高中数学三角函数的最值
常用三角函数值对照表高中
![常用三角函数值对照表高中](https://img.taocdn.com/s3/m/9f7dc03126284b73f242336c1eb91a37f11132f0.png)
常用三角函数值对照表高中
引言
在高中数学中,三角函数是一个非常重要的知识点,它们在几何、代数、物理等领域都有着广泛的应用。
常用的三角函数包括正弦函数、余弦函数和正切函数,它们的数值在一定范围内是固定的,我们可以通过查阅三角函数值对照表来快速获取这些数值。
本文将给出一个高中常用三角函数值对照表,帮助读者更好地理解和应用三角函数。
正弦函数值对照表
下表列出了一些常见角度的正弦函数值:
角度(度)030456090
正弦值00.5√2/2√3/21
余弦函数值对照表
下表列出了一些常见角度的余弦函数值:
角度(度)030456090
余弦值1√3/2√2/20.50
正切函数值对照表
下表列出了一些常见角度的正切函数值:
角度(度)030456090
正切值0√3/31√3无穷大
结论
通过以上对照表,我们可以清晰地看到不同角度下三角函数的数值特点。
在解决各种数学问题时,这些数值都具有重要
的参考价值,希望读者能够牢固掌握这些常用三角函数的数值,更好地运用数学知识解决实际问题。
以上是关于高中常用三角函数值对照表的简要介绍,希望
对读者有所帮助。
如果对三角函数值还有疑问或需要进一步深入了解,请继续学习相关知识,探索更多数学的奥秘。
高考数学2022题型通关21讲第11讲三角函数中的范围最值问题(含答案)
![高考数学2022题型通关21讲第11讲三角函数中的范围最值问题(含答案)](https://img.taocdn.com/s3/m/9114cbfcb8f3f90f76c66137ee06eff9aef8496c.png)
高考数学题型通关:第12讲 三角函数中的范围、最值问题【方法总结】以三角函数为背景的范围与最值问题是高考的热点,对问题的准确理解和灵活转化是解题的关键.并保持纵坐标不变,得到函数h(x)的图象,若h(x 1)h(x 2)=-4,其中x 1,x 2∈[-π,π],则|x 1-x 2|【解析】解法一 由题意可知h(x)=2sin(2x+π3),所以-2≤h(x)≤2,因为h(x 1)h(x 2)=-4,所以{h(x 1)=2,h(x 2)=-2或{h(x 1)=-2,h(x 2)=2.当{h(x 1)=2,h(x 2)=-2时,2x 1+π3=2k 1π+π2(k 1∈Z),即x 1=k 1π+π12(k 1∈Z),2x 2+π3=2k 2π-π2(k 2∈Z),即x 2=k 2π-5π12(k 2∈Z),因为x 1,x 2∈[-π,π],所以x 1=-11π12或x 1=π12,x 2=-5π12或x 2=7π12,所以当x 1=-11π12,x 2=7π12时,|x 1-x 2|取得最大值,最大值是3π2.同理,当{h(x 1)=-2,h(x 2)=2时,|x 1-x 2|的最大值也是3π2.故选D. 解法二 由题意可知h(x)=2sin(2x+π3),所以-2≤h(x)≤2,因为h(x 1)h(x 2)=-4,所以{h(x 1)=2,h(x 2)=-2或{h(x 1)=-2,h(x 2)=2.因为函数h(x)的最小正周期T=π,当x ∈[-π,π]时,h(x)有两个周期,即出现两次最大值和最小值,所以|x 1-x 2|的最大值为32T=32π.故选D.【解析】f(x)=asin ωx+cos(ωx-π6)=asin ωx+cos ωxcos π6+sin ωxsin π6=(12+a)sin ωx+√32cos ωx=(12+a)2+(√32)2·sin(ωx+φ),其中tan φ=√3212+a .对于任意的x 1,x 2∈R,都有f(x 1)+f(x 2)-2√3≤0,即f(x 1)+f(x 2)≤2√3,当且仅当f(x 1)=f(x 2)=f(x)max 时取等号,故2(12+a)2+(√32)2=2√3,解得a=1或a=-2(舍去),故f(x)=32sin ωx+√32cos ωx=√3sin(ωx+π6).因为0≤x ≤π,所以π6≤ωx+π6≤ωπ+π6.又f(x)在[0,π]上的值域为[√32,√3],所以π2≤ωπ+π6≤5π6,解得13≤ω≤23,选B.【解析】将函数f(x)=sin(2x-π3)的图象向左平移a(a>0)个单位长度,可得函数y=sin[2(x+a)-π3]=sin[2x+(2a-π3)]的图象,所以y=sin[2x+(2a-π3)]的图象与g(x)=cos 2x 的图象重合.因为g(x)=cos 2x=sin(2x+π2),所以2a-π3=2k π+π2,k ∈Z,即a=k π+5π12,k ∈Z,当k=0时,可得a min =5π12,故选B.【解析】解法一 由题图知, f(-4π9)=0,∴-4π9ω+π6=π2+k π(k ∈Z),解得ω=-3+9k 4(k ∈Z).设f(x)的最小正周期为T,易知T<2π<2T,∴2π|ω|<2π<4π|ω|,∴1<|ω|<2,由ω=-3+9k 4(k ∈Z)知当且仅当k=-1时,符合题意,此时ω=32,∴T=2πω=4π3.故选C.解法二 由题图知,f(-4π9)=0且f(-π)<0,f(0)>0,∴-4π9ω+π6=-π2(ω>0),解得ω=32,∴f(x)的最小正周期T=2πω=4π3.故选C.6.[2020全国卷Ⅲ,16,5分][理]关于函数f(x)=sin x+1sinx 有如下四个命题: ①f(x)的图象关于y 轴对称; ②f(x)的图象关于原点对称; ③f(x)的图象关于直线x=π2对称; ④f(x)的最小值为2.其中所有真命题的序号是 .【解析】由题意知f(x)的定义域为{x|x ≠k π,k ∈Z},且关于原点对称.又f(-x)=sin(-x)+1sin (−x)=-(sin x+1sinx )=-f(x),所以函数f(x)为奇函数,其图象关于原点对称,所以①为假命题,②为真命题.因为f(π2-x)=sin(π2-x)+1sin (π2-x)=cosx+1cosx ,f(π2+x)=sin(π2+x)+1sin (π2+x)=cos x+1cosx ,所以f(π2+x)=f(π2-x),所以函数f(x)的图象关于直线x=π2对称,③为真命题.当sin x<0时,f(x)<0,所以④为假命题.【解析】由于对任意的实数x 都有f(x)≤f(π4)成立,故当x=π4时,函数f(x)有最大值,故f(π4)=1,∴πω4−π6=2k π(k ∈Z),∴ω=8k+23(k ∈Z),又ω>0,∴ωmin =23.【解析】f(x)=sin 2x+√3cos x-34=-cos 2x+√3cos x+14=-(cos x-√32)2+1.因为x ∈[0,π2],所以cosx ∈[0,1],因此当cos x=√32时,f(x)max =1.(2)[2018全国卷Ⅰ,16,5分][理]已知函数f(x)=2sin x+sin 2x,则f(x)的最小值③f(x)在[-π,π]上有4个零点;④f(x)的最大值为2. 其中所有正确结论的编号是 ( ) A.①②④B.②④C.①④D.①③【解析】因为f(x)=2sin x+sin 2x,所以f '(x)=2cos x+2cos 2x=4cos 2x+2cos x-2=4(cos x-12)·(cos x+1).由f '(x)>0得12<cos x<1,即2k π-π3<x<2k π+π3,k ∈Z,由f '(x)<0得-1<cosx<12,即2k π-5π3<x<2k π-π3,k ∈Z,所以当x=2k π-π3,k ∈Z 时,f(x)取得最小值,且f(x)min =f(2k π-π3)=2sin(2k π-π3)+sin 2(2k π-π3)=-3√32.【解析】f(x)=12(1-cos ωx)+12sin ωx-12=12sin ωx-12cos ωx=√22sin(ωx-π4).解法一 因为x ∈(π,2π),所以ωx-π4∈(ωπ-π4,2ωπ-π4).因为f(x)在(π,2π)内无零点,故T 2≥π,即0<ω≤1,且{kπ≤ωπ−π4,2ωπ−π4≤kπ+π(k ∈Z).当k=-1时,解得ω∈(0,18];当k=0时,解得ω∈[14,58],当k ≤-1或k ≥1时,不满足题意,故ω∈(0,18]∪[14,58].故选D.解法二 当ω=12时, f(x)=√22sin(12x-π4),x ∈(π,2π)时,f(x)∈(12,√22],无零点,排除A,B;当ω=316时,f(x)=√22sin(316x-π4),x ∈(π,2π)时,当x=43π时,f(x)=0,所以f(x)有零点,排除C.选D.【解析】当0≤x ≤2π3时,π3≤ωx+π3≤2πω3+π3.若f(x)在[0,2π3]上恰有两个零点,则2π≤2πω3+π3<3π,解得52≤ω<4.【解析】由题意知,函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤π2),其图象与直线y=-1相邻两个交点的距离为π,故函数的最小正周期为T=2πω=π,解得ω=2.所以f(x)=2sin(2x+φ)+1.由题意,f(x)>1对任意的x ∈(-π12,π3)恒成立,即当x ∈(-π12,π3)时,sin(2x+φ)>0恒成立.令t=2x+φ,因为x ∈(-π12,π3),所以t ∈(φ-π6,φ+2π3).故要使sin t>0恒成立,只需{φ-π6≥2kπ,φ+2π3≤2kπ+π(k ∈Z),解得2k π+π6≤φ≤2k π+π3(k ∈Z).显然,当k=0时,π6≤φ≤π3,故选D.【解析】 y =1-cos 2x +acos x +8a -2=-⎝ ⎛⎭⎪⎫cos x -a 22+a 24+58a -12. ∵0≤x ≤π2,∴0≤cos x ≤1.①若a2>1,即a>2,则当cos x =1时,y max =a +58a -32=1⇒a =2013<2(舍去);②若0≤a2≤1,即0≤a ≤2,则当cos x =a 2时,y max =a 24+58a -12=1,∴a =32或a =-4<0(舍去);③若a2<0,即a<0,则当cos x =0时,y max =58a -12=1⇒a =125>0(舍去).综上可得,a =32.(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3acos C +b =0,则tan B 的最大值是________.【解析】 在△ABC 中,因为3acos C +b =0, 所以C 为钝角,由正弦定理得3sin Acos C +sin(A +C)=0, 3sin Acos C +sin Acos C +cos Asin C =0, 所以4sin Acos C =-cos A ·sin C , 即tan C =-4tan A. 因为tan A>0,所以tan B =-tan(A +C)=-tan A +tan C1-tan Atan C=tan A +tan C tan Atan C -1=-3tan A -4tan 2A -1=34tan A +1tan A≤324=34, 当且仅当tan A =12时取等号,故tan B 的最大值是34.【解析】 f(x)=cos x 向右平移3个单位长度,得到y =cos ⎝ ⎛⎭⎪⎫x -3的图象,再将各点横坐标变为原来的1ω(ω>0)得g(x)=cos ⎝ ⎛⎭⎪⎫ωx -2π3,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx -2π3∈⎣⎢⎡⎦⎥⎤-2π3,ωπ2-2π3, 又此时g(x)的值域为⎣⎢⎡⎦⎥⎤-12,1,∴0≤ωπ2-2π3≤2π3,∴43≤ω≤83.【解析】 方法一 将f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移φ个单位长度,得到函数g(x)=sin ⎝ ⎛⎭⎪⎫2x -2φ+π4的图象,该图象关于y 轴对称,即g(x)为偶函数,因此π4-2φ=k π+π2,k ∈Z ,所以φ=-k π2-π8(k ∈Z ),故当k =-1时,φ的最小正值为3π8. 方法二 将f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移φ个单位长度,得到函数g(x)=sin ⎝ ⎛⎭⎪⎫2x -2φ+π4的图象,令2x -2φ+π4=k π+π2,k ∈Z ,得x =k π2+π8+φ(k ∈Z ),此即为g(x)的对称轴方程,又g(x)的图象关于y 轴对称,所以有k π2+π8+φ=0,k ∈Z ,于是φ=-k π2-π8(k ∈Z ),故当k =-1时,φ取最小正值3π8.【方法总结】(1)求解三角函数的范围或最值的关键在于根据题目条件和函数形式选择适当的工具:三角函数的有界性,基本不等式,二次函数等.(2)求解和三角函数性质有关的范围、最值问题,要结合三角函数的图象.【解析】 函数f(x)的周期T ≤4⎝ ⎛⎭⎪⎫3-12=π,则ω≤π,解得ω≥2,故ω的最小值为2.【解析】 f(x)=5sin(x +φ),其中tan φ=2,且φ∈⎝ ⎛⎭⎪⎫0,2,由-2+2k π≤x +φ≤π2+2k π,k ∈Z ,得-π2-φ+2k π≤x ≤π2-φ+2k π,k ∈Z .当k =0时,增区间为⎣⎢⎡⎦⎥⎤-π2-φ,π2-φ,所以αmax=π2-φ,所以当α取最大值时,sin 2α=sin 2⎝ ⎛⎭⎪⎫π2-φ=sin 2φ=2sin φcos φsin 2φ+cos 2φ=2tan φtan 2φ+1=45.【解析】 由题意得T =ω≤5,∴ω≥10π,∵ω>0,∴ω≥10π.【解析】 令ωx +3=k π,k ∈Z ,得x =3k π-π3ω,k ∈Z ,∴f(x)的第2个、第3个正零点分别为5π3ω,8π3ω,∴⎩⎪⎨⎪⎧5π3ω≤2π3,8π3ω>2π3,解得52≤ω<4,令-π2+2k π≤ωx +π3≤π2+2k π,k ∈Z ,∴-5π6ω+2k πω≤x ≤π6ω+2k πω,k ∈Z ,令k =0,f(x)在⎣⎢⎡⎦⎥⎤-5π6ω,π6ω上单调递增,∴⎣⎢⎡⎦⎥⎤-π4,π24⊆⎣⎢⎡⎦⎥⎤-5π6ω,π6ω, ∴⎩⎪⎨⎪⎧-5π6ω≤-π4,π6ω≥π24,ω>0⇒0<ω≤103,综上得ω的取值范围是52≤ω≤103.【解析】.(1)f(x)=cos ωx(sin ωx+√3cos ωx)=12sin 2ωx+√32(1+cos 2ωx)=sin(2ωx+π3)+√32.由-1≤sin(2ωx+π3)≤1,得f(x)的值域是[√32-1,√32+1]. (2)∵0≤x ≤π,ω>0,∴π3≤2ωx+π3≤2ωπ+π3,由正弦函数的图象可知,要使f(x)=√32在区间[0,π]上恰有两个实数解,必须2π≤2ωπ+π3<3π,解得56≤ω<43.6.. 如图4-3-4,点A,点B 分别是圆心在坐标原点,半径为1和2的圆上的动点.动点A 从初位置B 0(2,0)开始,按顺时针方向以角速度2 rad/s 做圆周运动.记t 时刻,点A,点B 的纵坐标分别为y 1,y 2.(1)求t=π4时,A,B 两点间的距离;(2)若y=y 1+y 2,求y 关于时间t(t>0)的函数关系式,并求当t ∈(0,π2]时,y 的取值范围.【答案】(1)连接OA,OB,AB,当t=π4时,∠xOA=π2+π3=5π6,∠xOB=π2,所以在△AOB 中,∠AOB=2π3.又OA=1,OB=2,所以AB 2=12+22-2×1×2cos 2π3=7,所以A,B 两点间的距离为√7.(2)依题意,y 1=sin(2t+π3),y 2=-2sin 2t,所以y=sin(2t+π3)-2sin 2t=√32cos 2t-32sin 2t=√3cos(2t+π3), 即函数关系式为y=√3cos(2t+π3)(t>0), 当t ∈(0,π2]时,2t+π3∈(π3,4π3],所以cos(2t+π3)∈[-1,12),故当t ∈(0,π2]时,y ∈[-√3,√32).。
高中数学《三角函数》详解+公式+精题(附讲解)
![高中数学《三角函数》详解+公式+精题(附讲解)](https://img.taocdn.com/s3/m/e58822d655270722182ef74a.png)
高中数学《三角函数》详解+公式+精题(附讲解)引言三角函数是中学数学的基本重要容之一,三角函数的定义及性质有许多独特的表现,是高考中对基础知识和基本技能进行考查的一个容。
其考查容包括:三角函数的定义、图象和性质,同角三角函数的基本关系、诱导公式、两角和与差的正弦、余弦、正切。
两倍角的正弦、余弦、正切。
、正弦定理、余弦定理,解斜三角形、反正弦、反余弦、反正切函数。
要求掌握三角函数的定义,图象和性质,同角三角函数的基本关系,诱导公式,会用“五点法”作正余弦函数及的简图;掌握基本三角变换公式进行求值、化简、证明。
了解反三角函数的概念,会由已知三角函数值求角并能用反三角函数符号表示。
由于新教材删去了半角公式,和差化积,积化和差公式等容,近年的高考基本上围绕三角函数的图象和三角函数的性质,以及简单的三角变换来进行考查,目的是考查考生对三角函数基础知识、基本技能、基本运算能力掌握情况。
2.近年来高考对三角部分的考查多集中在三角函数的图象和性质,重视对三角函数基础知识和技能的考查。
每年有 2 — 3 道选择题或填空题,或 1 — 2 道选择、填空题和 1 道解答题。
总的分值为 15 分左右,占全卷总分的约 10 左右。
( 1 )关于三角函数的图象立足于正弦余弦的图象,重点是函数的图象与 y=sinx 的图象关系。
根据图象求函数的表达式,以及三角函数图象的对称性。
如 2000 年第( 5 )题、( 17 )题的第二问。
( 2 )求值题这类问题在选择题、填空题、解答题中出现较多,主要是考查三角的恒等变换。
如 2002 年( 15 )题。
( 3 )关于三角函数的定义域、值域和最值问题( 4 )关于三角函数的性质(包括奇偶性、单调性、周期性)。
一般要先对已知的函数式变形,化为一角一函数处理。
如 2001 年( 7 )题。
( 5 )关于反三角函数, 2000 — 2002 年已连续三年不出现。
( 6 )三角与其他知识的结合(如 1999 年第 18 题复数与三角结合)今后有关三角函数仍将以选择题、填空题和解答题三种题型出现,难度不会太大,会控制在中等偏易的程度;三角函数如果在解答题出现的话,应放在前两题的位置,放在第一题的可能性最大,难度不会太大。
三角函数ω的取值范围及解三角形中的范围与最值问题(解析版)-高中数学
![三角函数ω的取值范围及解三角形中的范围与最值问题(解析版)-高中数学](https://img.taocdn.com/s3/m/0fa918e9c67da26925c52cc58bd63186bceb9294.png)
三角函数ω的取值范围及解三角形中的范围与最值问题命题预测三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.高频考法(1)ω取值与范围问题(2)面积与周长的最值与范围问题(3)长度的范围与最值问题01ω取值与范围问题1、f (x )=A sin (ωx +φ)在f (x )=A sin (ωx +φ)区间(a ,b )内没有零点⇒b -a ≤T2k π≤aω+ϕ<π+k πk π<bω+ϕ≤π+k π⇒b -a ≤T2a ≥k π-ϕωb ≤π+k π-ϕω同理,f (x )=A sin (ωx +φ)在区间[a ,b ]内没有零点⇒b -a ≤T2k π<aω+ϕ<π+k πk π<bω+ϕ<π+k π ⇒b -a <T2a >k π-ϕωb <π+k π-ϕω2、f (x )=A sin (ωx +φ)在区间(a ,b )内有3个零点⇒T <b -a ≤2T k π≤aω+ϕ<π+k π3π+k π<bω+ϕ≤4π+k π⇒T <b -a ≤2T k π-φω≤a <(k +1)π-φω(k +3)π-φω<b ≤(k +4)π-φω同理f (x )=A sin (ωx +φ)在区间[a ,b ]内有2个零点⇒T2≤b -a <3T2k π<aω+ϕ≤π+k π2π+k π≤bω+ϕ<3π+k π ⇒T 2≤b -a <3T2k π-φω<a ≤k π+π-φω(k +2)π-φω≤b <(k +3)π-φω 3、f (x )=A sin (ωx +φ)在区间(a ,b )内有n 个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω≤a<kπ+π-φω(k+n)π-φω<b≤(k+n+1)π-φω同理f(x)=A sin(ωx+φ)在区间[a,b]内有n个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω<a≤kπ+π-φω(k+n)π-φω≤b<(k+n+1)π-φω4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为2n+14T,则2n+14T=(2n+1)π2ω=b-a .5、已知单调区间(a,b),则a-b≤T 2.1(2024·江苏南通·二模)已知函数y=3sinωx+cosωx(ω>0)在区间-π4,2π3上单调递增,则ω的最大值为()A.14B.12C.1211D.83【答案】B【解析】因为y=3sinωx+cosωx=2sinωx+π6,又ω>0,由-π2+2kπ≤ωx+π6≤π2+2kπ,k∈Z,得到-2π3+2kπω≤x≤π3+2kπω,k∈Z,所以函数y=3sinωx+cosωx的单调增区间为-2π3+2kπω,π3+2kπω(k∈Z),依题有-π4,2π3⊆-2π3+2kπω,π3+2kπω(k∈Z),则2π3≤π3ω-2π3ω≤-π4,得到0<ω≤12,故选:B.2(2024·四川泸州·三模)已知函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,则ω的取值范围是()A.83,11 3B.83,113C.53,83D.53,83【答案】B【解析】因为0≤x≤π,所以-2π3≤ωx-2π3≤ωπ-2π3,因为函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,结合正弦函数的图象可知2π≤ωπ-2π3<3π,解得83≤ω<113,故选:B.3(2024·四川德阳·二模)已知函数f x =sinωx+φ(ω>0,φ∈R)在区间7π12,5π6上单调,且满足f7π12=-f3π4 .给出下列结论,其中正确结论的个数是()①f2π3=0;②若f5π6-x=f x ,则函数f x 的最小正周期为π;③关于x的方程f x =1在区间0,2π上最多有3个不相等的实数解;④若函数f x 在区间2π3,13π6上恰有5个零点,则ω的取值范围为83,103.A.1B.2C.3D.4【答案】C【解析】①因为f7π12=-f3π4 且7π12+3π42=2π3,所以f2π3=0.①正确.②因为f5π6-x=f(x)所以f(x)的对称轴为x=5π62=5π12,2π3-5π12=π4=T4⇒T=π.②正确.③在一个周期内f x =1只有一个实数解,函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3.当T=2π3时,f x =sin3x,f x =1在区间0,2π上实数解最多为π6,5π6,3π2共3个.③正确.④函数f x 在区间2π3,13π6上恰有5个零点,2T<13π6-2π3≤5T2⇒2⋅2πω<13π6-2π3≤52⋅2πω,解得83<ω≤103;又因为函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3,即2πω≥2π3⇒ω≤3,所以ω∈83,3.④错误故选:C4(2024·江苏泰州·模拟预测)设函数f x =2sinωx-π6-1ω>0在π,2π上至少有两个不同零点,则实数ω的取值范围是()A.32,+∞ B.32,73 ∪52,+∞ C.136,3 ∪196,+∞ D.12,+∞ 【答案】A【解析】令2sin ωx -π6 -1=0得sin ωx -π6 =12,因为ω>0,所以ωx -π6>-π6,令sin z =12,解得z =π6+2k π,k ∈Z 或z =5π6+2k 1π,k 1∈Z ,从小到大将sin z =12的正根写出如下:π6,5π6,13π6,17π6,25π6,29π6⋯⋯,因为x ∈π,2π ,所以ωx -π6∈ωπ-π6,2ωπ-π6,当ωπ-π6∈0,π6 ,即ω∈16,13 时,2ωπ-π6≥5π6,解得ω≥12,此时无解,当ωπ-π6∈π6,5π6 ,即ω∈13,1 时,2ωπ-π6≥13π6,解得ω≥76,此时无解,当ωπ-π6∈5π6,13π6 ,即ω∈1,73 时,2ωπ-π6≥17π6,解得ω≥32,故ω∈32,73,当ωπ-π6∈13π6,17π6 ,即ω∈73,3 时,2ωπ-π6≥25π6,解得ω≥136,故ω∈73,3,当ω≥3时,2ωπ-π6-ωπ-π6=ωπ≥3π,此时f x 在π,2π 上至少有两个不同零点,综上,ω的取值范围是32,+∞ .故选:A02面积与周长的最值与范围问题正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.1(2024·青海·模拟预测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2a cos 2B +2b cos A cos B =c .(1)求B ;(2)若b =4,△ABC 的面积为S .周长为L ,求SL的最大值.【解析】(1)由正弦定理可得,2sin A cos 2B +2sin B cos A cos B =sin C ,所以2sin A cos 2B +2sin B cos A cos B =sin A cos B +cos A sin B ,所以sin A cos B (2cos B -1)+cos A sin B (2cos B -1)=0,即(2cos B -1)sin (A +B )=0,由0<A +B <π,可知sin (A +B )≠0,所以2cos B -1=0,即cos B =12,由0<B <π,知B =π3.(2)由余弦定理,得b 2=a 2+c 2-2ac cos B ,即16=a 2+c 2-ac ,所以16=a +c 2-3ac ,即ac =13a +c 2-16 ,因为S =12ac sin B =34ac ,L =a +b +c ,所以S L =3ac 4a +c +4=3a +c 2-1612a +c +4,所以S L=312a +c -4 ,又ac ≤a +c 24(当且仅当a =c 时取等号),所以16=a +c 2-3ac ≥a +c24(当且仅当a =c =4时取等号),所以a +c ≤8(当且仅当a =c =4时取等号),所以S L=312a +c -4 ≤312×8-4 =33(当且仅当a =c =4时取等号),即S L的最大值为33.2(2024·陕西汉中·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,请从下列条件中选择一个条件作答:(注:如果选择条件①和条件②分别作答,按第一个解答计分.)①记△ABC 的面积为S ,且3AB ⋅AC =2S ;②已知a sin B =b cos A -π6 .(1)求角A 的大小;(2)若△ABC 为锐角三角形,且a =6,求△ABC 周长的取值范围.【解析】(1)选条件①,由3AB ⋅AC =2S ,得3bc cos A =2×12bc sin A ,整理得tan A =3,而0<A <π,所以A =π3.选条件②,由a sin B =b cos A -π6 及正弦定理,得sin A sin B =sin B cos A -π6,而sin B >0,则sin A =cos A -π6 =32cos A +12sin A ,整理得tan A =3,而0<A <π,所以A =π3.(2)由(1)知A =π3,由正弦定理得b sin B =c sin C =a sin A =6sin π3=22,因此b +c =22sin B +22sin C =22sin B +sin π3+B =2232sin B +32cos B=26sin B +π6由△ABC 为锐角三角形,得0<B <π20<2π3-B <π2 ,解得π6<B <π2,因此π3<B +π6<2π3,则32<sin B +π6≤1,于是32<b +c ≤26,32+6<a +b +c ≤36,所以△ABC 周长的取值范围是(32+6,36].3(2024·宁夏银川·二模)已知平面四边形ABCD 中,∠A +∠C =180°,BC =3.(1)若AB =6,AD =3,CD =4,求BD ;(2)若∠ABC =120°,△ABC 的面积为932,求四边形ABCD 周长的取值范围.【解析】(1)在△ABD 中,由余弦定理得cos ∠A =32+62-BD 22×3×6,在△BCD 中,由余弦定理得cos ∠C =32+42-BD 22×3×4,因为∠A +∠C =180°,所以cos ∠A +cos ∠C =0,即32+62-BD 22×3×6+32+42-BD 22×3×4=0,解得BD =33.(2)由已知S △ABC =12×3×AB ×32=932,得AB =6,在△ABC 中,∠ABC =120°,由余弦定理得AC 2=32+62-2×3×6×cos120°=63,则AC =37,设AD=x,CD=y,(x,>0,y>0),在△ACD中,由余弦定理得372=x2+y2-2xy⋅cos60°=x+y2-3xy,则x+y2=63+3xy≤63+3×x+y22,得x+y24≤63,所以x+y≤67,当且仅当x=y=37时取等号,又x+y>AC=37,所以四边形ABCD周长的取值范围为37+9,67+9.4(2024·四川德阳·二模)△ABC的内角A,B,C的对边分别为a,b,c,已知sin B=23cos2A+C 2.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.【解析】(1)因为△ABC中,sin B=23cos2A+C2,即2sinB2cos B2=23cos2π-B2=23sin2B2,而0<B<π,∴sin B2>0,故cos B2=3sin B2,故tan B2=33,又0<B<π,∴0<B2<π2,则B2=π6,∴B=π3;(2)由(1)以及题设可得S△ABC=12ac sin B=34a;由正弦定理得a=c sin Asin C=c sin2π3-Csin C=c sin2π3cos C-cos2π3sin Csin C=32cos C+12sin Csin C=32tan C+12,因为△ABC为锐角三角形,0<A<π2,0<C<π2,则0<2π3-C<π2,∴π6<C<π2,则tan C>33,∴0<1tan C<3,则12<32tan C+12<2,即12<a<2,则38<S△ABC<32,即△ABC面积的取值范围为38,32 .03长度的范围与最值问题对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.1(2024·贵州遵义·一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知3b-a sin C= 3a cos C.(1)求A;(2)若△ABC为锐角三角形,c=2,求b的取值范围.【解析】(1)在△ABC中,由3b-a sin C=3a cos C及正弦定理,得3sin B-sin A sin C=3sin A cos C,则3sin A cos C+sin A sin C=3sin(A+C)=3sin A cos C+3cos A sin C,即sin A sin C=3cos A sin C,而sin C>0,于是tan A=3,又0<A<π,所以A=π3.(2)由(1)知,A=π3,由正弦定理得b=c sin Bsin C=2sin2π3-Csin C=3cos C+sin Csin C=3tan C+1,由△ABC为锐角三角形,得0<C<π20<2π3-C<π2,解得π6<C<π2,则tan C>13,∴1tan C<3,则1<b<4,所以b的取值范围是1<b<4.2(2024·宁夏固原·一模)在锐角△ABC中,内角A,B,C的对边分别是a,b,c,且2sin B sin C+cos2C= 1+cos2A-cos2B.(1)求证:B+C=2A;(2)求c-ba的取值范围.【解析】(1)因为2sin B sin C+cos2C=1+cos2A-cos2B,所以2sin B sin C+1-2sin2C=1+1-2sin2A-1+2sin2B,则sin B sin C-sin2C=-sin2A+sin2B,由正弦定理可得bc-c2=-a2+b2,即bc=b2+c2-a2,所以cos A=b2+c2-a22bc=bc2bc=12,又A∈0,π2,故A=π3,由A+B+C=π,故B+C=π-A=2π3=2A;(2)由(1)得sin A=32,cos A=12,因为sin B=sin A+C=sin A cos C+cos A sin C=32cos C+12sin C,所以由正弦定理得c-ba=sin C-sin Bsin A=23sin C-32cos C-12sin C=2312sin C-32cos C=23sin C-π3,又锐角△ABC中,有0<C<π20<π-π3-B<π2,解得π6<C<π2,所以-π6<C-π3<π6,则-12<sin C-π3<12,所以-33<23sin C-π3<33,即-33<23sin C-π3<33,故c-ba的取值范围为-33,33.3(2024·河北衡水·一模)在△ABC中,内角A,B,C所对的边分别是a,b,c,三角形面积为S,若D为AC边上一点,满足AB⊥BD,BD=2,且a2=-233S+ab cos C.(1)求角B;(2)求2AD +1CD的取值范围.【解析】(1)∵a2=-233S+ab cos C,∴a2=-33ab sin C+ab cos C,即a=-33b sin C+b cos C,由正弦定理得,sin A=-33sin B sin C+sin B cos C,∴sin B+C=-33sin B sin C+sin B cos C,∴cos B sin C=-33sin B sin C,∵sin C≠0,∴tan B=-3,由0<B<π,得B=2π3.(2)由(1)知,B=2π3,因为AB⊥BD,所以∠ABD=π2,∠DBC=π6,在△BCD中,由正弦定理得DCsin∠DBC=BDsin C,即DC=2sinπ6sin C=1sin C,在Rt△ABD中,AD=BDsin A=2sin A,∴2 AD +1CD=22sin A+11sin C=sin A+sin C,∵∠ABC=2π3,∴A+C=π3,∴2 AD +1CD=sin A+sin C=sinπ3-C+sin C=sinπ3cos C-cosπ3sin C+sin C=sin C+π3,∵0<C<π3,∴C+π3∈π3,2π3,∴sin C+π3∈32,1,所以2AD+1CD的取值范围为32,1.4(2024·陕西安康·模拟预测)已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,其中a=8,ac=1+sin2A-sin2Csin2B,且a≠c.(1)求证:B=2C;(2)已知点M在线段AC上,且∠ABM=∠CBM,求BM的取值范围.【解析】(1)因为ac=1+sin2A-sin2Csin2B,即a-cc=sin2A-sin2Csin2B,由正弦定理可得a-cc=a2-c2b2=a+ca-cb2,又a≠c,即a-c≠0,所以1c=a+cb2,整理得b2=c2+ac,由余弦定理得b2=a2+c2-2ac cos B,整理得c=a-2c cos B,由正弦定理得sin C=sin A-2sin C cos B,故sin C=sin B+C-2sin C cos B,即sin C=sin B cos C+sin C cos B-2sin C cos B,整理得sin C=sin B-C,又因为△ABC为锐角三角形,则C∈0,π2,B∈0,π2,可得B-C∈-π2,π2,所以C=B-C,即B=2C.(2)因为点M在线段AC上,且∠ABM=∠CBM,即BM平分∠ABC,又B=2C,所以∠C=∠CBM,则∠BMC=π-C-∠CBM=π-2C,在△MCB中,由正弦定理得BCsin∠BMC=BMsin C,所以BM=BC sin Csin∠BMC=8sin Csin2C=8sin C2sin C cos C=4cos C,因为△ABC为锐角三角形,且B=2C,所以0<C<π20<2C<π20<π-3C<π2,解得π6<C<π4.故22<cos C<32,所以833<BM<42.因此线段BM 长度的取值范围833,42.1在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =3,A =60°,则b 的取值范围是()A.0,6B.0,23C.3,23D.3,6【答案】C【解析】由正弦定理得a sin A =b sin B ,即b =a sin B sin A =3sin B sin60°=23sin B ,又△ABC 为锐角三角形,C =180°-A -B =120°-B ,又0°<B ,C <90°,则0°<120°-B <90°,解得30°<B <90°,而当30°<x <90°时,y =sin x 单调递增,故sin B ∈12,1,所以b =23sin B ∈3,23 .故选:C2已知函数f (x )=sin (ωx +φ)(ω>0),现有如下说法:①若φ=π3,函数f (x )在π6,π3 上有最小值,无最大值,且f π6 =f π3,则ω=5;②若直线x =π4为函数f (x )图象的一条对称轴,5π3,0 为函数f (x )图象的一个对称中心,且f (x )在π4,5π6 上单调递减,则ω的最大值为1817;③若f (x )=12在x ∈π4,3π4 上至少有2个解,至多有3个解,则ω∈4,163;则正确的个数为()A.0 B.1C.2D.3【答案】C【解析】对于①,因为x =π6+π32=π4时,f x 有最小值,所以sin ωπ4+π3=-1,所以ωπ4+π3=2kπ+3π2k∈Z,得到ω=8k+143k∈Z,因为f x 在区间π6,π3上有最小值,无最大值,所以π3-π4≤πω,即ω≤12,令k=0,得ω=143,故①错误;对于②,根据题意,有ωπ4+φ=2k1π+π2k1∈Z5ωπ3+φ=k2πk2∈ZT2=πω≥5π6-π4=7π12,得出ω=-12(2k1-k2)+617,k1,k2∈Z0<ω≤127,即ω=-12k+617,k∈Z0<ω≤127,得到ω=617或1817,故②正确;对于③,令ωx+φ=2kπ+π6k∈Z或ωx+φ=2kπ+5π6k∈Z,则x=-φ+2kπω+π6ωk∈Z或x=-φ+2kπω+5π6ωk∈Z,故需要上述相邻三个根的距离不超过π2,相邻四个根(距离较小的四个)的距离超过π2,即2πω≤π2,8π3ω>π2,,解得ω∈4,16 3,故③正确,故选:C.3设函数f x =sin2ωx-cos2ωx+23sinωx cosωxω>0,当x∈0,π2时,方程f x =2有且只有两个不相等的实数解,则ω的取值范围是()A.73,13 3B.73,133C.83,143D.83,143【答案】C【解析】由已知易知f x =3sin2ωx-cos2ωx=2sin2ωx-π6,当x∈0,π2时2ωx-π6∈-π6,πω-π6,所以要满足题意有5π2≤πω-π6<9π2⇒ω∈83,143.故选:C4将函数f x =sinωx-cosωx(ω>0)的图象向左平移π4个单位长度后,再把横坐标缩短为原来的一半,得到函数g x 的图象.若点π2,0是g x 图象的一个对称中心,则ω的最小值是()A.45B.12C.15D.56【答案】C【解析】由题意可得f x =222sinωx-22cosωx=2sinωx-π4,所以将f x 的图象向左平移π4个单位长度后,得到函数h x =2sin ωx +π4 -π4=2sin ωx +ωπ4-π4的图象,再把所得图象上点的横坐标缩短为原来的一半,得到函数g x =2sin 2ωx +ωπ4-π4的图象,因为点π2,0 是g x 图象的一个对称中心,所以πω+ωπ4-π4=k π,k ∈Z ,解得ω=45k +15,k ∈Z ,又ω>0,所以ω的最小值为15.故选:C5已知函数f (x )=sin ωx +π6 (ω>0),若将f (x )的图象向左平移π3个单位后所得的函数图象与曲线y =f (x )关于x =π3对称,则ω的最小值为()A.23B.13C.1D.12【答案】A【解析】函数f (x )=sin ωx +π6 ,f (x )的图象向左平移π3个单位后所得函数g (x )=sin ωx +π3 +π6=sin ωx +πω3+π6,函数y =g (x )的图象与y =f (x )的图象关于直线x =π3对称,则f (x )=g 2π3-x ,于是sin ωx +π6=sin ω2π3-x +πω3+π6 对任意实数x 恒成立,即sin ωx +π6 =sin -ωx +πω+π6 =sin π-ωx -πω+5π6 =sin ωx -πω+5π6对任意实数x 恒成立,因此-πω+5π6=π6+2k π,k ∈Z ,解得ω=-2k +23,k ∈Z ,而ω>0,则k ∈Z ,k ≤0,所以当k =0时,ω取得最小值23.故选:A6(多选题)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为△ABC 的面积,且a =2,AB ⋅AC=23S ,下列选项正确的是()A.A =π6B.若b =2,则△ABC 只有一解C.若△ABC 为锐角三角形,则b 取值范围是23,4D.若D 为BC 边上的中点,则AD 的最大值为2+3【答案】ABD【解析】对于A ,因为AB ⋅AC =23S ,所以bc cos A =23×12bc sin A ,则tan A =33,因为A ∈0,π ,所以A =π6,故A 正确;对于B ,因为b =2=a ,则B =A =π6,C =2π3,故△ABC 只有一解,故B 正确;对于C ,若△ABC 为锐角三角形,则B ∈0,π2 ,C ∈0,π2,则0<B <π20<π-π6-B <π2,则π3<B <π2,即sin B ∈32,1,由正弦定理可知:b =a sin Bsin A=4sin B ∈23,4 ,故C 错误;对于D ,若D 为BC 边上的中点,则AD =12AB +AC,所以AD 2=14AB 2+2AB ⋅AC +AC 2=14b 2+c 2+3bc由余弦定理知a 2=b 2+c 2-2bc cos A =b 2+c 2-3bc =4,得b 2+c 2=3bc +4,又b 2+c 2=3bc +4≥2bc ,所以bc ≤42-3=43+8,当且仅当b =c =2+6时取得等号,所以AD 2=14b 2+c 2+3bc =144+23bc ≤144+23×43+8 =7+43,即AD ≤7+43=2+3,故D 正确.故选:ABD .7已知函数f x =12+3sin ωx cos ωx -cos 2ωx ω>0 ,若f x 的图象在0,π 上有且仅有两条对称轴,则ω的取值范围是.【答案】56,43【解析】因为f x =12+3sin ωx cos ωx -cos 2ωx =32sin2ωx -12cos2ωx =sin 2ωx -π6,因为f x 的图象在0,π 上有且仅有两条对称轴,所以3π2≤2ωπ-π6<5π2,解得56≤ω<43,所以ω的取值范围是56,43 .故答案为:56,43.8已知函数f x =sin ωx ω>0 ,若∃x 1,x 2∈π3,π,f x 1 =-1,f x 2 =1,则实数ω的取值范围是.【答案】ω=32或ω≥52【解析】设θ=ωx,x∈π3,π,则θ∈π3ω,πω,所以问题转化为y=sinθ在θ∈π3ω,πω上存在最大值和最小值,由正弦函数图象可得,π3ω≤kπ+π2kπ+π2+π≤πω,解得k+32≤ω≤3k+32,所以k≥0,k∈Z,当k=0时,32≤ω≤32,∴ω=32;当k=1时,52≤k≤92,当k=2时,72≤ω≤152,当k=3时,92≤ω≤212,当k=n,n∈N*时,n+32≤ω≤3n+32,当k=n+1时,n+52≤ω≤3n+92,而n+52-3n+32=-2n+1<0,即n+52<3n+32,所以k∈N*时,所有情况的ω范围的并集为ω≥52;综上,实数ω的取值范围是ω=32或ω≥52.故答案为:ω=32或ω≥52.9已知函数f x =sinωx+φω>0满足f x ≥fπ12,且f x 在区间-π3,π3上恰有两个最值,则实数ω的取值范围为.【答案】125,4【解析】因为f x ≥fπ12,所以fπ12 =sinπ12ω+φ=-1,所以π12ω+φ=2kπ+3π2,k∈Z,即φ=2kπ-π12ω+3π2,k∈Z,所以f x =sinωx+2kπ-π12ω+3π2 =-cosωx-π12.当-π3≤x≤π3时,-5πω12≤ωx-π12≤πω4ω>0.因为f x 在区间-π3,π3上恰有两个最值,且-5πω12>πω4 ,所以ω>0-2π<-5πω12≤-π0<πω4<π,解得125≤ω<4.故答案为:125,4.10已知函数f (x )=-sin ωx -π4 (ω>0)在区间π3,π 上单调递减,则ω的取值范围是.【答案】0,34【解析】当x ∈π3,π时, ωπ3-π4<ωx -π4<ωπ-π4,又y =-sin x 的单调递减区间为2k π-π2,2k π+π2(k ∈Z ),所以ωπ3-π4≥2k π-π2ωπ-π4≤2k π+π2(k ∈Z ),解得6k -34≤ω≤2k +34(k ∈Z ),且2k +34≥6k -34(k ∈Z ),解得k ≤38,又ω>0,所以k =0,所以ω的取值范围为0,34.故答案为:0,3411若函数f x =cos ωx -π6ω>0 在区间π3,2π3内单调递减,则ω的最大值为.【答案】74【解析】由题得:12T ≥2π3-π3⇒0<ω≤3,令t =ωx -π6⇒t ∈πω3-π6,2πω3-π6,则y =cos t 在t ∈πω3-π6,2πω3-π6单调递减,故πω3-π6≥2k π2πω3-π6≤2k π+π⇒6k +12≤ω≤3k +74,由0<ω≤3,故ω∈12,74,所以ω的最大值为74,故答案为:74.12已知函数f (x )=4sin ωx ,g (x )=4cos ωx -π3+b (ω>0),且∀x 1,x 2∈R ,|f (x 1)-g (x 2)|≤8,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,与函数g (x )的图象相邻的三个交点依次为A ,B ,C ,且BA ⋅BC<0,则ω的取值范围是.【答案】0,2π8【解析】依题意,函数f (x )的值域为[-4,4],g (x )的值域为[b -4,b +4],由∀x 1,x 2∈R ,f (x 1)-g (x 2) ≤8,得|(b -4)-4|≤8,且|(b +4)-(-4)|≤8,解得b =0,g (x )=4cos ωx -π3 =4sin ωx +π6 ,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,得h (x )=4sin ωx -π3ω =4sin ωx -π3,在同一坐标系内作出函数y =g (x ),y =h (x )的图象,观察图象知,|AC |=2πω,取AC 中点D ,连接BD ,由对称性知|AB |=|BC |,BD ⊥AC ,由BA ⋅BC <0,得∠ABC >π2,即∠ABD >π4,|AD |>|BD |,由h (x )=g (x ),得sin ωx -π3 =sin ωx +π6 ,则ωx -π3+ωx+π6=π+2k π,k ∈Z ,解得ωx =712π+k π,k ∈Z ,于是y =4sin 712π+k π-π3=±22,则|BD |=42,因此πω>42,解得0<ω<2π8,所以ω的取值范围是0,2π8.故答案为:0,2π813在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠ABC =2π3,∠ABC 的平分线交AC 于点D ,且BD =2,则a +4c 的最小值为.【答案】18【解析】如图所示,则△ABC 的面积为12ac sin 2π3=12a ⋅2sin π3+12c ⋅2sin π3,则ac =2a +2c ,所以1a +1c =12,显然a ,c >0,故a +4c =(a +4c )1a +1c ×2=2×5+4c a +a c ≥25+24c a ⋅a c=18,当且仅当4ca =a c 1a +1c =12,即a =6c =3时取等号.所以a +4c 的最小值为18.故答案为:18.14在锐角△ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c ,且2b sin A -3a =0.(1)求角B;(2)求sin A+sin C的取值范围.【解析】(1)∵2b sin A-3a=0,∴2sin A sin B-3sin A=0,又∵A∈0,π2,∴sin A≠0,∴sin B=32,B∈0,π2,∴B=π3.(2)由(1)可知,B=π3,且△ABC为锐角三角形,所以0<A<π20<C=2π3-A<π2,∴A∈π6,π2,则sin A+sin C=sin A+sin2π3-A=32sin A+32cos A=3sin A+π6,因为π3<A+π6<2π3,∴sin A+sin C∈32,3.15在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a=0.(1)求角B的大小;(2)求cos A+cos C的取值范围.【解析】(1)因为2b sin A-3a=0,由正弦定理边化角得:2sin B sin A-3sin A=0,所以2sin B-3sin A=0,由于在△ABC中,sin A≠0,所以2sin B-3=0,即sin B=32,又0<B<π2,所以B=π3.(2)由(1)可知B=π3,所以A+C=2π3,所以cos A+cos C=cos A+cos2π3-A=cos A+cos2π3cos A+sin2π3sin A=cos A-12cos A+32sin A=12cos A+32sin A=sin A+π6由于在锐角△ABC中,0<2π3-A<π2 0<A<π2,所以π6<A<π2,所以π3<A+π6<2π3,所以sinπ3<sin A+π6≤sinπ2,所以32<sin A+π6≤1,所以cos A+cos C的取值范围为32,1.16已知锐角△ABC的三内角A,B,C的对边分别是a,b,c,且b2+c2-(b⋅cos C+c⋅cos B)2=bc,(1)求角A的大小;(2)如果该三角形外接圆的半径为3,求bc的取值范围.【解析】(1)∵b2+c2-b cos C+c cos B2=bc,由余弦定理可得b2+c2-b⋅a2+b2-c22ab+c⋅a2+c2-b22ac2=bc,化简整理得b2+c2-a2=bc,又b2+c2-a2=2bc cos A,∴cos A=12,又0<A<π2,所以A=π3.(2)因为三角形外接圆半径为R=3,所以b=23sin B,c=23sin C,∴bc=12sin B sin C,由(1)得B+C=2π3,所以bc=12sin B sin C=12sin B sin2π3-B=12sin B32cos B+12sin B=63sin B cos B+6sin2B=33sin2B+31-cos2B=632sin2B-12cos2B+3 =6sin2B-π6+3,因为△ABC是锐角三角形,且B+C=2π3,所以π6<B<π2,∴π6<2B-π6<5π6,∴12<sin2B-π6≤1,∴6<6sin2B-π6+3≤9,即6<bc≤9.所以bc的取值范围为6,9.17在△ABC中,角A、B、C的对边分别为a、b、c,cos2B-sin2B=-1 2.(1)求角B,并计算sin B+π6的值;(2)若b=3,且△ABC是锐角三角形,求a+2c的最大值.【解析】(1)由cos2B+sin2B=1cos2B-sin2B=-12,得cos2B=14,则cos B=±12,又0<B<π,所以B=π3或2π3.当B=π3时,sin B+π6=sinπ2=1;当B=2π3时,sin B+π6=sin5π6=12.(2)若△ABC为锐角三角形,则B=π3,有0<C<π20<A=2π3-C<π2,解得π6<C<π2.由正弦定理,得asin A=csin C=bsin B=332=2,则a=2sin A,c=2sin C,所以a+2c=2sin A+4sin C=2sin2π3-C+4sin C=232cos C+12sin C+4sin C=5sin C+3cos C=27sin(C+φ),其中tanφ=35,又tanφ=35<33=tanπ6,所以0<φ<π6,则π3<C+φ<2π3,故当C+φ=π2时,sin(C+φ)取到最大值1,所以a+2c的最大值为27.18在△ABC中,D为BC边上一点,DC=CA=1,且△ACD面积是△ABD面积的2倍.(1)若AB=2AD,求AB的长;(2)求sin∠ADBsin B的取值范围.【解析】(1)设BC边上的高为AE,垂足为E,因为△ACD面积是△ABD面积的2倍,所以有S△ACDS△ABD=12CD⋅AE12BD⋅AE=2⇒BD=12⇒BC=32,设AB=2AD=x⇒AD=22x,由余弦定理可知:cos C=AC2+BC2-AB22AC⋅BC =AC2+DC2-AD22AC⋅DC⇒1+94-x22×1×32=1+1-12x22×1×1,解得x=1或x=-1舍去,即AB=1;(2)由(1)可知BD=12,BC=32,设∠ADC=θ,由DC=CA⇒∠DAC=∠ADC=θ⇒C=π-2θ且θ∈0,π2,由余弦定理可得:AD=12+12-2×1×1⋅cosπ-2θ=2+2cos2θ=2+22cos2θ-1=2cosθ,AB=12+32 2-2×1×32⋅cosπ-2θ=134+3cos2θ=134+32cos2θ-1=6cos2θ+1 4,在△ABD中,因为θ∈0,π2,所以由正弦定理可知:ABsin∠ADB =ADsin B⇒sin∠ADBsin B=ABAD=6cos2θ+142cosθ=14×24cos2θ+1cos2θ=14×24+1cos2θ,因为θ∈0,π2,所以cos θ∈0,1 ⇒cos 2θ∈0,1 ⇒1cos 2θ>1⇒24+1cos 2θ>25⇒24+1cos 2θ>5,于是有sin ∠ADB sin B >54,因此sin ∠ADB sin B 的取值范围为54,+∞ ..19记锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B sin C +cos2C =1+cos2A -cos2B .(1)证明:B +C =2A ;(2)求c b的取值范围.【解析】(1)证明:由2sin B sin C +cos2C =1+cos2A -cos2B ,得2sin B sin C +1-2sin 2C =1+1-2sin 2A -1+2sin 2B ,即sin B sin C -sin 2C =-sin 2A +sin 2B ,由正弦定理可得bc -c 2=-a 2+b 2,即a 2=b 2+c 2-bc ,由余弦定理可得a 2=b 2+c 2-2bc cos A ,故cos A =12,又A ∈0,π2 ,故A =π3,由A +B +C =π,故B +C =π-A =2π3=2A ;(2)由正弦定理可得:c b=sin C sin B =sin π-A -B sin B =sin π3+B sin B =12sin B +32cos B sin B =12+32tan B ,又锐角△ABC 中,有0<B <π2,0<π-π3-B <π2,解得π6<B <π2,即tan B ∈33,+∞,即1tan B ∈0,3 ,故c b=12+32tan B ∈12,2 .20记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +b +c a +b -c =3,且△ABC 的面积为334.(1)求角C ;(2)若AD =2DB ,求CD 的最小值.【解析】(1)∵a +b +c a +b -c =3,∴3=(a +b )2-c 2=a 2+b 2-c 2+2ab 结合余弦定理得3=2ab cos C +2ab =2ab 1+cos C ,∴ab =321+cos C ,∵S △ABC =12ab sin C =334,∴sin C 1+cos C =3,即2sin C 2cos C 2cos 2C 2=tan C 2=3,又∵C 2∈0,π2 ,∴C 2=π3,故C =2π3;(2)由(1)知:C =2π3,ab =321+cos C=3,∵AD =2DB ,∴CD =13CA +23CB ,∴CD 2=13CA +23CB 2=19b 2+49a 2+49ab cos C =19b 2+49a 2-23,又19b 2+49a 2-23≥219b 2⋅49a 2-23=2×23-23=23,当且仅当b =2a =6时,CD 长取最小值,此时CD =23=63,∴CD 长的最小值为63.21已知函数f x =12-sin 2ωx +32sin2ωx ω>0 的最小正周期为4π.(1)求f x 在0,π 上的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a -c cos B =b ⋅cos C ,求f A 的取值范围.【解析】(1)f x =12-sin 2ωx +32sin2ωx =12-1-cos2ωx 2+32sin2ωx =32sin2ωx +12cos2ωx =sin 2ωx +π6.因为T =2π2ω=4π,所以ω=14,故f x =sin 12x +π6.由-π2+2k π≤12x +π6≤π2+2k π,k ∈Z ,解得4k π-4π3≤x ≤4k π+2π3,k ∈Z ,当k =0时,-4π3≤x ≤2π3,又x ∈0,π ,所以f x 在0,π 上的单调递增区间为0,2π3.(2)由2a -c cos B =b ⋅cos C ,得(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin B cos C +cos B sin C =sin B +C =sin A .因为sin A ≠0,所以cos B =12,又B ∈0,π ,所以B =π3,又三角形为锐角三角形,则0<A <π20<2π3-A <π2,则π6<A <π2,所以π4<A 2+π6<5π12,又f A =sin A 2+π6,sin 5π12=sin π4+π6 =sin π4cos π6+cos π4sin π6=2+64,则22<sin A 2+π6 <2+64,所以f A 的取值范围为22,2+64.22已知在△ABC 中,1-cos A 2-sin A =0,(1)求A ;(2)若点D 是边BC 上一点,BD =2DC ,△ABC 的面积为3,求AD 的最小值.【解析】(1)因为1-cos A 2-sin A =0,所以sin 2A 2=sin A , 因为0<A 2<π2,sin A 2>0,则sin A 2=2sin A 2cos A 2,故cos A 2=12, 所以A 2=π3,A =2π3,(2)因为BD =2DC ,则BD =2DC ,所以AD -AB =2AC -AD ,故AD =13AB +23AC , 因为△ABC 的面积为3,所以12bc sin A =3,所以bc =4|AD |2=13AB +23AC 2=19c 2+49b 2+49AB ⋅AC =19c 2+49b 2-29bc ≥49bc -29bc =89上式当且仅当c =2b ,即c =22,b =2时取得“=”号,所以AD 的最小值是223.23在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足2sin A +C cos A -sin C cos A =sin A cos C .(1)求角A ;(2)若点D 在线段BC 上,且满足BD =3DC ,AD =3,求△ABC 面积的最大值.【解析】(1)由题意得2sin B cos A -sin C cos A =sin A cos C ,即2sin B cos A =sin A cos C +sin C cos A =sin B ,∵sin B ≠0,∴2cos A =1,∴cos A =12,又0<A <π,∴A =π3;(2)解法一:令DC =t ,则BD =3t ,∵cos ∠ADC =-cos ∠ADB ,∴AD 2+DC 2-AC 22AD ⋅DC =-AD 2+BD 2-AB 22AD ⋅BD ,即9+t 2-b 26t =-9+9t 2-c 218t ,∴12t 2=-36+3b 2+c 2①,又∵cos ∠BAC =12=b 2+c 2-16t 22bc ,∴16t 2=b 2+c 2-bc ②,∵联立①②,得144-3bc =9b 2+c 2≥6bc (当且仅当c =3b 时取等号),即bc ≤16,∴S △ABC =12bc sin ∠BAC =34bc ≤43,∴△ABC 面积的最大值为43.解法二:依题意AD =14AB+34AC,∴AD 2=14AB+34AC 2=116AB 2+9AC 2+6AB ⋅AC,即9=116AB 2+9AC 2+6AB AC cos π3=116AB 2+9AC 2+3AB AC,∵AB 2+9AC 2≥6AB AC (当且仅当AB =3AC 时取等号),∴AB AC ≤16,∴S △ABC =12AB ACsin ∠BAC ≤34×16=43,∴△ABC 面积的最大值为43.24已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量m =a +b ,c ,n =sin A -sin C ,sin A -sin B ,且m ⎳n .(1)求B ;(2)求b 2a 2+c 2的最小值.【解析】(1)因为m ⎳n ,所以a +b sin A -sin B =c sin A -sin C ,由正弦定理可得a +b a -b =c a -c 即a 2-b 2=ac -c 2,故a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =12,而B 为三角形内角,故B =π3.(2)结合(1)可得:b2a2+c2=a2+c2-aca2+c2=1-aca2+c2,1-aca2+c2≥1-ac2ac=1-12=12,当且仅当a=c时等号成立,故b2a2+c2的最小值为12.25已知△ABC为钝角三角形,它的三个内角A、B、C所对的边分别为a、b、c,且sin2C=sin2B+sinπ3+Bcosπ6+B,a<c,b<c.(1)求tan(A+B)的值;(2)若△ABC的面积为123,求c的最小值.【解析】(1)因为sin2C=sin2B+sinπ3+Bcosπ6+B=sin2B+12sinπ2+2B+sinπ6=sin2B+12cos2B+12=sin2B+121-2sin2B+14=34,因为sin C>0,所以sin C=3 2,由△ABC为钝角三角形且a<c,b<c知,C为钝角,所以cos C=-12,即tan C=-3,所以tan(A+B)=tanπ-C=-tan C=3.(2)因为S△ABC=12ab sin C=34ab=123,所以ab=48,由余弦定理,c2=a2+b2-2ab cos C=a2+b2+ab≥3ab=144,当且仅当a=b=43时,等号成立,此时c2的最小值为144,所以c的最小值为12.。
高中数学必背三角函数值
![高中数学必背三角函数值](https://img.taocdn.com/s3/m/05104c3d00f69e3143323968011ca300a6c3f635.png)
高中数学必背三角函数值三角函数是高中数学中重要的概念之一,学习三角函数的过程中,了解并牢记一些常见角度的三角函数值是非常重要的。
本文将介绍高中数学中必须掌握的一些常见角度的三角函数值,以帮助学生在解题过程中更加熟练掌握相关知识。
正弦函数值1.角度0度:$\\sin(0°)=0$2.角度30度:$\\sin(30°)=\\frac{1}{2}$3.角度45度:$\\sin(45°)=\\frac{\\sqrt{2}}{2}$4.角度60度:$\\sin(60°)=\\frac{\\sqrt{3}}{2}$5.角度90度:$\\sin(90°)=1$余弦函数值1.角度0度:$\\cos(0°)=1$2.角度30度:$\\cos(30°)=\\frac{\\sqrt{3}}{2}$3.角度45度:$\\cos(45°)=\\frac{\\sqrt{2}}{2}$4.角度60度:$\\cos(60°)=\\frac{1}{2}$5.角度90度:$\\cos(90°)=0$正切函数值1.角度0度:$\\tan(0°)=0$2.角度30度:$\\tan(30°)=\\frac{\\sqrt{3}}{3}$3.角度45度:$\\tan(45°)=1$4.角度60度:$\\tan(60°)=\\sqrt{3}$5.角度90度:$\\tan(90°)$不存在总结通过掌握以上各角度的三角函数值,可以帮助学生更好地理解三角函数在不同角度下的取值规律,为解决相关问题提供支持。
熟练掌握和记忆这些数值,有助于提高数学解题的速度和准确性,也为未来更深入的数学学习打下坚实的基础。
希望本文对学习者有所帮助。
高中常考的三角函数值
![高中常考的三角函数值](https://img.taocdn.com/s3/m/2766e77e3868011ca300a6c30c2259010202f3f5.png)
高中常考的三角函数值在高中数学课程中,三角函数是一个非常重要的内容,而三角函数值更是常常被考查的知识点。
在学习三角函数值的过程中,学生们需要熟练掌握正弦、余弦和正切函数的值,以便解决各种三角函数相关的问题。
下面将介绍一些高中常考的三角函数值及其相关概念。
正弦函数值正弦函数在数学中是一个非常基础且常见的函数,它表示一个角的对边与斜边之比。
在单位圆上,不同角度对应的正弦函数值如下:•当角度为0度时,正弦函数的值为0;•当角度为30度时,正弦函数的值为1/2;•当角度为45度时,正弦函数的值为√2/2;•当角度为60度时,正弦函数的值为√3/2;•当角度为90度时,正弦函数的值为1。
通过记忆以上数值,学生可以在计算时更加便利,提高解题效率。
余弦函数值余弦函数是正弦函数的互余函数,表示一个角的邻边与斜边之比。
在单位圆上,不同角度对应的余弦函数值如下:•当角度为0度时,余弦函数的值为1;•当角度为30度时,余弦函数的值为√3/2;•当角度为45度时,余弦函数的值为√2/2;•当角度为60度时,余弦函数的值为1/2;•当角度为90度时,余弦函数的值为0。
学生在计算余弦函数时,也可以通过上述数值来简化问题,减少计算难度。
正切函数值正切函数表示一个角的对边与邻边之比,在数学中也具有很大的应用。
在单位圆上,不同角度对应的正切函数值如下:•当角度为0度时,正切函数的值为0;•当角度为30度时,正切函数的值为√3/3;•当角度为45度时,正切函数的值为1;•当角度为60度时,正切函数的值为√3;•当角度为90度时,正切函数的值为无穷大。
通过记忆正切函数的数值,学生可以更快地解决与正切函数相关的数学问题。
总结三角函数值是高中数学中常考的知识点,掌握这些数值对于解决各种三角函数问题是至关重要的。
通过熟练记忆正弦、余弦和正切函数在不同角度下的数值,可以帮助学生更加便捷地进行计算和解题,提高数学学习效率。
希望学生们在学习三角函数值的过程中能够加深理解,掌握这一重要知识点。
高中数学学案:三角函数的最值问题
![高中数学学案:三角函数的最值问题](https://img.taocdn.com/s3/m/c4e26699941ea76e58fa0479.png)
高中数学学案:三角函数的最值问题1. 会通过三角恒等变形、利用三角函数的有界性、结合三角函数的图象,求三角函数的最值和值域.2. 掌握求三角函数最值的常见方法,能运用三角函数最值解决一些实际问题.1. 阅读:必修4第24~33页、第103~116页、第119~122页.2. 解悟:①正弦、余弦、正切函数的图象和性质是什么?②三角函数y =A sin (ωx +φ)(A>0,ω>0)的最值及对应条件;③两角和与差的正弦、余弦、正切公式是什么?辅助角公式是否熟练?④二倍角公式是什么?由倍角公式得到的降幂扩角公式是什么?必修4第123页练习第4题怎么解?3. 践习:在教材空白处,完成必修4第131页复习题第9、10、16题.基础诊断1. 函数f(x)=sin x,x ∈⎝ ⎛⎭⎪⎫π6,2π3的值域为⎝ ⎛⎦⎥⎤12,1__. 2. 函数f(x)=sin x -cos ⎝ ⎛⎭⎪⎫x +π6的值域为3]__. 解析:因为f(x)=sin x -cos (x +π6)=sin x -32cos x +12sin x =32sin x -32cos x =3sin (x -π6),所以函数f(x)=sin x -cos (x +π6)的值域为[-3,3].3. 若函数f(x)=(1+3tan x)cos x,0≤x<π2,则f(x)的最大值为__2__.解析:f(x)=(1+3tan x)cos x =cos x +3sin x =2sin ⎝ ⎛⎭⎪⎫x +π6.因为0≤x<π2,所以π6≤x +π6<2π3,所以sin ⎝ ⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤12,1, 所以当sin ⎝ ⎛⎭⎪⎫x +π6=1时,f(x)有最大值2.4. 函数y =2sin 2x -3sin 2x范例导航考向❶ 形如y =a sin 2x +b cos x +c 的三角函数的最值例1 已知函数f(x)=2cos 2x +sin 2x -4cos x.(1) 求f ⎝ ⎛⎭⎪⎫π3的值; (2) 求f(x)的最大值和最小值.解析:(1) f ⎝ ⎛⎭⎪⎫π3=2cos 2π3+sin 2π3-4cos π3=-1+34-2=-94. (2) f(x)=2(2cos 2x -1)+(1-cos 2x)-4cos x=3cos 2x -4cos x -1=3⎝ ⎛⎭⎪⎫cos x -232-73,x ∈R. 因为cos x ∈[-1,1],所以当cos x =-1时,f (x )取最大值6;当cos x =23时,f (x )取最小值-73.已知sin ⎝ ⎛⎭⎪⎫A +π4=7210,A ∈⎝ ⎛⎭⎪⎫π4,π2. (1) 求cos A 的值;(2) 求函数f (x )=cos2x +52sin A sin x 的值域.解析:(1) 因为π4<A <π2,且sin ⎝ ⎛⎭⎪⎫A +π4=7210, 所以π2<A +π4<3π4,cos ⎝⎛⎭⎪⎫A +π4=-210, 所以cos A =cos[(A +π4)-π4]=cos ⎝ ⎛⎭⎪⎫A +π4cos π4+sin ⎝ ⎛⎭⎪⎫A +π4sin π4 =-210×22+7210×22=35.(2) 由(1)可得sin A =45,所以f (x )=cos2x +52sin A sin x =1-2sin 2x +2sin x =-2⎝ ⎛⎭⎪⎫sin x -122+32,x ∈R. 因为sin x ∈[-1,1],所以当sin x =12时,f (x )取最大值32;当sin x =-1时,f (x )取最小值-3.所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤-3,32. 考向❷ 形如y =A sin(ωx +φ)+k 的三角函数的最值例2 已知函数f(x)=2cos x sin ⎝ ⎛⎭⎪⎫x +π3-3sin 2x +sin x cos x +1. (1) 求当函数f(x)取得最大值时,x 的取值集合;(2) 当x ∈⎣⎢⎡⎦⎥⎤0,π12时,求f(x)的值域. 解析:(1) 因为f(x)=2cos x sin ⎝ ⎛⎭⎪⎫x +π3-3sin 2x +sin x cos x +1 =2cos x ⎝ ⎛⎭⎪⎫sin x cos π3+cos x sin π3-3sin 2x +sin x cos x +1 =2cos x(12sin x +32cos x)-3sin 2x +sin x·cos x +1=2sin x cos x +3cos 2x -3sin 2x +1=sin 2x +3cos 2x +1=2(12sin 2x +32cos 2x)+1=2sin ⎝ ⎛⎭⎪⎫2x +π3+1. 由2x +π3=2k π+π2,k ∈Z,可得x =k π+π12,k ∈Z,所以函数f (x )取得最大值时,x 的集合为{x |x =k π+π12,k ∈Z}.(2) 由x ∈⎣⎢⎡⎦⎥⎤0,π12,得2x +π3∈⎣⎢⎡⎦⎥⎤π3,π2, 所以32≤sin(2x +π3)≤1,所以3+1≤f (x )≤3,故f (x )的值域为[3+1,3].【注】 对于三角函数最值问题,通常将表达式化为形如y =Af (ωx +φ)+B 的形式,确定变量x 取值的集合通常由等式ωx +φ=2k π+θ,k ∈Z 解出x .已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2ωx -π6+2cos 2ωx -1(ω>0)的最小正周期为π. (1) 求ω的值;(2) 求f (x )在区间⎣⎢⎡⎦⎥⎤0,7π12上的最大值和最小值. 解析:(1) 因为f (x )=sin ⎝⎛⎭⎪⎫2ωx -π6+2cos 2ωx -1 =⎝ ⎛⎭⎪⎫sin2ωx cos π6-cos2ωx sin π6+cos2ωx =32sin2ωx +12cos2ωx =sin ⎝ ⎛⎭⎪⎫2ωx +π6, 所以f (x )的最小正周期T =2π2ω=π,解得ω=1.(2) 由(1)得f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6. 因为0≤x ≤7π12,所以π6≤2x +π6≤4π3,所以当2x +π6=π2,即x =π6时,f (x )取得最大值为1;当2x +π6=4π3,即x =7π12时,f (x )取得最小值为-32.【变式题】已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6+cos x . (1) 求f (x )的最大值,并写出当f (x )取得最大值时,x 的集合;(2) 若α∈⎝ ⎛⎭⎪⎫0,π2,f ⎝ ⎛⎭⎪⎫α+π6=335,求f (2a )的值. 解析:(1) f (x )=sin ⎝ ⎛⎭⎪⎫x +π6+cos x =32sin x +32cos x =3⎝ ⎛⎭⎪⎫12sin x +32cos x =3sin ⎝ ⎛⎭⎪⎫x +π3, 所以f (x )max = 3. 此时,x +π3=2k π+π2,k ∈Z,即x =2k π+π6,k ∈Z.故当f (x )取得最大值3时,x 的集合为{x |x =2k π+π6,k ∈Z}.(2) 由f ⎝ ⎛⎭⎪⎫α+π6=3sin(α+π2)=335, 得sin ⎝ ⎛⎭⎪⎫α+π2=35, 所以cos α=35,sin α=45,α∈⎝ ⎛⎭⎪⎫0,π2, 所以f (2α)=3sin ⎝ ⎛⎭⎪⎫2α+π3 =3⎝ ⎛⎭⎪⎫12sin2α+32cos2α =3[12×2sin αcos α+32×(2cos 2α-1)] =3×[12×2×45×35+32×(2×925-1)]=3×⎝ ⎛⎭⎪⎫1225-7350=243-2150. 考向❸ 三角函数最值问题常见的其他函数形式例3 (1) 已知x ∈(0,π),求函数y =sin x +2sin x 的最小值;(2) 已知θ∈(0,π),求函数y =3sin θ1+3sin 2θ的最大值; (3) 求函数y =(sin x -2)(cos x -2)的最大值与最小值.解析:(1) 设sin x =t(0<t ≤1),则原函数可化为y =t +2t ,在(0,1]上为减函数, 故当t =1时,y min =3.(2) 因为θ∈(0,π),所以sin θ∈(0,1],y =31sin θ+3sin θ≤323=12,当且仅当sin θ=33时等号成立,故y max =12.(3) 原函数可化为y =sin x cos x -2(sin x +cos x)+4,令sin x +cos x =t(|t|≤2),则sin x cos x =t 2-12,所以y =t 2-12-2t +4=12(t -2)2+32.因为对称轴为直线t =2∉[-2,2],且函数在区间[-2,2]上是减函数,所以当t =2,即x =2k π+π4(k ∈Z)时,y min =92-22;当t =-2,即x =2k π-3π4(k ∈Z)时,y max =92+2 2.【注】 (1) 直接利用三角函数的有界性,并直接利用基本不等式去求解.(2) 首先是对分数函数的一般的处理方式,然后回到(1)的步骤去解决.y =sin x +a sin x 型三角函数求最值,当sin x >0,a >1时,不能用均值不等式求最值,适宜用函数在区间内的单调性求解.(3) 含有“正、余弦三姐妹”,即含有sin x ±cos x ,sin x cos x 的函数的最值问题,常用的方法是令sin x ±cos x =t ,|t |≤2,将sin x cos x 转化为关于t 的函数关系式,从而转化为二次函数的最值问题,在转化过程中尤其要注意新变量t 的范围的确定.【变式题】(1) 求函数y =2-sin x sin x +2的最小值; (2) 若0<x <π2,求函数y =(1+1cos x )(1+1sin x )的最小值.解析:(1) y =4-2-sin x sin x +2=4sin x +2-1≥13, 所以最小值为13.(2) y =⎝ ⎛⎭⎪⎫1+1cos x ⎝ ⎛⎭⎪⎫1+1sin x =1+sin x +cos x +1sin x cos x ,令t =sin x +cos x ,t ∈(1,2],则sin x cos x =t 2-12,所以y =1+t +1t 2-12=t 2+2t +1t 2-1=t +1t -1=1+2t -1, 由1<t ≤2,得y ≥3+22,所以函数的最小值为3+2 2.自测反馈1. 函数y =2sin ⎝ ⎛⎭⎪⎫π3-x -cos ⎝ ⎛⎭⎪⎫π6+x (x ∈R)的最小值是__-1__.解析:因为cos ⎝ ⎛⎭⎪⎫π6+x =sin ⎝ ⎛⎭⎪⎫π3-x ,所以y =2sin ⎝ ⎛⎭⎪⎫π3-x -cos ⎝ ⎛⎭⎪⎫π6+x =2sin ⎝ ⎛⎭⎪⎫π3-x -sin ⎝ ⎛⎭⎪⎫π3-x =-sin ⎝ ⎛⎭⎪⎫x -π3.因为x ∈R,所以y min =-1. 2. 函数y =sin π3x 在区间[0,b]上恰好取得2个最大值,则实数b 的取值范围是__⎣⎢⎡⎭⎪⎫152,272__. 解析:因为函数y =sin π3x 的周期为2ππ3=6,函数y =sin π3x 在区间[0,b]上恰好取得2个最大值,则实数b 满足5T 4≤b<9T 4,解得152≤b<272.故实数b 的取值范围为⎣⎢⎡⎭⎪⎫152,272. 3. 函数y =3cos x 2+sin x的值域是__[-1,1]__. 解析:2y +y sin x =3cos x,y sin x -3cos x =-2y,得y 2+3sin (x +φ)=-2y,sin (x +φ)=-2y y 2+3,则|-2y y 2+3|≤1,解得-1≤y ≤1. 4. 函数f(x)=sin x +cos x +sin x·cos x 的值域是⎦2. 解析:令t =sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4,则t ∈[-2,2],t 2=1+2sin x cos x,则sin x cos x =t 2-12,则f(x)=sin x +cos x +sin x cos x =t +t 2-12=12(t 2+2t -1)=12(t +1)2-1.因为-2≤t ≤2,所以f(x)∈[-1,2+12].1. 求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin (ωx +φ)+k 的形式,再求值域(最值); ②形如y =a sin 2x +b cos x +c 的三角函数,可先设sin x =t,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b(sin x±cos x)+c 的三角函数,可先设t =sin x±cos x,化为关于t 的二次函数求值域(最值).2. 你还有哪些体悟,写下来:。
高中数学三角函数知识点总结
![高中数学三角函数知识点总结](https://img.taocdn.com/s3/m/76a2c1dabcd126fff6050b20.png)
高考三角函数1.特别角的三角函数值:2.角度制与弧度制的互化:,2360π= ,1800π=3.弧长及扇形面积公式 弧长公式:r l.α= 扇形面积公式:S=r l .21α----是圆心角且为弧度制。
r-----是扇形半径4.任意角的三角函数设α是一个任意角,它的终边上一点p 〔x,y 〕, r=22y x +(1)正弦sin α=ry 余弦cos α=r x 正切tan α=xy(2)各象限的符号:sin α cos α tan α 5.同角三角函数的根本关系:〔1〕平方关系:sin 2α+ cos 2α=1。
〔2〕商数关系:ααcos sin =tan αxy+O— —+xyO — ++ — +yO— + + —〔z k k ∈+≠,2ππα〕6.诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=-⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限. 7正弦函数、余弦函数和正切函数的图象与性质三角形面积定理.111sin sin sin 222S ab C bc A ca B ===.1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
三角函数的最值-高中数学知识点讲解(含答案)
![三角函数的最值-高中数学知识点讲解(含答案)](https://img.taocdn.com/s3/m/fd04370e240c844768eaee3b.png)
三角函数的最值(北京习题集)(教师版)一.选择题(共6小题)1.(2019•海淀区校级模拟)已知函数在上单调递增,且,则实数m的取值范围为()A.B.C.[1,+∞)D.2.(2017秋•大兴区期末)已知函数f(x)=sin(x+)+1,则()A.f(x)是偶函数,最大值为1B.f(x)是偶函数,最大值为2C.f(x)是奇函数,最大值为1D.f(x)是奇函数,最大值为23.(2016春•西城区期末)已知函数f(x)=sin x,若当x∈[﹣,﹣]时,m≤f(x)≤n恒成立,则n﹣m的最小值是()A.2B.C.D.4.(2015秋•北京校级月考)已知函数f(x)=,则f(x)的最小值为()A.﹣4B.2C.2D.45.(2014春•昌平区校级月考)已知函数y=cos2x+cos x,则其最小值为()A.﹣2B.﹣C.2D.06.(2011秋•通州区校级期末)设M和m分别是函数的最大值和最小值,则M+m等于()A.B.C.D.﹣2二.填空题(共7小题)7.(2020•西城区校级模拟)已知函数f(x)=sin x﹣2cos x.①f(x)的最大值为;②设当x=θ时,f(x)取得最大值,则cosθ=.8.(2019秋•平谷区期末)函数的最小值为.9.(2019春•海淀区校级月考)已知函数满足:对∀x∈R都有,则f(x)的减区间是.10.(2018秋•东城区期末)函数在区间上的最大值为.11.(2019•平谷区一模)已知函数f(x)=sin(2x+φ)(其中φ为实数),若f(x)≤|f()|对x∈R恒成立,则满足条件的φ值为(写出满足条件的一个φ值即可)12.(2019•通州区三模)已知函数y=sinωx(ω>0)在(0,)上有最大值,没有最小值,则ω的取值范围为.13.(2018秋•昌平区期末)已知函数f(x)=sin x若对任意的实数,都存在唯一的实数β∈(0,m),使f(α)+f(β)=0,则实数m的最大值是.三.解答题(共2小题)14.(2020春•海淀区校级期中)已知函数.求:(1)函数的最值及相应的x的值;(2)函数的最小正周期.15.(2019秋•东城区期末)已知函数,f(0)=.(1)求f(x)的解析式和最小正周期;(2)求f(x)在区间[0,2π]上的最大值和最小值.三角函数的最值(北京习题集)(教师版)参考答案与试题解析一.选择题(共6小题)1.(2019•海淀区校级模拟)已知函数在上单调递增,且,则实数m的取值范围为()A.B.C.[1,+∞)D.【分析】先利用三角恒等变换化简函数的解析式,根据正弦函数的最大值求得f(x)的最大值小于或等于1,可得实数m的取值范围.【解答】解:函数=﹣cos2x•(﹣cosθ)﹣sin2x sinθ=cos(2x+θ),∵函数f(x)在上单调递增,∴函数的最大值为f(﹣)=cos(θ﹣)≤1,若恒成立,则函数的最大值为f(﹣)=cos(θ﹣)≤m恒成立,而cos(θ﹣)≤1,∴只要1≤m,故选:C.【点评】本题主要考查三角恒等变换,正弦函数的最大值,函数的恒成立问题,属于中档题.2.(2017秋•大兴区期末)已知函数f(x)=sin(x+)+1,则()A.f(x)是偶函数,最大值为1B.f(x)是偶函数,最大值为2C.f(x)是奇函数,最大值为1D.f(x)是奇函数,最大值为2【分析】利用诱导公式化简,结合余弦函数的性质可得答案.【解答】解:函数f(x)=sin(x+)+1=cos x+1;那么f(﹣x)=cos(﹣x)+1=cos x+1=f(x)则f(x)是偶函数;∵y=cos x的最大值为1,∴f(x)的最大值为2;故选:B.【点评】本题考查诱导公式的化简和余弦函数的性质,属于基础题.3.(2016春•西城区期末)已知函数f(x)=sin x,若当x∈[﹣,﹣]时,m≤f(x)≤n恒成立,则n﹣m的最小值是()A.2B.C.D.【分析】由正弦函数的性质,分段求得函数的值域,结合m≤f(x)≤n得到m,n的范围,从而可求出n﹣m的最小值.【解答】解:函数f(x)=sin x在x∈[﹣,]上为减函数,在[,﹣]上为增函数,∴当x∈[﹣,]时,f(x)∈[﹣1,];当x∈[,﹣]时,f(x)∈[﹣1,].∴当x∈[﹣,﹣]时,函数的值域为[﹣1,].∵当x∈[﹣,﹣]时,m≤f(x)≤n恒成立,∴m≤﹣1,n≥.则n﹣m的最小值是.故选:C.【点评】本题考查了三角函数的最值,考查了正弦函数的性质,是基础题.4.(2015秋•北京校级月考)已知函数f(x)=,则f(x)的最小值为()A.﹣4B.2C.2D.4【分析】由三角函数求≤x≤1时的最小值,综合可得.【解答】解:当≤x≤1时,≤πx﹣≤,∴y=4sin(πx﹣)∈[2,4],∴当≤x≤1时,f(x)的最小值为2,当x>1时,f(x)=2,综合可得f(x)的最小值为:2故选:B.【点评】本题考查三角函数区间的最值,属基础题.5.(2014春•昌平区校级月考)已知函数y=cos2x+cos x,则其最小值为()A.﹣2B.﹣C.2D.0【分析】只要对解析式变形为关于cos x的二次函数的形式,结合cos x的范围求最小值.【解答】解:由已知,y=cos2x+cos x=2cos2x+cos x﹣1=2(cos x+)2﹣;∵cos x∈[﹣1,1],∴当cos x=时,y min=;故选:B.【点评】本题考查了三角函数最值的求法,关键是将解析式变形为关于cos x的二次函数解析式的形式,通过cos x 的范围求函数的最小值.6.(2011秋•通州区校级期末)设M和m分别是函数的最大值和最小值,则M+m等于()A.B.C.D.﹣2【分析】由题意可得:M=﹣1=﹣,m=﹣﹣1,问题解决.【解答】解:∵函数的最大值M=﹣1,最小值m=﹣﹣1,∴M+m=﹣2.故选:D.【点评】本题考查三角函数的最值,着重考察余弦函数的性质,属于基础图.二.填空题(共7小题)7.(2020•西城区校级模拟)已知函数f(x)=sin x﹣2cos x.①f(x)的最大值为;②设当x=θ时,f(x)取得最大值,则cosθ=﹣.【分析】(1)直接利用函数的关系式的变换,把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.(2)利用函数的关系式的变换的应用求出结果.【解答】解:(1)函数f(x)=sin x﹣2cos x.=,当sin(x+θ)=1时,函数的最大值为.(2)由于f(x)=[],所以当x=θ时,cosθ=.故答案为:,【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.8.(2019秋•平谷区期末)函数的最小值为﹣1.【分析】利用正弦函数的取值范围是[﹣1,1],即可得到函数f(x)的最小值.【解答】解:当sin(2x+)=﹣1时,f(x)有最小值,则f(x)最小值为﹣2+1=﹣1,故答案为﹣1.【点评】本题考查正弦函数的最值,属于基础题.9.(2019春•海淀区校级月考)已知函数满足:对∀x∈R都有,则f(x)的减区间是.【分析】由题意知当时,f(x)取得最大值,从而求出,然后得到f(x)的解析式,再利用整体法求出f(x)的单调递减区间即可.【解答】解:∵∀x∈R都有,∴当时,f(x)取得最大值,∴=,∴,∴,由,∴,∴f(x)的减区间为.故答案为:.【点评】本题考查了三角函数的图象与性质,考查了整体思想和运算能力,属基础题.10.(2018秋•东城区期末)函数在区间上的最大值为.【分析】利用和与差公式化简,根据x在上,结合三角函数的性质可得最大值.【解答】解:函数=sin x cos﹣cos x sin+cos x cos+sin x sin=sin x;∵x∈上∴当x=时,f(x)取得最大值为sin=.故答案为:【点评】本题考查了和与差公式的应用和计算能力.属于基础题.11.(2019•平谷区一模)已知函数f(x)=sin(2x+φ)(其中φ为实数),若f(x)≤|f()|对x∈R恒成立,则满足条件的φ值为(写出满足条件的一个φ值即可)【分析】根据f(x)≤|f()|,可得x=时,f(x)取得最大值或最小值.即写出答案;【解答】解:由题意,f(x)≤|f()|对x∈R恒成立,可得x=时,f(x)取得最大值或最小值.若x=时,f(x)取得最大值,可得φ=+2kπ,k∈Z若x=时,f(x)取得最小值,可得φ=+2kπ,k∈Z故答案为:【点评】本题考查了三角形函数的性质的应用.属于基础题12.(2019•通州区三模)已知函数y=sinωx(ω>0)在(0,)上有最大值,没有最小值,则ω的取值范围为(2,6].【分析】根据x的范围可得,然后根据条件得解不等式即可.【解答】解:当x∈(0,)时,,∵y=sinωx(ω>0)在(0,)上有最大值,没有最小值,∴,∴,∴2<ω≤6.ω的取值范围为:(2,6].故答案为:(2,6].【点评】本题主要考查研究有关三角的函数时要利用整体思想,灵活应用三角函数的图象和性质解题,属基础题.13.(2018秋•昌平区期末)已知函数f(x)=sin x若对任意的实数,都存在唯一的实数β∈(0,m),使f(α)+f(β)=0,则实数m的最大值是.【分析】由任意性和存在性原命题可转化为即f(β)=k,k∈(,)有且仅有一个解,即作函数图象y=f (β)与直线x=k,k∈(,),只有一个交点,作图观察即可【解答】解:由f(x)=sinα,则f(α)∈(﹣,),存在唯一的实数β∈(0,m),使f(α)+f(β)=0即f(β)=k,k∈(,)有且仅有一个解,作函数图象y=f(β)与直线x=k,k∈(,),当两图象只有一个交点时,由图知,<m,故实数m的最大值是,故答案为:.【点评】本题考查了任意性和存在性,三角函数的图象,属中档题.三.解答题(共2小题)14.(2020春•海淀区校级期中)已知函数.求:(1)函数的最值及相应的x的值;(2)函数的最小正周期.【分析】(1)由﹣1≤sin(x+)≤1,可推得﹣4≤3sin(x+)﹣1≤2,即可求解函数的最值及其相应的x的值.(2)利用三角函数的周期公式,即可求解函数f(x)的最小正周期.【解答】解:(1)因为﹣1≤sin(x+)≤1,所以﹣3≤3sin(x+)≤3,所以﹣4≤3sin(x+)﹣1≤2,所以f(x)max=2,此时x+=2kπ+,即x=4kπ+,k∈Z;所以f(x)min=﹣4,此时x+=2kπ﹣,即x=4kπ﹣,k∈Z.(2)函数f(x)的最小正周期T==4π.【点评】本题主要考查了三角函数的最值和周期的求法,主要利用了整体法思想,属于基础题.15.(2019秋•东城区期末)已知函数,f(0)=.(1)求f(x)的解析式和最小正周期;(2)求f(x)在区间[0,2π]上的最大值和最小值.【分析】(1)利用函数值,转化求解函数的解析式,推出函数的周期;(2)利用函数的自变量的范围,求出相位的范围,然后求解正弦函数的最值.【解答】解:(1)因为,所以.又因为φ∈,所以φ=.所以.所以f(x)最的小正周期.(2)因为x∈[0,2π],所以.当,即时,f(x)有最大值2,当,即x=2π时,f(x)有最小值.【点评】本题考查函数的周期以及函数的最值的求法,考查转化思想以及计算能力,是中档题.。
常用度数三角函数值
![常用度数三角函数值](https://img.taocdn.com/s3/m/f244b2a98662caaedd3383c4bb4cf7ec4afeb6ad.png)
常用度数三角函数值
三角函数是高中数学中重要的内容,其中最基本的三个函数是正弦函数、余弦函数和正切函数。
这些函数可以用来计算在任意给定角度下
的三角形的各种属性,例如边长、角度和面积等等。
在实践中,这些
函数被广泛应用于工程、天文学、物理学和数学等领域。
对于常用角度30°、45°和60°,它们的正弦、余弦和正切函数值和圆
上对应角度所对应的数值有以下对应关系:
- 30°的正弦函数值是1/2,余弦函数值是√3/2,正切函数值是1/√3。
- 45°的正弦函数值是√2/2,余弦函数值是√2/2,正切函数值是1。
- 60°的正弦函数值是√3/2,余弦函数值是1/2,正切函数值是√3。
这些数值可以通过使用计算器或者查询正弦、余弦和正切函数值表来
查找。
在实例中,注意到三角函数的值对于任何角度都是一个周期性
函数,这个周期是360°或2π弧度。
这意味着,如果我们知道三角函
数在0~360°或0~2π弧度范围内的值,那么我们可以轻松地推断出任何其他角度下的值。
除了这些常用角度之外,三角函数的值在其他角度下也可以被计算,
只是需要通过更复杂的计算来得到。
实际上,三角函数是一个无限细
粒度的连续函数,我们可以通过使用微积分的方法来推导出在任意给定角度下的函数值。
总之,三角函数是数学中非常重要的概念,它们被广泛应用于各个学科的计算和分析中。
了解它们的基本性质和常用值是理解高中数学、工程学和科学的重要一步。
专题52 高中数学正、余弦函数的单调性与最值专题(原卷版)
![专题52 高中数学正、余弦函数的单调性与最值专题(原卷版)](https://img.taocdn.com/s3/m/2006e58ff424ccbff121dd36a32d7375a417c619.png)
专题52 正、余弦函数的单调性与最值一.正弦函数、余弦函数的图象和性质[-1,1][-1,1](1)形如y =a sin x (或y =a cos x )型,可利用正弦函数、余弦函数的有界性,注意对a 正负的讨论.(2)形如y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )型,可先由定义域求得ωx +φ的范围,然后求得sin(ωx +φ)(或cos(ωx +φ))的范围,最后求得最值.(3)形如y =a sin 2x +b sin x +c (a ≠0)型,可利用换元思想,设t =sin x ,转化为二次函数y =at 2+bt +c 求最值.t 的范围需要根据定义域来确定.题型一 正弦函数、余弦函数的单调性 类型一 求单调区间1.已知函数f (x )=2sin ⎝⎛⎭⎫π4+2x +1,求函数f (x )的单调递增区间.2.已知函数y =cos ⎝⎛⎭⎫π3-2x ,则它的单调减区间为________.3.函数y =1-sin 2x 的单调递增区间.4.求函数y =3sin ⎝⎛⎭⎫π3-2x 的单调递减区间.5.求下列函数的单调区间.(1)y =cos2x ;(2)y =2sin ⎝⎛⎭⎫π4-x ;(3) y =cos ⎝⎛⎭⎫x 2+π36.函数y =sin ⎝⎛⎭⎫3x +π6,x ∈⎣⎡⎦⎤-π3,π3的单调递减区间为________.7.函数y =2sin ⎝⎛⎭⎫x -π3(x ∈[-π,0])的单调递增区间是( ) A.⎣⎡⎦⎤-π,-5π6 B.⎣⎡⎦⎤-5π6,-π6 C.⎣⎡⎦⎤-π3,0 D.⎣⎡⎦⎤-π6,08.求函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π4的单调增区间.9.函数f (x )=sin ⎝⎛⎭⎫x +π6的一个递减区间是( ) A.⎣⎡⎦⎤-π2,π2 B .[-π,0] C.⎣⎡⎦⎤-2π3,2π3 D.⎣⎡⎦⎤π2,2π310.函数y =sin ⎝⎛⎭⎫2x +π3在区间[0,π]的一个单调递减区间是( ) A.⎣⎡⎦⎤0,5π12 B.⎣⎡⎦⎤π12,7π12 C.⎣⎡⎦⎤5π12,11π12D.⎣⎡⎦⎤π6,π2 11.求下列函数的单调递增区间.(1)y =13sin ⎝⎛⎭⎫π6-x ,x ∈[0,π];(2)y =log 12sin x .12.函数y =log 2⎣⎡⎦⎤sin ⎝⎛⎭⎫x +π3的单调递增区间是________.13.求下列函数的单调递增区间(3)y =log 12sin ⎝⎛⎭⎫2x +π4;14.函数f (x )=⎝⎛⎭⎫13|cos x |在[-π,π]上的单调递减区间为( )A.⎣⎡⎦⎤-π2,0 B.⎣⎡⎦⎤π2,πC.⎣⎡⎦⎤-π2,0及⎣⎡⎦⎤π2,π D.⎣⎡⎦⎤-π2,0∪⎣⎡⎦⎤π2,π15.求函数y =1+sin ⎝⎛⎭⎫-12x +π4,x ∈[-4π,4π]的单调减区间.16.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin ⎝⎛⎭⎫2x +π2 B .y =cos ⎝⎛⎭⎫2x +π2 C .y =sin ⎝⎛⎭⎫x +π2 D .y =cos ⎝⎛⎭⎫x +π217.下列函数中,以π2为周期且在区间⎝⎛⎭⎫π4,π2单调递增的是( ) A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x | D .f (x )=sin|x |18.下列函数中,既为偶函数又在(0,π)上单调递增的是( )A .y =cos|x |B .y =cos|-x |C .y =sin ⎝⎛⎭⎫x -π2 D .y =-sin x219.下列函数在⎣⎡⎦⎤π2,π上是增函数的是( )A .y =sin xB .y =cos xC .y =sin2xD .y =cos2x20.设函数f (x )=2sin ⎝⎛⎭⎫ωx +φ+π4(ω>0,|φ|<π2)的最小正周期为π,且是偶函数,则( ) A .f (x )在⎝⎛⎭⎫0,π2单调递减 B .f (x )在⎝⎛⎭⎫π4,3π4单调递减 C .f (x )在⎝⎛⎭⎫0,π2单调递增 D .f (x )在⎝⎛⎭⎫π4,3π4单调递增21.函数y =2sin ⎝⎛⎭⎫ωx +π4(ω>0)的周期为π,则其单调递增区间为( ) A.⎣⎡⎦⎤k π-3π4,k π+π4(k ∈Z) B.⎣⎡⎦⎤2k π-3π4,2k π+π4(k ∈Z) C.⎣⎡⎦⎤k π-3π8,k π+π8(k ∈Z) D.⎣⎡⎦⎤2k π-3π8,2k π+π8(k ∈Z)22.已知函数f (x )=sin(2x +φ),其中φ为实数,且|φ|<π.若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),求f (x )的单调递增区间.类型二 利用单调性求参1.函数y =cos x 在区间[-π,a ]上为增函数,则a 的取值范围是________.2.若函数f (x )=sin ωx (0<ω<2)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于___.3.已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π3在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________.4.已知函数f (x )=sin ⎝⎛⎭⎫2x -π6. (1)求函数f (x )图象的对称轴方程;(2)解不等式:f ⎝⎛⎭⎫x +π12≥32.5.若函数f (x )=2sin ⎝⎛⎭⎫ωx +π3(ω>0),且f (α)=-2,f (β)=0,|α-β|的最小值是π2,则f (x )的单调递增区间是() A.⎣⎡⎦⎤2k π-5π6,2k π+π6(k ∈Z ) B.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ) C.⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ) D.⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z )6.已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)为R 上的偶函数,其图象关于点M (34π,0)对称,且在区间[0,π2]上是单调函数,求φ和ω的值.题型二 利用三角函数的单调性比较大小1.sin250°与sin260°;(2)cos 15π8与cos 14π9.2.比较下列各组数的大小.(1)cos ⎝⎛⎭⎫-π8与cos 13π7;(2)sin194°与cos160°;(3) cos ⎝⎛⎭⎫-7π8与cos 6π73.利用三角函数的单调性,比较下列各组数的大小.(1)sin ⎝⎛⎭⎫-π18与sin ⎝⎛⎭⎫-π10;(2)sin 196°与cos 156°;(3)cos ⎝⎛⎭⎫-235π与cos ⎝⎛⎭⎫-174π.4.比较下列各组数的大小:①cos 15π8,cos 14π9;②cos 1,sin 1.5.比较下列各组数的大小.(1)sin ⎝⎛⎭⎫-376π与sin ⎝⎛⎭⎫493π;(2)cos 870°与sin 980°.6.sin 2π7________sin ⎝⎛⎭⎫-15π8(填“>”或“<”).7.下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11°8.sin1,sin2,sin3按从小到大排列的顺序为__________.9.将cos 150°,sin 470°,cos 760°按从小到大排列为_________.10.下列不等式中成立的是( )A .sin ⎝⎛⎭⎫-π8>sin ⎝⎛⎭⎫-π10 B .sin 3>sin 2 C .sin 75π>sin ⎝⎛⎭⎫-25π D .sin 2>cos 111.(1)已知α,β为锐角三角形的两个内角,则以下结论正确的是( )A .sin α<sin βB .cos α<sin βC .cos α<cos βD .cos α >cos β12.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-4,-3]上是增函数,α,β是锐角三角形的两个内角,则f (sin α)与f (cos β)的大小关系是________.题型三 正弦函数、余弦函数的最值问题1.函数y =1-2cos π2x 的最小值,最大值分别是( )A .-1,3B .-1,1C .0,3D .0,12.函数y =2-sin x 的最大值及取最大值时x 的值分别为( )A .y max =3,x =π2B .y max =1,x =π2+2k π(k ∈Z)C .y max =3,x =-π2+2k π(k ∈Z)D .y max =3,x =π2+2k π(k ∈Z)3.y =2cos x 2的值域是( )A .[-2,2]B .[0,2]C .[-2,0]D .R4.y =a cos x +1的最大值为5,则a =________.5.设函数f (x )=A +B sin x ,当B <0时,f (x )的最大值是32,最小值是-12,则A =________,B =________.6.函数f (x )=sin(π6+x )+cos(π3-x )的最大值为( )A .1 B.32C. 3 D .27.函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( ) A.65 B .1 C.35 D.158.函数y =2sin ⎝⎛⎭⎫π3-x -cos ⎝⎛⎭⎫π6+x (x ∈R)的最小值等于( ) A .-3 B .-2 C .-1 D .- 59.函数y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2的值域是( )A.⎣⎡⎦⎤-32,12 B.⎣⎡⎦⎤-12,32 C.⎣⎡⎦⎤32,1D.⎣⎡⎦⎤12,110.求函数y =3-4cos ⎝⎛⎭⎫2x +π3,x ∈⎣⎡⎦⎤-π3,π6的最大值、最小值及相应的x 值.11.求下列函数的最大值和最小值. f (x )=sin ⎝⎛⎭⎫2x -π6,x ∈⎣⎡⎦⎤0,π212.求下列函数的值域:y =sin ⎝⎛⎭⎫2x -π3,x ∈⎣⎡⎦⎤0,π2;13.求函数y =3+2cos ⎝⎛⎭⎫2x +π3的最值.14.已知函数y =a -b cos ⎝⎛⎭⎫2x +π6(b >0)的最大值为32,最小值为-12. (1)求a ,b 的值;(2)求函数g (x )=-4a sin ⎝⎛⎭⎫bx -π3的最小值并求出对应x 的集合.15.已知函数f (x )=a sin ⎝⎛⎭⎫2x -π3+b (a >0).当x ∈⎣⎡⎦⎤0,π2时,f (x )的最大值为3,最小值是-2,求a 和b 的值.16.求下列函数的最值y =-sin 2x +3sin x +54.17.函数y =cos 2x +2sin x -2,x ∈R 的值域为________.18.求下列函数的最大值和最小值. y =-2cos 2x +2sin x +3,x ∈⎣⎡⎦⎤π6,5π6.19.求函数y =cos 2x -sin x 在x ∈⎣⎡⎦⎤-π4,π4上的最大值和最小值.20.求函数y =2sin 2x +2sin x -12,x ∈⎣⎡⎦⎤π6,5π6的值域.21.求下列函数的值域: y =cos 2x -4cos x +5.22.求函数y =cos 2x +4sin x 的最值及取到最大值和最小值时的x 的集合.23.若f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值是2,则ω=________.24.设函数f (x )=2sin ⎝⎛⎭⎫π2x +π5.若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为( )A .4B .2C .1D .1225.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是________.26.函数y =sin x 的定义域为[a ,b ],值域为⎣⎡⎦⎤-1,12,则b -a 的最大值是________.27.已知函数f (x )=2a sin ⎝⎛⎭⎫2x +π6+a +b 的定义域是⎣⎡⎦⎤0,π2,值域是[-5,1],求a ,b 的值.。
高中数学公式大全三角函数的导数公式与极限计算
![高中数学公式大全三角函数的导数公式与极限计算](https://img.taocdn.com/s3/m/359a6481ab00b52acfc789eb172ded630b1c98cd.png)
高中数学公式大全三角函数的导数公式与极限计算高中数学公式大全:三角函数的导数公式与极限计算在高中数学中,三角函数是非常重要的概念之一。
掌握三角函数的导数公式和极限计算方法,对于解决各种相关问题具有重要意义。
本文将为您介绍三角函数的导数公式以及极限计算方法。
一、三角函数的导数公式1.1 正弦函数的导数公式正弦函数的导数公式为:f'(x) = cos(x)1.2 余弦函数的导数公式余弦函数的导数公式为:f'(x) = -sin(x)1.3 正切函数的导数公式正切函数的导数公式为:f'(x) = sec^2(x)1.4 余切函数的导数公式余切函数的导数公式为:f'(x) = -csc^2(x)1.5 正割函数的导数公式正割函数的导数公式为:f'(x) = sec(x) * tan(x)1.6 余割函数的导数公式余割函数的导数公式为:f'(x) = -csc(x) * cot(x)二、三角函数的极限计算方法2.1 正弦函数的极限计算当x趋向于0时,正弦函数的极限计算公式为:lim(sin(x)/x) = 12.2 余弦函数的极限计算当x趋向于0时,余弦函数的极限计算公式为:lim((cos(x)-1)/x) = 02.3 正切函数的极限计算当x趋向于0时,正切函数的极限计算公式为:lim(tan(x)/x) = 12.4 余切函数的极限计算当x趋向于0时,余切函数的极限计算公式为:lim(cot(x)-1/x) = 02.5 正割函数的极限计算当x趋向于0时,正割函数的极限计算公式为:lim((sec(x)-1)/x) = 02.6 余割函数的极限计算当x趋向于0时,余割函数的极限计算公式为:lim((csc(x)-1)/x) = 0综上所述,通过掌握三角函数的导数公式和极限计算方法,我们可以快速求解各种与三角函数相关的数学问题。
希望本文对您的学习有所帮助。
高中数学第五章三角函数4.2第二课时正余弦函数的单调性与最值课件新人教A版必修第一册
![高中数学第五章三角函数4.2第二课时正余弦函数的单调性与最值课件新人教A版必修第一册](https://img.taocdn.com/s3/m/733fd35aa517866fb84ae45c3b3567ec102ddc13.png)
1.判断正误.(正确的画“√”,错误的画“×”) (1)正弦函数y=sin x在R 上是增函数. (2)余弦函数y=cos x的一个减区间是[0,π]. (3)∃x∈[0,2π]满足sin x=2. (4)当余弦函数y=cos x取最大值时,x=π+2kπ,k∈Z . 答案:(1)× (2)√ (3)× (4)×
函数单调递减,故函数的单调递减区间是
4kπ-23π,4kπ+43π
(k∈Z ).
(2)∵y=2sinπ4 -x=-2sinx-π4 ,
∴函数y=-2sinx-π4 的单调增区间、单调减区间分别由下面的不等式确定.
2kπ+π2 ≤x-π4 ≤2kπ+3π2 (k∈Z ),
①
ππ
π
2kπ- 2 ≤x- 4 ≤2kπ+ 2 (k∈Z ).
知识点 正、余弦函数的单调性与最值 正弦函数
图象
值域
_[-__1_,__1_]
ห้องสมุดไป่ตู้
余弦函数 _[-__1_,__1_]
正弦函数
余弦函数
单
增区间 __-_π_2_+__2_k_π__,___π2__+_2_k_π___, [_π__+__2k_π__,__2_π__+__2_kπ__]_,_
调
__k_∈_Z____
所以sinπ5 <sin2π 5 ,
所以sin215π<425π.
答案:<
4.求函数f(x)=sin2x-π4 在0,π2 上的单调递增区间.
π
π
π
解:令2kπ- 2 ≤2x- 4 ≤2kπ+ 2 ,k∈Z ,
解得kπ-π8 ≤x≤kπ+3π8 ,k∈Z ,又0≤x≤π2 ,
所以f(x)在0,π2 上的单调递增区间是0,3π 8 .
高中数学-三角函数图像及性质与值域及最值
![高中数学-三角函数图像及性质与值域及最值](https://img.taocdn.com/s3/m/f8763374aef8941ea76e05f8.png)
高中数学总复习- 三角函数第5课 三角函数的图像和性质(一) 【考点导读】1.能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦函数在[0,2]π,正切函数在(,)22ππ-上的性质; 2.了解函数sin()y A x ωϕ=+的实际意义,能画出sin()y A x ωϕ=+的图像; 3.了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】1. 已知简谐运动()2sin()()32f x x ππϕϕ=+<的图象经过点(0,1),则该简谐运动的最小正周期T =_____6____;初相ϕ=______6π____.2. 三角方程2sin(2π-x )=1的解集为_______________________. 3. 函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达为_)48sin(4π+π-=x y _.4. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象向右平移______π6____个单位.【范例解析】例1.已知函数()2sin (sin cos )f x x x x =+.(Ⅰ)用五点法画出函数在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象,长度为一个周期;(Ⅱ)说明()2sin (sin cos )f x x x x =+的图像可由sin y x =的图像经过怎样变换而得到.{2,}3x x k k Z ππ=±∈分析:化为sin()A x ωϕ+形式.解:(I )由x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+=)42sin(21)4sin 2cos 4cos 2(sin 21πππ-+=-⋅+=x x x .列表,取点,描图:x 83π- 8π-8π 83π 85π y121-121+1故函数)(x f y =在区间]2,2[-上的图象是:(Ⅱ)解法一:把sin y x =图像上所有点向右平移4π个单位,得到sin()4y x π=-的图像,再把sin()4y x π=-的图像上所有点的横坐标缩短为原来的12(纵坐标不变),得到sin(2)4y x π=-的图像,然后把sin(2)4y x π=-的图像上所有点纵坐标伸长到原来的2倍(横坐标不变),得到2sin(2)4y x π=-的图像,再将2sin(2)4y x π=-的图像上所有点向上平移1个单位,即得到12sin(2)4y x π=+-的图像.解法二:把sin y x =图像上所有点的横坐标缩短为原来的12(纵坐标不变),得到sin 2y x =的图像,再把sin 2y x =图像上所有点向右平移8π个单位,得到sin(2)4y x π=-的图像,然后把sin(2)4y x π=-的图像上所有点纵坐标伸长到原来,得到)4y x π=-的图像,再将)4y x π=-的图像上所有点向上平移1个单位,即得到1)4y x π=+-的图像.例2.已知正弦函数sin()y A x ωϕ=+(0,0)A ω>>的图像如右图所示. (1)求此函数的解析式1()f x ;(2)求与1()f x 图像关于直线8x =对称的曲线的解析式2()f x ; (3)作出函数12()()y f x f x =+的图像的简图.分析:识别图像,抓住关键点.解:(1)由图知,A =22(62)16πω=⨯+=Q ,8πω∴=,即sin()8y x πϕ=+. 将2x =,y =代入,得sin()4πϕ+=,解得4πϕ=,即1()sin()84f x x ππ=+.(2)设函数2()f x 图像上任一点为(,)M x y ,与它关于直线8x =对称的对称点为(,)M x y ''',得8,2.x x y y '+⎧=⎪⎨⎪'=⎩解得16,.x x y y '=-⎧⎨'=⎩代入1()sin()84f x x ππ''=+中,得2()sin()84f x x ππ=-.(3)12()()sin()sin()2cosy f x f x x x x πππππ=+=+--=,简图如图所示.点评:由图像求解析式,A 比较容易求解,困难的是待定系数求ω和ϕ,通常利用周期确定ω,代入最高点或最低点求ϕ.【反馈演练】1.为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数2sin y x =,x R ∈的图像上所有的点 ①向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变); ②向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变); ③向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变); ④向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变).其中,正确的序号有_____③______.2.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象向右平移__3π__个单位长度.3.若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)3f =,则ω=__2____;ϕ=__________.4.在()π2,0内,使x x cos sin >成立的x 取值范围为____________________. 5.下列函数:①sin 6y x π⎛⎫=+ ⎪⎝⎭; ②sin 26y x π⎛⎫=- ⎪⎝⎭;③cos 43y x π⎛⎫=- ⎪⎝⎭; ④cos 26y x π⎛⎫=- ⎪⎝⎭.其中函数图象的一部分如右图所示的序号有_____④_____.6.如图,某地一天从6时至14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω(1)求这段时间的最大温差; (2)写出这段时间的函数解析式.解:(1)由图示,这段时间的最大温差是201030=-℃(2)图中从6时到14时的图象是函数b x A y ++=)sin(ϕω的半个周期∴614221-=⋅ωπ,解得8πω=由图示,10)1030(21=-=A 20)3010(21=+=b这时,20)8sin(10++=ϕπx y将10,6==y x 代入上式,可取43πϕ= 综上,所求的解析式为20)438sin(10++=ππx y (]14,6[∈x )7.如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y 轴相交于点(03),,且该函数的最小正周期为π. (1)求θ和ω的值;(2)已知点π02A ⎛⎫⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是的中点,第6题 3π 5,44ππ⎛⎫ ⎪⎝⎭第5题y x 3O PA第7题当0y =0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值.解:(1)将0x =,y =2cos()y x ωθ=+得cos θ=因为02θπ≤≤,所以6θπ=.又因为该函数的最小正周期为π,所以2ω=,因此2cos 26y x π⎛⎫=+ ⎪⎝⎭.(2)因为点02A π⎛⎫⎪⎝⎭,,00()Q x y ,是PA 的中点,02y =,所以点P 的坐标为022x π⎛- ⎝.又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,所以05cos 46x π⎛⎫-= ⎪⎝⎭因为02x ππ≤≤,所以075194666x πππ-≤≤,从而得0511466x ππ-=或0513466x ππ-=. 即023x π=或034x π=.第6课 三角函数的图像和性质(二) 【考点导读】1.理解三角函数sin y x =,cos y x =,tan y x =的性质,进一步学会研究形如函数sin()y A x ωϕ=+的性质;2.在解题中体现化归的数学思想方法,利用三角恒等变形转化为一个角的三角函数来研究. 【基础练习】1.写出下列函数的定义域: (1)y =______________________________; (2)sin 2cos x y x=的定义域是____________________. 2.函数f (x ) = | sin x +cos x |的最小正周期是____________.3.函数 22sin sin 44f x x x ππ=+--()()()的最小正周期是_______. 4. 函数y =sin(2x +3π)的图象关于点_______________对称. 5. 已知函数tan y x ω= 在(-2π,2π)内是减函数,则ω的取值范围是______________. 【范例解析】例1.求下列函数的定义域: (1)sin tan xy x =+(2)y = 解:(1),2tan 0,2sin 10.x k x x ππ⎧≠+⎪⎪≠⎨⎪+≥⎪⎩即,2,722.66x k x k k x k πππππππ⎧≠+⎪⎪≠⎨⎪⎪-≤≤+⎩,故函数的定义域为7{2266x k x k ππππ-≤≤+且,x k π≠,}2x k k Z ππ≠+∈ {663,}x k x k k Z πππ≤≤+∈ {,}2x x k k Z ππ≠+∈ π π (3π,0) 10ω-≤<(2)122log 0,tan 0.x x +≥⎧⎪⎨⎪≥⎩即04,.2x k x k πππ<≤⎧⎪⎨≤<+⎪⎩故函数的定义域为(0,)[,4]2ππ⋃. 点评:由几个函数的和构成的函数,其定义域是每一个函数定义域的交集;第(2)问可用数轴取交集.例2.求下列函数的单调减区间:(1)sin(2)3y x π=-; (2)2cos sin()42x y x π=-;解:(1)因为222232k x k πππππ-≤-≤+,故原函数的单调减区间为5[,]()1212k k k Z ππππ-+∈. (2)由sin()042x π-≠,得{2,}2x x k k Z ππ≠+∈,又2cos 4sin()24sin()42x x y x ππ==+-, 所以该函数递减区间为3222242x k k πππππ+<+<+,即5(4,4)()22k k k Z ππππ++∈. 点评:利用复合函数求单调区间应注意定义域的限制. 例3.求下列函数的最小正周期:(1)5tan(21)y x =+;(2)sin sin 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭ .解:(1)由函数5tan(21)y x =+的最小正周期为π2,得5tan(21)y x =+的周期2T π=. (2)sin()sin()(sin cos cos sin )cos 3233y x x x x x ππππ=++=+2111cos 2sin cos cos sin 222422x x x x x +=+=+1sin(2)23x π=++ T π∴=. 点评:求三角函数的周期一般有两种:(1)化为sin()A x ωϕ+的形式特征,利用公式求解;(2)利用函数图像特征求解.【反馈演练】1.函数x x y 24cos sin +=的最小正周期为_____________.2.设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x 在[0,2]π上的单调递减区间为___________________.3.函数()sin ([,0])f x x x x π=∈-的单调递增区间是________________.4.设函数()sin 3|sin 3|f x x x =+,则()f x 的最小正周期为_______________. 5.函数22()cos 2cos 2xf x x =-在[0,]π上的单调递增区间是_______________. 6.已知函数π124()πsin 2x f x x ⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭. (Ⅰ)求()f x 的定义域; (Ⅱ)若角α在第一象限且3cos 5α=,求()f α. 解:(Ⅰ) 由πsin 02x ⎛⎫+≠ ⎪⎝⎭得ππ2x k ≠-+,即ππ2x k ≠-()k ∈Z .故()f x 的定义域为π|π2x x k k ⎧⎫∈≠-∈⎨⎬⎩⎭R Z ,.(Ⅱ)由已知条件得4sin 5α===.从而π124()πsin 2f ααα⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭ 2π[,0]6π-32π [,]3ππ 2[,]63ππ,75[,]63ππππ1cos2cos sin2sin44cosααα⎫++⎪⎝⎭=21cos2sin22cos2sin coscos cosααααααα+++==142(cos sin)5αα=+=.7.设函数)(),()2sin()(xfyxxf=<<-+=ϕπϕ图像的一条对称轴是直线8π=x.(Ⅰ)求ϕ;(Ⅱ)求函数)(xfy=的单调增区间;(Ⅲ)画出函数)(xfy=在区间],0[π上的图像解:(Ⅰ))(8xfyx==是函数πΘ的图像的对称轴,,1)82sin(±=+⨯∴ϕπ,.42k k Zππϕπ∴+=+∈.43,0πϕϕπ-=<<-Θ(Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=xy因此由题意得.,2243222Zkkxk∈+≤-≤-πππππ所以函数.],85,8[)432sin(Zkkkxy∈++-=πππππ的单调增区间为(Ⅲ)由知)32sin(π-=xy故函数上图像是在区间],0[)(πxfy=第7课 三角函数的值域与最值 【考点导读】1.掌握三角函数的值域与最值的求法,能运用三角函数最值解决实际问题;2.求三角函数值域与最值的常用方法:(1)化为一个角的同名三角函数形式,利用函数的有界性或单调性求解;(2)化为一个角的同名三角函数形式的一元二次式,利用配方法或图像法求解;(3)借助直线的斜率的关系用数形结合求解;(4)换元法. 【基础练习】1.函数x x y cos 3sin +=在区间[0,]2π上的最小值为 1 .2.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 .3.函数tan()2y x π=-(44x ππ-≤≤且0)x ≠的值域是___________________. 4.当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为 4 .【范例解析】例1.(1)已知1sin sin 3x y +=,求2sin cos y x -的最大值与最小值.(2)求函数sin cos sin cos y x x x x =⋅++的最大值. 分析:可化为二次函数求最值问题.解:(1)由已知得:1sin sin 3y x =-,sin [1,1]y ∈-Q ,则2sin [,1]3x ∈-.22111sin cos (sin )212y x x ∴-=--,当1sin 2x =时,2sin cos y x -有最小值1112-;当2sin 3x =-时,2sin cos y x -有最小值49.(2)设sin cos x x t +=(t ≤≤,则21sin cos 2t x x -⋅=,则21122y t t =+-,当t =时,y有最大值为12点评:第(1)小题利用消元法,第(2)小题利用换元法最终都转化为二次函数求最值问题;但要注意变量的取值范围.43(,1][1,)-∞-⋃+∞例2.求函数2cos (0)sin xy x xπ-=<<的最小值. 分析:利用函数的有界性求解.解法一:原式可化为sin cos 2(0)y x x x π+=<<,得)2x ϕ+=,即sin()x ϕ+=1≤,解得y ≥y ≤,所以y 解法二:2cos (0)sin xy x xπ-=<<表示的是点(0,2)A 与(sin ,cos )B x x -连线的斜率,其中点B 在左半圆221(0)a b a +=<上,由图像知,当AB 与半圆相切时,y 最小,此时AB k =y点评:解法一利用三角函数的有界性求解;解法二从结构出发利用斜率公式,结合图像求解.例3.已知函数2π()2sin 24f x x x ⎛⎫=+- ⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,.(I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.分析:观察角,单角二次型,降次整理为sin cos a x b x +形式.解:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦∵π12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),. 点评:第(Ⅱ)问属于恒成立问题,可以先去绝对值,利用参数分离转化为求最值问题.本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力. 【反馈演练】1.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于____-1_______.2.当04x π<<时,函数22cos ()sin sin xf x x xx =-的最小值是______4 _______.3.函数sin cos 2xy x =+4.函数cos tan y x x =⋅的值域为 .5.已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于_________.6.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.解:(Ⅰ)π()2cos (sin cos )1sin 2cos 224f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭.因此,函数()f x 的最小正周期为π.(Ⅱ)因为π()24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上为增函数,在区间3π3π84⎡⎤⎢⎥⎣⎦,上为减函数,又π08f ⎛⎫= ⎪⎝⎭,3π8f⎛⎫= ⎪⎝⎭3π3πππ14244f ⎛⎫⎛⎫=-==- ⎪ ⎪⎝⎭⎝⎭, 32(1,1)-故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,,最小值为1-.。
高三数学选择填空难题突破 与三角函数相关的最值问题
![高三数学选择填空难题突破 与三角函数相关的最值问题](https://img.taocdn.com/s3/m/96dfd672bf1e650e52ea551810a6f524cdbfcb41.png)
高三数学选择填空难题突破与三角函数相关的最值问题高三数学选择填空难题突破与三角函数相关的最值问题一、方法综述三角函数相关的最值问题一直是高考数学的热点之一。
其中,三角函数的最值问题是三角函数的重要题型之一,主要包括考查三角函数图像和性质的最值问题,以及以三角函数的有界性为主的最值问题。
熟悉三角函数的图像和性质,掌握转化思想是解决这类问题的关键。
二、解题策略1.类型一:与三角函数的奇偶性和对称性相关的最值问题例1】若将函数$f(x)=\sin^2x+\cos^2x$的图像向左平移$\theta$($\theta>0$)个单位,所得的图像关于$y$轴对称,则$\theta$的最小值是()。
A。
$\frac{\pi}{3}$。
B。
$\frac{\pi}{5}$。
C。
$\frac{\pi}{4}$。
D。
$\frac{8\pi}{3}$解析】函数$f(x)=\sin^2x+\cos^2x$为常数函数,其图像为一条直线。
将其向左平移$\theta$个单位,得到的图像仍然是一条直线,不可能关于$y$轴对称。
因此,该题没有解。
举一反三】1.【广州市2018届高三第一学期第一次调研】将函数$y=2\sin\left(\frac{x+\pi}{3}\right)+\cos x$的图像向左平移$3$个单位,所得图像对应的函数恰为奇函数,则平移量的最小值为()。
A。
$\pi$。
B。
$\frac{\pi}{2}$。
C。
$\frac{\pi}{3}$。
D。
$\frac{\pi}{6}$解析】将函数$y=\sin\left(2x+\frac{2\pi}{3}\right)$的图像向左平移$3$个单位,得到的图像对应的函数为$y=-\sin\left(2x+\frac{2\pi}{3}\right)$,为奇函数。
根据奇函数的对称性可知,平移量$\theta$必须是$\frac{\pi}{2}$的倍数,且$\theta>0$。
高中数学解题方法系列:三角函数最值问题的10种方法
![高中数学解题方法系列:三角函数最值问题的10种方法](https://img.taocdn.com/s3/m/187ceb47b14e852459fb5747.png)
高中数学解题方法系列:三角函数最值问题的10种方法三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,对三角函数的恒等变形能力及综合应用要求较高.解决三角函数最值这类问题的基本途径,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题.下面介绍几种常见的求三角函数最值的方法:一.转化一次函数在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法.例1.求函数2cos 1y x =-的值域[分析] 此为cos y a x b =+型的三角函数求最值问题, 设cos t x =,由三角函数的有界性得[1,1]t ∈-,则21[3,1]y t =-∈-二. 转化sin()y A x b ωϕ=++(辅助角法)观察三角函数名和角,先化简,使三角函数的名和角统一.例2.(2017年全国II 卷)求函数()2cos sin f x x x =+的最大值为.[分析] 此为sin cos y a x b x =+型的三角函数求最值问题,通过引入辅助角公式把三角函数化为sin()y A x B ωϕ=++的形式,再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用|sin cos |a x b x +≤求最值.()f x ≤三. 转化二次函数(配方法)若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理.例3. 求函数3cos 3sin 2+--=x x y 的最小值.[分析]利用22sin cos 1x x +=将原函数转化为2cos 3cos 2+-=x x y ,令cos t x =,则,23,112+-=≤≤-t t y t 配方,得41232-⎪⎭⎫ ⎝⎛-=t y , ∴≤≤-,11t Θ当t=1时,即cosx=1时,0min =y四. 引入参数转化(换元法)对于表达式中同时含有sinx+cosx ,与sinxcosx 的函数,运用关系式(),cos sin 21cos sin 2x x x x ±=± 一般都可采用换元法转化为t 的二次函数去求最值,但必须要注意换元后新变量的取值范围.例4. 求函数sin cos sin .cos y x x x x =++的最大值.[分析]解:令().cos sin 21cos sin 2x x x x +=+,设sin cos .t x x =+则[]()t t y t t x x +-=∴-∈-=21,2,221cos sin 22,其中[]2,2-∈t 当.221,14sin ,2max +=∴=⎪⎭⎫ ⎝⎛+=y x t π 五. 利用基本不等式法利用基本不等式求函数的最值,要合理的拆添项,凑常数,同时要注意等号成立的条件,否则会陷入误区.例5. 已知()π,0∈x ,求函数1sin 2sin y x x =+的最小值. [分析] 此题为xa x sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解.设()1sin ,01,2x t t y t t =<≤=+≥=2t =. 六.利用函数在区间内的单调性 例6.已知()π,0∈x ,求函数x x y sin 2sin +=的最小值. [分析] 此题为xa x sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解. 设()t t y t t x 1,10,sin +=≤<=,在(0,1)上为减函数,当t=1时,3min =y .七.转化部分分式例7.求函数1cos 21cos 2-+=x x y 的值域[分析] 此为dx c b x a y -+=cos cos 型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解.或者也可先用反解法,再用三角函数的有界性去解. 解法一:原函数变形为1cos ,1cos 221≤-+=x x y Θ,可直接得到:3≥y 或.31≤y 解法一:原函数变形为()()∴≤-+∴≤-+=,1121,1cos ,121cos y y x y y x Θ3≥y 或.31≤y 八. 数形结合由于1cos sin 22=+x x ,所以从图形考虑,点(cosx,sinx)在单位圆上,这样对一类既含有正弦函数,又含有余弦函数的三角函数的最值问题可考虑用几何方法求得. 例8. 求函数()π<<--=x xx y 0cos 2sin 的最小值. [分析] 法一:将表达式改写成,cos 2sin 0x x y --=y 可看成连接两点A(2,0)与点(cosx,sinx)的直线的斜率.由于点(cosx,sinx)的轨迹是单位圆的上半圆(如图),所以求y 的最小值就是在这个半圆上求一点,使得相应的直线斜率最小.设过点A 的切线与半圆相切与点B,则.0<≤y k AB 可求得.3365tan -==πAB k 所以y 的最小值为33-(此时3π=x ). 法二:该题也可利用关系式asinx+bcosx=()φ++x b a sin 22(即引入辅助角法)和有界性来求解.九. 判别式法例9.求函数22tan tan 1tan tan 1x x y x x -+=++的最值. [分析] 同一变量分子、分母最高次数齐次,常用判别式法和常数分离法.解:()()()()222tan tan 1tan tan 11tan 1tan 101,tan 0,x x y x x y x y x y y x x k k ππ-+=++∴-+++-=∴===∈1≠y 时此时一元二次方程总有实数解()()()().3310313,014122≤≤∴≤--∴≥--+=∆∴y y y y y 由y=3,tanx=-1,()3,4max =∈+=∴y z k k x ππ 由.31,4,1tan ,31min =+=∴==y k x x y ππ 十. 分类讨论法含参数的三角函数的值域问题,需要对参数进行讨论.例10.设()⎪⎭⎫ ⎝⎛≤≤--+-=20214sin cos 2πx a x a x x f ,用a 表示f(x)的最大值M(a). 解:().214sin sin 2+-+-=a x a x x f 令sinx=t,则,10≤≤t ()().21442214222+-+⎪⎭⎫ ⎝⎛--=+-+-==a a a t a at t x f t g (1) 当12≥a ,即()t g a ,2≥在[0,1]上递增, ()();21431-==a g a M (2) 当,120≤≤a 即20≤≤a 时,()t g 在[0,1]上先增后减,();214422+-=⎪⎭⎫ ⎝⎛=a a a g a M (3) 当,02≤a 即()t g a ,0≤在[0,1]上递减,()().4210a g a M -== ()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-≤≤+-≥-=∴0,42120,21442,21432a a a a a a a a M以上几种方法中又以配方法和辅助角法及利用三角函数的有界性解题最为常见.解决这类问题最关键的在于对三角函数的灵活应用及抓住题目关键和本质所在.挑战自我:1.求函数y=5sinx+cos2x 的最值2.已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合.3.已知函数())cos (sin sin 2x x x x f +=,求函数f(x)的最小正周期和最大值.参考答案:1.[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一. ()48331612,,221sin 683316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 222=+⨯-=∈+=∴=-=+⨯-=∈-=-=∴≤≤-+⎪⎭⎫ ⎝⎛--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππΘ 2.[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解.解: ().47,6,2262,4562sin 21452sin 232cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛+=++=+⋅++⋅=y z k k x k x x x x x x x x y ππππππ∴ f(x)的最小正周期为π,最大值为21+.3.[分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式. 解:()⎪⎭⎫ ⎝⎛-+=+-=+=42212sin 2cos 1cos sin 2sin 22πx sn x x x x x x f。
【高中数学经典】三角函数的图像和性质以及最值汇总19
![【高中数学经典】三角函数的图像和性质以及最值汇总19](https://img.taocdn.com/s3/m/6c52eb7b844769eae009edfc.png)
【高中数学经典】三角函数的图像和性质以及最值汇总19学校:___________姓名:___________班级:___________考号:___________一、解答题1.已知函数()sin 2cos 22sin cos 36f x x x x x ππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭. (Ⅰ)求函数()f x 图象的对称轴方程; (Ⅱ)将函数()y f x =的图象向右平移12π个单位,再将所得图象上各点的横坐标伸长为原来的 4 倍,纵坐标不变,得到函数()y g x =的图象,求()y g x =在,23ππ⎡⎤⎢⎥⎣⎦上的值域.2.已知函数()2sin cos 4([0,])f x a x x a x π=-+-∈.(1)求()f x 的最小值()g a ;(2)若()f x 在[0,]π上有零点,求a 的取值范围.3.已知某海滨浴场海浪的高度y (米)是时间t 的(0≤t ≤24,单位:小时)函数,记作y =f (t ),下表是某日各时的浪高数据:经长期观测,y =f (t )的曲线可近似地看成是函数y =A cos ωt +b 的图象.(1)根据以上数据,求出函数y =A cos ωt +b 的最小正周期T 、振幅A 及函数表达式; (2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8时到晚上20时之间,有多长时间可供冲浪者进行运动? 4.设函数()()sin(2)(0),f x x y f x ϕπϕ=+-<<=的一条对称轴是直线8x π=。
(1)求ϕ得值;(2)求()y f x =得单调增区间; (3)(0,)4x π∈,求()f x 的值域.5.已知函数323y sin x π⎛⎫=-⎪⎝⎭(1)用五点作图在下面坐标系中做出上述函数在766ππ⎡⎤⎢⎥⎣⎦,的图象.(请先列表,再描点,图中每个小矩形的宽度为)12π (2)请描述上述函数图象可以由函数y =sin x 怎样变换而来?6.函数sin()y A x ωφ=+在一个周期内的图象如图,其中0,0,0A ωϕ>><<π(1)求此函数的解析式 (2)求函数的单调增区间7.已知函数()2cos 2f x x x =+. (1)求()y f x =的单调递增区间; (2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的最大值和最小值. 8.如图,已知OPQ 是半径为1,圆心角为(0)2πθθ<<的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形,记,COP α∠=(1)请用,θα来表示矩形ABCD 的面积. (2)若3πθ=,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.9.函数()sin()(0,0,)2f x A x A πωφωφ=+>><的一段图像过点(0,1),如图所示.(1)求()f x 在区间2[,]32ππ--上的最值; (2)若12(),(0)21234f ππαα-=<<,求22cos sin 2()cos sin ααπαα-+-的值.10.设函数()cos(2)f x x ϕ=+.(1)若函数()f x 为奇函数,ϕ∈(0,π),求ϕ的值; (2)若ϕ=3π,()2f α=13,α∈(0,2π),求()f α的值. 11.在△ABC 中, 内角A, B, C 所对的边分别是a, b, c. 已知sin 3sin b A c B =, a =" 3,"2cos 3B =. (Ⅰ) 求b 的值; (Ⅱ) 求sin 23B π⎛⎫-⎪⎝⎭的值. 12.已知函数f(x)=sin 2x-cos 23x π⎡⎤+⎢⎥⎣⎦,x ∈R(1)求f(x)的对称中心; (2)讨论f(x)在区间,34ππ⎡⎤-⎢⎥⎣⎦上的单调性. 13.(本小题满分10分)已知函数()22cos cos f x x x x a =++,且当0,2x π⎡⎤∈⎢⎥⎣⎦时, ()f x 的最小值为2, (1)求()f x 的单调递增区间;(2)先将函数()y f x =的图象上的点纵坐标不变,横坐标缩小到原来的12,再把所得的图象向右平移12π个单位,得到函数()y g x =的图象,求方程()4g x =在区间0,2π⎡⎤⎢⎥⎣⎦上所有根之和. 14.已知,且 . (Ⅰ)求 的值;(Ⅱ)求函数 在上的值域. 15.如图,在圆内接四边形ABCD 中,2AB =,1AD =,cos sin CD αβ=+.(Ⅰ)求角β的大小;(Ⅱ)求四边形ABCD 周长的取值范围.16.已知3sin()cos()tan()cos()222()sin(2)tan()sin()f πππααπαααπααπαπ--++=-----. (1)化简()f α.(2)若α是第三象限角,且31cos()25πα-=,求()f α. 17.若2sin cos 2sin ,sin sin cos θθαβθθ+==.求证:2cos 2cos 2αβ=18.函数sin(),0,0,02y A x A πωϕωϕ=+>>≤≤,在(0,7)x π∈内只取到一个最大值和一个最小值,且当x π=时,max 3y =;当6x π=时,min 3y =- (1)求此函数的解析式; (2)求此函数的单调递增区间. 19.已知函数()23cos sin sin 64f x x x x π⎛⎫=+⋅-+ ⎪⎝⎭,其中x ∈R . (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求()f x 的最大值,以及取得最大值时x 的取值集合.20.已知函数2()[2sin()sin ]cos 3f x x x x x π=++,x ∈R .(1)求函数()f x 的最小正周期; (2)若存在05[0,]12x π∈,使不等式0()f x m <成立,求实数m 的取值范围. 21.己知向量(3cos ,cos )a x x ωω=-,(sin ,cos )()b x x R ωωω=∈,若函数1()2f x a b =⋅+的最小正周期为x ,且在0,6π⎡⎤⎢⎥⎣⎦上单调递减.(1)求()f x 的解析式:(2)若关于x 的方程2522123a f x f x ππ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭52330126f x f x a ππ⎛⎫⎛⎫⎛⎫-+++-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 在0,4π⎡⎤⎢⎥⎣⎦有实数解.求a 的取值范围.22.已知函数()22sin cos 2sin 1f x x x x =+-. (Ⅰ)求4f π⎛⎫⎪⎝⎭的值; (Ⅱ)求函数()f x 的最小正周期和单调递增区间.23.已知角α的终边经过点(P m ,且13cos α=-. (1)求m 的值;(2)求22cos sin 2sin cos αααα-+⋅的值.24.设函数3()cos 2cos 2f x x x x =. (1)求函数()f x 的单调递增区间;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的值域. 25.已知函数()sin cos 3f x x x π⎛⎫=++ ⎪⎝⎭. (1)求函数()f x 的最小正周期.(2)求函数()f x 的单调递减区间. 26.(已知函数2()cos 2cos 1()f x x x x x R =+-∈. (I )求函数()f x 的最小正周期及在区间[0,]2π上的最大值和最小值;(II )若006(),[,]542f x x ππ=∈,求0cos2x 的值. 27.已知向量()cos ,cos m x x =-r ,()sin ,cos n x x =r ,函数()1f x m n =⋅+r r(Ⅰ)求()f x 的单调增区间;(Ⅱ)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,角A 满足()1f A =,b =3c =, 求边长a .28.(Ⅰ)求值:2011log 332641g2lg5023+⎛⎫--+++ ⎪⎝⎭(Ⅱ)化简: 53sin()cos 2sin()ππααα⎛⎫++- ⎪⎝⎭-29.已知函数()sin 2cos 26f x x x π⎛⎫=+- ⎪⎝⎭, (1)求函数的最小正周期; (2)当0,3x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的取值范围. 30.设向量(4cos ,sin )a x x =,(sin ,4sin )b x x =,函数()f x a b =⋅. (1)求函数()f x 的最大值及最小正周期;(2)若函数()y g x =的图象是由()y f x =的图象向左平移4π个单位长度得到,求()y g x =的单调递增区间.31.设函数2()cos 2cos 1f x x x x ωωω=-+的图象关于直线x π=对称,其中常数1,12ω⎛⎫∈⎪⎝⎭. (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间30,5π⎡⎤⎢⎥⎣⎦上的取值范围. 32.设函数()sin cos f x a x b x =+,,a b 为常数, (1)当23x π=时,()f x 取最大值2,求此函数在区间,2ππ⎡⎤⎢⎥⎣⎦上的最小值; (2)设()sin a g x x =-,当1b =-时,不等式()()f x g x >对0,2x π⎛⎫∈ ⎪⎝⎭恒成立,求实数a 的取值范围.33.选修4—4:坐标系与参数方程已知曲线C 的极坐标方程为222364cos 9sin ρθθ=+ (1)若以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,求曲线C 的直角坐标方程;(2)若(),P x y 是曲线C 上的一个动点,求2x y +的最大值.34.已知函数2()sin cos 2f x x x x =+⋅+ (1)求()f x 的最小正周期; (2)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 35.已知函数()sin cos f x x θθ=-,其中[0,2)θπ∈. (1) 若(2)0f =,求sin 2θ的值; (2) 求(1)sin 2f θ+的最大值.36.已知函数()2cossin 002222x x x f x ωϕωϕωϕπωϕ+++⎛⎫=+ ⎪⎝⎭>,<<的周期为π,且过点13π⎛⎫⎪⎝⎭,。
高中三角函数数值表
![高中三角函数数值表](https://img.taocdn.com/s3/m/9994849f250c844769eae009581b6bd97e19bc6f.png)
高中数学中的三角函数数值表
三角函数是高中数学中重要的概念之一,它们是描述角和角对应线段之间关系的函数。
在计算实际问题时,常常需要使用三角函数的数值表来进行计算。
本文将介绍高中数学中常见的三角函数——正弦函数、余弦函数、正切函数以及它们的相关数值表。
正弦函数数值表
正弦函数是最基本的三角函数之一,表示直角三角形中对边与斜边的比值。
正弦函数的数值表如下:
角度(度)正弦值
00
300.5
450.707
600.866
901
余弦函数数值表
余弦函数是描述直角三角形中邻边与斜边比值的函数。
余弦函数的数值表如下:
角度(度)余弦值
01
300.866
450.707
600.5
900
正切函数数值表
正切函数表示直角三角形中对边与邻边之比。
正切函数的
数值表如下:
角度(度)正切值
00
300.577
451
60 1.732
90无穷大
小结
三角函数数值表是高中数学中重要的工具,对于解决三角
函数相关问题有着重要的意义。
通过熟练掌握三角函数数值表,可以更加高效地进行数学计算和问题求解。
在解决实际问题中,合理应用三角函数数值表,将有助于提高解题速度和准确性。
希望本文的介绍对您学习和理解高中数学中的三角函数有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三第一轮复习数学---三角函数的最值
一、教学目标:掌握三角函数最值的常见求法,能运用三角函数最值解决一些实际问题. 二、教学重点:求三角函数的最值 三、教学过程:
(一)主要知识:
求三角函数的最值,主要利用正、余弦函数的有界性,一般通过三角变换化为下列基本类型处理:
①sin y a x b =+,设sin t x =化为一次函数y at b =+在闭区间[1,1]t ∈-上的最值求之; ②sin cos y a x b x c =++,引入辅助角
(cos ϕϕϕ=
=
,化为
)y x c ϕ=++求解方法同类型①;
③2sin sin y a x b x c =++,设sin t x =,化为二次函数2
y at bt c =++在[1,1]t ∈-上的
最值求之;
④sin cos (sin cos )y a x x b x x c =+±+,设sin cos t x x =±化为二次函数
2(1)
2
a t y bt c -=++±在闭区间[t ∈上的最值求之;
⑤tan cot y a x b x =+,设tan t x =化为2at b
y t
+=用∆法求值;当0ab >时,还可用平
均值定理求最值; ⑥sin sin a x b
y c x d
+=
+根据正弦函数的有界性,即可分析法求最值,还可“不等式”法或“数形
结合”.
(二)主要方法:
(1) 认真观察函数式,分析其结构特征,确定类型。
(2) 根据类型,适当地进行三角恒等变形或转化,这是关键的步骤。
(3) 在有关几何图形的最值中,应侧重于将其化为三角函数问题来解决。
2. 特别说明
注意变换前后函数的等价性,正弦、余弦的有界性及函数定义域对最值确定的影响,含参数函数的最值,解题要注意参数的作用和影响。
(三)例题分析:
1、化为一个角的三角函数,再利用有界性求最值。
例1:求函数2
sin cos 1y x x x =+-的最值,并求取得最值时的x 值。
解:cos 2)2122
y x x =
-+-
1112cos 2sin(2)2262
x x x π--=-- ∴当22,6
2
x k π
π
π-
=+
即()3
x k k Z π
π=+
∈时,y 取得最大值,max 1
2
y =
当22,6
2
x k π
π
π-
=-
即()6x k k Z π
π=-
∈时,y 取得最小值,m x 3
2
i y =-。
练习:变式1、函数()⎪⎭
⎫
⎝
⎛
<
<-=40sin cos sin πx x x x y 的最大值是 。
解:()2142sin 222cos 1212sin 21sin cos sin 2-⎪⎭⎫ ⎝
⎛+=--=
-=πx x x x x x y ⎥⎦⎤ ⎝
⎛-∈∴⎥⎦⎤ ⎝⎛∈⎪⎭⎫ ⎝⎛+∴<
+
<∴
<
<212,0,1,2242sin ,434
24
,4
0y x x x πππ
π
π
Θ 思维点拨:三角函数的定义域对三角函数有界性的影响。
2、转化为闭区间上二次函数的最值问题。
例2是否存在实数a ,使得函数2385cos sin 2
-+
+=a x a x y 在闭区间⎥⎦
⎤
⎢⎣⎡2,0π上的最大值是1?若存在,求出对应的a 值?若不存在,试说明理由。
解:2185421cos 22
-++⎪⎭⎫ ⎝
⎛
--=a a a x y
当2
0π≤
≤x 时,1cos 0≤≤x ,令x t cos =则10≤≤t ,
,218542122
-++⎪⎭
⎫
⎝⎛--=a a a t y 10≤≤t
)
(42
3
1
21
854,2cos 2,20,12012max 舍或时即则当时即-==⇒=-+===≤≤≤≤a a a a y a x a t a a ο
)(512
12185,0cos 0,0,022max 舍时即则当时即=⇒=-===<<a a y x t a a ο
)(13
2012385,1cos 1,2,123max 舍时即则当时即=⇒=-+===>>a a a y x t a a ο 综上知,存在23
=a 符合题意。
思维点拨:闭区间上的二次函数的最值问题字母分类讨论思路。
练习变式3:.2sin cot sin 2
cot
的最值求函数x x x x
y ⋅+⋅= 解:8741cos 2cos sin 2sin cos sin sin cos 12
+⎪⎭⎫ ⎝⎛
+=⋅+⋅+=x x x x x x x x y
时当41cos 1cos 0sin -=∴±≠∴≠x x x Θ,y 有最小值8
7
,无最大值.
3、换元法解决x x x x cos sin ,cos sin ±同时出现的题型。
例3求函数))(cos (sin a x a x y ++=的最值)20(≤<a 。
解:2
)cos (sin cos sin a x x a x x y +++=
令t x x =+cos sin ,则]2,2[-∈t ,且有2
1
cos sin 2-=•t x x
故=
y 2
1)(2122-++a a t ,由]2,0(∈a 知当a t -=时, 212-=a y mix
;当2=t 时,2
122max ++=a a y 。
[思维点拨]:遇到x x cos sin +与x x cos sin 相关的问题,常采用换元法,但要注意
x x cos sin +的取值范围是]2,2[-,以保证函数间的等价转化。
练习变式4、求函数()()x x y cos 34sin 34--=的最小值。
解:()x x x x y cos sin 9cos sin 1216++-=
令[]
2.2,4sin 2cos sin -∈⎪⎭⎫ ⎝
⎛
+=+=t x x x t π,则21cos sin 2-=t x x
27
342921912162
2+⎪⎭⎫ ⎝⎛-=-⋅+-=∴t t t y ,[]
2.2-∈t
所以当3
4
=t 时,27min =y
4、图象法,解决形如d
x b c
x a y ++=cos sin 型的函数。
例4、求函数x
x
y sin 2cos 3+=
的值域。
思维点拨:此题为基本题型解决的方法很多,可用三角函数的有界性或万能公式,判别式法。
这里以图象法的主求解。
解:由x x y sin 2cos 3+=
得()
2sin 0
cos 3---=x x y ,设点()()0,2cos ,sin -Q x x P
则
x
x
sin 2cos +可看作是单位圆上的动点P 与定点Q 连线的斜率k
令:()2+=x k y ,圆心到直线的距离1122
=+=
k k d ,得33-
=k 或3
3=k
11333
33≤≤-∴≤≤-
∴y y 所以函数的值域为[]1,1-。
例5.设]2,
0[π
∈x ,若方程
3π
有两解,求a 的取值范围。
解:
设a y x y =+
=),3
2sin(3π
,
要使两函数图象有交点(如图)则
32
3
3<≤a 。
[思维点拨]:在用数形结合法解题时,作图一定要准确。
本题若改为方程有一解,则a 的范围又该怎样呢?
5、利用不等式单调性求最值。
例6 求x
x x y sin 2)
sin 3)(sin 1(+++=
的最值及相应的x 的集合。
变式:⎥⎦
⎤⎢⎣
⎡-=ππ,x x y 2
sin 在上的最大值为多少?
思维点拨:利用基本不等式求最值时,等号不能取得时,可利用单调性。
(四)巩固练习:
1.已知函数sin()y A x ωϕ=+在同一周期内,当9
x π
=时,取得最大值
1
2
,当49x π=时,
取得最小值1
2-
,则该函数的解析式是 ( B ) ()A 12sin()36y x π=- ()B 1sin(3)26y x π=+ ()C 1sin(3)26y x π
=-
()D 1sin(3)2y x π
=-+
2.若方程cos 2cos 1x x x k -=+有解,则k ∈[3,1]-.
四、小结:
(1) 求三角函数最值的方法有:①配方法,②化为一个角的三角函数,③数形结合
法④换元法,⑤基本不等式法。
(2) 三角函数最值都是在给定区间上取得的,因而要特别注意题设所给出的区间。
(3) 求三角函数的最值时,一般要进行一些三角变换以及代数换元,须注意函数有
意义的条件和弦函数的有界性。
(4)含参数函数的最值,解题要注意参数的作用和影响。
五、作业:。