abi i +=-+=,则220,22a b ab -==,解得1,1a b ==或1,1a b =-=-,故1a b ==是()22a bi i +=的充分不必要条件,故选A考点:充要条件的判断,复数相等.3.已知命题.,:,:22y x y x q y x y x p ><-<->则若;命题则若在命题①q p q p q p q p ∨⌝⌝∧∨∧)④(③②);(;;中,真命题是( ) A.①③ B.①④ C.②③ D.②④ 【答案】C【解析】试题分析:当x y >时,两边乘以1-可得x y -<-,所以命题p 为真命题,当1,2x y ==-时,因为2214x y =<=,所以命题q 为假命题,则q ⌝为真命题,所以根据真值表可得②③为真命题,故选C. 考点:命题真假 逻辑连接词 不等式4.设{}n a 是公比为q 的等比数列,则“1>q ”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】D 【解析】试题分析:对等比数列}{n a ,若1>q ,则当01<a 时数列}{n a 是递减数列;若数列}{n a 是递增数列,则}{n a 满足01<a 且10<<q ,故当“1>q ”是”数列}{n a 为递增数列的既不充分也不必要条件.故选C.考点:等比数列的性质,充分条件与必要条件的判定,容易题.5.在ABC ∆中,角,,A B C 成等差数列是)sin sin cos C A A B =+成立的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A 【解析】考点:三角函数6.在ABC ∆中,“A>B ”是“22sin sin A B >”的( )A .充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】C【解析】在ABC ∆中,sin sin 0A B A B >⇔>> 考点:三角函数,充分必要条件7.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q:“∃x ∈R 使x 2+2ax+2-a=0”,若命题“p 且q ”是真命题,则实数a 的取值范围是( )A.{}1a a ≥B.{}212a a a -或≤≤≤C.{}21a a -≤≤D.{}21a a a -=或≤ 【答案】D 【解析】试题分析:若∀x ∈[1,2],x 2-a ≥0,则1≤a ;若∃x ∈R 使x 2+2ax+2-a=0,则0)2(4)2(2≥--a a ,解得2-≤a 或1≥a ,若命题“p且q ”是真命题,则实数a 满足⎩⎨⎧≥-≤≤121a a a 或,2-≤a 或1=a ,所以实数a 的取值范围是2|{-≤a a 或}1=a .考点:含有逻辑联结词的命题的真假判断,全称命题与特称命题..8.下列四个命题:①利用计算机产生0~1之间的均匀随机数a ,则事件“013>-a ”发生的概率为31;②“0≠+y x ”是“1≠x 或1-≠y ”的充分不必要条件; ③命题“在ABC ∆中,若B A sin sin =,则ABC ∆为等腰三角形”的否命题为真命题;④如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β。
高中数学集合练习题及答案-百度文库
高中数学集合练习题及答案-百度文库一、单选题1.设集合{}2|60A x x x x =--<∈Z ,,(){}2|ln 1B y y x x A ==+∈,,则集合B 中元素个数为( )A .2B .3C .4D .无数个 2.已知集合{}{}0,11,A x x B x x x =≥=-≤≤∈Z ∣∣,则A B =( )A .[]0,1B .{}1,2C .{}0,1D .[]1,2 3.设全集{}1,2,3,4,5U =,集合{}1,2A =,{}2,3B =,则()U A B =( ) A .{}4,5 B .{}2,3 C .{}1 D .{}3 4.设{|1},{|12}P x x Q x x ==-<≤≤,那么P Q =( )A .{|11}x x -<<B .{|12}x x -≤<C .{|12}x x ≤<D .{|11}x x -≤≤5.已知集合{}{01}A x x a B x x =<=<≤∣,∣,若A B =∅,则实数a 的取值范围是( )A .01a <≤B .0a >C .0a ≤D .0a ≤或1a ≥6.设集合{}2|230A x x x =+-<,集合{|B y y ==,则A B =( ) A .()1,1- B .()0,1C .[)0,1D .()1,+∞7.满足条件{M ⋃永安,漳平}{=德化,漳平,永安}的集合M 的个数是( ) A .6 B .5 C .4 D .38.已知集合{}21A x x =≤,{}01B x x =<<,则A B =( )A .()1,1-B .[)1,1-C .[]1,1-D .()0,1 9.已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,510.已知集合11A x x x ⎧⎫-=<⎨⎬+⎩⎭,{log x y =,则A B =( )A .{}41x x -<<∣B .{}14x x -<<C .{}14x x <<D .{}1x x ≥-11.设(){}2log 1A x y x ==+,{}24B x x =≥,则()R A B =( )A .()1,2-B .[)1,2-C .()2,+∞D .()1,-+∞12.已知集合{}12,12x A y y x -==≤≤,|lg 2B x y x ,则下列结论正确的是( )A .AB ⊆ B .[]0,2A B =C .(],2A B ⋃=-∞D .()R B A =⋃R13.已知集合{}1e 1x M x -=>,{}220N x x x =-<,则M N =( )A .()1,+∞B .()2,+∞C .()0,1D .()1,2 14.集合{}{}Z 2,1,0,1|,2,3A x x B =∈<=-,则A B =( )A .1,0,1,2B .{}1,0,1?-C .{}0,1D .{}115.已知集合{}1,0,1,2A =-,{}12B x x =-<<,则A B =( )A .{}1,0,1-B .{}0,1C .{}1,1,2-D .{}1,2二、填空题16.若{}}{1020x ax x x +=⊆-=,则=a __________.17.已知集合(){}ln 2|A x y x ==-,{}2430|B x x x ≤=-+,则A B ⋃=____________ 18.已知集合{}112,,0,2x M x x x R P x x R x ⎧⎫-=-≤∈=≥∈⎨⎬+⎩⎭,则集合M P 中整数的个数为______个. 19.等差数列{}n a 中15141024a a a a ++=+,513a a =. 若集合{}*122n n n N a a a λ∈<+++∣中仅有2个元素,则实数λ的取值范围是______.20.设全集{}0,1,2U =,集合{}0,1A =,在U A ______ 21.若集合(){}2381x A x ==,集合(){}23log 1B x x ==,则A B =_________. 22.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.23.已知全集{}1,2,3,4,5,6,7U =,集合A 、B 均为U 的子集.若{}5A B =,{}7A B ⋂=,则A =______.24.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______.25.对于数集M 、N ,定义{},,M N x x a b a M b N +==+∈∈,,,a M N x x a M b N b ⎧⎫÷==∈∈⎨⎬⎩⎭,若集合{}1,2P =,则集合()P P P +÷中所有元素之和为___________.三、解答题26.已知全集为实数集R ,集合{A x y ==,(){}lg 2B x y x ==-.(1)求A B 及()R B A ;(2)设集合{}1C x x a =<<,若C A ⊆,求实数a 的取值范围.27.已知集合{}24120A x x x =--<,集合{}239B x m x m =-<<-.现有三个条件:条件①A B B =;条件②R ()B A ⊆;条件③A B B ⋃=.请从上述三个条件中任选一个,补充在下面横线上,并求解下列问题:(1)若4m =,求R ()B A ⋂;(2)若______,求m 的取值范围.注:如果选择多个条件分别解答,按第一个选择的解答计分.28.设全集{2}U x x =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣.求U A ,()U A B ⋂,A B ,()U A B29.已知集合{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,U =R .(1)当3a =时,求A B ,()U A B ⋃;(2)若A B =∅,求实数a 的取值范围.30.设全集U =R ,已知集合2{|2350}A x x x =+-≤,{(8)0}B xx x =->∣. (1)求()R ,A B A B ⋂⋃;(2)求()R ,A B A B ⋂⋃.【参考答案】一、单选题1.B【解析】【分析】先解出集合A ,再按照对数的运算求出集合B ,即可求解.【详解】由260x x --<,解得23x -<<,故{}1,0,1,2A =-,()2222ln (1)1ln(11)ln 2,ln 010,ln(21)ln5⎡⎤-+=+=+=+=⎣⎦,故{}ln 2,0,ln5B =,集合B 中元素个数为3.故选:B.2.C【解析】【分析】根据交集的定义和运算直接得出结果.【详解】由题意得,{1,0,1}B =-,又{}0A x x =≥,所以{0,1}A B =.故选:C.3.C【解析】【分析】直接按照补集和交集的概念运算即可.【详解】由题意知:{}1,4,5U B =,则(){}1U A B =.故选:C.4.D【解析】【分析】直接根据集合交集运算求解即可.【详解】解:因为{|1},{|12}P x x Q x x ==-<≤≤,所以{|11}Q x x P -≤≤=.故选:D5.C【解析】【分析】利用交集的定义即得.∵集合{}{01}A xx a B x x =<=<≤∣,∣, A B =∅, ∴0a ≤.故选:C.6.C【解析】【分析】化简集合A 、B ,然后利用交集的定义运算即得.【详解】因为集合{}2|230{|31}A x x x x x =+-<=-<<,集合{[,)|0B y y =+∞=,所以[0,1)A B =.故选:C .7.C【解析】【分析】根据集合的并集可得答案.【详解】因为集合{M ⋃永安,漳平}{=德化,漳平,永安},所以集合M 可以为{德化},{德化,漳平},{德化,永安},{德化,永安,漳平},共4个, 故选:C.8.D【解析】【分析】根据一元二次不等式解法求出集合A ,再根据交集的定义即可求解.【详解】 解:因为集合{}{}2111A x x x x =≤=-≤≤,{}01B x x =<<, 所以()0,1A B =,故选:D.9.B【解析】【分析】 求出集合{}2230A x x x =--<,再根据集合的交集运算求得答案. 【详解】 由题意,{}2230{|13}A x x x x x =--<=-<<, 故{}{|13}15{|13}A B x x x x x x ⋂=-<<⋂≤≤=≤<,10.B【解析】【分析】先求出集合A ,B ,再求两集合的交集即可【详解】 解:由11x x -<+得2101x x x ++>+, 因为210x x ++>恒成立,所以1x >-,即{}1A x x =>-.由函数2log y =4x <,即{}4B x x =<. 所以{}14A B x x ⋂=-<<.故选:B11.A【解析】【分析】根据函数定义域的求解,以及简单二次不等式的求解,解得集合,A B ,再根据集合的补运算和交运算,即可求得结果.【详解】 因为(){}2log 1A x y x ==+{}{}|101x x x x =+>=-,{}24B x x =≥{|2x x =≤-或2}x ≥,故B R {|22}x x =-<<,则()R A B ={}()|121,2x x -<<=-.故选:A.12.C【解析】【分析】求函数的值域求得集合A ,求函数的定义域求得集合B ,由此对选项进行分析,从而确定正确答案.【详解】112,011,122x x x -≤≤≤-≤≤≤,所以[]1,2A =,20,2x x -><,所以(),2B =-∞.∵2A ∈,2B ∈/,故A 错,B 错;∵R 2A ∈/,2B ∈/,∴()R 2A B ∈/,D 错.(],2A B ⋃=-∞,C 正确.故选:C13.D【解析】根据指数函数的性质解出集合M ,再由二次不等式的解法求出集合N ,最后求交集即可.【详解】解:由1e 1x ->得10e e x ->,又函数e x y =在R 上单调递增,则10x ->,即{}1M x x =>,又由220x x -<得02x <<,即{}02M x x =<<, 所以{}12M N x x ⋂=<<.故选:D.14.B【解析】【分析】根据集合的交集运算,求得答案.【详解】由题意{}{}Z 2,1,0,1|,2,3A x x B =∈<=-,因为集合A 中元素为小于2的整数,又{}1,0,1,2,3B =-,所以{}1,0,1A B =-,故选:B .15.B【解析】【分析】利用交集概念及运算,即可得到结果.【详解】∵集合{}1,0,1,2A =-,{}12B x x =-<<,∴{}0,1A B =,故选:B二、填空题16.0或12-##12-或0 【解析】【分析】由题,先求出}{20x x -=所代表集合,再分别讨论{}10x ax +=作为子集的可能情况即可.【详解】由}{20x x -=得集合为{}2,故{}10x ax +=为空集或{}2, 当{}10x ax +=为{}2时,可得12a =-;当{}10x ax +=为空集时,可得0a =,故答案为:0或12- 17.[)1,+∞【解析】【分析】先求出集合A 、B ,再求A B .【详解】集合(){}()2|2ln ,A x y x =+∞==-,{}[]2|1,3430B x x x =≤=-+, 所以()[][)2,1,31,A B +∞⋃=∞⋃+=.故答案为:[)1,+∞18.3【解析】【分析】分别求解对应不等式,化简集合M 、P ,根据交集的定义写出M P ,即可得到答案. 【详解】{}{}{}12,21213M x x x R x x x x =-≤∈=-≤-≤=-≤≤, {}110,0,2122x x P x x R x x R x x x x ⎧⎫⎧⎫--=≥∈=≤∈=-<≤⎨⎬⎨⎬++⎩⎭⎩⎭, 则{}[]111,1M P x x ⋂=-≤≤=-,其中的整数有-1,0,1共3个,故答案为:319.924⎡⎫⎪⎢⎣⎭,【解析】【分析】设等差数列{}n a 的公差为d ,由题设列出d 与1a 的方程组,解出d 与1a ,从而可得到212322n n n a a a n n ++⋯++=,令23()2n n n f n +=,得出()f n 的单调性,即可求出λ的取值范围. 【详解】解:设等差数列{}n a 的公差为d ,由题设可知:11111141392443a a d a d a d a d a ++++=++⎧⎨+=⎩, 解得:14a =,2d =,212(1)4232n n n a a a n n n -+++=+⨯=+, ∴212322n n na a a n n ++⋯++=,令23()2n n n f n +=,则22211(1)3(1)34(1)()222n n n n n n n n n f n f n +++++++-+-=-=-, 当2n <时,()()10f n f n +->,当2n ≥时,()()10f n f n +-<,f ∴(1)f <(2)f >(3)f >(4)>, 又f (1)2=,f (2)52=,f (3)94=,f (4)74=, 集合{}*12N |2n n n a a a λ∈<++⋯+中有2个元素, 即集合*12N |2n n a a a n λ++⋯+⎧⎫∈<⎨⎬⎩⎭中有2个元素, [2λ∴∈,9)4. 故答案为:924⎡⎫⎪⎢⎣⎭,. 20.{2}【解析】【分析】利用集合的补运算求U A 即可. 【详解】由{}0,1,2U =,{}0,1A =,则{2}U A =.故答案为:{2}.21.{1,2,33} 【解析】【分析】求解集合,根据集合的并集运算即可.【详解】(){}{}23812x A x ===,(){}231log 13,3B x x ⎧⎫===⎨⎬⎩⎭,则A B ={1,2,33}. 故答案为:{1,2,33}. 22.5【解析】【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人.【详解】设第一、二题都没答对的有x 人,则()()206166635x -+-++= ,所以5x =故答案为:523.{5,7}##{}7,5【解析】【分析】根据给定条件结合集合的运算性质即可计算作答.【详解】因集合A 、B 均为U 的子集,则有U B B =⋃, 于是得()()()A A U A B B A B A B =⋂=⋂⋃=⋂⋃⋂,而{}5A B =,{}7A B ⋂=, 所以{5,7}A =故答案为:{5,7}24.{1,0,1,2}-【解析】【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答.【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-, 所以{1,0,1,2}A B =-.故答案为:{1,0,1,2}-25.232##11.5 【解析】【分析】根据定义分别求出()P P P +÷中对应的集合的元素即可得到结论.【详解】{1P =,2},{|P P x x a b ∴+==+,a P ,}{2b P ∈=,3,4},(){|2P P P x x ∴+÷==,3,4,1,3}2, ∴元素之和为323234122++++=, 故答案为:232. 三、解答题26.(1){|1}A B x x =≥,R (){|12}B A x x =≤≤ (2)(,3]a ∈-∞【解析】【分析】(1)先求出集合A 、B ,再求A B ,R ()B A ;(2)对C 是否为∅分类讨论,分别求出a 的范围.(1)由1030x x -≥⎧⎨-≥⎩可得{}|13A x x =≤≤ 又{|20}{|2}B x x x x =->=>,则R {|2}B x x =≤ 所以{|1}A B x x =≥,R (){|12}B A x x =≤≤ (2)当1a ≤时,C =∅,此时C A ⊆;当1a >时,C A ⊆,则13a ;综上可得(,3]a ∈-∞27.(1){|67}x x ≤<;(2)选择条件,答案见解析.【解析】【分析】(1)解一元二次不等式化简集合A ,再求出其补集,再利用交集的定义计算作答.(2)选择条件①,③,利用交集、并集的结果转化为集合的包含关系,再讨论求解作答;选择条件②,利用集合的包含关系,讨论求解作答.(1)集合()(){}{}26026A x x x x x =+-<=-<<,R {|2A x x =≤-或6}x ≥,当4m =时,{}17B x x =<<,则()R {|67}A B x x ⋂=≤<.(2)选择条件①:A B B =,则B A ⊆,若B =∅,则239m m -≥-,解得23m -≤≤,若B ≠∅,则22393296m m m m ⎧-<-⎪-≥-⎨⎪-≤⎩,解得3m <≤综上得:2m -≤≤所以m的取值范围是2m -≤≤选择条件②:R ()B A ⊆,由(1)知,R {|2A x x =≤-或6}x ≥,若B =∅,则239m m -≥-,解得 23m -≤≤,若B ≠∅,则223992m m m ⎧-<-⎨-≤-⎩或23936m m m ⎧-<-⎨-≥⎩,解得2m ≤<-或9m ≥,综上得:3m ≤或9m ≥,所以m的取值范围是3m ≤或9m ≥.选择条件③:A B B ⋃=,则A B ⊆,于是得:22393296m m m m ⎧-<-⎪-≤-⎨⎪-≥⎩,解得m ≤ 所以m的取值范围是m ≤28.{22U A x x =-≤≤∣或10}x ≥,(){2}U A B =,{28}A B x x ⋂=<≤∣,(){22U A B x x ⋂=-≤≤∣或8}x >【解析】【分析】依据补集定义求得U A ,再依据交集定义求得()U A B ⋂;依据交集定义求得A B ,再依据补集定义求得()U A B . 【详解】{2}U x x =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣,则{22U A x x =-≤≤∣或10}x ≥,则(){2}U A B ={28}A B x x ⋂=<≤∣,则(){22U A B x x ⋂=-≤≤∣或8}x >29.(1){11A B x x ⋂=-≤≤或}45x ≤≤,(){}15U A B x x ⋃=-≤≤(2)(),1-∞【解析】【分析】(1)将3a =代入集合A 中确定出A ,求出A 与B 的交集,求出B 的补集,求出A 与B 补集的并集即可;(2)由A 与B 以及两集合的交集为空集,对a 进行分类讨论,把分类结果求并集,即可求出结果.(1) 将3a =代入集合A 中的不等式得:{}15A x x =-≤≤, ∵{|1B x x =≤或4}x ≥,∴{11A B x x ⋂=-≤≤或}45x ≤≤,{}14U B x x =<<,则(){}15U A B x x ⋃=-≤≤;(2)∵{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,当0a <时,A =∅;此时满足A B =∅,当0a =时,{}2A =,此时也满足A B =∅, 当0a >时,A ≠∅,若A B =∅,则2124a a ->⎧⎨+<⎩,解得:01a <<; 综上所述,实数a 的取值范围为(),1-∞30.(1)()[](]()R 0,5,,58,A B A B ⋂=⋃=-∞⋃+∞(2)[)()(]R 7,0,5,8A B A B ⋂=-⋃=【解析】【分析】 (1)解不等式求得集合,A B ,由此求得()R ,A B A B ⋂⋃. (2)结合(1)来求得()R ,A B A B ⋂⋃. (1) ()()2235750x x x x +-=+-≤,解得75x -≤≤, 所以[]7,5A =-,()()R ,75,A =-∞-⋃+∞. ()80x x ->,解得0x <或8x >, 所以()(),08,B =-∞⋃+∞,[]R 0,8B =, 所以()[](]()R 0,5,,58,A B A B ⋂=⋃=-∞⋃+∞.(2)由(1)得[)()(]R 7,0,5,8A B A B ⋂=-⋃=.。
高中数学《集合》练习题 (250)
高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知全集I =N *,集合A ={x |x =2n ,n ∈N *},B ={x |x =4n ,n ∈N },则( ) A .I =A ∪BB .I =(IC A )∪BC .I =A ∪(I C B )D .I =(I C A )∪(I C B )(1996全国理,1)2.定义集合运算*{,,},{1,2},{0,2}A B Z Z xy x A y B A B =|=∈∈==设,则集合*A B 的所有元素之和为( )。
A . 0 B.2 C. 3 D. 6(2008江西)3.若全集U={x ∈R|x 2≤4} A={x ∈R||x+1|≤1}的补集CuA 为 A |x ∈R |0<x <2| B |x ∈R |0≤x <2| C |x ∈R |0<x≤2| D |x ∈R |0≤x≤2|4.已知全集U R =,则正确表示集合{1,0,1}M =−和{}2|0N x x x =+=关系的韦恩(Venn )图是(2009年广东卷文)5.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则 ( )A .A ⊂≠B B .B ⊂≠AC .A=BD .A∩B=∅(2012课标文)二、填空题6.已知集合{}1,0,1,2A =−,{}20B x x x =−≤,则AB = .7.若非空集合{2135}A x a x a =+≤≤−,{322}B x x =≤≤,则能使()A A B ⊆成立的所有a 的集合为_______________8.已知集合{}{}1,3,1,2,A B m ==,若A B ⊆,则实数m = ▲ .9.设集合{|1A x =−≤x ≤2},B={x |0≤x ≤4},则A ∩B=( A )(A)[0,2] (B)[1,2] (C)[0,4] (D)[1,4](2006浙江文)10.设集合{|32}M m m =∈−<<Z ,{|13}N n n M N =∈−=Z 则,≤≤{}101−,,11.设全集{1,3,5,7,9}I =,集合A ={1,3,9},则I C A =___________ 12.已知全集U =R ,集合A =(),0−∞,{}1,3,B a =−−,若()U C A B ≠∅,则实数a的取值范围是 。
高中数学集合练习题160题,包含所有题型,附答案
第一节:集合的含义与表示练习题123 已知集合2=++∈若,则a的值为_______.A a a a A{2,2},34567891011121314151617181920212223242526(2,3]B(2,3]-(2,3]D(2,3]-272{|0}a xxax=,若2∉,则实数a的取值范围是()B.C.D.(-282{|axxx-=-3,5M∈∉,则实数a的取值范围是()答案:第二节:集合间的基本关系练习题12345678910111213 B,则a14 B,则实数15 B⊆,求实数161}-,若BD.1718192021222324 A,求a25A⊆,则实数26 A⊆,则实数27R x∈28293031323334353637答案:第三节:集合的基本运算练习题1 B.2 B.为整数集,则A B=(3-D.{1,0,1,2}为整数集,则A B=()4-1,0}N=()56 {0,1,2,3,9}B=,求实数7 1}A B=,求+,{3,2,0}8 {3,5}B=,求a的取值.9 1,5,}a,{5}A B=,求10 {1,4}U M =11 R{|0P x =<12 60}x n -+=,且{2,1,4}B =13 {1,2,3,5}B =,则k=______. 14 {1,2,3,4}B =,则m=_______. 15 {0,1,2,3}B =的值为_______.16 ,{5}A B =,求17 4},{3}A B =,则实数18 ,{2,3}A B =,则19 满足{2}A B =,则实数20 ,若{3}A B =,则实数21 1,3,21}m m --,若{3}B =-22 {3}A B =,则实数a=_______23 ,若{1,2}U A =,则实数m=_______24 {0,1}U A =,则_______. 250}p +=,若{2,3}UM =26 ,且R A B =,求m 的取值范围.27 6},{|2A B x =-28 230}x -->,若R B =,求29 B =∅,求a 的取值范围.30 1}+,若{|47}A B x x =<<31 B=∅,求321}a≥-,若RB=,则33RB=,则实数的取值范围是(3a≥34 8},RS T=,则31a-≥或D.35,若A B=∅,则36B=∅,实数[2,)+∞[2,)+∞][2,)+∞[2,)+∞37{|}x x a=≤0},若M N=∅,则B.0a≥.2a<-38|2x x-≤≤||,}y x x M=∈,若N N=,则实数39B≠∅,则的取值范围为(2,3]4021}-<,若(){UN x=3-41 B≠∅,实数m的取值集合是42*R=∅,则实数2>-D.43 {1,4,5}=,求()UA B.44 {1,4,5}=,求()()U UA B.45 40}ax+=,其中A B A B=,求a的值.4640}ax+=,其中A B=∅且A B A=,47 ()UA=∅,求a的值.48 )UA B.49 {1,3,5,7,9}=,则()UA B=________50 ,则()UA B=()51 ()UA B=________.52(){4}UA B=,{1,2}B=,则UB=(∅53 ,全集U A B=,则集合()UA B中的元素共有(个545}x≤,则RB=()3,3)-55,则下列关系中与A B⊆等价的事().B A=(B B=(UB=∅(UA=∅)(2)B)(3)(4).(1)(2)(3D.(2)(3)56 2{|30}x x=+≥,241B x m=-+-,若A B=∅,且B A=,则57 B =∅,B A =,58 B A =,求59的关系是(N N = N N =603}x <<,12}M x x <>或N =∅ R M N =61 22}y b b =-+,A 、B 的关系?62且AB A =,则的值为( 或-1或06320}ax -=,满足B B =,则实数64 B A =,则实数65,则下列结论成立的是( )N M = N N = D .{2}M N =66{|1}x x >,则( )P ⊆ C .RP Q ⊆ D .RQ P ⊆67,{2,3,4}N =,则( ).{2,3}M N =D .{1,4}M N =68{|5x x =-<<,则( ) B =∅ R B = .B A ⊆69 已知集合{20}A x =-<,{|1B x x -<<)B B .AC .B =∅70{|4}x x <2{|Q x x =<Q ⊆ B .P ⊆ C RQ D .RQ P ⊆71 ,)|}x y x y -,{(3}B x y =+=,求A B . 72 1}1y=+,求AB .73 ,)|40}x y x y +=,则A B =______74,则AB =( ).{(0,0),(1,1)} 7521}x x =++,则M N =( {(0,1),(2,7)}76两个集合的关系是( 7778 {(2,5)}B =7953}x =-,)B ,则80 A C .81 M =∅,求8221)(x a -+-B =∅,则832ay a --=B =∅,则a84B =∅,则8512人,学生总数86(){2,3}U B =(){0,6}U A =()(){1,7}U U A B =87 人,物理及格人,化学及格25人,数学物理都及格20人,物理化学都及格人,数理化都不及格10人,学生总数88 8990 91(){2,3}U B =(){0,6}U A =()(){1,7}U U A B =92{1,2,3,4,5}N =,{2,4}UMN =,则N= )B .{1,3,5}C .{1,4,5}D .{2,3,4}93 {1,2,3,4,5}N ={2,5}UN =94 均为集合U =的子集,且{3}AB =,){9}U B A =,则.{3,7,9}{3,5,9} D .{3,9}95 3}x ≥,途中阴影部分所表示的集合为(A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}96已知全集{1,2,3,4,5}U =,集合{1,2,3}A =,{3,4,5}B =,图中阴影部分所表示的集合为( )A .{3}B .{1,2}C .{4,5}D .{1,2,3,4,5} 97()I M =∅N =( 98 B 中有m )()U U A B 中有n 个元素,若AB 非空,则A B 的元)m+n C .m-n 99C 为三个集合,B B C =,则一定有(.C A ⊆ A C ≠D .A =∅100 {,}a b ,{,,}B b c d =,则)()U U A B =_______101 ,2,3,4,5,6,7,8,9},集合{0,1,3,5,8}A =,集合B =)()U U A B =( A .{5,8} B .{7,9}102设全集{1,2,3,4,5,6}U =A .M N B .MN C .()()U U M N D .()()U U M N答案:BD2 2,0,}3或23D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学-集合的运算测试题
1.若集合A={x|-2<x<1},B={x|0<x<2},则集合A∩B等于( )
A.{x|-1<x<1} B.{x|-2<x<1} C.{x|-2<x<2} D.{x|0<x<1}
2.已知集合M={x|-3<x≤5},N={x|x<-5或x>4},则M∪N等于( )
A.{x|x<-5或x>-3} B.{x|-5<x<4}
C.{x|-3<x<4} D.{x|x<-3或x>5}
3.设集合A={0},B={2,m},且A∪B={-1,0,2},则实数m等于( )
A.-1 B.1 C.0 D.2
4.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是( )
A.N⊆M B.M∪N=M C.M∩N=N D.M∩N={2}
5.已知集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k∈N+}的关系的维恩(Venn)图,如图所示,则阴影部分所表示的集合的元素共有( )
A.3个B.2个C.1个D.无穷个
6.设A={x | 2x2-px+q=0},B={x | 6x2+(p+2)x+5+q=0},若A∩B=
1
2
⎧⎫⎨⎬⎩⎭
,
则A∪B等于( )
A.
11
,,4
23
⎧⎫
-
⎨⎬
⎩⎭
B.
1
,4
2
⎧⎫
-
⎨⎬
⎩⎭
C.
11
,
23
⎧⎫
⎨⎬
⎩⎭
D.
1
2
⎧⎫
⎨⎬
⎩⎭
7.已知集合A={x|x≥5},集合B={x|x≤m},且A∩B={x|5≤x≤6},则实数m等于________.
8.设S={(x,y)|x<0,且y<0},T={(x,y)|x>0,且y>0},则S∩T=______,S∪T =_______.
9.已知集合A=
30,
360
x
x
x
⎧⎫
->
⎧
⎪⎪
⎨⎨⎬
+>
⎩
⎪⎪
⎩⎭
,集合B={m|3>2m-1},求A∩B,A∪B.
10.求满足集合A∪B={a,b}的集合A,B.
11.设方程x2-mx+m2-19=0的解集为A,x2-5x+6=0的解集为B,x2+2x-8=0 的解集为C,且A∩B≠∅,A∩C=∅,试求m的值.
参考答案
1. 解析:在数轴上分别表示出集合A ,B ,如图所示,
由数轴可知,A ∩B ={x |0<x <1}. 答案:D
2. 解析:在数轴上分别表示出集合M ,N ,如图所示,
由数轴可知,M ∪N ={x |x <-5或x >-3}. 答案:A
3. 解析:由于 A ∪B ={-1,0,2},则-1∈A 或-1∈B .因为A ={0},所以-1∉A .所以必有-1∈B .又B ={2,m },则m =-1.
答案:A 4. 答案:D
5. 解析:M ={x |-1≤x ≤3},集合N 是全体正奇数组成的集合,则阴影部分所表示的集合为M ∩N ={1,3},即阴影部分所表示的集合共有2个元素.
答案:B
6. 解析:∵A ∩B =12⎧⎫⎨⎬⎩⎭
,∴12∈A ,1
2
∈B. 将
12
分别代入方程2x 2-px +q =0及6x 2
+(p +2)x +5+q =0,联立得 11
022
31(2)5022
p q p q ⎧⎪⎪⎨
⎪⎪⎩-+=,++++=,解得74.p q ⎧⎨⎩=-,=- 所以A ={x | 2x 2
+7x -4=0}=14,2⎧
⎫-⎨⎬⎩⎭
,
B ={x |6x 2-5x +1=0}=11,23⎧⎫⎨⎬⎩⎭
.
故A ∪B =11,,423⎧⎫-⎨⎬⎩⎭
. 答案:A
7. 解析:在数轴上分别表示出集合A ,B ,如图所示,
由于A∩B={x|5≤x≤6},则m=6.
答案:6
8.解析:集合S是平面直角坐标系中第三象限内的所有点构成的集合,集合T是平面直角坐标系中第一象限内的所有点构成的集合,则S∩T=∅,S∪T={(x,y)|x>0,且y>0或x<0,且y<0}={(x,y)|xy>0}.
答案:∅{(x,y)|xy>0}
9.解:解不等式组
30
360
x
x
>
⎧
⎨
>
⎩
-,
+,
得-2<x<3,则A={x|-2<x<3},
解不等式3>2m-1,得m<2,则B={m|m<2},
在数轴上分别表示出集合A,B,如图所示,
则A∩B={x|-2<x<2},A∪B={x|x<3}.
10.解:对A的元素个数进行分类讨论.
(1)若A=∅,则B={a,b};
(2)若A={a},则B={b}或B={a,b};
若A={b},则B={a}或B={a,b};
(3)若A={a,b},则B={a}或B={b}或B={a,b}或B=∅.
11.解:由已知可得,B={2,3},C={2,-4},再由A∩B≠∅及A∩C=∅可知,3∈A,所以3是方程x2-mx+m2-19=0的根,
即9-3m+m2-19=0,解得m=5或m=-2.
但当m=5时,A={2,3}与已知矛盾;
所以m=-2,此时A={-5,3}.
故m=-2.。