囚徒困境和纳什均衡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
囚徒困境和纳什均衡
当对手知道了你的决定之后,就能做出对自己最有利的决定------普林斯顿大学数学家约翰·纳什
囚徒困境
著名的“囚徒困境”,是纳什均衡理论的经典案例。
警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人入罪。于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供一下相同的选择:若有一人认罪并作证检控对方(背叛对方)而对方保持沉默,此人将立即获释,沉默者将判监禁十年。若两人都保持沉默(互相合作)则两人同时被判监禁半年。若两人都互相检举(互相背叛)则两人同时监禁两年。
如同博弈论的其他论证,囚徒困境假设每个囚徒都是利己的,激斗寻求自己的最大利益。囚徒到底应该选择哪一项策略,才能将自己的刑期缩至最短?两名囚徒由于相互隔离监禁,并不知道对方的选择。
试想困境中两名理性的囚徒会如何选择:若对方沉默,背叛会让我获释,所以对方会选择背叛。若对方背叛我,我也要指控对方才能得到较低的刑期,所以也是这样会选择背叛。二人面对的情况一样,所以二人的理想思考会得到相同的答案----选择背叛。背叛是两种策略之间的支配性策略。因此这场博弈中唯一可能达到的纳什均衡就是两人选择同时背叛对方,结果两人同时服刑两年。这场博弈的纳什均衡,显然不是最优的解决方案。如果两人都选择沉默,两人都只会被判刑半年。但根据以上假设,两人均为理性的个人,均衡状况回事两个囚徒都选择背叛。这就是“困境”所在。
寻找“纳什均衡点”
在现实生活中,纳什均衡理论影响着人们的行为。比如,在有些国家,报亭既无管理人员也不上锁,买报纸的人在自行放下前后拿走报纸。当然某些人可能取走报纸却不付钱(背叛)但由于大家意识到如果每个人都偷窃报纸(共同背叛)会造成以后不方便的有害结果,这种情形很少发生。
在商业活动中,也会出现各种各样的囚徒困境的例子。两个公司相互竞争,他们的广告互相影响,即一公司的广告较被顾客接受则会夺取对方的部分收入。但若二者同时期发出质量类似的广告,收入增加很少但成本增加。因此,这两家公司可以有两种选择:1.互相达成协议,减少广告的开支(合作);2.增加广告开支,设法提升广告的质量,压倒对方(背叛)。若两家公司不信任对方,无法合作,背叛成为支配性策略时,它们将陷入广告战,而广告的成本的增加损害了两家公司的利益,这就是陷入囚徒困境。在现实中,要互相竞争的公司达成合作协议是比较困难的,多数会陷入囚徒困境中。
在自行车赛事或者长跑赛事中,也会出现一种博弈。例如,每年都会举行的的环法自行车赛事中有以下情况:选手们在到终点前的路程常以大部队方式前进,他们采取这种策略是为了令自己不至于太落后,又出力适中。最前方的选手在迎风时是最费力的,所以在前方是最差的策略。因此,在起先阶段,大家都不愿意在前面(共同背叛),所以这个时段,整体的速度很慢。而后,通常会有几位选手骑到前面,然后互相一段时间交换到最前面位置,以分担风的阻力(共同合作),使得全体的速度有所提升。而此时,如果前方的一人试图一直保持前方位置(背叛)其他选手以及大部队就会赶上(共同背叛)。通常情况是,在最前面次数最多的选手(合作),通常会到最后被落后的选手赶上,因为后面的选手骑在最前面选手的冲流中,比较不费力。
用科学的语言来描述纳什均衡,指的是在一组策略中,所有的参与者面临这样一种情况:当其他人不改变策略时,他此时的策略是最好的。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。