电力电子课程设计---单相桥式晶闸管有源逆变电路设计
实验四 单相桥式有源逆变电路
3.电感的值可根据需要选择,需防止过大的电感造成可 控硅不能导通。
4.NMCL—36面板的锯齿波触发脉冲需导线连到NMCL-33 面板,应注意连线不可接错,否则易造成损坏可控硅。同 时,需要注意同步电压的相位,若出现可控硅移相范围太 小(正常范围约30°~180°),可尝试改变同步电压极
性。
5.逆变变压器采用NMCL—35组式变压器,原边为220V, 副边为110V。 6.示波器的两根地线由于同外壳相连,必须注意需接等电 位,否则易造成短路事故。
电力电子技术实验
实验四 单相桥式有源逆变 电路实验
实验四 单相桥式有源逆变电路实验
一.实验目的
1.加深理解单相桥式有源逆变的工作原理,
掌握有源逆变条件。
2.了解产生逆变颠覆现象的原因。
二、实验内容 1.单相桥式有源逆变电路的波形观察。 பைடு நூலகம்.有源逆变到整流过渡过程的观察。
三、实验设备及仪器
1.教学实验台主控制屏 3.NMCL—36组件 5.NMCL—35组件 2.NMCL—33组件
单相桥式有源逆变电路(主电路接线)
单相桥式有源逆变电路(控制电路接线)
五、注意事项
1.实验中触发脉冲来自NMCL—36挂箱,故NMCL-33的
内部触发脉冲需断开,以免造成误触发。
2.电阻RP的调节需注意。若电阻过小,会出现电流过大 造成过流保护动作(熔断丝烧断,或仪表告警);若电阻 过大,则可能流过可控硅的电流小于其维持电流,造成可 控硅时断时续。
4.MEL—03A组件 6.NMCL—31组件
7.双踪示波器(自备) 8.万用表(自备)
四、实验 线路及原理 NMCL—33的整流二极管VD1~VD6组成三相 不控整流桥作为逆变桥的直流电源,逆变变压器采 用NMCL—35组式变压器,回路中接入电感L及限
电力电子课程设计单相全桥逆变电路
课程设计指导教师评定成绩表指导教师评定成绩:指导教师签名:年月日重庆大学本科学生课程设计任务书说明:学院、专业、年级均填全称,如:光电工程学院、测控技术、2003。
摘要本次课程设计的主要目的是设计一个输出电压可调的串联谐振单向全桥逆变电路,然后可以用于对工件的感应加热、感应加热电源等方面。
本次设计的单相全桥逆变电路由四只晶闸管构成,将直流电压Ud 逆变为中频方波电压,并将它加到负载电路。
负载电路是由感应线圈和补偿电容组成的串联振荡电路,对工件进行感应加热,通过电感的电流接近正弦波形。
而晶闸管的导通,则由TCA785组成的触发电路产生的触发脉冲来触发其导通。
通过移相方式来调节主电路输出电压脉冲的宽度。
由于晶闸管逆变装置在逆变过程中会产生过电压、过电流,故又对单相交流调压电路设计了一套保护电路。
在进行主电路的设计时,根据主电路的输入、输出参数来确定各个电力电子器件的参数,并进行器件的选择,以使设计的主电路能够达到要求的技术指标,并完成相应的功能。
关键词:单相全桥逆变电路、晶闸管、触发电路、保护电路、电压累加目录1引言 (1)1.1问题的提出 (1)1.2技术指标和设计要求 (1)1.2.1 技术指标 (1)1.2.2 设计要求 (1)2串联谐振单相全桥逆变电路的设计 (1)2.1主电路及其工作原理 (1)2.2串联谐振逆变电路的电压累加 (3)3主电路电力电子器件参数的计算 (6)3.1主电路电阻、电容、电感的取值 (6)3.2晶闸管额定值的计算 (7)4触发电路的设计 (8)5保护电路的设计 (10)5.1过电压保护 (10)5.1过电流保护 (10)6总结 (11)7心得体会 (11)参考文献 (12)1引言1.1 问题的提出随着工厂对工件加热设备的温度控制精度不断提高,普通的加热设备已经不能满足要求。
因此,就需要对设备的加热原理进行改进。
本次设计的串联谐振单相全桥逆变电路的负载电路是由感应线圈和补偿电容组成的串联振荡电路,对工件进行感应加热,其功能与一般的单相全桥逆变电路有所不同,而且它的触发电路与其他电路的触发电路相比起来,有更优良的性能,达到对晶闸管通断的更好控制。
单相桥式有源逆变线路
课程设计任务书前言电力电子学,又称功率电子学(Power Electronics)。
它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。
它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。
电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。
随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。
但是晶杂管相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因素很低。
把逆变电路中的SPWM控制技术用于整流电路,就构成了PWM整流电路。
通过对PWM整流电路的适当控制,可以使其输入电流非常接近正弦波,且和输入电压同相位,功率因素近似为1。
这种整流电路称为高功率因素整流器,它具有广泛的应用前景由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。
故其学习方法与电子技术和控制技术有很多相似之处,因此要学好这门课就必须做好实验和课程设计,因而我们进行了此次课程设计。
又因为整流电路应用非常广泛,而锯齿波移相触发三相晶闸管全控整流电路又有利于夯实基础,故我们单结晶体管触发的单相晶闸管全控整流电路这一课题作为这一课程的课程设计的课题。
目录1.封面2.课程设计任务书3.前言4.目录1.课程设计的目的1.单相桥式有源逆变电路1.1有源逆变概述1.2逆变电路的分类1.21单相桥式有源逆变的工作原理1.2.2工作原理1.2.3逆变产生的条件1.2.4逆变失败(逆变颠覆)的原因1.2.5最小逆变角的限制2.单相桥式有源逆变电路的设计2.1元器件的选择2.2整流电路的选择2.3保护系统的设计3.单相桥式有源逆变的设计以及仿真图4.总结5.对本次课程设计的体会和建议参考文献致谢课程设计的目的加深理解单相桥式全控整流及逆变电路的工作原理;究单相桥式变流电路由整流切换到逆变的全过程,掌握实现有源逆变的条件;握产生逆变颠覆的原因及预防方法。
电力电子课程设计单相桥式
我的设计任务书设计题目:基于单相桥式全控整流电路的可逆直流电力拖动系统设计条件:(1)电网:380V,50Hz(2)直流电动机额定功率17Kw、额定电压220V、额定电流90A、额定转速1500r/min。
(3)变压器漏感:0.5mH设计任务:(1)晶闸管的选型。
(2)电源变压器参数的计算。
(3)平波电抗器的计算。
(4)控制角移相范围的计算。
(5)最小逆变角的计算。
(6)主电路图的设计设计要求:(1)根据设计条件计算晶闸管可能流过的最大有效电流,选择晶闸管额定电流。
(2)分析晶闸管可能承受到的最大正向、反向电压,选择晶闸管的额定电压。
(3)电源变压器变比,容量的计算。
(4)计算平波电抗器的电感值,保证电流连续。
(5)根据设计条件,计算换相重叠角,最小逆变角以及最小控制角,取得控制角移相范围。
(6)画出完整的主电路图。
提示:(1)最大负载平均电流应当在电动机额定电流的1.5倍~2倍之间选择,自选。
(2)负载电流可近似认为是一条水平直线,即:负载电流就是平均电流。
(3)平波电抗器的计算见第2章第2节。
(4)第4章第3节给出了最小逆变角计算方法,注意最小逆变角与最小控制角之间的关系。
最小控制角的选择:在正确的原则下自选。
(5)变压器变比选择时要注意:考虑到最小控制角的限制,以及换相压降的影响,整流器实际输出电压不可能达到理论最大值,因此变压器2次侧电压的有效值要留出足够的裕量,以保证电动机能够运行到最大转速。
注意:(1)每一步都必须给出具体的计算过程和分析过程。
(2)可用波形图配合说明计算过程。
单相桥式逆变器课程设计
单相桥式逆变器课程设计一、课程目标知识目标:1. 学生能理解单相桥式逆变器的基本工作原理及其在电力电子技术中的应用;2. 学生能掌握单相桥式逆变器的主电路构成、控制方式及各部分功能;3. 学生能了解单相桥式逆变器在新能源发电、电动汽车等领域的应用。
技能目标:1. 学生能运用所学知识,分析并解决单相桥式逆变器在实际应用中出现的问题;2. 学生能通过实验,掌握单相桥式逆变器的调试方法,提高实际操作能力;3. 学生能运用相关软件,设计简单的单相桥式逆变器控制系统。
情感态度价值观目标:1. 学生通过学习单相桥式逆变器,培养对电力电子技术的研究兴趣,增强科技创新意识;2. 学生在学习过程中,树立团队合作意识,提高沟通与协作能力;3. 学生关注新能源技术的发展,认识到电力电子技术在节能减排中的重要性,增强环保意识。
课程性质:本课程为电子技术专业课程,旨在让学生掌握单相桥式逆变器的工作原理和应用,培养实际操作能力和创新能力。
学生特点:学生具备一定的电子技术基础,对电力电子技术有一定了解,但对单相桥式逆变器的深入学习尚属首次。
教学要求:结合学生特点,注重理论与实践相结合,充分调动学生的主观能动性,培养实际操作能力和创新能力。
在教学过程中,关注学生的个体差异,因材施教,确保课程目标的实现。
二、教学内容1. 单相桥式逆变器的基本原理及电路构成- 逆变器的基本概念和工作原理- 单相桥式逆变器的主电路及其各部分功能- 单相桥式逆变器的控制方式2. 单相桥式逆变器的应用领域- 在新能源发电领域的应用- 在电动汽车领域的应用- 在其他电力电子设备中的应用3. 单相桥式逆变器的设计与调试- 逆变器主电路参数计算与选择- 控制策略及电路设计- 调试方法及注意事项4. 实践操作与案例分析- 实验室实践操作,熟悉逆变器的基本操作和调试方法- 分析实际应用中单相桥式逆变器的问题及解决方案- 设计简单的单相桥式逆变器控制系统教学大纲安排:第一周:逆变器基本原理及电路构成第二周:单相桥式逆变器控制方式第三周:单相桥式逆变器应用领域第四周:单相桥式逆变器设计与调试方法第五周:实践操作与案例分析教学内容与教材关联性:本教学内容紧密围绕教材中关于单相桥式逆变器的内容,结合实际应用,注重理论与实践相结合,提高学生的实际操作能力。
电力电子技术课程设计教案
一、一、 教学课题学课题: : 电力电子技术课程设计电力电子技术课程设计 二、教学目的和任务二、教学目的和任务 电力电子技术是研究利用电力电子器件、电力电子技术是研究利用电力电子器件、电路理论和控制技术,电路理论和控制技术,电路理论和控制技术,实现对电能的控制、实现对电能的控制、变换和传输的科学,其在电力、工业、交通、通信、航空航天等很多领域具有广泛的应用。
电力电子技术不但本身是一项高新技术,力电子技术不但本身是一项高新技术,而且还是其它多项高新技术发展的基础。
而且还是其它多项高新技术发展的基础。
而且还是其它多项高新技术发展的基础。
因此,因此,提高学生的电力电子领域综合设计和综合应用能力是教学计划中必不可少的重要一环。
通过电通过电力电子技术的课程设计达到以下几个目的:力电子技术的课程设计达到以下几个目的:1、培养学生文献检索的能力,特别是如何利用Intel 网检索需要的文献资料。
网检索需要的文献资料。
2、培养学生综合分析问题、发现问题和解决问题的能力。
、培养学生综合分析问题、发现问题和解决问题的能力。
3、培养学生运用知识的能力和工程设计的能力。
、培养学生运用知识的能力和工程设计的能力。
4、提高学生的电力电子装置分析和设计能力。
、提高学生的电力电子装置分析和设计能力。
5、提高学生课程设计报告撰写水平。
、提高学生课程设计报告撰写水平。
三、课程设计的基本要求三、课程设计的基本要求1. 教师确定方向,在教师的指导下,学生自立题目教师确定方向,在教师的指导下,学生自立题目注意事项:注意事项: ① 所立题目必须是某一电力电子装置或电路的设计,题目难度和工作量要适应在一周内完成,题目要结合工程实际。
学生也可以选择规定题目方向外的其他电力电子装置设计,如开关电源、调光灯、镇流器、如开关电源、调光灯、镇流器、UPS UPS 电源等,但不允许选择其他班题目方向的内容设计(复合变换除外)。
② 通过图书馆和Intel 网广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计题目。
《电力电子技术》课程设计单相桥式逆变课程设计
《电力电子技术》课程设计说明书单相桥式逆变电路院、部:电气与信息工程学院学生姓名:指导教师:职称副教授专业:电气工程及其自动化班级:完成时间:2015年6月1日摘要随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要逆变电路。
另外,交流电机调速用变频器、不间断电源、感应加热等电力电子装置,其核心部分都是逆变电路。
本设计要做的就是输入100V的直流电压,输出交流电压频率范围在30~60H Z,电压30~50V范围可调。
根据电力电子技术的相关知识,把直流电变成交流电的电路成为逆变电路。
单相桥式逆变电路是一种常见的逆变电路。
采用阻感负载,负载两端的电压即为输出电压。
设计电路中采用IGBT作为开关器件,利用ICL8038芯片产生频率符合要求的信号来控制IGBT的通断,从而得到频率范围在30~60H Z的交流电压。
采用移相调压来调节输出电压的大小。
关键词:直流电压;交流电压;逆变;桥式ABSTRACTWith the rapid development of power electronic technology, the inverter circuit has a very wide range of applications, such as battery, battery, solar battery is a dc power supply, when we use the power supply to the ac load power supply, inverter circuit is needed.In addition, the ac motor speed control by frequency converter, uninterruptible power supply, induction heating power electronic devices, such as its core part is the inverter circuit.This design has to do is enter the dc voltage 100 v, output voltage in 30 ~ 60 hz frequency range, 30 ~ 50 v voltage range is adjustable.According to the power electronic technology knowledge, become the inverter circuit of direct current into alternating current circuit.Single-phase bridge inverter circuit is a common inverter e resistance load, feeling at the ends of the load voltage is the output voltage.In the design of circuit using IGBT as the switch device, using ICL8038 chip conform to the requirements of the frequency signal to control the on-off of IGBT, frequency range is obtained in 30 ~ 60 hz ac voltage.Phase-shifting surge tank is used to adjust the size of the output voltage.Key wordsdc voltage;ac voltage;inverter;bridge目录摘要 (I)ABSTRACT ....................................................................................................................... I I 课程设计任务书 (V)绪论 (1)第1章方案设计 (5)系统框图 (5)主电路框图 (5)主电路原理图 (6)第2章主电路设计 (7)主电路原理图 (7)主电路原理分析 (7)器件的选择 (8)绝缘栅双极晶体管 (8)电力二极管 (8)元件参数 (9)第3章驱动电路的设计 (10)驱动电路原理图设计 (10)驱动电路的种类 (10)驱动电路的作用 (10)驱动电路的选择 (11)第4章控制电路设计 (12)4.1 控制电路的作用 (12)控制电路原理图设计 (12)控制电路原理分析 (13)移相调压的原理 (13)CL8038芯片介绍 (14)ICL0838引脚功能 (14)ICL0838内部结构 (15)第5章保护电路的设计 (17)保护电路的种类 (17)保护电路的作用 (17)保护电路的选择 (18)第6章仿真分析 (19)仿真软件MATLAB (19)仿真电路图 (20)参数设置 (21)仿真效果图 (21)仿真结果分析 (22)第7章设计总结 (23)参考文献 (24)致谢词 (25)附录 (26)课程设计任务书一、课程设计的目的1、加强和巩固所学的知识,加深对理论知识的理解;2、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料;3、培养学生综合分析问题、发现问题和解决问题的能力;4、培养学生综合运用知识的能力和工程设计能力;5、培养学生运用仿真软件的能力和方法;6、培养学生科技写作水平。
1单相桥式全控整流及有源逆变电路实验实验报告.doc
实验报告课程名称:现代电力电子技术实验项目:单相桥式全控整流及有源逆变电路实验实验时间:2012/10/19实验班级:总份数:指导教师:朱鹰屏自动化学院电力电子实验室二〇〇年月日广东技术师范学院实验报告电气工程及其自学院:自动化学院专业:班级:成绩:动化姓名:学号:组别:组员:实验地点:电力电子实验室实验日期:10/19指导教师签名:预习情况操作情况考勤情况数据处理情况实验(一)项目名称:单相桥式全控整流及有源逆变电路实验1.实验目的和要求(1)加深理解单相桥式全控整流及逆变电路的工作原理。
(2)研究单相桥式变流电路整流的全过程。
(3)研究单相桥式变流电路逆变的全过程,掌握实现有源逆变的条件。
(4)掌握产生逆变颠覆的原因及预防方法。
2.实验原理图 3-8 为单相桥式整流带电阻电感性负载,其输出负载R用 D42三相可调电阻器,将两个900Ω接成并联形式,电抗Ld用DJK02面板上的700mH,直流电压、电流表均在DJK02面板上。
触发电路采用DJK03-1组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。
图3-9为单相桥式有源逆变原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。
“三相不控整流” 是 DJK10 上的一个模块,其“心式变压器”在此做为升压变压器用,从晶闸管逆变出的电压接“心式变压器”的中压端 Am 、Bum ,返回电网的电压从其高压端 A 、 B输出,为了避免输出的逆变电压过高而损坏心式变压器,故将变压器接成Y/Y 接法。
图中的电阻R、电抗Ld 和触发电路与整流所用相同。
有关实现有源逆变的必要条件等内容可参见电力电子技术教材的有关内容。
3.主要仪器设备序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出” ,“励磁电源”等几个模块。
2 DJK02 晶闸管主电路该挂件包含“晶闸管” ,以及“电感”等几个模块。
单相桥式晶闸管有源逆变电路设计(反电势阻感负载).doc
南京信息工程大学电力电子技术题目:单相桥式晶闸管有源逆变电路姓名:学号:专业:电子信息工程院系:电子与信息工程学院指导老师:摘要本文对单相桥式晶闸管有源逆变电路为介绍对象,介绍了单相桥式晶闸管有源逆变电路的工作原理,在此基础上用软件分别对电路进行了仿真设计,实现了对单相桥式晶闸管有源逆变电路的仿真。
一、绪论1.1整流技术的发展概况正电路广泛应用于工业中。
整流与逆变一直都是电力电子技术的热点之一。
桥式整流是利用二极管的单向导通性进行整流的最常用的电路。
常用来将交流电转化为直流电。
从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。
基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。
目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。
系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。
加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。
从而大大提高了通信网运行可靠和通信质量。
高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。
由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。
新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。
1.2 系统仿真概述1、基本概念所谓系统仿真(system simulation),就是根据系统分析的目的,在分析系统各要素性质及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信息。
2、系统仿真的实质(1)它是一种对系统问题求数值解的计算技术。
尤其当系统无法通过建立数学模型求解时,仿真技术能有效地来处理。
(2)仿真是一种人为的试验手段。
它和现实系统实验的差别在于,仿真实验不是依据实际环境,而是作为实际系统映象的系统模型以及相应的“人造”环境下进行的。
单相桥式有源逆变电路设计
单相桥式有源逆变电路设计1. 引言有源逆变器是一种将直流电源转换为交流电源的装置,常用于电力电子领域。
单相桥式有源逆变电路是其中一种常见的拓扑结构,可以实现从直流电源到交流电源的有效转换。
本文将介绍单相桥式有源逆变电路的设计原理和步骤。
2. 单相桥式有源逆变电路的原理单相桥式有源逆变电路由四个开关管和一个电源组成,其中两个开关管为上桥臂开关管,另外两个开关管为下桥臂开关管。
开关管通过开关控制器进行开关操作,通过改变开关管的状态来实现对电流的控制和转换。
在正半周的工作状态下,上桥臂的开关管S1和S2打开,下桥臂的开关管S3和S4关闭。
此时,电源的正极连接至负载,负载的交流电路通过开关管S1和S2直接接通。
在负半周的工作状态下,上桥臂的开关管S1和S2关闭,下桥臂的开关管S3和S4打开。
此时,电源的负极连接至负载,负载的交流电路通过开关管S3和S4直接接通。
通过交替切换开关管的状态,可以实现直流电源到交流电源的转换。
3. 单相桥式有源逆变电路的设计步骤3.1 确定输入和输出参数在设计单相桥式有源逆变电路时,首先需要确定输入和输出的参数。
输入参数包括直流电压和电流的范围,输出参数包括交流电压和电流的要求。
3.2 选择开关管和开关控制器根据输入和输出参数的要求,选择适合的开关管和开关控制器。
开关管需要能够承受输入参数的范围,并具有较低的开关损耗和导通损耗。
开关控制器需要能够实现准确的开关控制,并具有过流保护和过温保护等功能。
3.3 设计滤波电路为了减小逆变电路的谐波含量,需要设计合适的滤波电路。
滤波电路可以采用LC滤波器或LCL滤波器,通过选择合适的电感和电容参数来实现滤波效果。
3.4 进行仿真和优化在设计完成后,使用电路仿真软件对单相桥式有源逆变电路进行仿真。
通过仿真可以评估电路的性能,如电压波形的失真程度和效率等。
根据仿真结果进行优化,调整参数和设计,以达到设计要求。
3.5 PCB布线和制作根据最终的设计结果,进行PCB布线设计。
单相桥式有源逆变电路设计
长江职业学院电力电子技术课程设计报告学院:机电学院学生姓名:余鸿指导教师:李莎专业:电气自动化班级:电气1401日期:2015.12单相桥式有源逆变电路设计摘要:整流与逆变一直都是电力电子技术的热点之一。
桥式整流是利用二极管的单向导通性进行整流的最常用的电路。
常用来将交流电转化为直流电。
从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条和方法已成熟十几年了,随件。
基本原理着我国交直流变换器市1场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。
在逆变电路中,把直流电能经过直交变换,向交流电源反馈能量的变换电路称之为有源逆变电路,相应的装置称为有源逆变器。
关键词:整流逆变桥式有源逆变。
1前言目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。
系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。
加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。
从而大大提高了通信网运行可靠和通信质量。
高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。
由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。
新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。
逆变与整流相对应,直流电变成交流电。
交流侧接电网,为有源逆变。
交流侧接负载,为无源逆变。
有源逆变的条件:负载侧存在一个直流电源E,由他提供能量,其电势极性与变流器的整流电压相反,对晶闸管为正向偏置电压;变流器在起直流侧输出应有一个与原整流电压相反的逆变电压U,其平均值U<E,以吸收能量,并将其能量馈送给交流电源。
逆变电路的分类,根据直流侧的电源的性质不同,直流侧是电流源,电流型逆变电路,又称为电流型逆变电路;电压型逆变电路,输出电压是矩形波,电流型逆变电路输出电流是矩形波。
电力电子技术项目化教程配套课件2.3 知识点2:单相桥式有源逆变电路
2.逆变失败的限制
逆最小逆变角的取值一般为;
min ≥30°~35°
为防止小于,有时要在触发电路中设置保护电路,不能进入
m
区域。在电路中加上安全脉冲产生装置,安全脉冲位置就设
in
在处,一旦工作脉冲就移入处,安全脉冲保证在处触发晶闸管。
19
谢谢
11
1.逆变工作原理
逆变时的输出电压控制有的是与整流时相同,计算公式仍为
U d 0.9U 2 cos
我们令 180 ,称为逆变角 ,则
U d 0.9U 2 cos 0.9U 2 cos(180 ) 0.9U 2 cos
12
1.逆变工作原理
实现有源逆变必须满足下列条件: 变流装置的直流侧必须外接电压极性与GTO导通方向一致的直流电源,且其值稍大 于变流装置直流侧的平均电压。
8
2.3.2 单相桥式有源逆变电路 的工作原理
(a)电路图
1.逆变工作原理
(b)整流状态下的波形图 (c)逆变状态下的波形图
图(a)中GTO的 控制角a<90°,则 电路工作在整流状 态,通过调整角, 则交流电压通过I组 GTO输出功率,电动 机吸收功率。负载 中电流值为:
Id
U dI R
E
10
04
扩展知识点1:三相可控整流及有源逆变电路
05
扩展知识点2:同步触发电路
03
2.3 知识点2:单相 桥式有源逆变电路
2.3.1 两电源间的能量传递
前面两部分讨论的是把交流电能通过晶闸管变换为直流电能并供给负 载的可控整流电路。在生产实际中,会出现需要将直流电能变换为交流电 能的情况。本项目中的交直型电力机车传动调速系统正组整流电路及反组 整流电路满足一定条件均可实现有源逆变,从而实现由负载(由于机械能 的作用作为直流发电机运行)向交流电源回馈电能以进行制动。当机车下 坡运行时,机车上的直流电机也可以将多余的动能转化为电能作为发电机 运行,此时也需要将直流电能变换为交流电能回送电网,以实现电机制动 。
电力电子课程设计---单相桥式晶闸管有源逆变电路设计
课程设计说明书学院:信息与通信工程学院专业:自动化题目:单相桥式晶闸管有源逆变电路设计(反电势阻感负载)2011年12月31日课程设计任务书一、绪论1.逆变技术介绍:逆变技术的原理早在1931 年就有人研究过,从1948 年美国西屋电气公司研制出第一台3KHZ 感应加热逆变器至今已有近60 年历史了,而晶闸管SCR 的诞生为正弦波逆变器的发展创造了条件,到了20 世纪70 年代,可关断晶闸管(GTO)、电力晶体管(BJT)的问世使得逆变技术得到发展应用。
到了20 世纪80 年代,功率场效应管(MOSFET)、绝缘栅极晶体管(IGBT)、MOS 控制晶闸管(MCT)以及静电感应功率器件的诞生为逆变器向大容量方向发展奠定了基础,因此电力电子器件的发展为逆变技术高频化,大容量化创造了条件。
进入80 年代后,逆变技术从应用低速器件、低开关频率逐渐向采用高速器件,提高开关频率方向发展。
逆变器的体积进一步减小,逆变效率进一步提高,正弦波逆变器的品质指标也得到很大提高。
2.软件介绍:NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。
凭借NI Multisim,可以立即创建具有完整组件库的电路图,并利用工业标准SPICE模拟器模仿电路行为。
借助专业的高级SPICE分析和虚拟仪器,能在设计流程中提早对电路设计进行的迅速验证,从而缩短建模循环。
与NI LabVIEW和SignalExpress软件的集成,完善了具有强大技术的设计流程,从而能够比较具有模拟数据的实现建模测量。
二、原理概述在电力电子技术中,把直流电能变换成为交流电能的过程称为逆变。
当交流侧为供电电源时称为有源逆变。
要使负载侧反过来通过变流器向交流电源供电(即能量反传递)而且电流流向不变,则在负载侧必须存在一个直流电源E(电动势),这个电源可以是电池,也可以是直流发电机或直流电动机运行在发电状态,这个电源的极性与整流电压极性相反。
单相桥式逆变电路课程设计
电力电子技术课程设计说明书单相桥式逆变电路的设计院、部学生姓名:指导教师:职称专业:班级:学号:完成时间:摘要随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要用到逆变电路了。
本次基于 MOSFET的单相桥式无源逆变电路的课程设计,主要涉及 IGBT 的工作原理、全桥的工作特性和无源逆变的性能。
本次所设计的单相全桥逆变电路采用 IGBT 作为开关器件,将直流电压 Ud 逆变为波形电压,并将它加到纯电阻负载两端。
首先分析了单项桥式逆变电路的设计要求。
确定了单项桥式逆变电路的总体方案,对主电路、保护电路、驱动电路等单元电路进行了设计和参数的计算,其中保护电路有过电压、过电流、电压上升率、电流上升率等,选择和校验了 IGBT、SG3525等元器件,IGBT 是由 BJT(双极型三极管 ) 和 MOS(绝缘栅型场效应管 ) 组成的复合全控型电压驱动式功率半导体器件 , 兼有 MOSFET的高输入阻抗和 GTR的低导通压降两方面的优点。
最后利用 MATLAB仿真软件建立了 SIMULINK仿真模型,并进行了波形仿真,仿真的结果证明了完成设计任务要求,满足设计的技术参数要求。
关键词:单相;逆变;设计ABSTRACTWith the rapid development of power electronics technology, the inverter circuitis widely used, batteries, dry batteries, solar cells are DC power supply, when we use these power supply power to the AC load, you need to use the inverter circuit. This time based on MOSFET single phase bridge inverter circuit design, mainly related to the work principle of IGBT, the full bridge of the working characteristics and the performance of passive inverter. The single-phase full bridge inverter circuit designed by IGBT as the switching device, the DC voltage Ud inverter as the waveform voltage, and will be added to the pure resistance load at both ends.Firstly, the design requirements of the single bridge inverter circuit are analyzed. To determine the overall scheme of single bridge inverter circuit, of the main circuit, protection circuit, driving circuit unit circuit design and parameter calculation, the protection circuit have voltage, current and voltage rate of rise, the current rate of rise, selection and validation of the IGBT and SG3525 components, IGBT is by BJT (bipolar transistor) and MOS (insulated gate field effect transistor) composed of full control type voltage driven type power semiconductor devices, both MOSFET's high input impedance and GTR low conductance through the advantages of pressure drop. At last, the MATLAB simulation software is used to build the SIMULINK model, and the simulation results are carried out. The results prove that the design task is required to meet the design requirements.Keywords: single phase; inverter; design目录11 1.11 1.22 1.32 23 2.132.1.132.1.23 2.232.2.132.2.24 2.34 2.45 373.173.1.173.1.273.1.38 3.283.2.183.2.283.2.39 3.393.3.193.3.29 4114.1MATLAB11 4.213 4.31618 19 211绪论1.1逆变电路的背景与意义随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要用到逆变电路了。
(完整word版)电力电子课程设计_IGBT单相电压型全桥无源逆变电路(阻感负载)
1 引言本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计(阻感负载),根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。
当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。
2 工作原理概论2. 1 IGBT的简述绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。
它是一种典型的全控器件。
它综合了GTR和MOSFET的优点,因而具有良好的特性。
现已成为中、大功率电力电子设备的主导器件。
IGBT是三端器件,具有栅极G、集电极C和发射极E。
它可以看成是一个晶体管的基极通过电阻与MOSFET相连接所构成的一种器件。
其等效电路和电气符号如下:图2-1 IGBT等效电路和电气图形符号它的开通和关断是由栅极和发射极间的电压所决定的。
当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。
由于前面提到的电导调制效应,使得电阻减小,这样高耐压的IGBT也具有很小的通态压降。
当山脊与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的积极电流被切断,使得IGBT关断。
2.2电压型逆变电路的特点及主要类型根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。
电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。
直流侧电压基本无脉动,直流回路呈现低阻抗。
由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。
而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。
当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计说明书
学院:信息与通信工程学院
专业:自动化
题目:单相桥式晶闸管有源逆变电路设计
(反电势阻感负载)
2011年12月31日
课程设计任务书
一、绪论
1.逆变技术介绍:
逆变技术的原理早在1931 年就有人研究过,从1948 年美国西屋电气公司研制出第一台3KHZ 感应加热逆变器至今已有近60 年历史了,而晶闸
管SCR 的诞生为正弦波逆变器的发展创造了条件,到了20 世纪70 年代,可关断晶闸管(GTO)、电力晶体管(BJT)的问世使得逆变技术得到发展应用。
到了20 世纪80 年代,功率场效应管(MOSFET)、绝缘栅极晶体管(IGBT)、MOS 控制晶闸管(MCT)以及静电感应功率器件的诞生为逆变器向大容量方向发展奠定了基础,因此电力电子器件的发展为逆变技术高频化,大容量化创造了条件。
进入80 年代后,逆变技术从应用低速器件、低开关频率逐渐向采用高速器件,提高开关频率方向发展。
逆变器的体积进一步减小,逆变效率进一步提高,正弦波逆变器的品质指标也得到很大提高。
2.软件介绍:
NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。
凭借NI Multisim,可以立即创建具有完整组件库的电路图,并利用工业标准SPICE模拟器模仿电路行为。
借助专业的高级SPICE分析和虚拟仪器,能在设计流程中提早对电路设计进行的迅速验证,从而缩短建模循环。
与NI LabVIEW和SignalExpress软件的集成,完善了具有强大技术的设计流程,从而能够比较具有模拟数据的实现建模测量。
二、原理概述
在电力电子技术中,把直流电能变换成为交流电能的过程称为逆变。
当交流侧为供电电源时称为有源逆变。
要使负载侧反过来通过变流器向交流电源供电(即能量反传递)而且电流流向不变,则在负载侧必须存在一个直流电源E(电动势),这个电源可以是电池,也可以是直流发电机或直流电动机运行在发电状态,这个电源的极性与整流电压极性相反。
两个电源之间的能量交换必须使这两电源同极性相连接。
这样,欲使负载中直流电源的能量反流回交流电源中去,则必须要求变流器能产生一个与原整流
电压U
αd 极性相反的电压,称之为逆变电压U
βd
,且U
βd
<E,U
βd
为逆变电压
的平均值。
由于希望在能量交换中的能量损失尽可能地小,因此回路中的电阻R均较小,这样U
βd
较接近于E。
综上所诉,有源逆变本质上是触发角大于90度的整流,有源逆变的拓扑结构与整流一模一样,只是当触发角大于90度时整流电路的功率方向发生了变化。
为了实现逆变功能,有源逆变电路必须满足两个条件:(1)负载侧存在一个直流电源E,由它提供能量,其电势极性与变流器的整流电压相反,对晶闸管为正向偏置电压;(2)变流器在其直流侧输出应有一个与
原整流电压极性相反的逆变电压U
βd ,其平均值U
βd
<E,并将其能量馈送
给交流电源。
三、参数计算题目要求:
电源电压:交流50V/50Hz
逆变功率:P=200W
反电势:E=70V
逆变角:β=35°
计算:
输入电压有效值U
2
=50V
∵ U
d =
π
1
wtdwt
U
a
sin
2
2
a
⎰+π和β
α+=π得U
d
=0.9
2
U cos(π—β)
I d =
R
E-
Ud=
R
14
.
33
P=|E I
d |-I2
d
R和P=200W
∴U d=-36.86V I d=5.43A R=6.10Ω晶闸管的选取:
额定电压:22U =70.71V ,取2~3倍的电压安全储备,并考虑晶闸管电压安全系列取额定电压为200V 。
额定电流:查表可得K f =I VT ÷I d =2÷2,I VT =K d f I /1.57=2.41,取2倍电流安全储备并考虑晶闸管原件额定电流系列取额定电流为5A 。
控制电路设计:
∵ 电源频率f=50HZ,周期T1=
f
1
=20ms 触发电路周期T2=T1=20ms
触发角α=180 -β=180 -35 =145
∴ D1,D3触发时间为:t 1=
360145T2=8.06ms
D2, D4触发时间为:t 2=t 1+
21
T2=18.06ms
四、实验原理图及其分析
实验理论图
实验原理图
原理图分析:
负载侧存在一个直流电源E=70V(电动势),由它提供能量,其电势极性与单向桥式整流电压相反,对晶闸管为正向偏置电压。
在0°<α<145°时,D1、D3导通,145°<α<325°时,D2、D4导通,如此循环。
变流器在其直流侧输出了一个与原整流电压极性相反的逆变电压
U
βd =36.86V,其平均值U
βd
<E,以吸收能量,并将其能量馈送给交流电源。
控制电路原理图
控制电路原理:
控制电路采用脉冲信号发生器,作为晶闸管的触发信号,其参数如上图所
示。
其中D1,D3触发时间为:t
1=
360
145
T=8.06ms,D2,D4触发时间为:
t
2=t
1
+
2
1
T=18.06ms,且控制电路周期和交流电源周期相同,使得两组晶闸管交
替触发,实现逆变。
晶闸管D1、D3门极触发电源参数
晶闸管D2、D4门极触发电源参数
D1、D3触发脉冲波形图
D2、D4触发脉冲波形图
Ud波形图
Ud波形与U2波形比较
晶闸管1、3电压波形图
晶闸管2、4电压波形图
逆变电压、平均电流、逆变功率读数
晶闸管、电感、电流表不是理想器件,它们都有电阻,而电阻为6.1Ω,数值较小,器件电阻对电路电流影响较大,导致电流达不到理想值,从而使得逆变功率与理想值有出入。
五、实验问题及解决方案
1.电感的选取问题:
测定输出电压波形时,当电感小于10MH时,仿真若干周期后输出电压波形出现严重失真并且电路运行出错,当电感大于10MH时,输出电压一直很稳定。
所以我们在实验中选定1GH的电感,使输出电压稳定。
很小,而电感较测定逆变功率时,当电感太大时(例如1MH),平均电流I
d
小时(例如1H),仿真一开始即会报错,所以测定逆变功率时,我们选取的电感
、逆变功率P比较接近理想值。
为40H,使得输出电压波形较稳定,且I
d
2.晶闸管的选取:
选定不恰当的晶闸管,仿真时会出现报错或者输出电压波形严重失真的情
况。
经过多次试验,最后选定型号为EGH16-16的晶闸管,此晶闸管在仿真10S后
仍能输出稳定准确的波形。
3.逆变功率达不到要求:
刚做实验时所选器件不是理想器件,它们都存在电阻,使得逆变功率比要求值小,即使把器件设置为理想器件,由于电感的存在,逆变功率也只是能接近要求,大概能达到170W。
六、实验心得
本次电力电子技术课程设计我的研究对象为单项桥式有源逆变电路,对此我结合课本知识与网上搜索的资料,对其原理及实现做出了深刻的研究和分析。
在课程设计过程中,暴露出我在平时的学习中,没有注意理论与实际的差别,仅局限于学习课本知识,没有及时扩充自己的视野,譬如晶闸管有很多不同的型号,我只能计算出理论的额定电压额定电流,但是根据额定电压和额定电流选取晶闸管时,我就不知道该如何选取了,导致在做实验的过程中花费了很长时间才选出合适的晶闸管。
我平时没有在学习仿真软件方面下功夫,只是在实验时才偶尔使用一两次,导致实验开始时不知如何使用软件,通过问同学和上网查资料才知道如何使用multisim研究我们的课程设计。
在网上搜索资料时,查出的信息往往不是自己最想要的,所以如何在复杂浩瀚的网上资料中找到对自己有用的信息是一门技术,这在以后的学习中应该多总结,多学习,这样才能在以后的工作和学习中快速获取对自己有用的信息。
通过本次课程设计我认识到我们生活在一个技术日新月异的时代,而书本上的知识往往是过时的技术,所以我们在学习中要扎实的掌握课本的基础知识,但不能只局限于课本,而应当多去了解本学科的最新动态与发展趋势,这样才能扩充自己的视野,提高自己的专业技能。