自动控制原理第四章线性系统的根轨迹法
自动控制原理第第四章 线性系统的根轨迹法
2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2
根轨迹法(自动控制原理)ppt课件精选全文完整版
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法
自动控制原理第四章根轨迹法.
(s z j ) pi )
m
lim
sm s
n
s
lim
1
s s nm
0
即其余的 n-m 条根轨迹终止于无穷远处,即终止于系 统的n-m个无穷大零点。
回章首 回节首
18
4-2-5 实轴上的根轨迹 实轴上根轨迹的判别方法。 在实轴上选取实验点si, 如果实验点 si 的右方实轴上的开环 零点数和极点数的总和为奇数,则 实验点 si 所在的实验段是根轨迹, 否则该实验段不是根轨迹。 图中, [-1,0]段和[-∞,-5]段是根轨迹。 而(-5,-1)段和(0,+∞)段不是根轨迹。
第四章 根轨迹法
§4-1 根轨迹法的基本概念 §4-2 绘制根轨迹图的基本法则 §4-3 控制系统根轨迹的绘制
§4-4 控制系统的根轨迹法分析
退出
.R.Evans)提出了一种在复平面上由系 统的开环极、零点来确定闭环系统极、零点的图 解方法,称为根轨迹法。 意义:可以分析系统的性能,确定系统应有的结 构和参数,也可用于校正装置的综合。
回章首 回节首
22
分离点或会合点位置的计算
(1) 重根法 数条根轨迹在复平面上某点相遇又分开,该点 必为特征方程的重根。 如两条根轨迹相遇又分开,该点为二重根。 三条根轨迹相遇又分开,该点为三重根等等。 重根的确定可以借助于代数重根法则。
回章首
回节首
23
代数重根法则
已知n次代数方程为
f ( x) x n an1x n1 ... a1x a0 0
根轨迹法是一种简便的图解方法,在控制工 程上得到了广泛的应用。
回章首
2
§4-1 根轨迹法的基本概念
自动控制原理 第四章 根轨迹法
第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。
本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。
4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。
例如某控制系统的结构图如图4.1所示。
图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。
于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。
箭头表示随K 值增加根轨迹的变化趋势。
这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。
画出根轨迹的目的是利用根轨迹分析系统的各种性能。
通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。
又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。
可以看出,根轨迹与系统性能之间有着比较密切的联系。
图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。
而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。
下面给出图解法绘制根轨迹的根轨迹方程。
第四章 线性系统的根轨迹法
n
j
s
lim s
s i
nm
nm
sz
i 1
开环传递函数中,若令 s 当 m<n 时, G(s)H(s) =0
称 s ( m<n),是 G(s)H(s) 的无限零点 (n-m个)。
• 法则2. 根轨迹的分支数、对称性和连续性: 根轨迹的分支数与开环有限零点数 m、开环有 限极点数 n 中的大者相等,连续对称于实轴。
d 2.3
4)确定起始角。量测各向量相角,算得起始 角=-71. 6°
5)确定根轨迹与虚袖交点。闭环特征方程式 为:
s 5s 8s 6 s K 0
4 3 2
将s j代入,得实部方程为: 8 K 0
4 2
虚部方程为: 5 6 0
3
解得: 1.1 K 8.16 ,
2
试绘制闭环系统的概略根轨迹。 解 按下述步骤绘制概略根轨迹: 1)确定实轴上的根轨迹。实轴上[0,-3]区域必 为根轨迹。 2)确定根轨迹的渐近线。由于n-m=4,故有四条 根轨迹渐近线,其: a 1.25
a 45 ,135
3)确定分离点。
1 d 1 d 3 1 d 1 j 1 d 1 j 0
三、n-m条渐近线;
四、根轨迹的出射角、入射角; 五、根轨迹与虚轴的交点; 六、根轨迹的分离点、会合点; 结合根轨迹的连续性、对称性、根轨迹的 支数、起始点和终点,闭环极点与闭环极点之 和及之积等性质画出根轨迹。
例4—4 设系统开环传递函数为设系统开 环传递函数为: K
G( s) s( s 3)( s 2s 2)
d 3.414 ,d 0.586(舍去)
自动控制原理
L(s)的相角
单位反馈系统的 开环传递函数 一个开环极点 负实轴上点 s1 s2=-1-j
G (s) =
K s
P1=0
∑ ∠( s − z ) −∑ ∠(s − p ) | = −∠s
i =1 i i =1 i
m
n
1
− p1 = −180o
负实轴上都是根轨迹上的点!
∑ ∠( s − z ) −∑ ∠( s − p ) | = −∠s
3.
根轨迹法
一种求取闭环系统的特征根的图解法(1948年 一种求取闭环系统的特征根的图解法(1948年, 由 W. R. Evans在 “ 控制系统的图解分析 ” 一文 Evans 在 控制系统的图解分析” 中提出) 中提出)。 已知开环零极点分布, 已知开环零极点分布,研究一个或几个参数变化 对闭环极点位置的影响, 对闭环极点位置的影响,从而进一步分析系统的 性能(如稳定性、动态性能、稳态性能等) 性能(如稳定性、动态性能、稳态性能等)。 以前控制系统根轨迹绘制很麻烦,现在使用 MATLAB非常方便。 MATLAB非常方便。
根 轨 迹
K : 开环增益 K*: 根轨迹增益
C ( s) K* Φ( s ) = = 2 R( s ) s + 2 s + K *
D( s ) = s 2 + 2 s + K * = 0
λ1, 2 = −1 ± 1 − K *
(4).闭环系统极点与标准化参数之间的关系可由图4-2 闭环系统极点与标准化参数之间的关系可由图4 表示
1 + G (s) H (s) = 0
G (s)H (s) = −1
将上式改写成
G ( s) H (s) e
j ∠G ( s ) H ( s )
自动控制原理第四章根轨迹法
第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)
《自动控制原理》第4章 线性系统的根轨迹法
68
4.5 广义根轨迹
根轨迹部分是个半圆,半径是 k *
证明:根轨迹上一点S满足相角条件
s (s j2) (s j2)
代入s j
( j) ( j( 2)) ( j( 2))
arctan arctan 2 arctan 2
K* G(s)
s(s 2)(s 1)
26
法则五:根轨迹的分离点与分离角
分离点:几条根轨迹在[s]某一点相遇后又分开 的点。
说明有重根
27
实轴上的分离点(常见)
如果根轨迹位于实轴上相邻的两个开环极点之间, 其中一个可以是无限极点,则在这两个极点之间至 少存在一个分离点;
如果根轨迹位于实轴上相邻的两个开环零点之间, 其中一个可以是无限零点,则在这两个零点之间至 少存在一个分离点;
开环极点:
p1 0 p2 0 p3 2 p4 5
(2)实轴上的根轨迹 (3)根轨迹分支数
4
59
G0 ( s)
s2(s
k* 2)(s
5)
(4)渐近线
4条
渐近线与实轴的夹角
a
4
3
4
3
4
4
渐近线与实轴的交点(σa , 0)
4
pi
a
i 1
4
1.75
60
G0 ( s)
s2(s
k* 2)(s
法则二:根轨迹的分支数,对称性和 连续性
• 根轨迹的分支数与开环有限零点数m和有限 极点数n中的大者相等,它们是连续的并且 对称于实轴。
22
法则三:根轨迹的渐近线(n>m)
• 当开环有限零点数m小于有限极点数n时, 有n-m条根轨迹分支沿着与实轴交点 ,
第4章 线性系统的根轨迹法(《自动控制原理》课件)
如果用试凑的方法由相角条件来绘制根轨迹, 如果用试凑的方法由相角条件来绘制根轨迹 将会非常不方 人们利用前面介绍的几个式子, 便. 人们利用前面介绍的几个式子 导出一些绘制根轨迹的法则 利用导出的法则, 可方便地绘制出根轨迹的大至形状, 利用导出的法则 可方便地绘制出根轨迹的大至形状 叫概略根 轨迹, 轨迹 这在利用根轨迹对系统进行初步分析和设计时已基本可用 了.
(2) 当0<K<=0.25时, 一个根的绝对值随 的增大而增大 另 的增大而增大, 时 一个根的绝对值随K的增大而增大 一个根的绝对值随K的增大而减小 两根的变化轨迹如下图所示: 的增大而减小, 一个根的绝对值随 的增大而减小 两根的变化轨迹如下图所示 jω ω σ -2 -1.5 -1 0
当K=0.25时, 两根相等 均为 时 两根相等, 均为-1.5 (3) 0.25<K<+∞ 时, 两根为共軛复根 且其实部均为 两根为共軛复根, 且其实部均为-1.5 , 而 +∞ 虚部的绝对值随K的增大而增大 两根的变化轨迹如下图所示: 的增大而增大, 虚部的绝对值随 的增大而增大 两根的变化轨迹如下图所示 jω ω σ
4-2 根轨迹绘制的基本法则
本节通过一个例子, 介绍绘制根轨迹的七条法则, 本节通过一个例子 介绍绘制根轨迹的七条法则 但对法则 不予推导和证明. 不予推导和证明 需指出的是, 需指出的是 绘制根轨迹的前提是必须已知闭环系统的开环 传递函数的零点和极点的具体数值, 一般以K’为参变量 为参变量. 传递函数的零点和极点的具体数值 一般以 为参变量 某闭环系统的开环传递函数为: 例: 某闭环系统的开环传递函数为
阶数. 阶数 K叫开环系统的增益 K’叫开环系统的根轨迹增益 叫开环系统的增益, 叫开环系统的根轨迹增益, 叫开环系统的增益 叫开环系统的根轨迹增益 K与K’的本质相同 仅它们间的值有一系数关系, 即: 与 的本质相同, 仅它们间的值有一系数关系 的本质相同
(自动控制)第四章:根轨迹法
动态性能:从根轨迹图可以分析出系统的工作状态,
如过阻尼状态、欠阻尼状态……
根轨迹增益、闭环零极点与开环零极点的关系 l f
* G(s)= KG
∏( s-p ) i i=1
f i i 1 H q
q
∏( s-z ) i i=1
;
l
j=1 * H (s)= KH h
f l m
∏(s-zj )
C(s)
C ( s) 2k 2 R ( s ) S 2 S 2k
特征方程(闭环):
S2+2s+2k=0
k s(0.5s+1)
特征根:s1,2= -1±√1-2k k=0时, s1=0, s2=-2
K:0 ~ ∞
0<k<0.5 时,两个负实根 ;若s1=-0.25, s2=? k=0.5 时,s1=s2=-1 0.5<k<∞时,s1,2=-1±j√2k-1 j
注意:一组根对应同一个K;
K一变,一组根变; K一停,一组根停;
-2
-1
0
由以上分析,s1、s2两条根轨迹反映了系统特征根随参 数k变化的规律,组成了系统的根轨迹。 1.二阶系统有两个特征根,它的根轨迹有两条分支; 一个n阶系统的根轨迹则应有n条分支。 2.k=0时的闭环极点,s1=0、s2=-2正好是开环传递函 数的两个极点,因此说,系统开环极点就是它各条根轨 迹的起点。 3. k=∞时的闭环极点,是根轨迹的终点。 4.特征方程的重根点是根轨迹的分支离开负实轴进入复 数平面的分支点。
a.系统响应单调上升(ξ>1)系统具有两个不相等的负实根┈ 过阻尼响应。 b.系统响应衰减振荡(0<ξ<1)系统具有一对负实部的共 轭复根┈欠阻尼响应。
线性系统的根轨迹法
法则7. 根轨迹与虚轴的交点
交点和临界根轨迹增益的求法:
解: 方法一
例8.
,试求根轨迹与虚轴的交点。
K*=0 w =0 舍去(根轨迹的起点)
与虚轴的交点:
闭环系统的特征方程为:
s=jw
劳斯表:
01
s2的辅助方程:
02
K* =30
03
当s1行等于0时,特征方程可能出现纯虚根。
04
等效的开环传递函数为:
参数根轨迹簇
二、附加开环零、极点的作用
试验点s1点
例1.设系统的开环传递函数为: 试求实轴上的根轨迹。
解:
零极点分布如下:
p1=0,p2=-3,p3=-4,z1=-1,z2=-2
实轴上根轨迹为:[-1,0]、[-3,-2]和 (- ∞ ,-4]
jw
-2
-1
1
2
-1
-2
s
.
.
.
.
.
.
.
.
三、闭环零极点与开环零极点的关系
反馈通路传函:
前向通路传函:
典型闭环系统结构图
KG*--前向通路根轨迹增益 KH*--反馈通路根轨迹增益
K*--开环系统根轨迹增益
1
闭环传递函数:
2
开环传递函数:
01
04
02
03
闭环系统根轨迹增益,等于开环系统前向通路根轨迹增益。 对于单位反馈系统,闭环系统根轨迹增益等于开环系统根轨迹益。
(5)用(s-s1)去除Q(s),得到余数R2 ;
(6)计算s2 =s1-R1/R2 ;
(7)将s2 作为新的试探点重复步骤(4)~(6)。
例4.试用牛顿余数定理法确定例3的分离点。
自动控制原理第四章根轨迹法(管理PPT)
根轨迹法的优化建议
结合其他方法
将根轨迹法与其他分析方 法(如频率响应法)相结 合,以获得更全面的系统 性能分析。
ቤተ መጻሕፍቲ ባይዱ开发软件工具
开发专门用于根轨迹分析 的软件工具,以提高分析 的效率和准确性。
加强实践应用
在实际工程中加强根轨迹 法的应用,通过实践不断 优化和完善该方法。
05
CATALOGUE
根轨迹法与其他控制方法的比较
根轨迹分析的实例
假设一个开环传递函数为 G(s)H(s) = (s+1)(s+2)/(s^2+2s+5),对其进行 根轨迹分析。
分析根轨迹图,确定系统的稳定性、 动态性能和系统参数的影响。
根据开环传递函数,绘制出根轨迹图 ,并标注出系统的极点和零点。
根据根轨迹图进行系统设计和优化, 例如调整开环传递函数的增益参数, 以改善系统的性能。
对于非线性系统,根轨迹法可能无法给出准确的描述和分析。
04
CATALOGUE
根轨迹法的改进与优化
根轨迹法的局限性与挑战
参数敏感性
根轨迹法对系统参数的微小变化非常敏感,可能导致根轨迹的剧 烈变化,影响系统的稳定性。
无法处理非线性系统
根轨迹法主要适用于线性系统,对于非线性系统的分析存在局限性 。
计算复杂度较高
和设计。
对于具有特定性能指标要求的系统,如 快速响应、低超调量等,可以根据系统 特性和性能要求选择适合的控制方法,
如状态反馈控制器等。
06
CATALOGUE
根轨迹法的实际应用案例
根轨迹法在工业控制系统中的应用
根轨迹法在工业控制系统中广泛应用于系统的分析和设计。通过绘制根轨迹图,可以直观地 了解系统性能的变化,如稳定性、响应速度和超调量等。
自动控制原理-胡寿松-第四章-线性系统的根轨迹法.详解
系统的信号流图见图4-28,从信号流图中看出,系统中含有一个积分环节, 因此为1型系统,因此系统对阶跃输入信号的稳态误差为0。
K m 变化时系统的根轨迹, 2)为了绘制电动机传递系数(含放大器附加增益) 可将有关参数代入传递函数中,并将系统的特征方程进行整理,等价根轨迹增 益方程为:
1 K* P( s ) ( s 6.93 j 6.93)( s 6.93 j 6.93) 1 K * Q( s ) s 2 ( s 13.86)
当所有根轨迹分支都在左半平面时,系统稳定。 2) 稳态性能:
回忆:稳态性能主要取决于系统的开环增益和积分环节个数。
由根轨迹图不仅可以方便的确定开环增益和积分环节个数,而且可以根据给定系统 的稳态误差要求, 确定闭环极点位置的容许范围。
3)动态性能: 回忆:动态性能形态主要取决于系统的——闭环极点。 从根轨迹图上,可以直观地看到特征根随着参数的变化情况,从而,可以方便地 确定动态性能随着参数的变化情况。
K * lim
s
j 1 i 1 m
n
s pi s zj
lim s
s
nm
, 0 ,
nm nm
(无穷零点)
(无穷极点)
(n m 1)
(续)
且均为实数开环零、极点。
(续)
(续)
小结论: 由两个极点(实数极点或者复数极点)和一个有限零点组成的开环系 统,只要有限零点没有位于两个实数极点之间,当 K * 从零变化到无穷时, 闭环根轨迹的复数部分,是以有限零点为圆心,以有限零点到重根点的距 离为半径的一个圆,或圆的一部分。这在数学上是可以严格证明的。
例如,在上列程序之后增加语句: [k,p]=rlocfind(num,den)
自动控制原理-胡寿松-第四章
过阻尼系统;
当K=0. 5时:
临界阻尼系统;
当K>0. 5时:
欠阻尼系统。
(s)
s2
2K 2s
2K
11
4-1 根轨迹法的基本概念
2. 根轨迹与系统性能
上述分析表明:根轨迹与系统性能之间有 着比较密切的联系。
对于高阶系统而言,用解析的方法绘制系 统的根轨迹图,显然是不适用的。希望能有简 便的图解方法,可根据已知的开环传递函数迅 速绘出闭环系统的根轨迹。为此,需要研究闭 环零、极点与开环零、极点之间的关系。
(2)稳态性能:由开环系统 在坐标原点处的极点数可判断 出系统的型别,而此时的K值 就是相应的静态误差系数。如 果给定系统的稳态误差要求, 则由根轨迹图可以确定闭环极 点位置的容许范围。
G(s) K s(0.5s 1)
10
4-1 根轨迹法的基本概念
2. 根轨迹与系统性能
(3)动态性能:
当0<K<0. 5时:
12
3. 闭环零、极点与 开环零、极点之间的关系
一般情况下,前向通路传递函数G(s)可表示为:
f
G(s)
KG
(1s
1)(
2 2
s2
2
1
2
s
1)L
sv (T1s 1)(T22s2 2 2T2s 1)L
KG*
(s zi )
i 1 q
(s pi )
i 1
KG
为前向通路增益;K
* G
为前向通路根轨迹增益。
m
(s zj)
等价为:
K * j1 n
1
(s pi )
2
第四章 线性系统的根轨迹法
4-1 根轨迹法的基本概念
自动控制原理_第4章_线性系统的根轨迹法
4.2 绘制根轨迹的依据--根轨迹方程
R(s)
G ( s) H ( s)
C(s)
一、闭环零极点与开环零极点的关系
* KG
* KH d
G( s)
Π ( s z j )
j 1
a
( s pi ) Π i 1
* a
b
* KG A( s)
B( s)
c
H ( s)
Π ( s zl )
K* G( s) s( s 1)(s 2)
试绘制系统的概略根轨迹。 解:开环极点 p1=0, p2=-1, p3=-2,无开环零点。
实轴上的根轨迹 (-∞,-2], [-1,0]。 渐进线 n=3,m=0,有三条渐进线。
0 1 2 1 交点 a nm 3
i 1
pi
1/4<K<∞时,s1,s2为一对共轭复根; K=1/2时,s1,2=-1/2±j0.5。
注意:一组根对应同一个K;K 一变,一组根变;K一停, 一组根停;
K=0.5 K=0 -1
jω
j0.5 0
σ
-j0.5 根轨迹:简称根迹,它是指系统中某一 K=0.1875 K=0.25
参数在可能的取值范围内连续变化时, 闭环系统特征根在s平面上的变化轨迹。
a
pi z j
i 1 j 1
n
m
nm
a
(2k 1) nm
k 0,1,2,, 直到获得(n m)个夹角为止 .
开环传递函数
G ( s) H (s) K * Π ( s z j )
j 1 m
( s pi ) Π i 1
n
K*
自动控制原理第四章根轨迹法
根轨迹法可用于仿真和实验研究,通过模拟和实验 验证系统的性能和稳定性,为实际系统的设计和优 化提供依据。
根轨迹法的历史与发展
历史
根轨迹法最早由美国科学家威纳于1940年提出,经过多年的 发展与完善,已经成为自动控制领域中一种重要的分析和设 计方法。
发展
随着计算机技术和数值分析方法的不断发展,根轨迹法的应 用范围和精度得到了进一步拓展和提高。未来,根轨迹法有 望与其他控制理论和方法相结合,形成更加完善和高效的控 制系统分析和设计体系。
根轨迹的性能分析
根轨迹的增益敏感性和鲁棒性
通过分析根轨迹在不同增益下的变化情况,可以评估系统的性能和鲁棒性。
根轨迹与性能指标的关系
通过比较根轨迹与某些性能指标(如超调量、调节时间等),可以评估系统的 性能。
04
根轨迹法与其他控制方法的比较
根轨迹法与PID制根轨迹图,直观地分析系统的稳定性、响应速度和超调量等性
特点
根轨迹法具有直观、简便、易于掌握等优点,特别适合用于分析 开环系统的稳定性和性能。
根轨迹法的应用场景
控制系统设计
根轨迹法可用于控制系统设计,通过调整系统参数 ,优化系统的性能指标,如稳定性、快速性和准确 性等。
故障诊断与排除
根轨迹法可用于故障诊断与排除,通过观察系统根 轨迹的变化,判断系统是否出现故障,以及故障的 类型和程度。
在绘制根轨迹时,需要遵循一定 的规则,如根轨迹与虚轴的交点 、根轨迹的分离点和汇合点等。
03
根轨迹分析方法
根轨迹的形状分析
根轨迹的起点和终点
根轨迹的起点是开环极点的位置,而 终点是闭环极点的位置。通过分析起 点和终点的位置,可以判断根轨迹的 形状。
根轨迹的分支数
第4章 线性系统的根轨迹法
1.绘制根轨迹的基本法则 法则1 根轨迹的起点和终点。根轨迹起始于开环 极点,终止于开环零点。 对于实际的物理系统,开环零点数m一般小于 或等于开环极点数n。 法则2 根轨迹的分支数、对称性和连续性。根轨 迹的分支数与开环有限零点数和有限极点数中的 大者相等,它们是连续的并且对称于实轴。
第4章 线性系统的根轨迹法
第4章 线性系统的根轨迹法
2.附加开环零点的作用 在控制系统设计中,常用附加位置适当 的开环零点来改善系统性能。 研究附加开环零点的作用的方法,就是 将开环零点取不同的值绘制K变化时的根轨 迹。由此可分析和设计附加零点对改善系统 性能的影响。
第4章 线性系统的根轨迹法
3.零度根轨迹 非最小相位系统——指在s右半平面具有 开环零极点的控制系统。此其根轨迹相角遵 循00+2kπ,称之为零度根轨迹。 零度根轨迹的绘制方法,与常规根轨迹 的绘制方法不同。其中正反馈的根轨迹绘制 如前所述。
第4章 线性系统的根轨迹法
4. 根轨迹方程
根轨迹是系统所有闭环极点的集合。 设系统的闭环传递函数为:
C ( s) G(s) Φ( s) = R( s) 1+G ( s) H ( s)
令闭环传递函数表达式的分母为零,得:
1 + G( s ) H ( s ) 0
第4章 线性系统的根轨迹法
或
G(s) H (s) 1
LOGO
自动控制原理 教学课件 2009年淮南师范学院 校级精品课程
电气信息工程系 自动控制原理课程教学组
第4章 线性系统的根轨迹法
第4章 线性系统的根轨迹法
主要内容:
•4-1 根轨迹法的基本概念
•4-2 根轨迹绘制的基本原则 •4-3 广义根轨迹 •4-4 系统性能的分析 •4-5 用MATLAB绘制根轨迹
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H (s)
f
G(s)K sG (T (11 ss 11 ))T ((22 2 2ss22 222 1T 2 2ss 1 1)) KG * i q 1((ss p zii)) i1
KG *
KG
12
T1T22
和
K G :前向通路增益
H
(s)
K
* H
l
(s z j )
j 1
h
(s p j )
与实轴夹角 与实轴交点
a
(2k1)180o
nm
n
m
pi z j
a i1
j 1
nm
例1 设单位反馈系统的前向传递函数为
K*(s1) G(s)
s(s4) (s2 2s2)
(1) p10,p24,p31j
p41j,z11
(2)有4条根轨迹的分支,对称于实轴
(3)有n-m=4-1=3条根轨迹渐近线
根轨迹方程
由闭环传递函数 (s) G(s)
1G(s)H(s)
m
(szj)
1G(s)H(s)0 K* j1
1 根轨迹方程
n
(spi)
i1
当 K*0 K*
求出相应的根,就可以在s平面上绘制出根轨迹。
根轨迹方程可以进一步表示为
m
(szj)
K* j1
1 ,
n
(spi)
i1
m
szj
K* j1
ej1ej(2k1)
0
K* 有一个无穷远处的起 点
规则2:根轨迹的分支数和对称性
根轨迹的分支数与开环极点数n相等(n>m)
或与开环有限零点数m相等(n<m)
根轨迹连续:根轨迹增益是连续变化导致特征根也连续 变化。
实轴对称:特征方程的系数为实数,特征根必为实数或 共轭复数。
规则3:根轨迹渐近线
当 n>m 时,则有(n-m) 条根轨迹分支终止于无限零点。 这些根轨迹分支趋向无穷远的渐近线由与实轴的夹角 和交点来确定。
本章重点
学习本章内容, 应重点掌握根轨迹的 基本概念、绘制根轨 迹的条件、系统根轨 迹的绘制规则和利用 根轨迹分析系统的稳 定性、暂态特性和稳 态性能, 参量根轨迹 的概念和绘制方法, 理解零度根轨迹的基 本概念和绘制方法。
4-1 根轨迹方程
特征方程的根 运动模态 性、系统性能)
系统动态响应(稳定
与实轴夹角
a (2 k n 1 ) m 18 o 0 (2 k 4 1 ) 1 18 o 0 6o 0 , 6o 0 ,18 o
与实轴交点
n
m
p i zj ai 1n m j 1
(0 4 1 j 1 j) ( 1 ) 1 .67 4 1
图示P.135 4-6
规则4:实轴上的根轨迹
若实轴的某一个区域是一部分根轨迹,则必有:其右边 (开环实数零点数+开环实数极点数)为奇数。
j 1
K
* G
:前向通道根轨迹增益
K
* H
:反馈通道根轨迹增益
f
l
m
(szi)(szj)
(szj)
G(s)H(s)KG *KH *
i1 q
j1 h
K* j1
n
(spi)(spj)
(spi)
i1
j1
i1
nqh , mf l , K* KG *KH *
(s) G(s)
KG * f (szi) h (spj)
m(szj) n(spi)(2k1)
j1
i1
(2k1)18o0 , (k0,1,2,)
规则1:根轨迹的起点和终点:根轨迹起始于开环极点, 终止于开环零点。
简要证明:
1 G (s )H (s ) 0 n(s p i) K * m (s zj) 0
i 1
j 1
K * 0 n(s p i) 0 s p i
i1
j1
1G(s)H(s) n(spi)K* m(szj)
i1
j1
结论:
(1)闭环系统的根轨迹增益 = 开环前向通道系统根轨迹
增益。(2)闭环系统Fra bibliotek零点 开环前向通道传递函数的零点和
反馈通道传递函数的极点所组成。
(3)闭环极点与开环零点、开环极点、根轨迹增益 K * 均有关。
根轨迹法的任务:由已知的开环零极点和根轨迹增益, 用图解方法确定闭环极点。
s1,2 1 12K
开环增益K从零变到无穷,可以用解析方法求出闭环
极点的全部数值。
j K
K2.5
2
s1,2 1 12K K0
K1 K0
2 1
1
0 K0.5
1
2
根轨迹与系统性能
稳定性 考察根轨迹是否进入右半 s 平面。
稳态性能 开环传递函数在坐标原点有一个极点,系
统为1型系统,根轨迹上的K值就是静态误差系数。 但是由开环传递函数绘制根轨迹,K是根轨迹增益, 根轨迹增益与开环增益之间有一个转换关系。
n
spi
i1
相角条件(幅角条件):(充分必要条件)
m
n
(s zj) (s p i) (2 k 1 ) , (k 0 , 1 , 2 , )
j 1
i 1
n
s pi
模值条件(幅值条件):
K * i1
m
s zj
j 1
4-2 根轨迹绘制的基本法则
可变参数为根轨迹增益 K *
相角条件: 180o相轨迹
i 1
又从
K 1*i n1(spi) jm 1(szj)0
K * m (s zj) 0 szj
j 1
在实际系统通常是 nm ,则还有 (n m) 条根轨迹终 止于s平面的无穷远处,这意味着在无穷远处有 (n m)
个无限远(无穷)零点。
K* 0
nm
K* 0
nm
0
K* 有两个无穷远处的终 点
动态性能 由K值变化所对应的闭环极点分布来估
计。
对于高阶系统,不能用特征方程求根的解析方法得到根 轨迹。
根轨迹法 图解法求根轨迹。 从开环传递函数着手,
通过图解法来求闭环系统根轨迹。
闭环零、极点与开环零、极点之间的关系
设 控制系统如图所示
R (s) G(s) C (s)
(s) G(s)
1G(s)H(s)
根轨迹 开环系统(传递函数)的每一个参数从零变化
到无穷大时,闭环系统特征方程根在 s 平面上的轨迹称为 根轨迹。
若闭环系统不存在零点与极点相消,闭环特征方程的根 与闭环传递函数的极点是一一对应的。
例 二阶系统的根轨迹
K s (0.5 s 1)
(s)C(s) 2K
,
R(s) s2 2s2K
D(s)s2 2s2K0
第四章 线性系统的根轨迹法
●本章主要内容与重点 ● 根轨迹方程 ●根轨迹绘制的基本法则 ●广义根轨迹
本章主要内容
本章阐述了控制系统 的根轨迹分析方法。包 括根轨迹的基本概念、 绘制系统根轨迹的基本 条件和基本规则,参量根 轨迹和零度根轨迹的概 念和绘制方法,以及利 用根轨迹如何分析计算 控制系统的性能(稳定 性、暂态特性和稳态性 能指标等)。
这个结论可以用相角条件证明。
由相角条件
m