数二考研线代公式

合集下载

研究生考研数学公式(高数线代)

研究生考研数学公式(高数线代)

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

考研数学线性代数常用公式

考研数学线性代数常用公式

考研数学线性代数常用公式数学考研考前必背常考公式集锦。

希望对考生在暑期的复习中有所帮助。

本文内容为线性代数的常考公式汇总。

1、行列式的展开定理行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之和,即A= a i1 A i1+ a i2 A i2+...+ a in A in( i =1, 2,..., n)= a1j A1j+ a 2j A2j+...+ a nj A nj( j =1, 2,..., n)推论:行列式的一行(或列)所有元素与另一行(或列)对应元素的代数余子式的乘积之和为零,即n∑a ij A kj= a i1 A k1+ a i2 A k2+...+ a in A kn=0,(i≠k )j=1n∑a ji A jk= a1i A1k+ a2i A2k+...+ a ni A nk=0(i≠k )j=12、设 A =(a ij)m⨯n,B =(b ij)n⨯k(注意 A 的列数和 B 的行数相等),定义矩阵nC =(c ij)m⨯k,其中c ij=a i1b1j+a i2b2j+...+a in b nj=∑a ik b kj,称为矩阵 A 与矩阵 B 的k =1的乘积,记作 C = AB .如果矩阵A为方阵,则定义An=A⋅A...A为矩阵 A 的 n 次幂.n个A不成立的运算法则AB≠BAAB=O≠>A =O或B=O3、设 A 为n阶方阵,A*为它的伴随矩阵则有 AA *= A * A = A E .设 A 为n阶方阵,那么当 AB = E 或 BA = E 时,有 B -1 = A4、对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种:第一种:交换单位矩阵的第 i 行和第 j 行得到的初等矩阵记作E ij,该矩阵也⎛ 0 0 1 ⎫ 可以看做交换单位矩阵的第 i 列和第 j 列得到的.如 E 1,3 0 1 0 ⎪= ⎪ .1 0 0 ⎪⎝ ⎭第二种:将一个非零数 k 乘到单位矩阵的第 i 行得到的初等矩阵记作 E i ( k ) ;该矩 阵 也 可 以 看 做 将 单 位 矩 阵 第 i 列 乘 以 非 零 数 k 得 到 的 . 如⎛ 1 0 0 ⎫E 2 (-5) 0 -5 0 ⎪ = ⎪ .0 0 1 ⎪⎝ ⎭第三种:将单位矩阵的第 i 行的 k 倍加到第 j 行上得到的初等矩阵记作 E ij ( k ) ;该矩阵也可以看做将单位矩阵的第 j 列的 k 倍加到第 i 列上得到的.如⎛ 1 0 0 ⎫ E 3,2 (-2) 0 1 -2 ⎪= ⎪ .0 0 1 ⎪⎝ ⎭注:1)初等矩阵都只能是单位矩阵一次初等变换之后得到的.2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵 E ij ( k ) 看做列变换是将单位矩阵第 j 列的k 倍加到第 i 列,这一点考生比较容易犯错.5、矩阵 A 最高阶非零子式的阶数称之为矩阵 A 的秩,记为 r ( A ) .1) r ( A ) = r ( A T ) = r ( k A ), k ≠ 0 ;2) A ≠ O ⇔ r (A ) ≥ 1;3) r ( A ) = 1 ⇔ A ≠ O 且 A 各行元素成比例;4)设 A 为 n 阶矩阵,则 r ( A ) = n ⇔ A ≠ 0 . 6、线性表出设 α1 , α 2 ,...,αm 是 m 个 n 维 向 量 , k 1 , k 2 ,...k m 是 m 个 常 数 , 则 称k 1α1 + k 2α 2 + ... + k m αm 为向量组α1 , α 2 ,...,αm 的一个线性组合.设 α1,α2 ,...,αm 是 m 个 n 维向量, β 是一个 n 维向量,如果 β 为向量组α1 , α2 ,...,αm的一个线性组合,则称向量β可以由向量组α1 , α2 ,...,αm线性表出.线性相关设α1 , α2 ,...,αm是m个n维向量,如果存在不全为零的实数k1 , k2 ,..., k m,使得k1α1+ k 2α2+...+ k mαm=0,则称向量组α1,α2,...,αm线性相关.如果向量组α1 , α2 ,...,αm不是线性相关的,则称该向量组线性无关.与线性表出与线性相关性有关的基本定理定理1:向量组α1 , α2 ,...αm线性相关当且仅当α1 , α2 ,...αm中至少有一个是其余m-1 个向量的线性组合.定理2:若向量组α1 , α2 ,...αm线性相关,则向量组α1 , α2 ,..., αm ,αm+1也线性相关.注:本定理也可以概括为“部分相关⇒整体相关”或等价地“整体无关⇒部分无关”.定理3:若向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm的延伸组⎛α⎫ ⎛α⎫⎛α⎫也线性无关.1⎪ , 2⎪,..., m⎪⎝β1⎭ ⎝β2 ⎭⎝βm ⎭定理4:已知向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm , β线性相关当且仅当β可以由向量组α1,α2 ,...αm线性表出.定理 5:阶梯型向量组线性无关.定理6:若向量组α1 , α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且α1 , α2 ,...,αs线性无关,则有s≤t.注:本定理在理论上有很重要的意义,是讨论秩和极大线性无关组的基础.定理内容也可以等价的描述为:若向量组α1 ,α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且 s > t ,则α1,α2,...,αs线性相关.对于这种描述方式,我们可以把定理内容简单地记为:“多数被少数线性表出,则必相关.”定理7:n +1个n维向量必然线性相关.7、线性方程组解的存在性设 A =(α1,α2,...,αn),其中α1,α2,...,αn为 A 的列向量,则线性方程组 Ax = b 有解⇔向量 b 能由向量组α1,α2,...,αn线性表出;⇔r (α1,α2,...,αn)= r (α1,α2,...,αn,b );⇔r ( A )= r ( A, b)线性方程组解的唯一性当线性方程组 Ax = b 有解时, Ax = b 的解不唯一(有无穷多解)⇔线性方程组的导出组 Ax =0有非零解;⇔向量组α1 , α2 ,...,αn线性相关;⇔r (α1,α2,...,αn)< n ;⇔r ( A )< n .注:1)注意该定理成立的前提条件是线性方程组有解;也就是说,仅告知r (A )< n 是不能得到 Ax = b 有无穷多解的,也有可能无解.2)定理 2是按照 Ax = b 有无穷多解的等价条件来总结的,请考生据此自行写出 Ax = b 有唯一解的条件.8、特征值和特征向量:设 A 为 n 阶矩阵,λ是一个数,若存在一个 n 维的非零列向量α使得关系式 Aα = λα成立.则称λ是矩阵 A 的特征值,α是属于特征值λ的特征向量.称为矩阵 A 的特征多项式.设 E 为 n 阶单位矩阵,则行列式λE - A注:1)要注意:特征向量必须是非零向量;2)等式 Aα = λα也可以写成(A - λE)α =0,因此α是齐次线性方程组( A - λE ) x =0的解,由于α ≠0,可知( A - λE ) x =0是有非零解的,故A - λE =0;反之,若 A - λE =0,那么齐次线性方程组( A - λE ) x =0有非零解,可知存在α ≠ 0 使得(A-λE)α = 0,也即Aα = λα.由上述讨论过程可知:λ是矩阵 A 的特征值的充要条件是 A - λE =0(或λE- A =0),而特征值λ的特征向量都是齐次线性方程组( A - λE ) x =0的非零 解.3)由于λE - A 是 n 次多项式,可知 A - λE =0有 n 个根(包括虚根),也即 n 阶矩阵有 n 个特征值;任一特征值都有无穷多特征向量9、矩阵的相似对角化定理1: n 阶矩阵 A 可相似对角化的充要条件是矩阵 A 存在 n 个线性无关的特征向量.同时,在等式 A = P ΛP-1中,对角矩阵Λ的元素为 A 的 n 个特征值,可逆矩阵 P 的列向量为矩阵 A 的 n 个线性无关的特征向量,并且 P 中特征向量的排列顺序与Λ中特征值的排列顺序一致.推论:设矩阵 A 有 n 个互不相同的特征值,则矩阵 A 可相似对角化.定理2: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,λ线性无关的特征向量个数都等于λ的重数.推论: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,n - r (λE - A)=λ的重数.10、设 A 为实对称矩阵( A T= A ),则关于 A 的特征值与特征向量,我们有如下的结论:定理1: A 的所有特征值均为实数,且 A 的的所有特征向量均为实数.定理2: A 属于不同特征值的特征向量必正交.定理3:A 一定有 n 个线性无关的特征向量,即 A 可以对角化.且存在正交矩阵 Q ,使得 Q -1 AQ = Q T AQ = diag (λ1,λ2,...,λn),其中λ1,λ2,...,λn为矩阵 A 的特征值.我们称实对称矩阵可以正交相似于对角矩阵.n n11、如果二次型∑∑a i j x i x j中,只含有平方项,所有混合项 x i x j(i ≠ j)的系i=1j =1数全为零,也即形如 d1 x12+ d 2 x22+...+ d n x n2,则称该二次型为标准形。

考研数学公式大全--高数--线代--必背公式

考研数学公式大全--高数--线代--必背公式

数学知识点背诵高数部分1. 导数公式22(tan )sec (cot )csc (sec )sec tan (csc )csc cot x xx xx x x x x x'='=-'=⋅'=-⋅22(arcsin )(arccos )1(arctan )11(cot )1x x x x arc x x '='='=+'=-+2. 积分公式2222tan ln cos cot ln sin sec ln sec tan csc ln csc cot sec tan cos csc cot sin sec tan sec csc cot csc xdx x C xdx x Cxdx x x C xdx x x Cdx xdx x C x dx xdx x Cx x xdx x Cx xdx x C=-+=+=++=-+==+==-+⋅=+⋅=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222221arctan 1ln 21ln 2ln(arcsin dx xC a x a a dx x aC x a a x a dx a xC a x a a x x CxC a=++-=+-++=+--=+=+⎰⎰⎰222ln(2ln 2arcsin 2a x Ca x C a x Ca=+=-++=++22201sin cos nn n n n I xdx xdx I nππ--===⎰⎰3. 和差化积sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-4. 积化和差[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+-- 5. 万能公式22tan2sin 1tan 2ααα=+ 221t a n2c o s 1t a n 2ααα-=+ 22t a n2t a n 1t a n2ααα=- 6. 半角公式221cos sin 221cos cos 22αααα-=+= 21c o s t a n 21c o s s i n 1c o s t a n 21c o s s i nαααααααα-=+-==+7. 三倍角公式3332sin 33sin 4sin cos34cos 3cos 3tan tan tan 313tan αααααααααα=-=--=- 8. 三角函数关系图sin costan 1cot sec csc↔↔↔⊗↔↔↔↔↔↔⊗⊗↔↔↔..1.a b c ⊗说明:六边形每个顶点等于两相邻顶点乘积三条对角线上,两端点相乘等于标记的三角形,上面的平方和等于下面的平方9. 等价无穷小33333333222201sin ()61arcsin ()61tan ()31arctan ()31ln(1)()21cos 1()2x x x x o x x x x o x x x x o x x x x o x x x x o x x x o x →=-+=++=++=-++=-+=-+时2011ln 11cos 2(1)1x x x e x a x a x xx x αα→---+-时10. 华里士公式等华里士公式:2200131,222sin cos 132,123n nn n n n n xdx xdx n n n n n πππ--⎧⋅⋅⎪⎪-==⎨--⎪⋅⎪-⎩⎰⎰为正的偶数为大于的奇数20sin 2sin nn xdx xdx ππ=⎰⎰2002c o s ,c o s 0,n nxdx n xdx n ππ⎧⎪=⎨⎪⎩⎰⎰为偶数为奇数2220004sin ,sin =cos 0,n n nxdx n xdx xdx n πππ⎧⎪=⎨⎪⎩⎰⎰⎰为偶数为奇数()()220sin cos f x dx f x dx ππ=⎰⎰ ()()00sin cos f x dx f x dx ππ≠⎰⎰()()()20sin sin sin 2xf x dx f x dx f x dx πππππ==⎰⎰⎰11. 函数展开为幂级数20201+()!2!1(1)1(1)(11)1n nxn n n n nn x x x e x x n n x x x x x x ∞=∞===++++-∞<<+∞=-=-+-+-+-<<+∑∑!20234111213572122011(11)1ln(1)(1)(1)(11)234sin (1)(1)()(21)!3!5!7!(21)!cos (1)1(2)!2!n n n n nn n n n n nnn n nn x x x x x x x x x x x x x x n nx x x x x x x x n n x x x n ∞=∞--=++∞=∞===+++++-<<-+=-=-+-++-+-<≤=-=-+-++-+-∞<<+∞++=-=-+∑∑∑∑()(][]4622(1)()4!6!(2)!(1)(1)(1)(1)12!!(1-1,1;10-1,1;0-1,1)nn nx x x x n n x x x x n αααααααααα-++-+-∞<<+∞---++=+++++≤--<<>时,收敛域为时,收敛域为时,收敛域为12. 幂级数的和函数1211121121212112220(1)11(1)1(1)(1)(1)(1)(1)1(1)1k nn k n n n n n n n n n n n n n n n n n n cx cx x x x nx x x x x x nx x nx x x x nx x nx x x n n x x x x ∞=∞∞-==∞∞-==∞∞+-==∞∞∞-====<-''⎛⎫⎛⎫===< ⎪ ⎪--⎝⎭⎝⎭==<-==<-''''''⎛⎫⎛⎫⎛⎫-=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑3110001112(1)(1)1ln(1)(11)1n x x x n n n n n x x x t dt t dt dt x x n t ∞∞∞--====<-⎛⎫====---≤< ⎪-⎝⎭∑∑∑⎰⎰⎰13. 狄利克雷收敛定理设()f x 是以2l 为周期的可积函数,如果在[],l l -上()f x 满足: 1)连续或只有有限个第一类间断点; 2)只有有限个极值点;则()f x 的傅里叶级数处处收敛,记其和函数为()S x ,则()01cos sin 2n n n a n x n x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,且()()()()()(),00,200,2f x x f x f x S x x f l f l x ⎧⎪⎪-++⎪=⎨⎪⎪-++-⎪⎩为连续点为第一类间断点为端点 14. 周期为2l 的周期函数的傅里叶级数设周期为2l 的周期函数()f x 满足狄利克雷收敛定理的条件,则它的傅里叶级数为()()01cos sin 2n n n a n x n x f x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑其中系数n a 和n b 分别为:()()1cos (0,1,2,)1sin (1,2,3,)l n l l n l n x a f x dx n l l n x b f x dx n l l ππ--⎧==⎪⎪⎨⎪==⎪⎩⎰⎰ (1)将普通周期函数()f x 在[],l l -上展开为傅里叶级数: 展开系数为()()()01,1cos ,(1,2,3,)1sin ,(1,2,3,)l l l n l l n la f x dx l n x a f x dx n l l n xb f x dx n l l ππ---⎧=⎪⎪⎪==⎨⎪⎪==⎪⎩⎰⎰⎰ (2)将奇偶周期函数()f x 在[],l l -上展开为傅里叶级数:当()f x 为奇函数时,展开为正弦级数()000,0,(1,2,3,)2sin ,(1,2,3,)n l n a a n n x b f x dx n l l π⎧⎪=⎪==⎨⎪⎪==⎩⎰当()f x 为偶函数时,展开为余弦级数()()0002,2cos ,(1,2,3,)0,(1,2,3,)l l nn a f x dx l n x a f x dx n l l b n π⎧=⎪⎪⎪==⎨⎪==⎪⎪⎩⎰⎰ (3)将非对称区间[]0,l 上的函数()f x 展开为正弦级数或余弦级数:将[]0,l 上的函数()f x ,根据要求作奇延拓(若要求展开为正弦级数)或偶延拓(若要求展开为余弦函数),得到[],l l -上的奇函数或偶函数,再根据(2)中的方式展开。

数学二线代公式

数学二线代公式

数学二线代公式
以下是部分数学二线性代数公式:
行列式展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和。

克莱姆法则:线性方程组如果有唯一解,则该解可以通过系数行列式除以系数行列式的各元素与其对应的代数余子式的乘积之和得出。

矩阵的秩:矩阵的秩等于它的行向量组的秩和列向量组的秩,即矩阵的秩等于它的行(列)向量的极大无关组中的向量个数。

线性方程组解的结构:如果线性方程组有解,则其解向量可以通过系数矩阵的行(列)向量组和常数向量的线性组合得到。

特征值和特征向量:如果一个矩阵A有n个线性无关的特征向量,则A有n个特征值,这些特征值可以通过行列式公式求得。

二次型:二次型可以通过矩阵表示,其标准形式可以通过正交变换得到。

以上公式仅供参考,建议查阅数学书籍或咨询专业人士获取更多信息。

考研数学二公式高数线代(整理)技巧归纳(精选.)

考研数学二公式高数线代(整理)技巧归纳(精选.)

高等数学公式一、常用的等价无穷小当x →0时x x x x x (1+x ) ~-11x a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1x ~21x 2增加x x ~61x 3 对应 x –x ~ 61x 3x –x ~ 31x 3 对应 x - x ~ 31x 3二、利用泰勒公式= 1 + x + +!22x o (2x ) ) (33 o !3sin x x x x +-=x 1 – +!22x o (2x ) (1+x )=x – +22x o (2x )导数公式: 基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹()公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμαααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。

线性代数考研公式大全

线性代数考研公式大全

线性代数考研公式大全线性代数考研公式大全(最新整理收集)线性代数部分基本运算①A B B A②A B C A B C③c A B cA cB c d A cA dA④cdA cd A⑤cA 0 c 0或A 0。

ATTAA B T AT BTcA Tc AT。

AB TBTATn n 1 21 C2n n 1 n2D a21A21 a22A22 a2nA2n转置值不变AT A逆值变A 11Acn, 1 2, , 1, , 2,A 1, 2, 3 ,3阶矩阵B 1, 2, 3A B A BA B 1 1, 2 2, 3 3A B 1 1, 2 2, 3 3A 0B A0BABE i,j c 1有关乘法的基本运算线性代数考研公式大全(最新整理收集) Cij ai1b1j ai2b2j ainbnj线性性质A1 A2 B A1B A2B,A B1 B2 AB1 AB2cA B c AB A cB 结合律AB C A BCAB TBTATABAkAl Ak lAklAklAB kAkBk不一定成立!AE A,EA AA kE kA,kE A kAAB E BA E与数的乘法的不同之处AB kAkBk不一定成立!无交换律因式分解障碍是交换性一个矩阵A的每个多项式可以因式分解,例如A2 2A 3E A 3E A E无消去律(矩阵和矩阵相乘)当AB 0时A 0或B 0由A 0和AB 0 B 0由A 0时AB AC B C(无左消去律)特别的设A可逆,则A有消去律。

左消去律:AB AC B C。

右消去律:BA CA B C。

如果A列满秩,则A有左消去律,即①AB 0 B 0 ②AB AC B C可逆矩阵的性质i)当A可逆时,AT也可逆,且AT1A 1T。

线性代数考研公式大全(最新整理收集)Ak也可逆,且Ak1A 1k 1数c0,cA也可逆,cA1 1A。

cii)A,B是两个n阶可逆矩阵AB也可逆,且AB 1 B 1A 1。

考研数学公式大全

考研数学公式大全

考研数学公式大全数学是考研的核心科目之一,而掌握必要的数学公式则是取得好成绩的关键。

以下是一份考研数学公式大全,涵盖了高等数学、线性代数和概率论与数理统计中的重要公式,希望能对备考研究生入学考试的同学有所帮助。

一、高等数学1、求导法则本文1)链式法则:f(u)f'(u)=f'(u)du本文2)乘积法则:f(u)g(u)=f'(u)g(u)+f(u)g'(u)本文3)指数法则:f(u)^n=nu'f(u)/(n-1)!2、求极值本文1)极值条件:f'(x)=0本文2)极值定理:f(x)在x=a处取得极值,则f'(a)=03、积分公式本文1)牛顿-莱布尼茨公式:∫f(x)dx=F(b)-F(a),其中F'(x)=f(x)本文2)微分定理:d/dx∫f(x)dx=f(x)本文3)积分中值定理:若f(x)在[a,b]上连续,则至少存在一点c∈[a,b],使得∫f(x)dx=f(c)(b-a)4、不定积分公式本文1)幂函数积分:∫x^n dx=(n+1)/n+1 x^(n+1)/n+1+C本文2)三角函数积分:∫sinx dx=cosx+C,∫cosx dx=-sinx+C 5、定积分公式本文1)矩形法:若a<=x<=b,a<=y<=b,则∫(a,b)(x^2+y^2)dx=∫(a,b)x^2 dx+∫(a,b)y^2 dx=(b-a)(x^2+y^2)/2本文2)梯形法:若a<=x<=b,a<=y<=b,则∫(a,b)(x^2+y^2)dx=∫(a,b)x^2 dx+∫(a,b)y^2 dx=(b-a)(x^2+[by]+[ax])/3二、线性代数6、行列式公式本文1)行列式展开式:D=a11A11+a12A12+...+an1An1,其中Aij为行列式中第i行第j列的代数余子式本文2)范德蒙行列式:V=(∏i=1n[(x-a)(i-1)]^(n-i)) / (∏i=1n[(x-a)(i-1)]),其中ai为行列式中第i行第i列的元素7、矩阵公式本文1)矩阵乘法:C=AB,其中Cij=∑AikBkj,k为矩阵乘法的维数本文2)逆矩阵:A^-1=(1/∣A∣)A,其中∣A∣为矩阵A的行列式值,A为矩阵A的伴随矩阵8、向量公式本文1)向量内积:〈a,b〉=a1b1+a2b2+...1、求导法则本文1)链式法则:若f是一个包含x和函数u=u(x),则f' = f'[u(x)] * u'(x)。

线性代数必备知识点公式

线性代数必备知识点公式

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵)⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔TA A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A = ; Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k-⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα; m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯ 可由向量组12:,,,n s s A a a a ⨯ 线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K = (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ- 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ- 线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩ ; ②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=---- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)。

2019考研数学二高数线代笔记

2019考研数学二高数线代笔记
抽象型
如例3:设f(x)在x=x0处可导,g(x)在x=x0处连续但不可导,证明 在x=x0处可导的充要条件是f(x0)=0.
注:例3子题:
例3子题: 。2个
2.微分
设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。
如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小,那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。
五大方面的应用
1、涉及f(x)的定理的使用(有最介零)
2、罗尔定理的使用
3、拉格朗日定理的使用
(一般为等式证明)
2)给高阶条件推出低阶不等式
3)给低阶条件推出高阶不等式
4)具体化f,由a<ξ<b推出不等式
4、柯西中值定理的使用
可能是一个具体函数,一个抽象函数,在添加拉格朗日定理。
5、高阶导数的证明问题——
2)代数余子式:(-1)i+jMij=Aij、(-1)i+jAij=Mij、Aij为代数余子式
3)展开公式:
2、行列式的计算
1)具体型
(行和或列和相等)
注意:
如例题:
②消零降价法()
如例题:
③加边法
如例题:
注:爪型行列式用斜爪消平爪
④递推法(高阶推低阶)
如例题:
⑤数学归纳法(低阶推高阶)
注意:第一数归法和第二数归法的区别,先找出关系,再确定用哪种方法
如例3:当 >0,证明
注:该结论证明x的正次幂趋向0比lnx趋向 的速度快,x的正次幂趋向+∞比e-δx趋向0的速度慢

考研数学二公式汇总

考研数学二公式汇总

数学二考研大纲考试科目(一)高等数学(二)线性代数形式与结构(一)试卷满分及考试时间1.试卷满分为150分2.考试时间为180分钟。

(二)答题方式1.答题方式为闭卷2.笔试。

(三)试卷内容结构1.高等数学78%2.线性代数22%(四试)卷题型结构1.试卷题型结构为:单项选择题8小题,每题4分,共32分2.填空题6小题,每题4分,共24分3.解答题(包括证明题)9小题,共94分内容高等数学函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2. 了解函数的有界性、单调性、周期性和奇偶性.3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6. 掌握极限的性质及四则运算法则7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分考试要求1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3. 了解高阶导数的概念,会求简单函数的高阶导数.4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5. 理解并会用罗尔定理(Rolle)、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6. 掌握用洛必达法则求未定式极限的方法.7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。

考研线代笔记(精华版)

考研线代笔记(精华版)
3.证明A可逆的充要条件(7个)——详⻅见P36
4.求A逆方方法(4种)——公式法(伴随),行行行初等变换,定义法,分块矩阵
5.矩阵的公式P37(7个)
Note:与转置公式区分(4个)P36
五 初等矩阵
1.定义:单位矩阵经过一一次初等变换得来
Note:3种形式:数乘,倍加,互换
2.初等矩阵的性质:(5个)
1.初等矩阵转置后仍为初等矩阵
2.初等矩阵均为可逆矩阵,且其逆阵仍为同类型初等矩阵
Note:1.互换(不不变)2.倍加(相反数)3.倍乘(倒数)
3.左行行行右列列,注意:初等矩阵的n次方方
4.可逆矩阵A可表示为若干干初等矩阵的乘积(证明——基础笔记)
5.初等行行行变换的原理理(证明——基础笔记)
3.等价,B等价的充要条件:存在可逆矩阵P与Q,使PAQ=B
3.充要条件(秩相等(同型))
六 正交矩阵
1.定义
2.等价条件——转置等于逆
Note:A的行行行列列式为1或-1
3.几几何意义——单位化 与 垂直(内积为0)
七 秩
1.定义——非非零子子式的最高高阶数
3.AB=AC且A不不等于0推不不出B=C
4.对⻆角阵的乘法
! 有交换律律" 求逆(倒数)# n次方方(元素n次方方)
4.求A的n次方方
! 秩为1" 三阶只有三个不不为0为背景型(三阶,四阶的情况)# 相似
5.分块矩阵
1.根据题目目,有不不同的分块方方法
2.运算法则
! 加法" 乘法# 转置(注意副对⻆角线)$ 逆(两种形式)% AB=C两种分块(右行行行),两种表达 方方式& AB=0两种信息' n次方方
一一 概念

考研数学公式大全

考研数学公式大全

考研数学公式大全考研数学对于许多考生来说是一座难以逾越的大山,而熟练掌握各类公式则是攻克这座大山的重要武器。

以下为大家整理了一份较为全面的考研数学公式,希望能助大家一臂之力。

一、高等数学部分1、函数、极限与连续(1)极限的四则运算法则:若 lim f(x) = A,lim g(x) = B,则 limf(x) ± g(x) = lim f(x) ± lim g(x) = A ± B;lim f(x) · g(x) = lim f(x) · limg(x) = A · B;lim f(x) / g(x) = lim f(x) / lim g(x) = A / B (B ≠ 0)。

(2)两个重要极限:lim (sin x / x) = 1 (x → 0);lim (1 + 1 / x)^x = e (x → ∞)。

(3)无穷小量的性质:有限个无穷小量的和、差、积仍是无穷小量;无穷小量与有界函数的乘积是无穷小量。

(4)函数连续的定义:设函数 y = f(x) 在点 x₀的某一邻域内有定义,如果 lim (x → x₀) f(x) = f(x₀),则称函数 f(x) 在点 x₀处连续。

2、一元函数微分学(1)导数的定义:f'(x₀) = lim (Δx → 0) f(x₀+Δx) f(x₀) /Δx。

(2)基本导数公式:(x^n)'= nx^(n 1);(sin x)'= cos x;(cos x)'= sin x;(e^x)'= e^x;(ln x)'= 1 / x。

(3)导数的四则运算法则:f(x) ± g(x)'= f'(x) ± g'(x);f(x) · g(x)'= f'(x)g(x) + f(x)g'(x);f(x) / g(x)'= f'(x)g(x)f(x)g'(x) / g(x)^2 (g(x) ≠ 0)。

(完整版)线性代数公式大全

(完整版)线性代数公式大全

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

考研数学公式大全 高数 概率 线代 目前文库中最全的

考研数学公式大全 高数 概率 线代 目前文库中最全的

高等数学公式导数公式:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ基本积分表:三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ·倍角公式: ·半角公式: ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式: 空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ϖϖωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法: 重积分及其应用: 柱面坐标和球面坐标: 曲线积分: 曲面积分: 高斯公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑∑∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂dsA dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z Ry Q x P n n ϖϖϖϖϖdiv )cos cos cos (...,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为l2的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程概率统计公式整理1.随机事件及其概率吸收律:AAB A AA A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)(反演律:B A B A =⋃ B A AB ⋃=2.概率的定义及其计算若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=-加法公式:对任意两个事件A , B , 有)()1()()()()(2111111n n nnk j i kjinj i jini i ni i A A A P A A A P A A P A P A P ΛΛY -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率()=A B P)()(A P AB P 乘法公式()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P ΛΛΛΛ全概率公式Bayes 公式4.随机变量及其分布 分布函数计算 5.离散型随机变量 (1) 0 – 1 分布 (2) 二项分布 ),(p n B 若P ( A ) = p *Possion 定理有 Λ,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nk n n λλ(3) Poisson 分布 )(λP6.连续型随机变量 (1) 均匀分布 ),(b a U (2) 指数分布 )(λE(3) 正态分布 N (? , ? 2 ) *N (0,1) — 标准正态分布 7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数 边缘分布函数与边缘密度函数 8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G ) (2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布10.随机变量的数字特征数学期望随机变量函数的数学期望X 的 k 阶原点矩)(k X E X 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩 X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差 X ,Y 的相关系数 X 的方差D (X ) =E ((X - E (X ))2)协方差相关系数)()(),cov(Y D X D Y X XY =ρ*N (0,1) — 标准正态分布7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数 边缘分布函数与边缘密度函数8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y xx ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9.二维随机变量的 条件分布10.随机变量的数字特征数学期望随机变量函数的数学期望 X 的 k 阶原点矩)(k X EX 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E -X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩 X ,Y 的 二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差 X ,Y 的相关系数X 的方差D (X ) =E ((X - E (X ))2) 协方差 相关系数)()(),cov(Y D X D Y X XY =ρ 线性代数。

考研数学线代定理公式总结

考研数学线代定理公式总结

考研数学线代定理公式总结√ 关于:①称为的标准基,中的自然基,单位坐标向量;②线性无关;③;④;⑤任意一个维向量都可以用线性表示、行列式的定义√ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和、推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零、②若都是方阵(不必同阶),则(拉普拉斯展开式)③上三角、下三角、主对角行列式等于主对角线上元素的乘积、④关于副对角线:(即:所有取自不同行不同列的个元素的乘积的代数和)⑤范德蒙德行列式:矩阵的定义由个数排成的行列的表称为矩阵、记作:或伴随矩阵,为中各个元素的代数余子式、√ 逆矩阵的求法:① :②③ √ 方阵的幂的性质:√ 设的列向量为,的列向量为,则,为的解可由线性表示、即:的列向量能由的列向量线性表示,为系数矩阵、同理:的行向量能由的行向量线性表示,为系数矩阵、即:√ 用对角矩阵乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的向量;用对角矩阵乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的向量、√ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘、√分块矩阵的转置矩阵:分块矩阵的逆矩阵:分块对角阵相乘:,分块对角阵的伴随矩阵:√ 矩阵方程的解法():设法化成① 零向量是任何向量的线性组合,零向量与任何同维实向量正交、② 单个零向量线性相关;单个非零向量线性无关、③ 部分相关,整体必相关;整体无关,部分必无关、(向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关、(向量维数变动)⑤ 两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关、⑥ 向量组中任一向量≤≤都是此向量组的线性组合、⑦ 向量组线性相关向量组中至少有一个向量可由其余个向量线性表示、向量组线性无关向量组中每一个向量都不能由其余个向量线性表示、⑧ 维列向量组线性相关;维列向量组线性无关、⑨ 若线性无关,而线性相关,则可由线性表示,且表示法唯一、⑩ 矩阵的行向量组的秩列向量组的秩矩阵的秩、行阶梯形矩阵的秩等于它的非零行的个数、行阶梯形矩阵可画出一条阶梯线,线的下方全为;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零、当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是时,称为行最简形矩阵⑪矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系;矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系、即:矩阵的初等变换不改变矩阵的秩、√ 矩阵的初等变换和初等矩阵的关系:对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘;对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘、矩阵的秩如果矩阵存在不为零的阶子式,且任意阶子式均为零,则称矩阵的秩为、记作向量组的秩向量组的极大无关组所含向量的个数,称为这个向量组的秩、记作矩阵等价经过有限次初等变换化为、记作:向量组等价和可以相互线性表示、记作:⑫矩阵与等价,可逆作为向量组等价,即:秩相等的向量组不一定等价、矩阵与作为向量组等价矩阵与等价、⑬向量组可由向量组线性表示有解≤、⑭向量组可由向量组线性表示,且,则线性相关、向量组线性无关,且可由线性表示,则≤、⑮向量组可由向量组线性表示,且,则两向量组等价;⑯任一向量组和它的极大无关组等价、向量组的任意两个极大无关组等价、⑰向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定、⑱若两个线性无关的向量组等价,则它们包含的向量个数相等、⑲设是矩阵,若,的行向量线性无关;若,的列向量线性无关,即:线性无关、√ 矩阵的秩的性质:①≥ ≤≤ ② ③ ④ ⑤≤⑥ 即:可逆矩阵不影响矩阵的秩、⑦若;若⑧等价标准型、⑨≤ ≤≤ ⑩ :线性方程组的矩阵式向量式矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:(无条件恒成立)线性方程组解的性质:√ 设为矩阵,若一定有解,当时,一定不是唯一解,则该向量组线性相关、是的上限、√ 判断是的基础解系的条件:① 线性无关;② 都是的解;③ 、√ 一个齐次线性方程组的基础解系不唯一、√ 若是的一个解,是的一个解线性无关√ 与同解(列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等;② 它们对应的部分组有一样的线性相关性;③ 它们有相同的内在线性关系、√ 两个齐次线性线性方程组与同解、√ 两个非齐次线性方程组与都有解,并且同解、√ 矩阵与的行向量组等价齐次方程组与同解(左乘可逆矩阵);矩阵与的列向量组等价(右乘可逆矩阵)、√ 关于公共解的三中处理办法:① 把(I)与(II)联立起来求解;② 通过(I)与(II)各自的通解,找出公共解;当(I)与(II)都是齐次线性方程组时,设是(I)的基础解系, 是(II)的基础解系,则 (I)与(II)有公共解基础解系个数少的通解可由另一个方程组的基础解系线性表示、即:当(I)与(II)都是非齐次线性方程组时,设是(I)的通解,是(II)的通解,两方程组有公共解可由线性表示、即:③ 设(I)的通解已知,把该通解代入(II)中,找出(I)的通解中的任意常数所应满足(II)的关系式而求出公共解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1.1 行列式展开式1.1.1 定义1.1.2 按行按列展开1.1.3 上下三角行列式1.1.4 副对角线1.1.5 拉普拉斯展开式设A 是m 阶矩阵,B 是n 阶矩阵1.1.6 特征值形式1n D [a (n 1)b](a b)n a b bb b a bb b b ab b b b a -==+--1.2 公式BA AB A A A AA B A A Ak kA AA B A n n n n T =⇒======∏=-相似的特征值,则为均为方阵,以下n 1i ii 1*A ,B λλ 第二章2.1 矩阵运算2.1.1 矩阵乘法运算2.1.1.1.OAO OA AEA AE klABlB kA BC AC C B A ACAB C B A CAB BC A =====++=++=+=)()()()()()( 2.1.1.2.22222222B 2)(B 2B BA ))((B)(A BA++=+++≠+++=++=+≠A A E A AB A AB A B A B A AB 但一般2.1.1.3.C B AC AB ,)(r A O A AC,AB OB =⇒==⨯+≠>≠===≠>=则由矩阵,为但若或n A n m CB O A O AB2.1.1.4. 一个成立另三个成立,1111,,B A ----====B A B A B A[]βαT n n b b a a A A r n =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⇒= 111)(阶矩阵 其中Tα为矩阵中的第一列,β为第一列的倍数2.1.2 矩阵逆的运算2.1.2.1. 二阶矩阵逆的运算公式⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡-a c b bc ad d c b d 1a 12.1.2.2.2.1.3 矩阵转置的运算T T A A)(λλ=2.1.4 矩阵伴随的运算2.1.5 矩阵的秩 n B r A r s n n m B r BA r A B r A r ≤+=⨯⨯==≤+≤+=≠==)()(,O AB B A )()(r )AB ())(),(min(r(AB)r(B)r(A)B)r(A r(A)r(kA)0,k r(A)A)r(A )r(A r(A)T T 则则矩阵,是矩阵,是若可逆,则若当2.1.6 分块矩阵运算⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡----11***11***)1(B )1(A )1(A 00B 00B O O A B A O A B O O B A O B O O A B A B A B A mn mn mn 分块矩阵:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡sr T 1r T s1T 11T sr s11r 11A A A A A A A A T 2.1.6.1. 矩阵分块乘法A B(1)A =B (2)A =B ⨯列组数行组数第k 列组含的列数第k 行组含的行数(3)把子块看做矩阵元素,矩阵运算规则仍可用2.1.7 矩阵乘法转化为方程组2.1.8 r(B)}min{r(A),<=r(C),C 则0,B 0,A 即,B 、A ,C =AB 若因为线性无关线性无关≠≠2.1.9 矩阵的高次幂∑=--=====⇒≠≠==n i i i TT n n n b a l A A l r A 111T ,)tr (A A 00A 1)A (n βαβαβααβ,,其中,阶矩阵,当为EE b A A bE A b A A AE b A A A Ab bA k k k k k nk k =⇒===⇒=⎩⎨⎧=====⇒==⇒=+-424k 424k 212k 22212A -E A 44A )3(bE A )2(A A )1()若()(若)()(,若,若 n n n i n i i n n n ni n i i n n n n B C B A C n A A bE A C nb E E A bA A E A AB A AB A B A B A +++=+=+++=+++=+++≠+++=++=+----B A B A BA AB )(A b )b (,b 2)b (B 2B BA ))((B)(A 1n 122222222)时(当但个简单的矩阵矩阵高次幂可以拆成两⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ=⇒--n n 11n 11A AP P A n k n P P P λλλλ ,存在可逆矩阵可相似对角化若2.2 幂零矩阵的性质性质1:A 为幂零矩阵的充分必要条件是A 的特征值全为0。

性质2:A 为幂零矩阵的充分必要条件为0k k Z trA +∀∈=性质4:若A 为幂零矩阵,则A 一定不可逆但有1,1A E E A +=-=性质6:若A 为幂零矩阵,B 为任意的n 阶矩阵且有AB BA =,则AB 也为幂零矩阵性质10:与幂零矩阵相似的矩阵仍为幂零,且幂零指数相同并相似于严格上三角形性质11:若A 为幂零矩阵,则,,,()A A A mA m Z *+'-∈都为幂零矩阵,特别有2()0A *=2.3 方阵可逆等价条件第三章3.1 线性表出与线性相关12t ,?··ααα⇔线性相关其中必有一个向量可用其余的向量线性表出{}1111122112121122112212s 1212121[,]=+,=,,()r(A b),,n n m n n n n m m mn n m n n n n x a x a x a x b x x x x a x a x a x b x r A βαααβαααββαααβααααααβααααα⨯⎡⎤+++=⎧⎢⎥⎪⎢⎥⇔⇔⇔+=⎨⎢⎥⎪+++=⎢⎥⎩⎣⎦⇔⇔⇔=⇔≅A X=向量可由向量组线性表出非齐次线性方程组AX 有解向量组的秩r()=r(,){}212s 121212s 12s 12s 12s ,,,,=()r(A b),,=,=,,(()1n n n n r A n r A αββαααααααααβββαααββαααβααααααβ=⇔⇔⎧=⎨<⇔⎩⇔⇔+=,向量可由向量组线性表出,表示法唯一线性无关,,线性相关AX 有唯一解向量可由向量组线性表出,表示法不唯一AX 有无穷解向量不能由向量组线性表出非齐次线性方程组AX 无解向量组的秩r()<r(,)r(A B))[]11121111112121111112112121221212221212112111212111212222211[,]=,,m n n n n m n n i i m m mn n m m m mn n m n n mn x x x a x a x a x b a x a x a x b x x x B x x a x a x a x b a x a x a x b x x x αααβββαα⎡⎤+++=+++=⎧⎧⎢⎥⎪⎪⎢⎥⇔⇔⇔+⎨⎨⎢⎥⎪⎪+++=+++=⎢⎥⎩⎩⎣⎦AX=2+B A =()r(A B)B A =()r(A B)in n i x B r A B r A αβ=⇔⇔=⇔⇔<向量组可由向量组线性表出非齐次线性方程组AX 有解向量组不能由向量组线性表出非齐次线性方程组AX 无解3.1.1.1. 推论112s 12s 12s 12s ,,=0,,0αααααααααααα⇔⇔≠n 个n 维向量线性相关线性无关3.1.1.2. 推论2+n 1个n 维向量一定线性相关3.1.2r(B)}min{r(A),<=r(C)因为线性无关,C 则0,B 0,A 即,线性无关。

B 、A ,C =AB 若≠≠3.1.3111112212121122112212120[,]=0+00,?··,?··n n n n m m mn n n n x a x a x a x x x x a x a x a x A A αααααααααααα⎡⎤+++=⎧⎢⎥⎪⎢⎥⇔⇔⇔+=⎨⎢⎥⎪+++=⎢⎥⎩⎣⎦⇔⇔⇔⇔AX=0向量组线性无关齐次线性方程组只有零解向量组的秩r()=n向量组线性相关齐次线性方程组除零解外有非零解向量组的秩r()<n3.1.412s 12s 12s ,,,ααααααββααα⇒向量组线性无关,向量组,线性相关可由线性表出,且表示法唯一3.1.512s 12t 12s ,,αααβββααα若向量组可由向量组,线性表出,且s>t,则线性相关3.1.5.1. 推论1212t ,?··s βββααα⇒≤若,线性无关,且它可由向量组线性表出,s t3.1.612s 12t 12s ,?··,αααβββααα≤若向量组可由向量组,线性表出,且线性无关则s t3.1.712s 12t 12s 12t ,r(,)r()αααβββαααβββ≤若向量组可由向量组,线性表出则,3.1.7.1. 推论12s 12t 12t 12s 12s 12t ,?··,?··r(,?··)r()αααββββββααααααβββ⇒=若向量组可由向量组,线性表出,向量组,也可由向量组线性表出,则两个向量组等价,3.1.83.2 秩第四章 线性方程组4.1 AX=O的列向量线性无关齐次方程组有非零解A n A r ⇔<⇔)(4.1.1.1. 推论解齐次线性方程组有非零)未知数个数<方程个数n(<m 当⇒4.1.1.2.0A 有非零解n A 时n =m 当=⇔组阶方阵,齐次线性方程为,4.2 AX=b)()(r A r A =⇔非齐线性方程组有解,的列向量线性表出不能由无解有无穷解有唯一解A b )(1)(r )()(r )()(r bAx ⇔=+⇔<=⇔==⇔=A r A nA r A nA r A4.3 通解结构及解的性质1. 为任意常数的通解为的基础解系,为,的一个解,为如果t t t k k k k k ....,....b AX 0AX ...b AX 1t 221121αααηαααη+++=== 2.3. 的解为时:当且仅当的解是时:但当且仅当的解的解,更不一定是不一定是的线性组合个解的0AX ....0...AX ....1...0AX b AX .........s A 22121221212212,1=++=++=++=++==+++=s s s s s s ss s k k k k k k b k k k k k k k k k b X ββββββββββββ4.5.1 特征值 特征向量5.1.1 的一个特征向量属于特征值是矩阵向量的一个特征值,称非零是矩阵成立,则称,使得维列向量及非零的数阶矩阵,如果存在一个是设λαλλαααλA A )1.5(A n n A = 5.1.25.2 特征多项式 特征方程 的特征方程称为的特征多项式,称为矩阵阶方阵,则行列式为一个设A 0E A )2.5(E n A 212122211211=----------=-A a a a a a a a a a A nn n n n n λλλλλ5.3 特征值的解法:λ通过行列式变换,提出一个的公约式剩下的转化成多项式的配方解决5.4 性质的特征值不一定为实数为实矩阵,则设A A的迹称为A tr a a a nn n )A (221121=+++=+++ λλλA n 21=λλλ 5.4.4 )1(0)(r n i n A i ≤≤≠⇔=λ不同特征值的特征向量线性无关k k 重特征值至多有个线性无关的特征向量5.5 相似 可对角化-1A B n P P AP B 5.3A B A A A =设和都是阶矩阵,如果存在可逆矩阵使得()则称矩阵和相似,记做B 特别地,如果能与对角阵相似,则称可对角化5.5.2 相似对角化的充要条件(E A)n k,i A k k r k A n λλ⇔⇔-=-⇔的重特征值有个线性无关特征向量为重特征值有个线性无关的特征向量5.5.3 相似对角化的充分条件(1A ⇐)有n 个不同的特征值(2A ⇐)为实对称阵1n 1n A n n λλλλ⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭如果阶方阵与对角阵相似则为的个特征值5.5.4 相似对角化的本质AB AB ⇒两个矩阵特征值相同且都可以对角化相似5.5.6 判别法E E A B A B A B AB AB A Bλλ-=-⇒⎧⎪⇒⎨⎪⇒⎩必要条件:若,特征值同①、一个可对角化,一个不可以一定不相似②,皆可对角化一定相似如果都不可对角化不一定5.5.7 1ii 1n 111n 1i 1n21n 122112112112E E A B P A P1.E 3.()P 4E 5()6P A BP B A P AP A P BP P P APP BP PP λλλλξξξξληηηη-------=-=-⇒==Λ-⇒==Λ==若,特征值同,求求2.()X=0()X=0 5.6 相似性质A A1E AE A -=证:AB B A ⇒ 5.6.3 A ,B BC A C ⇒ 111211************AP ()P P B AP BB C P BP C P P APP CPP APP CP P AP C ------⇒=⇒=⇒=⇒==⇒=证:令 (A)r A B r ⇒<≠=(B )11C B=AC (B)r AC C =BC (A)=r(BC )r(B)(A)r(B)r A r r --⇒=≤⇒⇒≤⇒=⇒证:若可逆,()r(A)可逆一个矩阵左右乘可逆阵秩不变1=B r(A)r(B)B P AP -⇒⇒=证:一个矩阵左右乘可逆阵秩不变A5.6.5B λ⇒<≠(A)B f ⇒B a ⇒∑T B A ⇒,B A,B 可逆5.6.105.6.115.6.125.7 000实对称阵不同特征值的特征向量正交,即性质:αβαλ0),(,A 1T =⇒≠=An 1n A λλ⎪=⎪⎪⎭⎫ ⎪⇒Λ ⎪ ⎪⎝⎭n 阶实对称阵必有个线性无关特征向量⎫⎪⎪⎪实对称阵正交相似、合同于对角阵,1A λλ⎛⎫ ⎪ ⎪ ⎪ 5.85.8.1 性质5.8.1.1.5.8.1.2.5.8.1.3.5.8.1.4.5.8.1.5. 5.8.1.6.n n )αα两两正交且规范化(单位向量)为标准正交向量组5.9 反对称阵A -=或阶方阵,T A第六章6.1 定义:二次型 二次型的矩阵 二次型的秩6.2 标准型 规范型6.3 二次型化标准型6.3.1 配方法(基本不考)122111Y=P ,x =y ,=z X=PY C P0P T n y x y X PZAP l l --=⇒=≠⎪⎪⎪⎭平方项配方配光得到如果二次型中不含平方项,有令平方项,必须可逆,为对角阵A 标准型有无数个)标准型系数不一定为6.3.2 正交变换法n 1n n 1n1n 1n A (A0(r r r r (T TAx A AQ λξλξλξλλ=-=⇒⇒⎛⎫ ⎪= ⎪ ⎪⎝⎭,为的f=x 整组无关,不同之间正交施密特正交化规范化化(只需算相同的,使其正交))令Q=()注意:必11221122r )X Y (Q )Y y y T X AX QY AQ λλλ--⇒=⇒=+须和的排序相同6.4 正惯性指数 负惯性指数6.5 合同,B 并称由为合同变换的矩阵x Bx T 与有相同的正负惯性指数6.6 正定的充要条件6.6.1 n ⇔元二次型正定A 的正惯性指数为n6.6.2 n ⇔元二次型正定A 与E 合同,即存在可逆矩阵C ,C T AC=E6.6.3 n A n λ⇔元二次型正定的所有特征值(i=1,2,)均为正数6.6.4 n A ⇔的各阶顺序主子元二式次型正定均大于零6.6.4.1. 顺序主子式大于零:6.7 正定的必要条件。

相关文档
最新文档