第1章 量子力学基础知识

合集下载

chapter1 量子力学基础知识习题解答

chapter1 量子力学基础知识习题解答

λ/nm
v /1014 s−1
312.5 9.59
365.0 8.21
404.7 7.41
546.1 5.49
Ek/10-19J
3.41
2.56
1.95
0.75
由表中数据作图,示于图 1.2 中
由式 hν = hν 0 + Ek 推知
E /10-19J k
4 3 2 1 0
4 5 6 7 8 9 10 ν/1014g-1
= 9.403×10-11m
(3) λ = h = h p 2meV
=
6.626 ×10−34 J ⋅ s
2× 9.109 ×10−31kg ×1.602×10−19 C × 300V
= 7.08×10−11m
4
乐山师范学院 化学与生命科学学院
【1.5】用透射电子显微镜摄取某化合物的选区电子衍射图,加速电压为 200kV,计算电子 加速后运动时的波长。
算符:作用对象是函数,作用后函数变为新的函数。 线性算符:作用到线性组合的函数等于对每个函数作用后的线性组合的算 符。
1
乐山师范学院 化学与生命科学学院
Aˆ (c1ψ1 + c2ψ 2 ) = c1Aˆψ1 + c2 Aˆψ 2
∫ ∫ 自厄算符:满足
ψ
* 2
(
Aˆψ
1
)dτ
=
ψ 2 ( Aˆψ1)*dτ 的算符。
【1.8】电视机显象管中运动的电子,假定加速电压为 1000V,电子运动速度的不确定度 ∆v
为 v 的 10%,判断电子的波性对荧光屏上成像有无影响?
解:在给定加速电压下,由不确定度关系所决定的电子坐标的不确定度为:
∆x = h =

第一章 量子力学基础知识

第一章  量子力学基础知识

《结构化学基础》讲稿第一章孟祥军第一章 量子力学基础知识 (第一讲)1.1 微观粒子的运动特征☆ 经典物理学遇到了难题:19世纪末,物理学理论(经典物理学)已相当完善: ◆ Newton 力学 ◆ Maxwell 电磁场理论 ◆ Gibbs 热力学 ◆ Boltzmann 统计物理学上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。

1.1.1 黑体辐射与能量量子化黑体:能全部吸收外来电磁波的物体。

黑色物体或开一小孔的空心金属球近似于黑体。

黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。

★经典理论与实验事实间的矛盾:经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。

按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。

按经典理论只能得出能量随波长单调变化的曲线:Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。

Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。

经典理论无论如何也得不出这种有极大值的曲线。

• 1900年,Planck (普朗克)假定:黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。

• h 称为Planck 常数,h =6.626×10-34J •S•按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合:●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。

能量波长黑体辐射能量分布曲线 ()1/8133--=kt h c h eE ννπν1.1.2 光电效应和光子学说光电效应:光照射在金属表面,使金属发射出电子的现象。

第一章 量子力学基础

第一章 量子力学基础

氧化锆晶体的X射线衍射图 (Debye-Scherrer图)
de Broglie还利用他的关系式为Bohr的轨道角动 量量子化条件
h mvr n 2
作了一个解释:由这一条件导出的
nh h S 2r n n mv p
表明圆轨道周长S是波长的整数倍,这正是在圆周上形 成稳定的驻波所需要的,如同琴弦上形成驻波的条件是 自由振动的弦长为半波长的整数倍一样. 尽管这种轨迹确定的轨道被不确定原理否定了, 但“定态与驻波相联系”的思想还是富有启发性的.
测物理量. 波函数应具有品优性 , 包括单值性、连续性 、平方可积性.
波函数的概率解释
例如, 坐标与相应的动量分量、方位角与动量矩等.
不确定原理可以用不同的方式来阐述, 最容易理解也 最常用的是电子的单缝衍射实验:
波是不确定性的表现
单 缝 衍 射
这个象征着科学 的标志, 迄今仍被有 些人认为是原子模型 的真实图像. 实际上, 它只是照耀过科学历 程的星光:
由于坐标与相应 的动量分量不可能同 时精确测定, 所以, 原子中的电子不可能 具有这种轨迹确切的 轨道.
(photoelectric effect), 后来导致了光的粒子学说. 1889年, 斯托列托夫提出获得光电流的电池方案(下图G为电 流表, V为电压表; C为阴极, A为阳极):
1898年,P.勒纳特确认放电粒子为电子, 并于1902年指出: 1.入射光线的频率低于一定值就不会放出光电子; 2.光电子的动能与光强度无关而与光的频率成正比; 3.光电流强度与光强成正比。
de Broglie波不仅对建立量子
力学和原子、分子结构理论有重要
意义,而且在技术上有重要应用.
使用de Broglie波的电子显微镜分辨率

一二三习题答案

一二三习题答案
(A)1(B)2(C)4(D)5
B18.原子轨道指的是下列的哪一种说法?
(A)原子的运动轨迹(B)原子的单电子波函数(C)原子的振动态(D)原子状态
C19.钠原子光谱D线是双重线,其原因是下列的哪一个:
(A)电子的轨道角动量(B)外磁场;(C)自旋轨道耦合(D)3p能级高
C20.对于原子中电子的总能量,下列的哪一个说法是正确的?
D15.如果氢原子的电离能是13.6 eV,则Li2+的电离能是下列的哪一个?
(A)13.6eV,(B)27.2 eV;(C)54.4 eV;(D)122.4 eV
A16.在氢原子中,对于电子的能量,下列的哪一种说法正确?
(A)只与n有关;(B)只与l有关;(C)只与m有关;(D)与n和l有关
B17.测量3d态氢原子的轨道角动量的z轴分量,可得到几个数值?
(C)动量一定有确定值;(D)几个力学量可同时有确定值;
7.试将指数函数e±ix表示成三角函数的形式cosex±isinex
8.微观粒子的任何一个状态都可以用波函数来描述;ψψ*表示粒子出现的概率密度。
D9.Planck常数h的值为下列的哪一个?D
(A)1.38×10-30J/s(B)1.38×10-16J/s(C)6.02×10-27J·s(D)6.62×10-34J·s
(A)CA=0.90,CB=0.10;(B)CA=0.95,CB=0.32;
(C)CA=CB;(D)CA=0.10,CB=0.90;
B7.下列分子的基态中哪个是三重态?
(A)F2(B)O2(C)N2(D)H2+
B8.对分子的三重态,下列哪种说法正确?
(A)分子有一个未成对的电子(B)分子有两个自旋平行的电子
(A)Zeeman(B)Gouy(C)Stark(D)Stern-Gerlach

第一章量子力学基础知识总结

第一章量子力学基础知识总结

第一章量子力学基础知识总结微观粒子的运动特征1.黑体辐射和能量量子化●黑体是一种能全部吸收照射到它上面的各种波长辐射的物体。

●黑体辐射的能量量子化公式:●普朗克常数(h=6.626×10-34 J·s)2.光电效应和光子学说●只有当照射光的频率超过某个最小频率(即临阈频率)时,金属才能发射光电子。

●不同金属的临阈频率不同。

●随着光强的增加,发射的电子数也增加,但不影响光电子的动能。

●增加光的频率,光电子的动能也随之增加●式中h为Planck常数,ν为光子的频率●m = h /c2所以不同频率的光子有不同的质量。

●光子具有一定的动量(p)P = mc = h /c = h/λ●光的强度取决于单位体积内光子的数目,即光子密度。

Ek = h -W3.实物微粒的波力二项性● E = h v , p = h / λ●光(各种波长的电磁辐射)和微观实物粒子(静止质量不为0的电子、原子和分子等)都有波动性(波性)和微粒性(粒性)的两重性质,称为波粒二象性4.不确定度关系●具有波动性的粒子其位置偏差(△x )和动量偏差(△p )的积恒定.,有以下关系:量子力学基本假设1、波函数和微观粒子的状态●波函数ψ和微观粒子的状态●合格波函数的条件2、物理量和算符●算符:对某一函数进行运算,规定运算操作性质的符号。

如:sin,log等。

线性算符:Â( 1+ 2)=Â 1+Â 2自轭算符:∫ 1*Â 1 d =∫ 1(Â 1 )*d 或∫ 1*Â 2 d =∫2(Â 1 )*d3、本征态、本征值和Schrödinger方程●A的本征方程Aψ= aψa 称为力学量算符 A 的本征值,ψ称为A的本征态或本征波函数,4、态叠加原理●若 1, 2… n为某一微观体系的可能状态,由它们线性组合所得的 也是该体系可能的状态。

5、Pauli(泡利)原理●在同一原子轨道或分子轨道上,至多只能容纳两个自旋相反的电子。

第一章_量子力学的基础知识

第一章_量子力学的基础知识

m
0
c2
h
c2
(4)光子的动量为 pmh c/ch /
(5)光子与电子碰撞时服从能量守恒和动量守恒定律
1

hν < W 0

hν > W 0
W0
1 m2 2
W0
① 当 h < W0 (ho) 时,光子
没有足够的能量使电子克服 电子的束缚能而成为自由电 子,则不发生光电效应;
② 当 h > W0 (ho) 时,
D
狭缝到底片的距离远大于狭
缝宽度, CP≈AP,
e
sin=OC/AO =/D
x A OC
P y
在p点的动量在x轴的分量就 是在该方向的不确定量
△px=psin=p/D=h/D 而坐标x的不确定量Δx即为 单缝宽度D
△x=D, 所以 △x△px=h
Q A
C O
P
psin
电子单缝衍射实验示意图
考虑二级以上衍射, x px ≥h 1
金属中发射的电子具有 一定的动能,发生光电
流,并随 增加而增加。
1
光电子动能mv 2/2
光子能量: E=hν 光子动量: p=h/λ 光电效应方程: mv2/2 =hν-W
(λ为入射光的波长, W为金属的功函数, m和v为光电子的质量和速度)
斜率为h
光频率ν
1
只有把光看成是由光子组成的光束才能理解光电效 应,而只有把光看成波才能解释衍射和干涉现象。光表 现出波粒二象性,即在一些场合光的行为像粒子,在另 一些场合光的行为像波。粒子在空间定域,而波却不能 定域。光子模型得到的光能是量子化的,波动模型却是 连续的,而不是量子化的。
1
按经典物理学理论

第1章 量子力学基本原理

第1章 量子力学基本原理
1898年, Rayleigh-Jeans根据经典的电 磁理论推导出黑体辐射Rayleigh-Jeans 方程 ,在长波处很接近实验曲线,而 在短波长处与实验显著不符。
黑体辐射----经典的理论解释”
W. Wien(维恩) 1904年Nobel物理奖。
L. Rayleigh(瑞利9) 1911年Nobel物理奖
当n小于某一频率n0时,
无论光强多大,照射时间 多长都不会发生光电效应。
截止电压与入射光频率n的关系
20
经典物理学理论无法解释光电效应
根据经典的光的电磁波理论,光的能量是由
光的强度决定的,光强越强,照射在金属片
上发射出的光电子动能也越大,光电子动能
与光强相关。
只要光强足够强,足以供应发射电子所需要
37
要点二(频率假设):当电子由低能量轨道跃 迁至高能量轨道,相应地原子由低能量定态变 为高能量定态,必须吸收一个光子;反之由高 返低,则放出一个光子。光子的能量就等于两 个能级或定态能量之差。
EEIIEI hn
38
要点三(量子化假设):在原子的各种可能的
态中,电子绕核运动的角动量L必须是h/2的
的能量,那么光电效应理应对各种n的光都发
生,而不应具有极限频率n0。
21
到了1905年,Planck定律的正确性一次又一次 地得到了实验证实,然而关于它的真实含义物理 学家们的认识却是模糊的。 当时年仅26岁的Einstein第一个意识到Planck量 子假设的革命性意义,同时,他还进一步发展了 普朗克的能量子概念,并大胆地提出了光量子假 设。整数来自。L nh / 2 n
n 1, 2,3,
39
Bohr理论成功地解释了当 时已知的Balmer、Paschen 和Brackett线系。 预 测 n1 = 1 定 态 的 光 谱 线 的波长121.6nm等,1915年 被Lyman发现,称为Lyman 线系。

结构化学知识点归纳

结构化学知识点归纳

结构化学知识点归纳结构化学知识点归纳根据北京大学出版社周公度编写的“结构化学”总结第一章量子力学基础知识一、微观粒子的运动特征h1. 波粒二象性:E =h ν, p =λ2. 测不准原理:∆x ∆p x ≥h , ∆y ∆p y ≥h , ∆z ∆p z ≥h , ∆t , ∆E ≥h 二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x , y , z , t ) 来描述,它包括体系的全部信息。

这一函数称为波函数或态函数,简称态。

不含时间的波函数ψ(x , y , z ) 称为定态波函数。

在本课程中主要讨论定态波函数。

由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。

在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψd τ为空间某点附近体积元d τ中电子出现的几率。

对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。

波函数ψ可以是复函数,2=ψ*⋅ψ合格(品优)波函数:单值、连续、平方可积。

2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。

算符:作用对象是函数,作用后函数变为新的函数。

线性算符:作用到线性组合的函数等于对每个函数作用后的线性组合的算符。

ˆ(c ψ+c ψ) =c A ˆˆψ A 11221ψ1+c 2A 2*ˆˆψ) *d τ的算符。

(A ψ1)d τ=∫ψ2(A 自厄算符:满足∫ψ21自厄算符的性质:(1)本证值都是实数;(2)不同本证值的本证函数相互正交。

ˆ作用于某一状态函数ψ,等于某一常数a 乘3. 假设3:若某一物理量A 的算符Aˆψ=a ψ,那么对ψ所描述的这个微观体系的状态,物理量A 具有确以ψ,即:Aˆ的本证值,ψ称为A ˆ的本证函数。

福师《结构化学》第一章-量子力学基础和原子结构-课堂笔记

福师《结构化学》第一章-量子力学基础和原子结构-课堂笔记

福师《结构化学》第一章量子力学基础和原子结构课堂笔记◆主要知识点掌握程度了解测不准关系,掌握和的物理意义;掌握一维势箱模型方程的求解以及该模型在共轭分子体系中的应用;理解量子数n,l,m的取值及物理意义;掌握波函数和电子云的径向分布图,原子轨道等值线图和原子轨道轮廓图;难点是薛定谔方程的求解。

◆知识点整理一、波粒二象性和薛定谔方程1.物质波的证明德布罗意假设:光和微观实物粒子(电子、原子、分子、中子、质子等)都具有波动性和微粒性两重性质,即波粒二象性,其基本公式为:对于低速运动,质量为m的粒子:其中能量E和动量P反映光和微粒的粒性,而频率ν和波长λ反映光和微粒的波性,它们之间通过常数h联系起来,普朗克常数焦尔·秒。

实物微粒运动时产生物质波波长λ可由粒子的质量m和运动度ν按如下公式计算。

λν量子化是指物质运动时,它的某些物理量数值的变化是不连续的,只能为某些特定的数值。

如微观体系的能量和角动量等物理量就是量子化的,能量的改变为ν的整数倍。

2.测不准关系:内容:海森保指出:具有波粒二象性的微观离子(如电子、中子、质子等),不能同时具有确定的坐标和动量,它们遵循“测不准关系”:(y、z方向上的分量也有同样关系式)ΔX是物质位置不确定度,Δ为动量不确定度。

该关系是微观粒子波动性的必然结果,亦是宏观物体和微观物体的判别标准。

对于可以把h看作O的体系,表示可同时具有确定的坐标和动量,是可用牛顿力学描述的宏观物体,对于h不能看作O的微观粒子,没有同时确定的坐标和动量,需要用量子力学来处理。

3.波函数的物理意义——几率波实物微粒具有波动性,其运动状态可用一个坐标和时间的函数来描述,称为波函数或状态函数。

1926年波恩对波函数的物理意义提出了统计解释:由电子衍射实验证明,电子的波动性是和微粒的行为的统计性联系在一起的,波函数正是反映了微粒行为的统计规律。

这规律表明:对大量电子而言,在衍射强度大的地方,电子出现的数目多,强度小的地方电子出现的数目少,即波函数的模的平方与电子在空间分布的密度成正比。

结构化学基础总结

结构化学基础总结

结构化学基础总结第一章:量子力学基础知识一、3个实验1、黑体辐射实验:(1)黑体:被认为是可以吸收全部外来辐射的物体,是理想的辐射体。

理想黑体可以吸收所有照射到它表面的电磁辐射,并将这些辐射转化为热辐射,其光谱特征仅与该黑体的温度有关,与黑体的材质无关。

可见光:400-700nm(2)假设:黑体吸收或发射辐射的能量是不连续的,而是分子一份一份的,即,量子化的。

E=hμ2、光电效应实验和Einstein光子学说:光量子化和光的波粒二象性本质。

(1)Einstein提出来了光量子(光子)。

波的性质:衍射、干涉。

E=hμ粒子的性质:反射、折射。

P=h/λ光子的动能与入射光的频率成正比,与光的强度无关。

(2)Heisenberg不确定度关系:Δq∙Δp≥ℏΔq坐标不确定量;Δp动量不确定量;q广义坐标单缝衍射:某粒子坐标确定得愈精确,其相应动量就愈不确定。

h可作为区分宏、微观粒子的标准:宏观h=0,微观h不能看作0。

3、氢原子光谱与Born氢原子模型:(1)氢原子光谱:指的是氢原子内之电子在不同能级跃迁时所发射或吸收不同波长、能量之光子而得到的光谱。

氢原子光谱为不连续的线光谱,自无线电波、微波、红外光、可见光、到紫外光区段都有可能有其谱线。

根据电子跃迁的后所处的能阶,可将光谱分为不同的线系。

(2)在卢瑟福模型的基础上,玻尔提出了电子在核外的量子化轨道,解决了原子结构的稳定性问题,描绘出了完整而令人信服的原子结构学说。

定态假设:原子的核外电子在轨道上运行时,只能够稳定地存在于具有分立的、固定能量的状态中,这些状态称为定态(能级),即处于定态的原子能量是量子化的。

此时,原子并不辐射能量,是稳定的。

激发态:原子受到辐射、加热或通电时,获得能量后电子可以跃迁到离核较远的轨道上去,即电子被激发到高能量的轨道上,这时原子处于激发态。

处于激发态的电子不稳定,可以跃迁到离核较近的轨道上,同时释放出光子。

二、量子力学基本假设1、假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。

第一章 量子力学基础

第一章 量子力学基础

1.1.3 氢原子光谱与轨道角动量量子化
1913年, Bohr提出一个新模型: 原子中的电子在确定的分 立轨道上运行时并不辐射能量; 只有在分立轨道之间跃迁时才有 不连续的能量辐射; 分立轨道由“轨道角动量量子化”条件确定:
m、v、r分别是电子的质量、线速度和轨道半径,n是一系列正 整数. 由此解释了氢原子的不连续线状光谱. 1922年, Bohr获诺 贝尔物理学奖.
假设 1
微观体系的状态可用一个状态函数或波函数Ψ(x, y, z, t) 描述, Ψ(x, y, z, t)决定了体系的全部可测物理量. 波函数应具有品优性, 包括单值性、连续性、平方可积性.
z 定态波函数 不含时间的波函数ψ(x,y,z)称为定态波函数。 (定态:概率密 度与能量不随时间改变的状态) z 波函数的具体表示形式 用量子力学处理微观体系时,要设法求出波函数的具体表示形 式。而波函数的具体表达式是由解Schrödinger方程得到的。 例如氢原子的1s态的波函数为: ψ 1s =
n=5 n=4 n=3 n=2
n=1
1.1.3 氢原子光谱与轨道角动量量子化
Bohr模型对于单电子原子在多方面应用得很有成效,也 能解释原子的稳定性. 但它竟不能解释 He 原子的光谱,更不 必说较复杂的原子;也不能计算谱线强度。 量子化条件是对的,半径有问题,角动量是错的; 仍属于经典力学,只是认为附加了一些量子化条件——称 为旧量子论
E = hv
λ= h / p
1.1.4 实物微粒的波粒二象性
1927年,戴维逊、革末用电子束单晶衍射法,G.P.汤姆逊用 多晶透射法证实了物质波的存在. 1929年, de Broglie获诺贝尔物 理学奖;1937年,戴维逊、革末、G.P.汤姆逊也获得诺贝尔奖.

结构化学复习-资料

结构化学复习-资料
本章要求: ①会写原子的哈密顿算符(原子单位)
②会解F方程,了解主量子n,角量子数l,磁量子数m的物理
含义及取值范围;单电子原子的能级公式。 ③屏蔽常数的计算,电离能的计算; ④掌握角动量耦合规则,会推求原子光谱项,会推求基谱项。
第二章 原子的结构和性质
2.1 单电子原子的Schrödinger 方程及其解
ns态 D(r)4r2n2s
径向分布图的讨论
0.6
0.3
☆1s态:核附近D为0;r=a0时,D极大。表
0 0.24
明在r=a0附近,厚度为dr的球壳夹层内找
0.16 0.08
到电子的几率要比任何其它地方同样厚度 0
的球壳夹层内找到电子的几率大。
0.24 0.16
0.08
D1,0(r)4r2 1s24(aZ0)3r2e2aZ 0r
的轨道在核附近有较大的几率。可以证
0
0.12
明,核附近几率对降低能量的贡献显著。 0.08
Pb2+ 比 Pb4+, Bi3+ 比 Bi5+的稳定的原因
0.04 0
就是6s电子比6p电子钻得更深可以更好
0.12 0.08
的避免其它电子的屏蔽效应, 6s电子不 0.04
易电离,只电离6p电子。
0 0
1s 2s 2p 3s 3p 3d
径向分布图的讨论
0.6
0.3
0
☆每一n和l确定的状态,有n-l个
0.24 0.16
极大值和n-l-1个D值为0的点。
0.08 0
0.24
Dn.l (r) r2R2n.l (r)
0.16 0.08
2zr
r2(blrl bl1rl1 bn1rn1)2e na0

量子力学基础

量子力学基础

i 2 i 2 xpx Et xpx Et A exp h x h
第一章 量子力学基础知识
i 2 i 2 i 2 xpx Et px A exp p x h h h
z
e2
第一章 量子力学基础知识
e1
不考虑核的运动
r1 r12 r2
z
2 p12 p2 2e 2 2e 2 e2 E 2m1 2m2 4 0 r1 4 0 r2 4 0 r12
e2
ˆ 2 2 2e 2e e H 1 2 2m1 2m2 4 0 r1 4 0 r2 4 0 r12
第一章 量子力学基础知识
合格(品优)波函数
由于波函数的概率性质,所以波函数必须满足下 列条件: • 单值的,即在空间每一点 只能有一个值;
• 连续的,即 的值不出现突跃; 对x, y, z的 一级微商也是连续函数;
• 平方可积的,即 在整个空间的积分
* d
为一个有限数,通常要求波函数归一化,即
态函数的形式与光波的方程类似,习惯上称之为 波函数。如: 平面单色光的波动方程: A exp i 2 x t E hv, p h 代人波粒二象性关系: i 2 得单粒子一维运动波函数: A exp xpx Et
h


定态波函数:当微观粒子的运动状态不随时 间而变时,其波函数可以写作:
x1 , y1 , z1 , x2 , y2 , z2 , x3 , y3 , z3 , t
or
or
1,2,3, t
q1 , q2 , q3 , t ,
<关于波函数的一些概念和说明> 波函数是体系中所有粒子的坐标和时间的函数。

第一章.量子力学基础知识-3

第一章.量子力学基础知识-3

假设Ⅲ:自轭算符的第二项重要性质
• 自轭算符的本征函数y1, y2, y3,...正交归一。 • Consider these two eigen equations: • Multiply the left of the 1st eqn by ψm* and integrate, then take the complex conjugate of eqn 2, multiply by ψn and integrate
力学量与算符
• To every physical observable there corresponds a linear Hermitian operator. • To find this operator, write down the classical-mechanical expression for the observable in terms of Cartesian coordinates and corresponding linear-momentum components, • and then replace each coordinate x by the operator x. and each momentum component px by the operator -iћ∂/∂x.




假设Ⅰ:波函数

y一般是复数形式: y f+ig
y的共轭复数为: y *f-ig
那么:


y *y f2+g2

y *y是实数,有时也用y2来代替
假设Ⅰ:波函数

波函数y描述的波为概率波,在原子或分子Байду номын сангаас体系中, 称为原子轨道或分子轨道

第一章量子力学基础

第一章量子力学基础

(3)粒子的动量平方px2值
假设三:本征方程
2 2 2 nx h d 2 ˆ x n 2 2 p sin 4 dx l l h 2 d n 2 nx 2 cos 4 dx l l l
h n 2 nx 2 sin 4 l l l
l
2 l nx ih d nx sin sin dx l 0 l 2 dx l
ih l
nx nx d sin 0 sin l l
l
2 xl
ih sin (nx / l) 0 l 2 x 0
2 ˆ ˆ H - 2 +V 8 m h2
:拉普拉斯算符
2 2 2 2 = 2 + 2 + 2 x y z
19
假设三:本征方程
Schrö dinger方程算法解析
一个质量为m的 粒子,在一维 势井中的运动。
0 , 0 ﹤x ﹤ l V= ∞ , x ≤0 和 x≥ l
一维势箱中粒子的波函数、能级和几率密度
假设三:本征方程
总结: 势箱中粒子的量子效应:
1.存在多种运动状态,可由Ψ1 ,Ψ2 ,…,Ψn 等描述;
2.能量量子化;
3.存在零点能;
4.没有经典运动轨道,只有几率分布;
5.存在节点,节点多,能量高。
假设三:本征方程 箱中粒子的各种物理量
(1)粒子在箱中的平均位置
力学量 算符 力学量 算符
位置
x
ˆx x
ˆ p
ih = - x 2 π x
x y y x
势能 V

第一章量子力学基础

第一章量子力学基础

第⼀章量⼦⼒学基础第⼀章量⼦⼒学基础知识⼀、概念题1、⼏率波:空间⼀点上波的强度和粒⼦出现的⼏率成正⽐,即,微粒波的强度反映粒⼦出现⼏率的⼤⼩,故称微观粒⼦波为⼏率波。

2、测不准关系:⼀个粒⼦不能同时具有确定的坐标和动量3、若⼀个⼒学量A 的算符A作⽤于某⼀状态函数ψ后,等于某⼀常数a 乘以ψ,即,ψψa A=?,那么对ψ所描述的这个微观体系的状态,其⼒学量A 具有确定的数值a ,a 称为⼒学量算符A的本征值,ψ称为A ?的本征态或本征波函数,式ψψa A=?称为A ?的本征⽅程。

4、态叠加原理:若n ψψψψ,,,,321为某⼀微观体系的可能状态,由它们线性组合所得的ψ也是该体系可能存在的状态。

其中:∑=++++=ii i n n c c c c c ψψψψψψ332211,式中n c c c c ,,,,321为任意常数。

5、Pauli 原理:在同⼀原⼦轨道或分⼦轨道上,⾄多只能容纳两个电⼦,这两个电⼦的⾃旋状态必须相反。

或者说两个⾃旋相同的电⼦不能占据相同的轨道。

6、零点能:按经典⼒学模型,箱中粒⼦能量最⼩值为0,但是按照量⼦⼒学箱中粒⼦能量的最⼩值⼤于0,最⼩的能量为228/ml h ,叫做零点能。

⼆、选择题1、下列哪⼀项不是经典物理学的组成部分? ( )a. ⽜顿(Newton)⼒学b. 麦克斯韦(Maxwell)的电磁场理论c. 玻尔兹曼(Boltzmann)的统计物理学d. 海森堡(Heisenberg)的测不准关系2、下⾯哪种判断是错误的?( )a. 只有当照射光的频率超过某个最⼩频率时,⾦属才能发⾝光电⼦b. 随着照射在⾦属上的光强的增加,发射电⼦数增加,但不影响光电⼦的动能c. 随着照射在⾦属上的光强的增加,发射电⼦数增加,光电⼦的动能也随之增加d. 增加光的频率,光电⼦的动能也随之增加3、根据Einstein的光⼦学说,下⾯哪种判断是错误的?( )a. 光是⼀束光⼦流,每⼀种频率的光的能量都有⼀个最⼩单位,称为光⼦b. 光⼦不但有能量,还有质量,但光⼦的静⽌质量不为0c. 光⼦具有⼀定的动量d. 光的强度取决于单位体积内光⼦的数⽬,即,光⼦密度4、根据de Broglie关系式及波粒⼆象性,下⾯哪种描述是正确的?( )a. 光的波动性和粒⼦性的关系式也适⽤于实物微粒b. 实物粒⼦没有波动性c. 电磁波没有粒⼦性d. 波粒⼆象性是不能统⼀于⼀个宏观物体中的5、下⾯哪种判断是错误的?( )a. 机械波是介质质点的振动b. 电磁波是电场和磁场的振动在空间的传播c. 实物微粒波的强度反映粒⼦出现的⼏率的⼤⼩d. 实物微粒波的强度反映粒⼦出现的⼏率的⼤⼩,也反映了粒⼦在空间振动的强度6、下⾯对宏观物体和微观粒⼦的⽐较哪⼀个是不正确的?( )a. 宏观物体同时具有确定的坐标和动量,可⽤⽜顿⼒学描述,⽽微观粒⼦没有同时确定的位置和动量,需⽤量⼦⼒学描述b. 宏观物体有连续可测的运动轨道,可追踪各个物体的运动轨迹加以分辨;微观粒⼦具有⼏率分布特性,不可能分辨出各个粒⼦的轨道。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

d 8 m E 2 2 dx h
2 2
8 m E 8 m E c1 cos( ) x c2 sin( ) x 2 2 h h
2 1 2 2 1 2
边界条件: x 0 , 0
2
x l , 2 0
8 m E 8 m E c1 cos( ) x c sin( ) x 2 h2 h2
1927年,美国, C. J. Davisson L. H. Germer 单晶 体电子衍射实验 G.P.Thomson 多晶金属箔电子衍射实验 质子、中子、氦原子、氢原子等粒子流也同样观 察到衍射现象,充分证实了实物微粒具有波动性, 而不限于电子。
22
氧化锆晶体的X射线衍射图
金晶体的电子衍射图
23
n h E 2 8m l
2
n 1,2,3,
nx ( x) c2 sin( ) l
nx ( x) c2 sin( ) l
nx c sin ( )dx 1 l 0
l 2 2 2
* d 1
nx 2 c sin ( ) 1 l 0
l 2 2 2
2 c2 l
25
波粒两相性是微观粒子运动 的本质特性,为微观世界的 普遍现象。
26
-1.1.4- 不确定关系(测不准原理)
x D A e O P
y
Q
A
O C
P psin
电子单缝衍射实验示意图
单 缝 衍 射
1.2 量子力学基本假设
量子力学是描述微观粒子运动规律 的科学。 电子和微观粒子不仅表现出粒性, 而且表现出波性,它不服从经典力 学的规律。
31
-1- 波函数和微观粒子的运动状态
假设1 对于一个微观体系,它的状态和 有关情况可用波函数Ψ(x, y, z)表示。
※波函数的自变量
Ψ是体系的状态函数,是体系中所有粒子坐标 的函数,也是时间的函数。 定态波函数:与时间无关的波函数.Ψ(x, y, z) 非定态波函数:Ψ(x, y, z, t)光吸收,辐射
正交
d 0
i j
i j i j
归一
d 1
i j
归一化常数的求法
36
-2- 力学量和算符
假设II 对一个微观体系的每个可观测的 力学量都对应着一个线性自轭算符.
算符:对一个函数施行某种运算(或动作) 的符号。
, ,lg,
d dx
d 2 dx
2
线性算符
Â(1+2)= Â1+ Â2
第1章 量子力学基础知识
《结构化学》工具
1
经典物理学理论
机械运动——Newton 三定律 电磁现象和光的波动——Maxwell 电磁理论 热现象——Gibbs的热力学,Boltzmann统计 物理学
经典物理学的研究对象
质量 >> 原子,分子 速度<<光速
2
1.1 微观粒子的运动特征
黑体辐射
光电效应
实验曲线
黑体辐射能量分布曲线 波长
2. Wien(维恩)
能 量
Wien曲线
RayleighJeans曲线
实验曲线 黑体辐射能量分布曲线 波长
辐射波长的分布类似于 Maxwell的分子速度的分 布 在短波处与实验结果比较 接近,长波处与实验曲线 相差较大
8
3. Planck(普朗克)
假设黑体中的原子或分子辐射能量 时做简谐振动,它只能发射或吸收 频率为ν 、数值为 ε= hν的整数倍 的电磁能。
自轭算符
∫1*Â1 d=∫1(Â1 )*d ∫1*Â2 d=∫2(Â1 )*d
例如, Â=id/dx, 1=exp[ix], 1*=exp[-ix], 则,∫exp[-ix](id/dx)exp[ix]dx=∫exp[-ix](exp[ix])dx=-x. ∫exp[ix] (id/dx)exp[ix] *dx=∫exp[ix](exp[ix])*dx=-x.
2 1 2 2 1 2
(0) c1 cos(0) c2 sin(0) 0
8 m E c2 sin( ) x 2 h
2 1 2
c1 0
xl 2 8 m E
( h
2
) l n
2
1 2
8 m E (l ) c2 sin( ) l 0 2 h
2 1 2
n 1,2,3,
只有当入射光的频率υ大于υ0,才有光电 子产生且每种金属有一固定的频率 υ0, 称为该金属的临 频率,当入射光的频率 υ <υ0,无论怎样增加光的强度,延长照 射时间,都不会有光电子产生。 光电流的大小与光的强度成正比, 光电子的最大动能随入射光的频率增加 而增大,与光的强度无关,即使光的强 度减小到原来的一半,光电子的动能也 不变。
5
1. Rayleigh-Jeans(瑞利-金斯) 2. Wien(维恩) 3. Planck(普朗克)
6
1. Rayleigh-Jeans(瑞利-金斯)
经典热力学和统计力学理论 能量按自由度均分的原则运用到电磁辐 射上得到辐射强度公式
能 量 Wien曲线 RayleighJeans曲线
长波处接近实验曲 线,短波处与实验 显著不符。
c
i 1 2 i
1
4.2 非本征态的力学量的平均值
ˆ a A
ˆ d a A
*
1.3箱中粒子的薛定谔方程及其解
物理模型: 一个质量为 m的粒子,在一维x方向上运动 势能V为: 0 (0<x<L); V= ∞ (x≤0和x≥L)
48
ˆ E H
ˆ T ˆ V ˆ H
p
光强 能量守恒和动量守恒
h

Einstein的光子学说对光电效应的解释
光电子动能mv 2/2
斜率为h
纵截距为-φ
光频率ν
1 2 h W Ek h 0 mv 2
光本质
光是由光子(微观粒子)组成的光束 光电 效应 光是一种电磁波 光的干涉和衍射 光具有波粒两象性,即一些场合光的行为 象粒子,另一些场合光的行为象波。 光本质:微粒说 (Newton) 波动说 (Huygens,Maxwell) 光子学说 (Einstein)
M. Born为此获1954年诺贝尔物理学奖.
24
Born的统计解释
采用弱电子流实验,让电子先后一个一个地到达 底片,只要时间足够长,也能得到同样的衍射图 形。 电子衍射不是电子之间相互作用的结果,而是电 子本身运动所固有的规律性。 对大量粒子而言,衍射强度大的地方(波强度大) 粒子出现的数目多。衍射强度小的地方,粒子出 现的数目少。 对一个粒子而言,衍射强度大的地方(波强度大) 粒子出现的几率大。衍射强度小的地方,粒子出 现的几率小。
n( x)
2nx l 1 cos 2 l 1 c2 2 0
2 nx sin l l
n 1,2,3,
讨论
粒子有多种运动状态
2 nx n ( x ) sin l l
2 x 1( x ) sin l l
2 2x 2 ( x ) sin l l
n 1,2,3,
M. Planck
频率为ν的振子发射的能量可以为: 0 hν,1 hν,2 hν,……,n hν 几率比: 1 : e- hν/kT: e- 2hν/kT: ….. : e- nhν/kT
9
频率为v的振动的平均能量
E
nhe e
n n
nh / kT
nh / kT

h e h / kT 1
那么对Ψ所描述的这个微观状态,其力学 量 A 具有确定的数值a,a 称为力学量 算符 的本征值, Ψ称为 的本征态 或本征波函数 ,上式称为 的本征方程。
Schrodinger 方程
ˆ E H
-4-态叠加原理
假设IV 如果用Φi (I = 1, 2, 3)描写微观 客体的n个可能状态,则它们的线性组合 叠加所得的波函数ψ也描写这个体系的一 个可能状态.
18
-1.1.3- 实物微粒的波粒两象性
微观粒子: 光子(无静止质量) 电子,质子,原子和分子(静止质量不为0)
实物微粒
19
得布罗意(de Broglie)关系式:
E h
p h
L.V.de Broglie

20
粒子 电子 电子 氢原子 氢原子 枪弹
质量(g) 9E-28 9E-28 1.6E-24 1.6E-24 ≈10
速度(cm/s ) λ=h/mv(cm) 108 10
10
粒子近直径 》 10E-13 》 10E-13 > < 10E-8 10E-8
波动性 较显著 较显著 较显著 不显著 基本没有
7E-8 7E-10 4E-8 4E-11 6E-33
105 108 105
《 1
21
实物粒子波粒两象性的实验证实 —电子单缝衍射实验
(1) 时空的算符就是他们自己:
(2)动量的算符定义为:
40
其它物理量的算符表示法:
41
例: 经典力学动能算符的写法
其中
叫做拉普拉斯(Laplace)算符
42
43
3 本征态,本征值和Schrodinger 方程
假设 III 若某一力学量A的算符 作用于某一状态函数Ψ后,等于某一常 数a 乘以Ψ ,即
实物微粒的波代表的物理意义
1926年,M. Born(波恩)提出实物微粒波的 统计解释。 他认为空间任何一点上波的强度(振幅绝对 值的平方)和粒子出现的几率成正比。这种 波又叫几率波。 Ψ*Ψ代表时刻t在空间q点发现粒子的概率密度, Ψ*Ψdτ是时刻t在空间q点附近微体积元dτ内发 现粒子的概率.
相关文档
最新文档