1.1.1.3集合的基本运算--高一上学期教案
1.3集合的基本运算教案-高一数学人教A版(2019)必修第一册
第一章集合与常用逻辑用语1.3集合的基本运算【素养目标】1.能从教材实例中抽象出两个集合并集和交集、全集和补集的含义.(数学抽象)2.准确翻译和使用补集符号和Venn图.(数学抽象)3.掌握有关的术语和符号,并会用它们正确进行集合的并集、交集与补集运算.(数学运算) 4.能用Venn图表示两个集合的并集和交集.(直观想象)5.能根据集合间的运算结果判断两个集合之间的关系.(逻辑推理)6.能根据两个集合的运算结果求参数的取值范围.(逻辑推理)7.会用Venn图、数轴解决集合综合运算问题.(直观想象)【学法解读】1.在本节学习中,学生应依据老师创设合适的问题情境,加深对“并集”“交集”“补集”“全集”等概念含义的认识,特别是对概念中“或”“且”的理解,尽量以义务教育阶段所学过的数学内容或现实生活中的实际情境为载体创设相关问题,帮助理解.2.要注意结合实例,运用数轴、V enn图等表示集合进行运算,从而更直观、清晰地解决有关集合的运算问题.1.3.1 并集与交集必备知识·探新知基础知识(3)A⊆B (4)B⊆A(5)A=B说明:由上述五个图形可知,无论集合A,B是何种关系,A∪B恒有意义,图中阴影部分表示并集.:并集概念中的“或”与生活用语中的“或”的含义是否相同?提示:并集概念中的“或”与生活用语中的“或”的含义是不同的.生活用语中的“或”是“或此”“或彼”只取其一,并不兼存;而并集中的“或”则是“或此”“或彼”“或此彼”,可兼有.“x∈A或x∈B”包含三种情形:①x∈A,但x∉B;②x∈B,但x∉A;③x∈A且x∈B.知识点二交集(1)A与B相交(有公共元素,相互不包含)(2)A与B相离(没有公共元素,A∩B=∅)(3)A⊆B,则A∩B=A(4)B⊆A,则A∩B=B(5)A=B,A∩B=B=A:集合运算中的“且”与生活用语中的“且”相同吗?提示:集合运算中的“且”与生活用语中的“且”的含义相同,均表示“同时”的含义,即“x∈A,且x∈B”表示元素x属于集合A,同时属于集合B.知识点三并集与交集的性质(1)___A∩A=A___,A∩∅=∅.(2)____A∪A=A____,A∪∅=A.思考3:(1)对于任意两个集合A,B,A∩B与A有什么关系?A∪B与A有什么关系?(2)设A,B是两个集合,若已知A∩B=A,A∪B=B,则它们之间有何关系?集合A与B 呢?提示:(1)(A∩B)⊆A,A⊆(A∪B).(2)A∩B=A⇔A∪B=B⇔A⊆B.基础自测1.(2019·全国卷Ⅲ理,1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=(A) A.{-1,0,1}B.{0,1}C.{-1,1} D.{0,1,2}[解析]∵B={x|x2≤1}={x|-1≤x≤1},∴A∩B={-1,0,1,2}∩{x|-1≤x≤1}={-1,0,1},故选A.2.(2019·江苏宿迁市高一期末测试)设集合M={0,1,2},N={2,4},则M∪N=(D) A.{0,1,2} B.{2}C.{2,4} D.{0,1,2,4}[解析]M∪N={0,1,2}∪{2,4}={0,1,2,4}.3.已知集合M={x|-5<x<3},N={x|-4<x<5},则M∩N=(A)A.{x|-4<x<3}B.{x|-5<x<-4}C.{x|3<x<5} D.{x|-5<x<5}[解析]M∩N={x|-5<x<3}∩{x|-4<x<5}={x|-4<x<3},故选A.4.(2019·江苏,1)已知集合A={-1,0,1,6},B={x|x>0,x∈R},则A∩B=____{1,6}________.[解析]A∩B={-1,0,1,6}∩{x|x>0,x∈R}={1,6}.5.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=___3__.[解析]因为A∩B={2,3},所以3∈B.所以m=3.关键能力·攻重难题型探究题型一并集运算例1(1)设集合A={1,2,3},B={2,3,4,5},求A∪B;(2)设集合A={x|-3<x≤5},B={x|2<x≤6},求A∪B.[分析]第(1)题由定义直接求解,第(2)题借助数轴求很方便.[解析](1)A∪B={1,2,3}∪{2,3,4,5}={1,2,3,4,5}.(2)画出数轴如图所示:∴A∪B={x|-3<x≤5}∪{x|2<x≤6}={x|-3<x≤6}.[归纳提升]并集运算应注意的问题(1)对于描述法给出的集合,应先看集合的代表元素是什么,弄清是数集,还是点集……,然后将集合化简,再按定义求解.(2)求两个集合的并集时要注意利用集合元素的互异性这一属性,重复的元素只能算一个.(3)对于元素个数无限的集合进行并集运算时,可借助数轴,利用数轴分析法求解,但要注意端点的值能否取到.【对点练习】❶ (1)已知集合A ={0,2,4},B ={0,1,2,3,5},则A ∪B =__{0,1,2,3,4,5}__. (2)若集合A ={x|x>-1},B ={x|-2<x<2},则A ∪B =__{x|x>-2}___. [解析] (1)A ∪B ={0,2,4}∪{0,1,2,3,5}={0,1,2,3,4,5}. (2)画出数轴如图所示,故A ∪B ={x|x>-2}.题型二 交集运算例2 (1)设集合M ={-1,0,1},N ={x|x2=x}则M∩N =( B ) A .{-1,0,1} B .{0,1} C .{1}D .{0}(2)若集合A ={x|-2≤x≤3},B ={x|x<-1或x>4},则集合A∩B 等于( D ) A .{x|x≤3或x>4} B .{x|-1<x≤3} C .{x|3≤x<4}D .{x|-2≤x<-1}(3)已知A ={(x ,y)|4x +y =6},B ={(x ,y)|3x +2y =7},则A∩B =___{(1,2)}__. [分析] (1)先求出集合N 中的元素再求M 、N 的交集.(2)借助数轴求A ∩B .(3)集合A和B 的元素是有序实数对(x ,y ),A 、B 的交集即为方程组⎩⎪⎨⎪⎧4x +y =63x +2y =7的解集.[解析] (1)N ={x|x2=x}={0,1},∴M∩N ={0,1},故选B .(2)将集合A 、B 表示在数轴上,由数轴可得A∩B ={x|-2≤x<-1},故选D .(3)A ∩B ={(x ,y )|4x +y =6}∩{(x ,y )|3x +2y =7}=⎩⎨⎧⎭⎬⎫x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ 4x +y =63x +2y =7={(1,2)}. [归纳提升] 求集合A∩B 的方法与步骤 (1)步骤①首先要搞清集合A 、B 的代表元素是什么.②把所求交集的集合用集合符号表示出来,写成“A∩B”的形式.③把化简后的集合A、B的所有公共元素都写出来即可(若无公共元素则所求交集为∅).(2)方法①若A、B的代表元素是方程的根,则应先解方程,求出方程的根后,再求两集合的交集;若集合的代表元素是有序数对,则A∩B是指两个方程组成的方程组的解集,解集是点集.②若A、B是无限数集,可以利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实心点表示,不含有端点的值用空心点表示.【对点练习】❷(1)(2020·天津和平区高一期中测试)设集合A={1,2,3,4},B={y|y=2x -1,x∈A},则A∩B等于(A)A.{1,3}B.{2,4}C.{2,4,5,7} D.{1,2,3,4,5,7}(2)(2020·广州荔湾区高一期末测试)设集合A={1,2,4},B={x|x2-4x+m=0},若A∩B ={1},则集合B=(D)A.{-3,1} B.{0,1}C.{1,5} D.{1,3}[解析](1)∵A={1,2,3,4},B={y|y=2x-1,x∈A},∴B={1,3,5,7},∴A∩B={1,3},故选A.(2)∵A∩B={1},∴1∈B,∴1是方程x2-4x+m=0的根,∴1-4+m=0,∴m=3.∴B={x|x2-4x+3=0}={x|(x-1)(x-3)=0}={1,3}.题型三集合的交集、并集性质的应用例3(1)设集合M={x|-2<x<5},N={x|2-t<x<2t+1,t∈R},若M∪N=M,则实数t的取值范围为___________.(2)设A={x|x2-2x=0},B={x|x2-2ax+a2-a=0}.①若A∩B=B,求a的取值范围;②若A∪B=B,求a的取值.[分析](1)把M∪N=M转化为N⊆M,利用数轴表示出两个集合,建立端点间的不等关系式求解.(2)先化简集合A,B,再由已知条件得A∩B=B和A∪B=B,转化为集合A、B的包含关系,分类讨论求a的值或取值范围.[解析] (1)由M ∪N =M 得N ⊆M ,当N =∅时,2t +1≤2-t ,即t ≤13,此时M ∪N =M 成立.当N ≠∅时,由数轴可得⎩⎪⎨⎪⎧2-t <2t +1,2t +1≤5,2-t ≥-2,解得13<t ≤2.缩上可知,实数t 的取值范围是{t |t ≤2}. (2)由x 2-2x =0,得x =0或x =2.∴A ={0,2}. ①∵A ∩B =B ,∴B ⊆A ,B =∅,{0},{2},{0,2}. 当B =∅时,Δ=4a 2-4(a 2-a )=4a <0,∴a <0;当B ={0}时,⎩⎪⎨⎪⎧a 2-a =0,Δ=4a =0,∴a =0;当B ={2}时,⎩⎪⎨⎪⎧4-4a +a 2-a =0,Δ=4a =0,无解;当B ={0,2}时,⎩⎪⎨⎪⎧2a =2,Δ=4a >0,a 2-a =0,得a =1.综上所述,得a 的取值范围是{a |a =1或a ≤0}. ②∵A ∪B =B ,∴A ⊆B .∵A ={0,2},而B 中方程至多有两个根, ∴A =B ,由①知a =1.[归纳提升] 利用交、并集运算求参数的思路(1)涉及A ∩B =B 或A ∪B =A 的问题,可利用集合的运算性质,转化为相关集合之间的关系求解,要注意空集的特殊性.(2)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则可用观察法得到不同集合中元素之间的关系,要注意集合中元素的互异性;与不等式有关的集合,则可利用数轴得到不同集合之间的关系.【对点练习】❸ 已知集合M ={x|2x -4=0},集合N ={x|x2-3x +m =0}, (1)当m =2时,求M∩N ,M ∪N ; (2)当M∩N =M 时,求实数m 的值. [解析] (1)由题意得M ={2}.当m =2时,N ={x|x2-3x +2=0}={1,2}, ∴M∩N ={2},M ∪N ={1,2}.(2)∵M∩N =M ,∴M ⊆N ,∵M ={2},∴2∈N ,∴2是关于x 的方程x2-3x +m =0的解,即4-6+m =0,解得m =2.课堂检测·固双基1.设集合A ={x ∈N *|-1≤x ≤2},B ={2,3},则A ∪B =( B ) A .{-1,0,1,2,3} B .{1,2,3} C .{-1,2}D .{-1,3}[解析] 集合A ={1,2},B ={2,3},则A ∪B ={1,2,3}. 2.已知集合A ={x |-3<x <3},B ={x |x <1},则A ∩B =( C ) A .{x |x <1} B .{x |x <3} C .{x |-3<x <1}D .{x |-3<x <3}[解析] A ∩B ={x |-3<x <3}∩{x |x <1}={x |-3<x <1}.故选C .3.设集合A ={2,4,6},B ={1,3,6},则如图中阴影部分表示的集合是( C )A .{2,4,6}B .{1,3,6}C .{1,2,3,4,6}D .{6}[解析] 图中阴影表示A ∪B ,又因为A ={2,4,6},B ={1,3,6},所以A ∪B ={1,2,3,4,6},故选C .4.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值范围是__a ≤1__. [解析] 利用数轴画图解题.要使A ∪B =R ,则a ≤1.5.已知集合A ={x |m -2<x <m +1},B ={x |1<x <5}. (1)若m =1,求A ∪B ;(2)若A ∩B =A ,求实数m 的取值范围. [解析] (1)由m =1,得A ={x |-1<x <2}, ∴A ∪B ={x |-1<x <5}.(2)∵A ∩B =A ,∴A ⊆B .显然A ≠∅.故有⎩⎪⎨⎪⎧m -2≥1,m +1≤5,解得3≤m ≤4.∴实数m 的取值范围为[3,4].素养作业·提技能A 组·素养自测一、选择题1.已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A ∩B =( B ) A .∅ B .{2} C .{0}D .{-2}[解析] 因为B ={-1,2},所以A ∩B ={2}.2.已知集合M ={x |-3<x ≤5},N ={x |x <-5,或x >4},则M ∪N =( A ) A .{x |x <-5,或x >-3} B .{x |-5<x <4} C .{x |-3<x <4}D .{x |x <-3,或x >5}[解析] 在数轴上分别表示集合M 和N ,如图所示,则M ∪N ={x |x <-5,或x >-3}.3.已知M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},则M ∩N 等于( D ) A .x =3,y =-1 B .(3,-1) C .{3,-1}D .{(3,-1)}[解析] ∵M ,N 均为点集,由⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1,∴M ∩N ={(3,-1)}.4.若A ={x ∈N |1≤x ≤10},B ={x ∈R |x 2+x -6=0},则图中阴影部分表示的集合为( A )A .{2}B .{3}C .{-3,2}D .{-2,3}[解析] A ={1,2,3,4,5,6,7,8,9,10},B ={-3,2},由题意可知,阴影部分为A ∩B ,A ∩B ={2}.5.集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( D ) A .{1,2,3} B .{1,2,4} C .{2,3,4}D .{1,2,3,4}[解析] A ∩B ={1,2},(A ∩B )∪C ={1,2,3,4},故选D .6.(2019·武汉市高一调研)设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( D )A .{a |-1<a ≤2}B .{a |a >2}C .{a |a ≥-1}D .{a |a >-1}[解析] 因为A ∩B ≠∅,所以集合A ,B 有公共元素,在数轴上表示出两个集合,如图所示,易知a >-1. 二、填空题7.已知集合A ={2,3},B ={2,6,8},C ={6,8},则(C ∪A )∩B =__{2,6,8}__. [解析] ∵A ∪C ={2,3}∪{6,8}={2,3,6,8}, ∴(C ∪A )∩B ={2,3,6,8}∩{2,6,8}={2,6,8}.8.若集合A ={x |3ax -1=0},B ={x |x 2-5x +4=0},且A ∪B =B ,则a 的值是__0,13,112__. [解析] 由题意知,B ={1,4},A ∪B =B ,∴A ⊆B .当a =0时,A =∅,符合题意;当a ≠0时,A =⎩⎨⎧⎭⎬⎫13a ,∴13a =1或13a =4, ∴a =13或a =112.综上,a =0,13,112.9.已知集合A ={x |x <1,或x >5},B ={x |a ≤x ≤b },且A ∪B =R ,A ∩B ={x |5<x ≤6},则2a -b =__-4__.[解析] 如图所示,可知a =1,b =6,2a -b =-4.三、解答题10.已知集合A =⎩⎨⎧x ⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3-x >0,3x +6>0,集合B ={m |3>2m -1},求A ∩B ,A ∪B .[解析] 解不等式组⎩⎪⎨⎪⎧3-x >0,3x +6>0,得-2<x <3,则A ={x |-2<x <3}.解不等式3>2m -1,得m <2,则B ={m |m <2}. 用数轴表示集合A 和B ,如图所示.则A∩B={x|-2<x<2},A∪B={x|x<3}.11.设集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},A∩B={-3},求实数a 的值.[解析]∵A∩B={-3},∴-3∈B.∵a2+1≠-3,∴a-3=-3或2a-1=-3.①若a-3=-3,则a=0,此时A={0,1,-3},B={-3,-1,1},但由于A∩B={1,-3}与已知A∩B={-3}矛盾,∴a≠0.②若2a-1=-3,则a=-1,此时A={1,0,-3},B={-4,-3,2},A∩B={-3}.综上可知a=-1.B组·素养提升一、选择题1.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=(D)A.{x|2≤x≤3} B.{x|x≤2或x≥3}C.{x|x≥3} D.{x|0<x≤2或x≥3}[解析]∵S={x|(x-2)(x-3)≥0}={x|x≤2或x≥3},且T={x|x>0},∴S∩T={x|0<x≤2或x≥3}.故选D.2.设集合A={a,b},B={a+1,5},若A∩B={2},则A∪B等于(D)A.{1,2} B.{1,5}C.{2,5} D.{1,2,5}[解析]因为A∩B={2},所以2∈A,2∈B,所以a+1=2,所以a=1,b=2,即A={1,2},B={2,5},所以A∪B={1,2,5},故选D.3.(多选题)已知集合A={2,3,4},集合A∪B={1,2,3,4,5},则集合B可能为(AD) A.{1,2,5} B.{2,3,5}C.{0,1,5} D.{1,2,3,4,5}[解析]集合A={2,3,4},A∪B={1,2,3,4,5},则B中必有元素1和5,且有元素2,3,4中的0个,1个,2个或3个都可以,AD符合.B、C错误,故选AD.4.(多选题)已知集合A ={2,4,x 2},B ={2,x },A ∪B =A ,则x 的值可以为( ABC )A .4B .0C .1D .2 [解析] ∵A ∪B =A ,∴B ⊆A .∴x ∈A ,∴x =4或x 2=x ,由x 2=x 解得x =0或1,当x =0时,A ={2,4,0},B ={2,0},满足题意.当x =1时,A ={2,4,1},B ={2,1},满足题意.当x =4时,A ={2,4,16},B ={2,4},满足题意.故选ABC .二、填空题5.已知集合A ={x |0≤x ≤a ,a >0},B ={0,1,2,3},若A ∩B 有3个真子集,则a 的取值范围是__1≤a <2__.[解析] ∵A ∩B 有3个真子集,∴A ∩B 中有2个元素,又∵A ={x |0≤x ≤a ,a >0}, ∴1≤a <2.6.设集合M ={x |-2<x <5},N ={x |2-t <x <2t +1,t ∈R },若M ∩N =N ,则实数t 的取值范围为__t ≤2__.[解析] 当2t +1≤2-t 即t ≤13时,N =∅.满足M ∩N =N ; 当2t +1>2-t 即t >13时,若M ∩N =N 应满足⎩⎪⎨⎪⎧2-t ≥-22t +1≤5,解得t ≤2.∴13<t ≤2.综上可知,实数t 的取值范围是t ≤2.7.(2019·枣庄市第八中学考试)设集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则使A ⊆(A ∩B )成立的a 的取值集合为__{a |a ≤9}__.[解析] 由A ⊆(A ∩B ),得A ⊆B ,则(1)当A =∅时,2a +1>3a -5,解得a <6.(2)当A ≠∅时,⎩⎪⎨⎪⎧ 2a +1≤3a -5,2a +1≥3,3a -5≤22,解得6≤a ≤9.综合(1)(2)可知,使A ⊆(A ∩B )成立的a 的取值集合为{a |a ≤9}.三、解答题8.已知集合M ={x |2x +6=0},集合N ={x |x 2-3x +m =0}.(1)当m =-4时,求M ∩N ,M ∪N ;(2)当M ∩N =M 时,求实数m 的值.[解析](1)M={-3}.当m=-4时,N={x|x2-3x-4=0}={-1,4},则M∩N={-3}∩{-1,4}=∅,M∪N={-3}∪{-1,4}={-3,-1,4}.(2)∵M∩N=M,∴M⊆N.由于M={-3},则-3∈N,∴-3是关于x的方程x2-3x+m=0的解,∴(-3)2-3×(-3)+m=0,解得m=-18.9.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?[解析]设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学参加课外探究小组可得(26-6-x)+6+(15-10)+4+(13-4-x)+x=36,解得x=8,即同时参加数学和化学小组的有8人.。
高中数学 1.1.3(集合的基本运算)教案 新人教A版必修1 教案
§ 集合的基本运算一. 教学目标:1. 知识与技能(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.2. 过程与方法学生通过观察和类比,借助Venn 图理解集合的基本运算.3.情感.态度与价值观(1)进一步树立数形结合的思想.(2)进一步体会类比的作用.(3)感受集合作为一种语言,在表示数学内容时的简洁和准确.重点:交集与并集,全集与补集的概念.难点:理解交集与并集的概念.符号之间的区别与联系.1.学法:学生借助Venn 图,通过观察.类比.思考.交流和讨论等,理解集合的基本运算.2.教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题问题1:我们知道,实数有加法运算。
类比实数的加法运算,集合是否也可以“相加”呢? 请同学们考察下列各个集合,你能说出集合C 与集合A .B 之间的关系吗?(1){1,3,5},{2,4,6},{1,2,3,4,5,6};A B C ===(2){|},{|},{|}A x x B x x C x x ===是理数是无理数是实数引导学生通过观察,类比.思考和交流,得出结论。
教师强调集合也有运算,这就是我们本节课所要学习的内容。
(二)研探新知—般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集. 记作:A ∪B.读作:A 并B.其含义用符号表示为:{|,}A B x x A x B =∈∈或用Venn 图表示如下:请同学们用并集运算符号表示问题1中A ,B ,C 三者之间的关系.练习.检查和反馈(1)设A={4,5,6,8),B={3,5,7,8),求A ∪B.(2)设集合A {|12},{|13},.A x x B x x AB =-<<=<<集合求让学生独立完成后,教师通过检查,进行反馈,并强调:(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次.(2)对于表示不等式解集的集合的运算,可借助数轴解题.(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A .B 与集合C 之间有什么关系?①{2,4,6,8,10},{3,5,8,12},{8};A B C ===②{|20049}.A x x =是国兴中学年月入学的高一年级女同学B={x |x 是国兴中学2004年9月入学的高一年级同学},C={x |x 是国兴中学2004年9月入学的高一年级女同学}.教师组织学生思考.讨论和交流,得出结论,从而得出交集的定义;一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集. 记作:A ∩B.读作:A 交B其含义用符号表示为:{|,}.A B x x A x B =∈∈且接着教师要求学生用Venn 图表示交集运算.(2)练习.检查和反馈①设平面内直线1l 上点的集合为1L ,直线1l 上点的集合为2L ,试用集合的运算表示1l 的位置关系.②学校里开运动会,设A={x |x 是参加一百米跑的同学},B={x |x 是参加二百米跑的同学},C={x |x 是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算A ∩B 与A ∩C 的含义.学生独立练习,教师检查,作个别指导.并对学生中存在的问题进行反馈和纠正.(三)学生自主学习,阅读理解1.教师引导学生阅读教材第11~12页中有关补集的内容,并思考回答下例问题:(1)什么叫全集?(2)补集的含义是什么?用符号如何表示它的含义?用Venn 图又表示?(3)已知集合{|38},R A x x A =≤<求.(4)设S={x |x 是至少有一组对边平行的四边形},A={x |x 是平行四边形},B={x |x 是菱形},C={x |x 是矩形},求,,A S B C B A .在学生阅读.思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生回答上述问题,并及时给予评价.(四)归纳整理,整体认识1.通过对集合的学习,同学对集合这种语言有什么感受?2.并集.交集和补集这三种集合运算有什么区别?(五)作业1.课外思考:对于集合的基本运算,你能得出哪些运算规律?2.请你举出现实生活中的一个实例,并说明其并集.交集和补集的现实含义.3.书面作业:教材第14页习题组第7题和B组第4题.。
1.1.3集合的基本运算教学设计-2023-2024学年高一上学期数学北师大版(2019)必修第一册
(2)从集合B中选出所有喜欢音乐的成员,表示为集合B与集合{“音乐”}的交集。
2. 请将以下集合的元素按照年龄从小到大的顺序排列,并写出每个集合的并集和交集:
(1)集合C = {5, 10, 15, 20},集合D = {12, 18, 22, 25}。
学生学习效果
教学反思与改进
回顾本学期的集合基本运算教学,我深感教学过程中存在的一些不足,需要在今后的教学中加以改进。
首先,在课前准备上,虽然我提前发放了预习材料,设计了预习问题,但学生在预习环节的反馈显示,他们对集合基本运算的概念理解不够深入。这让我意识到,仅仅依靠预习材料和问题是不够的,还需要在课堂上对学生进行更为细致的引导和讲解。
5. 请用集合的基本运算表示以下情景:
(1)从集合M中选出所有参加英语角的学生,表示为集合M与集合{“英语”}的交集。
(2)从集合N中选出所有未参加乒乓球比赛的学生,表示为集合N与集合{“乒乓球”}的补集的交集。
2. 数学建模:学生能够将集合的基本运算应用于实际问题中,通过建立数学模型来解决问题,培养学生的数学建模能力。
3. 直观想象:通过集合的基本运算的学习,学生能够培养直观想象能力,能够通过图形或直观的方式理解和表示集合的基本运算。
4. 数学运算:学生能够掌握集合的基本运算的方法和技巧,提高数学运算能力,能够准确、熟练地进行集合的基本运算。
提出问题或设置悬念,引发学生的好奇心和求知欲,引导学生进入集合的基本运算学习状态。
回顾旧知:
简要回顾上节课学习的集合的基本概念和运算规则,帮助学生建立知识之间的联系。
提出问题,检查学生对旧知的掌握情况,为集合的基本运算新课学习打下基础。
集合的基本运算教案-数学高一上必修1第一章1.1.3人教版
第一章集合与函数概念1.1.3 集合的基本运算1 教学目标1.1 知识与技能:[1]理解并集与交集的概念,并体会它们的区别与联系.[2]会求两个已知集合的并集和交集.[3]理解全集和补集的概念.[4]能使用Venn图表示集合的关系和运算.[5]能综合应用交、并、补三种运算进行集合间关系的研究.1.2过程与方法:[1]通过自己动手,理解并掌握交集,并集和补集的定义。
[2]通过观察、动手、推理等活动,会解决集合里的参数问题。
1.3 情感态度与价值观:[1]通过韦恩图的学习,培养学生的动手能力和识图能力。
[2]通过集合里参数问题的解决,培养学生逻辑思维。
2 教学重点/难点/易考点2.1 教学重点[1]理解并集与交集的概念,并体会它们的区别与联系.[2]会求两个已知集合的并集和交集.[3]理解全集和补集的概念.[4]能使用Venn图表示集合的关系和运算.2.2教学难点[1]能综合应用交、并、补三种运算进行集合间关系的研究.3 专家建议此节内容为集合的基本运算,并集,交集和补集。
为整个高中知识的基础题目,也是高考的必考题目。
要注意学生对定义的理解和符号的掌握,提醒学生在学习中一定要细心审题,领悟题意。
4 教学方法定义推导探究——归纳总结——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程引入新课【师】同学们好。
上节课我们学习了集合间的基本关系,这节课我们来学习集合的基本运算。
【板书】第一章集合与函数概念 1.1.3 集合的基本运算新知介绍[1]并集【师】请同学们观察下列各个集合,你能说出集合C与集合A,B之间的关系吗?(1) A={1,3,5}, B={2,4,6} ,C={1,2,3,4,5,6}(2) A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.【生】集合C是由所有属于集合A和集合B的元素组成的.【板书】1、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,即:A∪B={|,}∈∈. 记作A∪B(读作“A并B”),x x A x B用Venn图表示为:即时训练:(1)两个集合的并集中的元素就是将两个集合中的元素合在一起. ( )(2)A∪B仍是一个集合,由所有属于集合A或属于集合B的元素组成. ( )(3)若集合A和集合B有公共元素,根据集合元素的互异性,则在A∪B中仅出现一次. ( )人教版 数学教案 高一必修1 第一章 1.1.3第 3 页 共 10 页例1 设A={4,5,6,8}, B={3,5,7,8},求A ∪B.例2 设集合A ={x∣-1<x<2},集合 B ={x∣1<x<3},求A ∪B. 【总结提升】两个集合求并集,结果还是一个集合,由集合A 与B 的所有元素组成的集合,它们的公共元素在并集中只能出现一次.对于表示不等式解集的集合的运算,可借助数轴解题.[2] 交集 【师】}}}{}{}}{{{31-1,1,2,3,-2,-1,1,-1,1;23,0,03;3111.A B C A x x B x x C x x A x x B x x C x x ⎧⎧⎧⎨⎨⎨⎩⎩⎩⎧⎨⎩⎫⎬⎭⎫⎬⎭⎫⎬⎭====≤=>=<≤===观察下列各组中的个集合;()()()为高一()班语文测验优秀者,为高一()班英语测验优秀者,为高一()班语文、英语两门测验都优秀者上述三组集合中,集合A ,B 与集合C 的关系如何?你能用Venn 图表示出它们之间的关系吗?【生】集合C 中的元素既在集合A 中,又在集合B 中.各组集合均可用下图表示【师】由图形可以看出:集合C 中的每一个元素既在集合A 中,又在集合B 中。
1.1.3集合的基本运算-人教B版高中数学必修第一册(2019版)教案
1.1.3 集合的基本运算-人教B版高中数学必修第一册(2019版)教案一、教学目标1.理解集合的概念,熟练掌握集合的基本运算。
2.掌握集合的交、并运算的概念及其性质,并能够进行简单的计算。
3.了解补集、差集的概念及其运算规律,并能够综合运用。
4.学会用集合表示式表示各种集合及其运算结果。
二、教学内容1.集合的概念2.集合的元素与特征3.集合的表示方法4.集合的基本运算5.集合运算的性质和规律三、教学重点和难点3.1 教学重点1.集合的概念和基本运算。
2.集合运算的性质和规律。
3.2 教学难点1.集合元素与特征的理解和运用。
2.集合运算的综合运用。
四、教学方法1.讲授与示范相结合,双向互动。
2.注重思维训练,举一反三。
3.实例演练,动手操作。
五、教学步骤5.1 集合与元素1.引入集合的概念,通过生活中实例进行解释。
2.对集合的元素和特征进行讲解,引导学生理解。
5.2 集合的表示方法1.列举不同的表示方法,如突出法、列举法、描述法。
2.结合实例演示各种表示方法的运用。
5.3 集合的基本运算1.引出集合的交、并、补、差等基本运算。
2.解析各种基本运算的概念和特点,并提供实例进行演练。
3.引导学生进行基本运算的计算和运用。
5.4 集合运算的性质和规律1.探究集合运算的交换律、结合律、分配律等性质。
2.对集合运算规律进行讲解和演示。
3.让学生掌握集合运算的性质和规律。
5.5 集合运算综合练习1.向学生提供一定的练习题和实际问题,让其进行综合运用。
2.引导学生用集合表示式表示各种集合及其运算结果。
3.对集合运算的错误答案进行分析和纠正。
六、教学资源1.人教B版高中数学必修第一册(2019版)课本。
2.课件PPT及各种练习题。
七、教学评估1.课后给学生布置相应的练习题,对学生进行测试。
2.对学生进行课堂表现和习题的评分。
3.对本课程的教学效果进行评估,完善课程教案和改进教学内容。
八、教学反思本堂课中,我采用了多种教学方法,如讲授、示范、动手操作等方式,增强了学生的参与性和思维性。
1.1.3集合的基本运算教案
1.1.3集合的基本运算教案篇一:第一课时1.1.3集合的基本运算教案20XX-20XX学年上学期高一数学备课组教案主备课教师:邱惠彬备课组老师:篇二:高中数学1.1.3集合的基本运算教案新人教a版必修11.1.3集合的基本运算学习目标:(1)理解交集与并集的概念;(2)掌握两个较简单集合的交集、并集的求法;(3)通过对交集、并集概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程;(4)通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养成良好的学习习惯。
教学重点:交集和并集的概念教学难点:交集和并集的概念、符号之间的区别与联系合作探究展示:一、问题衔接我们知道两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P8思考题),引入并集概念。
二、新课教学1.并集一般地,由所有属于集合a或属于集合B的元素所组成的集合,称为集合a与B的并集(Union)记作:a∪B读作:“a并B”即:a∪B={x|x∈a,或x∈B}Venn图表示:说明:B的所有元素组成的集合(重复元素只看成一个元素)。
例题(P8-9例4、例5)说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。
问题:在上图中我们除了研究集合a与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合a与B的交集。
2.交集一般地,由属于集合a且属于集合B的元素所组成的集合,叫做集合a与B的交集(intersection)。
记作:a∩B读作:“a交B”即:a∩B={x|∈a,且x∈B}交集的Venn 图表示1说明:两个集合求交集,结果还是一个集合,是由集合a与B的公共元素组成的集合。
例题(P9-10例6、例7)拓展:求下列各图中集合a与B的并集与交集a集3.探索研究a∩B?a,a∩B?B,a∩a=a,a∩?=?,a∩B=B∩aa?a∪B,B?a∪B,a∪a=a,a∪?=a,a∪B=B∪a三、归纳小结(略)四、作业布置书面作业:P12习题1.1,第6-8题拓展提高:题型一已知集合的交集、并集求参数问题22例1已知集合a?a,a?1,?3,B?a?3,2a?1,a?1,若a?B???3?,???2?求实数a解:∵a?B???3?,∴?3?B,而a?1??3,∴当a?3??3,a?0,a??0,1,?3?,B???3,?1,1?,这样a?B???3,1?与a?B???3?矛盾;当2a?1??3,a??1,符合a?B???3?∴a??1练习1已知集合a??4,2a?1,a,B??a?5,1?a,9?,若a?B??9?,求a的值2??答案a=-3例2.已知a?x2a?x?a?3,B?xx??1或x?5,若a?B??,求a的取值范围.解(1)若a??,由a?B??,此时2a?a?3?a?32????a??,由a?B??,(2)若?2a??11???a?3?5解得??a?22?2a?a?3?综上所述,a的取值范围是?a????1?a?2或a?3?.2?练习2上题中若a?B?R,求a的取值范围。
高中数学:1.1.3《集合的基本运算》全集与补集 教学案(新人教A版必修1)
1.1.3集合的基本运算(全集、补集)【教学目标】1、了解全集的意义,理解补集的概念.2、能用韦恩图表达集合的关系及运算,体会直观图示对理解抽象概念的作用3、进一步体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力。
【教学重难点】教学重点:会求给定子集的补集。
教学难点:会求给定子集的补集。
【教学过程】(一)复习集合的概念、子集的概念、集合相等的概念;两集合的交集,并集.(二)教学过程一、情景导入观察下面两个图的阴影部分,它们同集合A 、集合B 有什么关系?二、检查预习1、在给定的问题中,若研究的所有集合都是某一给定集合的子集,那么称这个给定的集合为 .2、若A 是全集U 的子集,由U 中不属于A 的元素构成的集合,叫做 ,记作 。
三、合作交流Φ=⋂A C A U ,U A C A U =⋃,A A C C U U =)(B C A C B A C U U U ⋂=⋃)(,B C A C B A C U U U ⋃=⋂)(注:是否给出证明应根据学生的基础而定.四、精讲精练例⒈设U={2,4,3-a 2},P={2,a 2+2-a },CU P={-1},求a . 解:∵-1∈CU P∴-1∈U∴3-a 2=-1得a =±2.当a =2时,P={2,4}满足题意.当a =-2时,P={2,8},8∉U舍去.因此a =2.[点评]由集合、补集、全集三者关系进行分析,特别注意集合元素的互异性,所以解题时不要忘记检验,防止产生增解。
变式训练一:已知A={0,2,4,6},CS A={-1,-3,1,3},CS B={-1,0,2},用列举法写出集合B.解:∵A={0,2,4,6},CS A={-1,-3,1,3}∴S={-3,-1,0,1,2,3,4,6}又CS B={-1,0,2} ∴B={-3,1,3,4,6}.例⒉设全集U=R,A={x|3m-1<x<2m},B={x|-1<x<3},B⊂≠CU A,求m的取值范围.解:由条件知,若A=Φ,则3m-1≥2m即m≥1,适合题意;若A≠Φ,即m<1时,CU A={x|x≥2m或x≤3m-1},则应有-1≥2m即m≤-21; 或3m-1≥3即m≥43与m<1矛盾,舍去. 综上可知:m的取值范围是m≥1或m≤-21. 变式训练二:设全集U={1,2,3,4},且A={x|x2-mx+n=0,x∈U},若CU A={2,3},求m,n的值.解:∵U={1,2,3,4},CU A={2,3}∴A={1,4}.∴1,4是方程x2-mx+n=0的两根.∴m=1+4=5,n=1×4=4.【板书设计】一、 基础知识1. 全集与补集2. 全集与补集的性质二、 典型例题例1: 例2:小结:【作业布置】本节课学案预习下一节。
高中数学1.1.3集合的基本运算教案新必修1
1.1.3 集合间的基本运算教学目标:1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;3.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用;4.认识由具体到抽象的思维过程,并树立相对的观点。
教学重点:交集与并集概念、补集的概念、数形结合的运用。
教学难点:理解交集与并集概念、符号之间的区别与联系,补集的有关运算教学方法:发现式教学法教学过程:(I)复习回顾⊆与A=B的意义;问题1: (1)分别说明A B(2)说出集合{1,2,3}的子集、真子集个数及表示;(II)讲授新课图1—5(1)给出了两个集合A、B;图(2)阴影部分是A与B公共部分;图(3)阴影部分是由A、B组成;图(4)集合A是集合B的真子集;图(5)集合B是集合A的真子集;指出:图(2)阴影部分叫集合A与B的交集;图(3)阴影部分叫集合A与B的并集.的公共部分,记作4.例题解析 (师生共同活动)∩∪B={x|-1<x<2}图1—3阴影部分即表示A 在U 中补集C U A 。
7.举例说明12,(III )课堂练习:(1)课本P 12练习1—5;(2)补充练习:1.已知M={1},N={1,2},设A={(x ,y )|x ∈M ,y ∈N},B={(x ,y )|x ∈N ,y ∈M},求A ∩B ,A ∪B 。
[A ∩B={(1,1)},A ∪B={(1,1),(1,2),(2,1)}]2.已知集合M ⊆{4,7,8},且M 中至多有一个偶数,则这样的集合共有( );A 3个B 4个C 6个 D5个3.设集合A={-1,1}, B={x|x 2-2ax+b=0}, 若B ∅≠, 且B A ⊆, 求a, b 的值。
(IV) 课时小结1.在并交问题求解过程中,充分利用数轴、文恩图。
2.能熟练求解一个给定集合的补集;3.注重一些特殊结论在以后解题中应用。
北师大版高中数学必修一1.3集合的基本运算教学设计
1.1.3集合的基本运算课时教学三维目标一、知识与技能1.理解并集、交集的概念和意义.2.掌握有关集合并集、交集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.3.掌握两个较简单集合的并集、交集的求法.二、过程与方法1.自主学习,了解并集、交集来源于生活、服务于生活,又高于生活.2.通过对并集、交集概念的讲解,培养学生观察、比较、分析、概括等能力,使学生认识由具体到抽象的思维过程.3.探究数学符号化表示问题的简洁美.三、情感态度与价值观认识共性存在于个性之间,“并”能够产生特殊的集体,有包容现象,小集体可合成大集体.教学教学重点并集、交集的概念.教学难点并集、交集的概念、符号之间的区别与联系.教具准备投影仪、打印好的材料.教学流程一、创设情景,引入新课师:同学们,今天我们来做一些统计,符合条件的同学请举手.第一项统计:“我班45名同学中爱好数学的同学请举手”(喜欢数学的同学举起了手).师:我们可以用集合A来表示我班45名同学中爱好数学的同学.第二项统计:请爱好物理的同学举手”(喜欢物理的同学举起了手).师:我们可以用集合B来表示我班45名同学中爱好物理的同学.师:第三项统计:请我班同学中爱好数学或爱好物理的同学举手(喜欢数学或喜欢物理的同学举起了手).师:同样,我们可以用集合C来表示我班45名同学中喜欢数学或喜欢物理的同学.上面的描述我们可以用图来表示,我们看下图(用投影仪打出).我班喜欢数学的同学我班喜欢物理的同学A B师:图中的阴影部分表示什么?生:我班喜欢数学或喜欢物理的同学,即刚才所说的集合C.二、讲解新课1.并集(问题1)师:大家说得很对,就是集合C,试问这个新集合中的元素与集合A、B的元素有何关系?生:它的元素属于集合A 或属于集合B .师:对!我们把所有属于集合A 或属于集合B 的元素构成的集合,称为A 与B 的并集.由此引入并集的概念.(问题2)那么你能用适当的方法将A U B 表示出来吗?生:描述法:A ∪B ={x |x ∈A 或x ∈B }图示法师:并集定义的数学表达式中“或”字的意义应引起注意,用它连接的并列成分之间不一定是互相排斥的。
1.3集合的基本运算教学设计-2023-2024学年高一上学期数学北师大版(2019)必修第一册
-补集性质:∁(A ∩ B) = ∁A ∪ ∁B
4.集合运算的应用
-实际问题转化
-韦恩图表示
5.集合运算的扩展
-多集合运算
-逻辑运算对应
板书设计以清晰的结构呈现,左侧为主要概念和运算符号,右侧为对应的性质和应用。重点内容用不同颜色粉笔标出,如交集、并集、补集的定义和性质。通过简洁明了的布局,突出集合运算的重点和难点,同时保留一定的空间用于课堂上的补充和例题展示。
为了检验大家对集合运算的理解,下面提供一些练习题:
1.判断题:
a.如果A ∩ B = A,那么B必须包含A。()
b.任何集合的并集与它的补集的交集是空集。()
c.全集的补集是空集。()
2.选择题:
d.设A = {x | x是偶数},B = {x | x是整数},那么A ∩ B等于()
A. A
B. B
在课堂讨论环节,我鼓励学生分享自己的解题思路,培养学生的表达能力和合作精神。同时,我注意观察学生的课堂表现,针对学生在解题过程中遇到的困难,及时给予指导,确保每位学生都能跟上教学进度。
然而,在教学过程中,我也发现了一些问题。部分学生对集合运算的概念理解不够深入,导致在实际应用中出现错误。为此,我将在今后的教学中,进一步强化概念讲解,设计更多贴近生活的实例,帮助学生更好地理解和运用集合运算。同时,我还将关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。
**解答:**
∁A = {2, 4}
**例题3:**已知集合A = {x | x是正整数},集合B = {x | x是偶数},求A ∩ B和A ∪ B。
**解答:**
A ∩ B = B
A ∪ B = A
高中数学人教A版必修1《1.1.3集合的基本运算》教案5
必修一集合的基本运算教案教学内容:人教版普通高中课程标准实验教科书数学必修一第一章 1.1.3,教材9~12页。
教学目标:1、让学生清楚把握并集、交集、补集的概念。
2、让学生把握如何求出并集、交集、补集。
3、让学生能清楚区分并集、交集、补集,并把握它们之间的关系。
4、培养学生的类比迁移的数学方法,提高学生学习的兴趣。
教学重点:让学生把握如何求出并集、交集、补集。
教学难点:能用图示法表示出集合的关系,能从图示中看出集合的关系。
教学用具:多媒体教学过程:一、导入:同学们,我们之前学习过了数的运算,那么我们的集合是否也具备一些运算呢?好,那我们今天就来研究一下集合的基本运算。
二、新授:1、并集我们知道,实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?考察下面的集合,你能说出集合C与集合A、B之前的关系吗?(1)A=﹛x|x是有理数﹜B=﹛x|x是无理数﹜C=﹛x|x是实数﹜(2)A=﹛1、3、5﹜B=﹛2、4、6﹜C=﹛1、2、3、4、5、6﹜让学生根据这个问题各抒己见,教师根据学生的回答,适时引入并集的概念。
同学们,刚才你们发现A和B相加就是C,我们还可以得到这样一种关系:集合C是有所有属于集合A或属于集合B的元素组成,那么像这样由所有属于集合A或集合B的元素组成的集合,我们称为A与B的并集,记做:A∪B,读作:A并B即A∪B=﹛x|x∈A或x∈B﹜韦恩图表示为那么像刚才我们引入的题目我们就可以有C=A∪B又C=A∪B同学们能不能得出它们的另一个关系呢?A⊆C、B⊆C教师讲解例4、例5例4教师向学生提问A∪B=﹛4、5、6、8、3、5、7、8﹜对不对?为什么不对?(让学生对前面学习集合元素的互异性进行巩固,让学生明白并集并不是两个集合的简单相加)例5让学生清楚用数轴表示出集合,并能从数轴上看出集合的并集A∪A=A A∪空集=A ?2、交集考察下面问题,集合A、B与集合C之间有什么关系?(1)A=﹛2、4、6、8、10﹜ B=﹛3、5、8、12﹜C=﹛8﹜(2)A=﹛x|x是新华中学2004年9月在校的女同学﹜B=﹛x|x是新华中学2004年9月在校的高一年级同学﹜C=﹛x|x是新华中学2004年9月在校的高一年级女同学﹜让学生根据这个问题各抒己见,教师根据学生的回答,适时引入交集的概念。
高一数学人教A版必修1教案:1.1.3集合的基本运算教学设计(师)
1.1.3集合的基本运算教学设计(师)教学目的:知识与技能:1、理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集;3、能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
过程与方法:针对具体实例,通过类比实数间的加法运算引入了集合间“并”的运算,并在此基础上进一步扩展到集合的“交”的运算和“补”的运算。
类比方法的使用体现了知识之间的联系,渗透了数学学习的方法。
情感、态度与价值观:1、类比方法让学生体会知识间的联系;2、Venn图表达集合运算让学生体会数形结合思想方法的应用对理解抽象概念的作用;3、通过集合运算的学习逐渐发展学生使用集合语言进行交流的能力。
教学重点:集合的交集与并集、补集的概念;教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;教学过程:一、复习回顾:1:什么叫集合A是集合B的子集?2:关于子集、集合相等和空集,有哪些性质?(1) .A A ⊆;(2) 若A B ⊆,且B A ⊆,则.A B =;(3) 若,,A B B C ⊆⊆则C A ⊆;(4) A ∅⊆.二、创设情境,新课引入问:实数有加法运算,两个集合是否也可以相加呢?考察下列各个集合,你能说出集合C 与集合A ,B 之间的关系吗?(1){}{}{}6,5,4,3,2,1,6,4,2,5,3,1===C B A ; (2){}是有理数x x A =,{}是无理数x x B =,{}是实数x x C =.学生讨论并引出新课题.三、师生互动,新课讲解:1、并集一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集(Union )记作:A ∪B 读作:“A 并B ”即: A ∪B={x|x ∈A ,或x ∈B}例1:(1)设A={4,5,6,8},B={3,5,7,8},求:A ∪B 。
(2)设集合A={x|-1<x<2},集合B={x|1<x<3},求:A ∪B 。
高一数学1.1.3集合的基本运算(二)教案
高一数学1.1.3集合的基本运算(二)教案【课型】新授课【教学目标】(1)掌握交集与并集的区别,了解全集、补集的意义,(2)正确理解补集的概念,正确理解符号“”的涵义;(3)会求已知全集的补集,并能正确应用它们解决一些具体问题。
【教学重点】补集的有关运算及数轴的应用。
【教学难点】补集的概念。
【教学过程】一、复习回顾:1.提问:.什么叫子集、真子集、集合相等?符号分别是怎样的?2.提问:什么叫交集、并集?符号语言如何表示?3.交集和补集的有关运算结论有哪些?4.讨论:已知A={x|x+3>0},B={x|x≤-3},则A、B与R有何关系?说明:不等式的交、并、补集的运算,用数轴进行分析,注意端点。
例2:全集U={x|x<10,x∈N},AU,BU,且(CB)∩A={1,9},A∩B={3},(CA)∩(CB)={4,6,7},求A、B。
说明:列举法表示的数集问题用Venn图示法、观察法。
高一数学1.1.3集合的基本运算(二)教案(二)集合性质的运用:例3:A={x|x+4x=0},B={x|x+2(a+1)x+a-1=0}, 若A∪B=A,求实数a的值。
说明:注意B为空集可能性;一元二次方程已知根时,用代入法、韦达定理,要注意判别式。
例4:已知集合A={x|x>6或x<-3},B={x|a<x<a+3},若A∪B=A,求实数a的取值范围。
(三)巩固练习:1.已知A={x|-2<x<-1或x>1},A∪B={x|x+2>0},A∩B={x|1<x≦3},求集合B。
2.P={0,1},M={x|xP},则P与M的关系是。
3.已知50名同学参加跳远和铅球两项测验,分别及格人数为40、31人,两项均不及格的为4人,那么两项都及格的为人。
4.满足关系{1,2}A{1,2,3,4,5}的集合A共有个。
5.已知集合A∪B={x|x<8,x∈N},A={1,3,5,6},A∩B={1,5,6},则B的子集的集合一共有多少个元素?6.已知A={1,2,a},B={1,a},A∪B={1,2,a},求所有可能的a值。
高中数学必修一《集合的基本运算》优秀教学设计
集合的基本运算并集一.教材分析我校选用的是人教A版的《普通高中课程标准实验教科书数学1》,课程为第一章《集合与函数的定义》中1.1.3节《集合的基本运算》中并集的内容,一个课时。
并集是在学习集合定义以及集合的性质之后学到的,它对日后学习研究函数的定义域、值域、单调区间等内容起到知识储备作用。
教材内容的分析:1.在教材内容上,教材通过“思考”小栏目设置的问题,引出并集的定义,通过图形即Venn图和数轴对定义进行了直观的描述。
2.在内容的编排上,教材把并集、交集、全集和补集归入集合的基本运算中。
3.在习题的安排顺序上,教材是在学完知识点后才安排习题。
4.在重难点上,人教版教材主要着重于理解两个集合的并集的含义,会求两个简单集合的并集,能使用Venn图表达集合的关系及运算,对集合的并集运算提出了更具体的要求,强调了Venn图的应用,教材中注重三种语言即文字语言、符号语言、图形语言的相互转化。
优点:1.提出一道类比实数加法的思考题,通过学生思考,把抽象的问题具体化,更能体现学生的主体作用。
2.从整体上看,新教材内容显得清晰明确,有条理,体现了并集其实就是集合的一种基本运算的思想。
3.教学内容、知识量少且简单,减轻学生的学习负担,同时留给学生更大的自主学习空间,但对老师引导学生思考的要求更高。
缺点:1.例题和习题的安排不够合理。
教材这样安排不能立即加强学生对知识的巩固,不能及时的反馈学生对知识的了解情况。
2.不能够以一般到特殊的方法,体现出并集的几个比较重要的性质(A B B A =;A A A = ;A A =∅ ;B A B B A A ⊆⊆,;如果A B ⊆,那么A B A = )。
二.学情分析:1.思维特征和生理特征:高一学生好动,注意力易分散,抽象思维能力较弱,爱发表见解,希望得到老师的表扬等。
2.知识掌握上:学生在之前已经学习了集合的定义,对集合间的基本关系已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但在理解集合间的基本运算上,学生可能会遇到一定的困难,所以教学过程中应予以直观明了,深入浅出的分析。
整合 人教A版高中数学必修一 1-1-3集合的基本运算 教
1.1.3集合的基本运算教学设计教学目的: 知识与技能:1、理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集;3、能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
过程与方法:针对具体实例,通过类比实数间的加法运算引入了集合间“并”的运算,并在此基础上进一步扩展到集合的“交”的运算和“补”的运算。
类比方法的使用体现了知识之间的联系,渗透了数学学习的方法。
情感、态度与价值观:1、类比方法让学生体会知识间的联系;2、Venn 图表达集合运算让学生体会数形结合思想方法的应用对理解抽象概念的作用;3、通过集合运算的学习逐渐发展学生使用集合语言进行交流的能力。
教学重点:集合的交集与并集、补集的概念;教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”; 教学过程: 一、复习回顾:1:什么叫集合A 是集合B 的子集?2:关于子集、集合相等和空集,有哪些性质? (1) .A A ⊆;(2) 若A B ⊆,且B A ⊆,则.A B =; (3) 若,,A B B C ⊆⊆则C A ⊆; (4) A ∅⊆. 二、创设情境,新课引入问:实数有加法运算,两个集合是否也可以相加呢?考察下列各个集合,你能说出集合C 与集合A ,B 之间的关系吗?(1){}{}{}6,5,4,3,2,1,6,4,2,5,3,1===C B A ; (2){}是有理数x x A =,{}是无理数x x B =,{}是实数x x C =.学生讨论并引出新课题.三、师生互动,新课讲解:1、并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B读作:“A并B”即: A∪B={x|x∈A,或x∈B}例1:(1)设A={4,5,6,8},B={3,5,7,8},求:A∪B。
(2)设集合A={x|-1<x<2},集合B={x|1<x<3},求:A∪B。
教学设计1:1.3 集合的基本运算
1.3集合的基本运算教材分析本节是新人教A版高中数学必修1第1章第1节第3部分的内容。
在此之前,学生已学习了集合的含义以及集合与集合之间的基本关系,这为学习本节内容打下了基础。
本节内容主要介绍集合的基本运算一并集、交集、补集。
是对集合基木知识的深入研究。
在此,通过适当的问题情境,使学生感受、认识并掌握集合的三种基本运算。
本节内容是函数、方程、不等式的基础,在教材中起着承上启下的作用。
本节内容是高中数学的主要内容,也是高考的对象,在实践中应用广泛,是高中学生必须掌握的重点。
教学目标与核心素养教学重难点1.教学重点:交集、并集、补集的运算;2.教学难点:交集、并集、补集的运算性质及应用,符号之间的区别与联系。
课前准备:多媒体.教学过程(2)“或”的理解:三层含义:的并集。
与是的所有元素组成的集合,,由且。
即:又属于元素既属于但。
即:但不属于元素属于但。
即:但不属于元素属于B A B A B x A x B A A x B x x A B B x A x x B A 321}{.3},{.2},{.1⋂=∈∈∉∈∉∈(3)思考:下列关系式成立吗? ①=AA A ; ②ϕ=A A .【答案】成立(4)思考:若⊆,A B ,则A ∪B 与B 有什么关系? 【答案】 ⊆=若,A B A B B.3.典型例题例1 设A ={4,5,6,8},B ={3,5,7,8},求AUB .}8,7,6,5,4,3{}8,7,5,3{}8,6,5,4{== B A 解:例2 设集合A ={x |-1<x <2},B ={x |1<x <3}, 求A ∪B . 解:A ∪B ={x |-1<x <3} .注意:由不等式给出的集合,研究包含关系或进行运算,常用数轴. 探究二 交集的含义1.思考:考察下面的问题,集合C 与集合A 、B 之间有什么关系吗?(1) A ={2,4,6,8,10}, B ={3,5,8,12}, C ={8}. (2)A ={x |x 是立德中学今年在校的女同学}, B ={x |x 是立德中学今年在校的高一年级同学}, C ={x |x 是立德中学今年在校的高一年级女同学}.【答案】 集合C 是由那些既属于集合A 且又属于集合B 的所有元B.A B就是立德中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合.所以,A B=高比赛的同学}思考:下列关系式成立吗?=A Aϕϕ=.【答案】成立探究三:补集的概念在研究问题时,我们经常需要研究对象的范围,在不同范围研究同一问题,可能有不同的结果.B4{}=<)B x x .()U C A 2)ϕ=()U A C A. {0,1,2,3},集合,则A ∩B =(A.(2,3) B.[-1,5] C.(-1,5) D.(-1,5]【解析】∵集合A={x|-1≤x<3},B={x|2<x≤5},∴A∪B={-1≤x≤5}.故选B.【答案】B3.已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=() A.{-2,1}B.{-2}C.{-1,0,1} D.{0,1}【解析】因为集合A={x|x>-1},所以∁R A={x|x≤-1},则(∁R A)∩B ={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.【答案】A4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∁U A={x|2≤x≤5},则a=________.【解析】∵A={x|1≤x<a},∁U A={x|2≤x≤5},∴A∪(∁U A)=U={x|1≤x≤5},且A∩(∁U A)=∅,因此a=2.【答案】25.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<3或x≥7},求:(1)A∪B;(2)C∩B.解:(1)由集合A={x|3≤x<7},B={x|2<x<10},把两集合表示在数轴上如图所示:得到A∪B={x|2<x<10}.(2)由集合B={x|2<x<10},C={x|x<3或x≥7},则C∩B={x|2<x<3或7≤x<10}.四、小结教学反思这节课的教学设计始终以《新课标》的基本理念为指导,师生互动,生生互动,充分体现学生在教学活动的主体地位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:§1.1.3集合的基本运算
教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能
交集的Venn图表示
说明:补集的概念必须要有全集的限制
例题(P12例8、例9)
4.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集
的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发
去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。
5.集合基本运算的一些结论:
A∩B⊆A,A∩B⊆B,A∩A=A,A∩∅=∅,A∩B=B∩A。