导数综合学生版

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数综合

一、单选题

1.已知函数33y x x c =-+的图象与x 轴恰有两个公共点,则c = A .2-或2

B .9-或3

C .1-或1

D .3-或1

2.设函数()(21)x

f x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得

0()0f x <,则a 的取值范围是( )

A .3,12e ⎡⎫

-

⎪⎢⎣⎭

B .33,2e 4⎡⎫

-⎪⎢⎣⎭

C .33,2e 4⎡⎫⎪⎢⎣⎭

D .3,12e ⎡⎫

⎪⎢

⎣⎭

3.已知a R ∈,设函数222,1,

()ln ,

1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R

上恒成立,则a 的取值范围为( ) A .[]0,1

B .[]0,2

C .[]0,e

D .[]1,e

4.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a= ( ) A .0

B .1

C .2

D .3

5.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为3

1812343

y x x =-

+-,则使该生产厂家获得最大年利润的年产量为 A .13万件 B .11万件 C .9万件

D .7万件

6.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]--

B .9

[6,]8

--

C .[6,2]--

D .[4,3]--

7.在同一直角坐标系中,函数()2

23222

a

y ax x y a x ax x a a R 与=-+=-++∈的图像不可能的是( )

A .

B .

C .

D .

8.已知函数2e (),()212x

f x

g x x x a x

==-++-,若12,(0,)x x ∀∈+∞,都有

()()12f x g x ≥恒成立,则实数a 的取值范围为( )

A .(,)e -∞

B .(,e]-∞

C .,

2

e ⎛⎤-∞ ⎥⎝

D .,

2

e ⎛

⎫-∞ ⎪⎝

二、填空题

9.已知函数f (x )=e x -2x+a 有零点,则a 的取值范围是___________. 10.函数x y xe =在其极值点处的切线方程为____________. 11.在平面直角坐标系xoy 中,若曲线2b

y ax x

=+

(,a b 为常数)过点()2,5P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += .

12.若函数3()3ln f x m x x =-+在1,e e ⎡⎤⎢⎥⎣⎦

上有两个不同的零点,则实数m 的取值范

围为_________.

三、解答题

13.已知函数()()ln f x x a x a R =-∈ (1)当0a >时,求函数()f x 的单调区间; (2)谈论函数()f x 的零点个数

14.已知函数()x x b e f x a =++的图像在点(0,(0))f 处的切线方程为210x y -+=. (1)求()f x 的表达式;

(2)当0x >时,2

()1f x x mx ≥++恒成立,求m 的取值范围.

15.若函数f(x)=ax 2−2ax −2ln(x −1)(a ∈R). (Ⅰ)讨论函数f (x )的单调性;

(Ⅱ)若f (x )在(1,2]上存在两个零点,求a 的取值范围.

相关文档
最新文档