事业单位行测数学运算题的万能无赖解法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
秒杀数学运算题的无赖解法
大法一:逐项递推法:对付数列式运算,且项数较大的情况。
例1:十阶楼梯,小张每次只能走一阶或两阶,请问走完此楼梯共有多少种走法?
A.55
B.67
C.74
D.89
解:如果直接求算走十阶楼梯的各种情况,复杂而易出错.而如果逆向思维,假设只有一阶楼梯,只有1种走法;假设有二阶楼梯,则有2种走法(一阶两步和两阶一步);假设有三阶楼梯,则有3种走法(一阶三步,两阶一步一阶一步,一阶一步两阶一步);假设有四阶楼梯,则有5种走法(一阶五步,一阶三步两阶一步,一阶一步两阶两步,两阶两步一阶一步,两阶一步一阶三步),以上都是很快就能枚举出来的,一观察,1,2,3,5,明显的和递推数列,所以该数列延伸下去是
8,13,21,34,55,89,正好是选项D.
例2:1+2+2^2+2^3+2^4+...2^99
解:如果记得等比数列的求和公式自然很快,不过即使不记得也没关系,我们可以从小到大逐项递推
1=1=2^1-1
1+2=3=2^2-1
1+2+2^2=7=2^3-1
1+2+2^2+2^3=15=2^4-1
因此原式=2^100-1
总结:上述办法是在项数(或可能性)众多,而脑子又发蒙一下子找不到直捣黄龙的办法时用的,有时可以起死回生.
大法二:倍数猜测法:对付自然数环境中出现比值的情况.
例3:甲乙二人分16个苹果,分完后,甲将自己所得的1/3给了乙,然后乙又将自己现有苹果的1/3还给甲;最后甲又将自己现有苹果的1/3给了乙,这时两人苹果数恰好相等.问:最初甲分的几个苹果?
A7B10C13D15
解:分苹果,是一个典型的自然数环境,因为苹果的个数一定是一个自然数,注意题干,甲分了1/3给乙,又求甲,可知甲的苹果个数肯定是3的倍数(否则其1/3不可能也是自然数),观察选项,只有D是3的倍数,锁定!
例4:甲、乙、丙三人合修一条公路,甲、乙合修6天修好公路的1/3,乙、丙合修2天修好
余下的1/4,剩余的三人又修了5天才完成。
共得收入1800元,如果按工作量计酬,则乙可获得收入为()
A.330元B.910元C.560元D.980元
解:观察题目可知,工酬是计算到元,并无小数,所以各人的报酬就是自然数了.又发现乙工作了13天,所以乙的收入=13*一个自然数,即是13的倍数,很快就挑出B.
大法三:余数代入法:对付分组分队分不干净的情况。
例5:如果每一把长椅子上坐1位老师和4位学生,就有3名学生没座位;如果每一把长椅子上坐5位学生,就有2个空座位,问至少有多少位学生?
A.13
B.19
C.23
D.28
解:看题干,求学生数量,跟老师没关系,迅速判断老师的数量是一个干扰信息.凡是分组分队分不干净的情况,都有一个隐含前提,总数量不变,假设为A,应这样解读题干:A除以4余3,除以5余3,代入选项很快得出C.
注:A其实可以为20n+3,当n=1时,A最小为23.当然,我们选出正确答案即可,这些根本不用考虑.
大法四:参照值法:对付题目中有明显的参照值(可以提高选项区分度的值)的情况.
例6:计算:1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+……+1/(1+2+3+……+99+100)的值为()
A.999/1010
B.200/101
C.888/999
D.101/99
解:注意到原式=1+一个正分数,所以一定比1大,可以立即排除A.C;再观察最后一项数的分母,有没有想起小学语文里学过的小高斯做算术的故事1加到100=5050?根据通分的基本原理,原式值的分母必然是5050的因数,立即选B.
例7:2004*(2.3*47+2.4)/(2.4*47-2.3)
A.2003
B.2004
C.2005
D.2006
解:观察,整个算式是在2004的基础上做乘除,因而算式的值应该是2004的倍数(包括分数倍)关系,而A\C\D选项只可能与2004有加减关系,惟独B可能(1倍),选B.
大法五:假设特殊值法:对付比值/比例/浓度/价钱/不定式等问题特别好用.
例8:地球表面的陆地面积和海洋面积之比是29:71,其中陆地的四分之三在北半球,那么南、北半球海洋面积之比是多少?
A.284:29B.113:55C.371:313D.171:113
解:陆地面积与海洋面积的比大致是30:70,就设陆地全面积为30,海洋全面积为70(同时可知全球面积为100,半球面积为50),则北半球陆地为30*(3/4)=90/4,南半球陆地为
30*(1/4)=30/4;所以南半球海洋面积为50-30/4=170/4;北半球海洋面积为50-90/4=110/4.显而易见,比值为170:110,选D.
例9:已知某数N除以45余12,则N的12倍除以45的余数是多少?
A.26
B.19C13D.9
解:假设N就是12(除以45得0余12),12的12倍除以45余数为9,很快得出.大法六:最无赖的办法,利用选项关联大蒙猜:对付选项存在关联、暗示着答案的情形,这种方法一般运用于难题和最后关头搏一把时.
例10:龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米.乌龟不停地跑,兔子却是一边跑一边玩,它先跑一分钟,然后玩15分钟,又跑两分钟,然后玩15分钟,又跑3分钟,然后又玩15分钟......那么先到达终点的比后到达终点的快多少分钟?
A104分钟;B90.6分钟;C15.6分钟;D13.4分钟
解:首先统一单位,跳过陷阱,兔子分速为1/3千米,乌龟分速为1/20千米。
从而可知兔子跑全程要15.6分钟正好是C选项;乌龟跑完全程要104分钟,正好是A选项.揣摩出题人心
理,A/C都是迷惑选项,不选.再看问题是求"快多少分钟",所以答案必然是通过跟15.6或者104有关的减法得出的,而很快发现选项中就隐藏着一个减法104-90.6=13.4.马上猜D.
(未完待续)
例2:1+2+2^2+2^3+2^4+...2^99
解:如果记得等比数列的求和公式自然很快,不过即使不记得也没关系,我们可以从小到大逐项递推
1=1=2^1-1
1+2=3=2^2-1
1+2+2^2=7=2^3-1
1+2+2^2+2^3=15=2^4-1
因此原式=2^100-1
总结:上述办法是在项数(或可能性)众多,而脑子又发蒙一下子找不到直捣黄龙的办法时用的,有时可以起死回生.
这种方法貌似不能通用,例如:1+3+3^2+3^3+3^4+...3^99
另附:基础几何公式
1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两
边之和大于第三边、任两边之差小于第三边;
(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
(2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。
(3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。
(4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。
(5)内心:角平分线的交点叫做内心;内心到三角形三边的距离相等。
重心:中线的交点叫做重心;重心到每边中点的距离等于这边中线的三分之一。
垂线:高线的交点叫做垂线;三角形的一个顶点与垂心连线必垂直于对边。
外心:三角形三边的垂直平分线的交点,叫做三角形的外心。
外心到三角形的三个顶点的距离相等。
直角三角形:有一个角为90度的三角形,就是直角三角形。
直角三角形的性质:
(1)直角三角形两个锐角互余;
(2)直角三角形斜边上的中线等于斜边的一半;
(3)直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;
(4)直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角是30°;
(5)直角三角形中,c 2=a 2+b 2(其中:a 、b 为两直角边长,c 为斜边长);
(6)直角三角形的外接圆半径,同时也是斜边上的中线;
直角三角形的判定:
(1)有一个角为90°;
(2)边上的中线等于这条边长的一半;
(3)若c 2=a 2+b 2,则以a 、b 、c 为边的三角形是直角三角形;
2. 面积公式:
正方形=边长×边长;
长方形= 长×宽;
三角形=2
1× 底×高; 梯形 =2
高(上底+下底)⨯; 圆形 =πR 2
平行四边形=底×高
扇形 =0360
n πR 2 正方体=6×边长×边长
长方体=2×(长×宽+宽×高+长×高);
圆柱体=2πr 2+2πrh ;
球的表面积=4πR 2
3. 体积公式
正方体=边长×边长×边长;
长方体=长×宽×高;
圆柱体=底面积×高=Sh =πr 2h
圆锥 =3
1πr 2h
球 =33
4
R π
4. 与圆有关的公式
设圆的半径为r ,点到圆心的距离为d ,则有:
(1)d ﹤r :点在圆内(即圆的内部是到圆心的距离小于半径的点的集合);
(2)d =r :点在圆上(即圆上部分是到圆心的距离等于半径的点的集合);
(3)d ﹥r :点在圆外(即圆的外部是到圆心的距离大于半径的点的集合);
线与圆的位置关系的性质和判定:
如果⊙O 的半径为r ,圆心O 到直线l 的距离为d ,那么:
(1)直线l 与⊙O 相交:d ﹤r ;
(2)直线l 与⊙O 相切:d =r ;
(3)直线l 与⊙O 相离:d ﹥r ;
圆与圆的位置关系的性质和判定:
设两圆半径分别为R 和r ,圆心距为d ,那么:
(1)两圆外离:r R d +>;
(2)两圆外切:r R d +=;
(3)两圆相交:r R d r R +<<-(r R ≥);
(4)两圆内切:r R d -=(r R >);
(5)两圆内含:r R d -<(r R >). 圆周长公式:C =2πR =πd (其中R 为圆半径,d 为圆直径,π≈3.1415926≈10);
n 的圆心角所对的弧长l 的计算公式:l =180
R n π; 扇形的面积:(1)S 扇=360n πR 2;(2)S 扇=2
1l R ; 若圆锥的底面半径为r ,母线长为l ,则它的侧面积:S 侧=πr l ;
圆锥的体积:V =31Sh =3
1πr 2h 。
三、其他常用知识
1. 2X 、3X 、7X 、8X 的尾数都是以4为周期进行变化的;4X 、9X 的尾数都是以2为周期进行变化的;
另外5X 和6X 的尾数恒为5和6,其中x 属于自然数。
2. 对任意两数a 、b ,如果a -b >0,则a >b ;如果a -b <0,则a <b ;如果a -b =0,则a =b 。
当a 、b 为任意两正数时,如果a/b >1,则a >b ;如果a/b <1,则a <b ;如果a/b =1,则a =b 。
当a 、b 为任意两负数时,如果a/b >1,则a <b ;如果a/b <1,则a >b ;如果a/b =1,则a =b 。
对任意两数a 、b ,当很难直接用作差法或者作商法比较大小时,我们通常选取中间值C ,如果 a >C ,且C >b ,则我们说a >b 。
3. 工程问题:
工作量=工作效率×工作时间;工作效率=工作量÷工作时间;
工作时间=工作量÷工作效率;总工作量=各分工作量之和;
注:在解决实际问题时,常设总工作量为1。
4. 方阵问题:
(1)实心方阵:方阵总人数=(最外层每边人数)2
最外层人数=(最外层每边人数-1)×4
(2)空心方阵:中空方阵的人数=(最外层每边人数)2-(最外层每边人数-2×层数)
2 =(最外层每边人数-层数)×层数×4=中空方阵的人数。
例:有一个3层的中空方阵,最外层有10人,问全阵有多少人?
解:(10-3)×3×4=84(人)
5. 利润问题:
(1)利润=销售价(卖出价)-成本; 利润率=成本利润=成本销售价-成本=成本
销售价-1; 销售价=成本×(1+利润率);成本=+利润率销售价
1。
(2)单利问题
利息=本金×利率×时期;
本利和=本金+利息=本金×(1+利率×时期);
本金=本利和÷(1+利率×时期)。
年利率÷12=月利率;
月利率×12=年利率。
例:某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?”
解:用月利率求。
3年=12月×3=36个月
2400×(1+10.2%×36) =2400×1.3672 =3281.28(元)
6. 排列数公式:P m n =n (n -1)(n -2)…(n -m +1),(m≤n)
组合数公式:C m n =P m n ÷P m m =(规定0
n C =1)。
“装错信封”问题:D 1=0,D 2=1,D 3=2,D 4=9,D 5=44,D 6=265,
7. 年龄问题:关键是年龄差不变;
几年后年龄=大小年龄差÷倍数差-小年龄
几年前年龄=小年龄-大小年龄差÷倍数差
8. 日期问题:闰年是366天,平年是365天,其中:1、3、5、7、8、10、12月都是31天,4、6、9、11是30天,闰年时候2月份29天,平年2月份是28天。
经验分享:在这里我想跟大家说的是自己在整个公务员考试的过程中的经验的以及自己能够成功的考上的捷径。
首先就是自己的阅读速度比别人的快考试过程中的优势自然不必说,平时的学习效率才是关键,其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。
公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策)。
非常多的人输就输在时间上,我是特别注重效率的。
第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。
我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。
包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉二十几分钟,我统计过,我最多不超过3分钟,这样就比别人多出20几分钟,这在考试中是非常不得了的。
论坛有个帖子专门介绍速读的,叫做“得速读者得行测”,我就是看了这个才接触了速读,也因为速读,才获得了笔试的好成绩。
其实,不只是行测,速读对申论的帮助更大,特别是那些密密麻麻的资料,看见都让人晕倒。
学了速读之后,感觉有再多的书都不怕了。
而且,速读对思维和材料组织的能力都大有提高,个人总结,拥有这个技能,基本上成功
一半,剩下的就是靠自己学多少的问题了。
平时要多训练自己一眼看多个字的习惯,慢慢的加快速度,尽可能的培养自己这样的习惯。
当然,有经济条件的同学,千万不要吝啬,花点小钱在自己的未来上是最值得的,多少年来耗了大量时间和精力,现在既然势在必得,就不要在乎这一刻。