沪科版八年级下册数学全教案
2023八年级数学沪科版教案5篇
2023八年级数学沪科版教案5篇2023八年级数学沪科版教案1一、学习目标:1.多项式除以单项式的运算法则及其应用.2.多项式除以单项式的运算算理.二、重点难点:重点:多项式除以单项式的运算法则及其应用难点:探索多项式与单项式相除的运算法则的过程三、合作学习:(一) 回顾单项式除以单项式法则(二) 学生动手,探究新课1. 计算下列各式:(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.2. 提问:①说说你是怎样计算的②还有什么发现吗(三) 总结法则1. 多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______2. 本质:把多项式除以单项式转化成______________四、精讲精练例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2) 随堂练习:教科书练习五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.E、多项式除以单项式法则2023八年级数学沪科版教案2教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知【复习交流】下列从左到右的变形是否是因式分解,为什么(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);(2)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;(3)x2-2xy+y2=(x-y)2.问题:1.多项式mn+mb中各项含有相同因式吗2.多项式4x2-x和xy2-yz-y呢请将上述多项式分别写成两个因式的乘积的形式,并说明理由.【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学【例1】把-4x2yz-12xy2z+4xyz分解因式.解:-4x2yz-12xy2z+4xyz=-(4x2yz+12xy2z-4xyz)=-4xyz(x+3y-1)【例2】分解因式,3a2(x-y)3-4b2(y-x)2【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.解法1:3a2(x-y)3-4b2(y-x)2=-3a2(y-x)3-4b2(y-x)2=-[(y-x)2•3a2(y-x)+4b2(y-x)2]=-(y-x)2[3a2(y-x)+4b2]=-(y-x)2(3a2y-3a2x+4b2)解法2:3a2(x-y)3-4b2(y-x)2=(x-y)2•3a2(x-y)-4b2(x-y)2=(x-y)2[3a2(x-y)-4b2]=(x-y)2(3a2x-3a2y-4b2)【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.【教师活动】引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同四、随堂练习,巩固深化课本P167练习第1、2、3题.【探研时空】利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准公因式.•在找公因式时应注意:(1)系数要找公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计2023八年级数学沪科版教案3教学目标:知识与技能1.掌握直角三角形的判别条件,并能进行简单应用;2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.情感态度与价值观敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.教学重点运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.教学难点会辨析哪些问题应用哪个结论.课前准备标有单位长度的细绳、三角板、量角器、题篇教学过程:复习引入:请学生复述勾股定理;使用勾股定理的前提条件是什么已知△ABC的两边AB=5,AC=12,则BC=13对吗创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.这样做得到的是一个直角三角形吗提出课题:能得到直角三角形吗讲授新课:⒈如何来判断(用直角三角板检验)这个三角形的三边分别是多少(一份视为1)它们之间存在着怎样的关系就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形(当满足较小两边的平方和等于较大边的平方时)⒉继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:5,12,13;6,8,10;8,15,17.(1)这三组数都满足a2+b2=c2吗(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗⒊直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.⒋例1一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗随堂练习:⒈下列几组数能否作为直角三角形的三边长说说你的理由.⑴9,12,15;⑵15,36,39;⑶12,35,36;⑷12,18,22.⒉已知∆ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角.⒊四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.⒋习题1.3课堂小结:⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.⒉满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.2023八年级数学沪科版教案4勾股定理的应用教学目标教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣.2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学.教学重点难点:重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.教学过程1、创设问题情境,引入新课:前几节课我们学习了勾股定理,你还记得它有什么作用吗例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.所以至少需13米长的梯子.2、讲授新课:①、蚂蚁怎么走最近出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少(π的值取3).(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢(小组讨论)(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么你画对了吗(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:(1)A→A′→B;(2)A→B′→B;(3)A→D→B;(4)A—→B.哪条路线是最短呢你画对了吗第(4)条路线最短.因为“两点之间的连线中线段最短”.②、做一做:教材14页。
沪教版八年级数学下册教案
沪教版八年级数学下册教案一、教学目标通过本节课的学习,学生将能够:1.理解并运用正负数的概念和基本性质;2.掌握正负数的加法和减法运算规则,能够进行相应计算;3.在实际问题中灵活运用正负数的数学模型。
二、教学内容本节课的教学内容主要包括以下几个方面:1.正负数的概念和基本性质;2.正负数的加法和减法运算规则;3.正负数在实际问题中的应用。
三、教学重点本节课的教学重点是:1.正负数的加法和减法运算规则;四、教学步骤步骤一:导入引入数轴的概念,让学生回顾一下正负数的含义和数轴上的表示方法。
步骤二:概念讲解1.通过示例引导学生理解正负数的概念和基本性质;2.解释正数和负数的加法和减法运算规则,并进行相应的示范。
步骤三:练习让学生进行一些简单的加减法练习,加深对正负数运算规则的理解和掌握。
步骤四:应用拓展引导学生思考正负数在实际问题中的应用,例如温度计、海拔高度等情景,让学生运用所学知识解决实际问题。
五、教学辅助方式本节课的教学辅助方式包括:1.课件展示:使用课件展示数轴和相关示例;2.小组讨论:让学生分成小组进行问题讨论和解决。
六、教学评价本节课的教学评价主要包括以下几个方面:1.学生的课堂参与度:观察学生在课堂上的积极性和主动性;2.学生的作业完成情况:检查学生课后作业的完成情况,评判学生对正负数概念和运算规则的掌握程度;3.学生的解决问题能力:评价学生在实际问题中运用正负数知识解决问题的能力。
七、板书设计本节课的板书内容如下:正负数的概念和基本性质1. 正数:表示大于零的数,记作+;2. 负数:表示小于零的数,记作-。
正负数的加法和减法运算规则1. 正数与正数相加,结果仍为正数;2. 正数与负数相加,结果可能为正数、负数或零;3. 正数与负数相减,等于加上相反数。
正负数的应用1. 温度计:正数表示高温,负数表示低温;2. 海拔高度:正数表示高地,负数表示低地。
八、教学反思本节课采用了导入、概念讲解、练习和应用拓展等多种教学方法,通过这些方法的有机结合,使学生能够从不同角度理解和掌握正负数的概念和运算规则,培养学生的解决问题能力和数学应用能力。
沪科版数学八年级下册全册教案(2021年春修订)
沪科版数学八年级下册全册教案(2021年春修订)沪科版数学八年级下册全册教案设计2021-1-24 第16章二次根式二次根式第1课时二次根式的概念及性质(1)【知识与技能】理解二次根式的概念,并利用(a≥0)的意义解答具体题目.【过程与方法】提出问题,根据问题给出概念,应用概念解决实际问题. 【情感态度】通过本节的学习培养学生准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力. 【教学重点】形如(a≥0)的式子叫做二次根式的概念的理解. 【教学难点】利用“(a≥0)”解决具体问题. 一、创设情境,提出问题 1.用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为3 的正方形的边长为,面积为S 的正方形的边长为 . 问:(1)中式子你是怎么得到的?得到的两个式子有什么不同?(2)一个长方形围栏,长是宽的2 倍,面积为130m2,则它的宽为m. 问:(2)中得到的式子有什么意义?(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h =5t2,如果用含有h 的式子表示t ,则 . 【教学说明】由数字到字母,逐步渗透二次根式的概念,使学生对二次根式的由来有一个初步的印象. 2.(3)中当h 的值分别为0,10,15,20,25时,得到的结果分别是什么?表示的数怎样变化?【教学说明】让学生自主选择数字代入求值,一方面感知二次根式的计算,另一方面对二次根式有意义的条件有一个具体的认识. 二、合作探究,探索新知 1.上面问题中,得到的结果分别是:(1)这些式子分别表示什么意义?(2)这些式子有什么共同特征?答:(1)分别表示3,S,65 的算术平方根.(2)这些式子的共同特征是:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根. 【教学说明】让学生观察思考后回答,使学生掌握二次根式的本质含义. 2.根据你的理解,请写出二次根式的定义. 把形如,用来表示一个非负数的算术平方根的式子,叫做二次根式. 【教学说明】用具体的例子来归纳二次根式的定义,便于学生理解掌握. 3.二次根式:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号. 二次根式→被开方数a≥0;根指数为2. 【教学说明】教师及时归纳总结,形成相应的数学知识. 三、示例讲解,掌握新知例1 下列式子,哪些是二次根式,哪些不是二次根式:【分析】二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0. 解:二次根式有:;不是二次根式的有:. 【教学说明】教师强调要根据二次根式的定义进行判断,注意二次根式的特征. 例2 当x是多少时,在实数范围内有意义?【分析】由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义. 解:由3x-1≥0,得:x≥当x≥时,在实数范围内有意义. 【教学说明】教师强调二次根式有意义的条件是被开方数要大于或等于0,然后根据这一条件列出相应的不等式. 3.小结:请比较a和0 的大小分类讨论思想当a>0 时, 表示a 的算术平方根,因此>0;当a =0 时,表示0 的算术平方根,因此=0;这就是说,(a≥0)是一个非负数.具有双重非负性【教学说明】教师引导学生进行总结,掌握二次根式的双重非负性. 四、练习反馈,巩固提高 1.下列各式中,是二次根式的为. 2.当x为何值时,下列各式有意义?【教学说明】第1题是对二次根式定义的理解;第2题是对二次根式有意义条件的理解,第3题是对二次根式计算的应用.教师要求学生独立完成,以便于学生及时进行反馈. 五、师生互动,课堂小结(1)本节课你学到了哪一类新的式子?(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?(3)二次根式与算术平方根有什么关系?一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号. 中的a≥0. (4)双重非负性二次根式都是非负数的算术平方根,带有根号的算术平方根是二次根式. 【教学说明】让学生总结归纳,形成知识体系,更进一步掌握本节课知识. 完成同步练习册中本课时的练习. 本节课主要学习二次根式的定义和二次根式有意义的条件,以及它们的简单应用.在教学中,要与前面所学习的算数平方根紧密相连,从一个非负数的算数平方根入手,使学生逐步掌握二次根式的定义和二次根式成立的条件,关键是要学生理解为什么二次根式的被开方数是一个非负数,以及怎样应用它的非负性解决简单的问题.这里要注意除了满足被开方数为非负数以外,还要注意分母不能为0. 第2课时二次根式的概念及性质(2)【知识与技能】理解=a(a≥0),=a(a≥0)并利用它进行计算和化简. 【过程与方法】通过具体数据的解答,探究=a(a≥0),并利用这个结论解决具体问题. 【情感态度】通过本节的学习培养学生准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力. 【教学重点】(a≥0)是一个非负数;=a(a≥0)和=a(a≥0),及其运用. 【教学难点】用分类思想的方法导出(a≥0)是一个非负数;用探究的方法导出=a(a≥0). 一、复习提问,导入新课(学生活动)口答:1.什么叫二次根式?2.当a≥0时,叫什么?当a<0时,有意义吗?【教学说明】通过复习,让学生回顾二次根式的定义和有意义的条件,为本节课的学习奠定基础. 二、合作探究,探索新知 1.问题1 做一做:根据算术平方根的意义填空:老师点评是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4. 【教学说明】这些计算,可以让学生去尝试完成,然后教师引导学生进行总结,发现规律. 【教学说明】教师及时进行总结,并用含字母的式子表示,便于学生理解和记忆. 3.问题2 (学生活动)填空:老师点评:根据算术平方根的意义,我们可以得到:4.小结:因此,一般地:=a(a≥0)【教学说明】让学生先进行相应的计算探究,然后让学生仿照前一个探究进行总结,教师及时予以补充和强调,最后用含有字母的式子进行总结.这里要特别强调a≥0这一条件. 三、示例讲解,掌握新知例1 计算【分析】我们可以直接利用=a(a≥0)的结论解题. 【教学说明】这是对第一个探究的应用,可以让学生自主完成,以加深学生的印象. 例2 化简【分析】因为(1)9=32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用=a(a≥0)去化简. 【教学说明】这是对第二个探究的应用,相对要难一些,可以让学生先自主完成,对于出现的问题教师有针对性的进行讲解,尤其是第(2)、(4)题学生理解起来有一定的困难,教师可以在讲解后,再出1~2题相应的训练及时巩固. 四、练习反馈,巩固提高1.= . 2.已知有意义,那么这个式子是一个数. 3.计算 4.把下列非负数写成一个数的平方的形式: (1)5 (2)(3)(4)x(x≥0)5.已知=0,求xy的值. 【答案】 2.非负数【教学说明】第1题、第3题是对性质的直接应用,考察学生对性质的掌握情况,第2题和第5题是对二次根式的双重非负性的应用,学生应该掌握相应的解题方法,第4题是对性质的反向应用,培养学生的逆向思维能力. 五、师生互动,课堂小结(1)你知道了二次根式的哪些性质?(2)运用二次根式性质进行化简需要注意什么?(3)请谈谈发现二次根式性质的思考过程?(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识. 【教学说明】通过回顾本节课知识,查漏补缺,形成相应的知识体系和解题方法. 完成同步练习册中本课时的练习. 本节课重点是学习如何理解=a(a≥0), =a(a≥0)并利用它进行计算和化简,难点是通过对具体数据的解答,探究=a(a≥0),并利用这个结论解决具体问题.在教学中重点要引导学生对的结果进行分类讨论,并总结规律得出=|a|,然后分三种情况进行讨论,指出不能直接等于a. 二次根式的运算 1.二次根式的乘除第1课时二次根式的乘法【知识与技能】理解=(a≥0,b≥0),=(a≥0,b≥0),并利用它们进行计算和化简【过程与方法】由具体数据发现规律,导出=(a≥0,b≥0)并运用它进行计算;利用逆向思维,得出=(a≥0,b≥0)并运用它进行解题和化简. 【情感态度】通过本节的学习培养学生准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力. 【教学重点】=(a≥0,b≥0),=(a≥0,b≥0)及它们的运用. 【教学难点】发现规律,导出=(a≥0,b≥0). 一、复习提问,导入新课 1.对于二次根式中的被开方数a,我们有什么规定? 2.当a≥0 时,等于多少? 3.当 a≥0 时,等于多少?【教学说明】通过对二次根式的性质的复习,为本节课的学习奠定知识基础. 二、合作探究,探索新知 1.请同学们完成下列各题. 参考上面的结果,用“>、<或=”填空. 【教学说明】这些计算比较简单,可以让学生自主完成,然后引导学生进行总结. 2.利用计算器计算填空【教学说明】使用计算器进行计算,对上面探究的规律进行验证,使它更具有说服力.3.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数. 一般地,对二次根式的乘法规定为=(a≥0,b≥0),反过来:=(a≥0,b≥0)【教学说明】教师在学生总结的基础上进行归纳,形成相应的知识点,并用含有字母的式子表示出来. 三、示例讲解,掌握新知例1 计算:【分析】直接利用=(a≥0,b≥0)计算即可. 【分析】利用=(a≥0,b≥0)直接化简即可. 【教学说明】在讲解例题时,可以只讲解其中一个,然后让学生尝试仿照完成剩下的计算,教师及时发现学生存在的问题,予以纠正.这里要重点强调解题的格式和对法则的应用. 四、练习反馈,巩固提高 4.自由落体的公式为S=gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是. 5.一个底面为30cm×30cm长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米? 6.探究过程:观察下列各式及其验证过程. 【教学说明】学生独立完成,及时进行反馈,便于教师掌握学生的掌握情况.第1题要注意a为负数,第6题要注意寻找规律. 五、师生互动,课堂小结本节课应掌握:(1)=(a≥0,b≥0),=(a≥0,b≥0)及其运用. 【教学说明】教师引导学生对本节课所学知识进行总结,再用简洁的式子进行归纳,使学生掌握的更牢固. 完成同步练习册中本课时的练习. 1.在教学安排上,体现由具体到抽象的认识过程.对于二次根式的乘法法则的推导,先利用二次根式的几个具体计算,归纳出二次根式的乘法运算法则. 2.在具体计算时,可以通过小组合作交流,放手让学生去思考、讨论,有助于学生思维互补、有条理地思考和表达,更有助于学生合作精神的培养. 3.要反复强调利用二次根式乘法法则进行计算时,要注意二次根式中被开方数的取值范围. 4.适当加强练习,使学生较好地理解二次根式的意义,较好地掌握二次根式的性质和运算,为后续的学习打下良好的基础. 第2课时二次根式的除法【知识与技能】 1.理解(a≥0,b>0)和(a≥0,b>0)及利用它们进行运算. 2.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式. 【过程与方法】利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简. 【情感态度】通过本节的学习培养学生准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力. 【教学重点】理解(a≥0,b>0),(a≥0,b>0)及利用它们进行计算和化简. 【教学难点】发现规律,归纳出二次根式的除法法则和对最简二次根式的理解. 一、复习提问,导入新课请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空3.通过以上计算,你能得出什么规律?【教学说明】通过具体的计算,让学生感知二次根式除法法则的具体来源,然后让学生总结发现的规律.二、合作探究,探索新知 1.教师引导学生总结:一般地,对二次根式的除法规定:(a≥0,b>0),反过来,(a≥0,b>0)【教学说明】教师及时总结二次根式除法的法则,并引导学生对法则进行逆向应用,加深对法则的理解. 2.请同学们完成下列各题 3.观察上面计算题的最后结果,可以发现这些式子中的二次根式有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式. 小结:我们把满足上述两个条件的二次根式,叫做最简二次根式. 【教学说明】先让学生进行化简计算,然后再让学生观察计算的结果.这里,学生可能说的不是很完整,教师及时予以补充,最后教师再将探究的结果进行归纳总结,学生做好笔记,形成概念. 三、示例讲解,掌握新知【教学说明】例1是对具体的数进行计算,可以让学生先自主完成,然后教师再针对发现的问题进行讲解. 例2 化简:【分析】直接利用(a≥0,b>0)就可以达到化简的目的. 【教学说明】例2涉及到含有字母的式子进行化简,对于学生来说有一定的难度,教师可以先示范讲解(1)和(2),适当总结应该注意的问题,然后让学生自主完成(3)(4),最后再进行强调,加深学生的印象,提高学生对法则应用的熟练性. 四、练习反馈,巩固提高 1.如果(y>0)是二次根式,那么,化为最简二次根式是(). 2.把中根号外的(a-1)移入根号内得(). 【教学说明】让学生独立完成,对于第2、5、6题,学生理解有一定的困难,教师可以适当引导学生考虑a的取值范围,再进行化简. 五、师生互动,课堂小结 1. (a≥0,b>0)和(a≥0,b>0)及其运用. 2.最简二次根式有何特征?被开方数不含分母;被开方数中不含能开得尽方的因数或因式. 完成同步练习册中本课时的练习. 本节内容是在前一节二次根式的学习基础上,在熟练计算积的算术平方根的情况下,学习商的算术平方根的性质,同时为分母有理化作准备.所以在教学中更应注重积和商的互相转换,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质在此,过程中给予适当的指导,提出问题让学生有一定的探索方向.要注意二次根式乘除法的计算公式的逆用.乘法公式的逆用就是用来使“被开方数中不含能开的尽方的因数或因式”,除法公式的逆用就是用来使“被开方数不含分母”,从而保证了结果是最简二次根式. 2.二次根式的加减第1课时二次根式的加减【知识与技能】理解和掌握二次根式加减的方法. 【过程与方法】先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简. 【情感态度】通过本节的学习培养学生准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力. 【教学重点】二次根式加减运算. 【教学难点】会熟练进行二次根式的加减运算. 一、复习问题,导入新课学生活动:计算下列各式. (1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3. 【教师点评】上面题目的结果,实际上是我们以前所学的同类项合并.同类项合并就是字母不变,系数相加减.【教学说明】通过对同类项的复习,为本节课同类二次根式的学习提供思路. 二、合作探究,探索新知 1.问题1 现有一块长dm、宽5 dm的木板,能否采用如图所示的方式,在这块木板上截出两个面积分别是8 dm2和18 dm2的正方形木板?问:能截出两块正方形木板的条件是什么?能用数学式子表示吗?能否进一步计算?这是一种什么运算?能进一步计算,这种计算是两个二次根式的加法运算. 【教学说明】通过对具体问题的探究,引起学生的探究兴趣,同时引导学生思考如何进行计算. 2.问题2 怎样计算如果看不出能否化简,我们不妨把问题简化,先看算式能否化简. =(3-1)=2. 这里的两个二次根式有什么特征?被开方数相同,即为同类二次根式. 你能得到这样的两个二次根式加减的方法吗?将同类二次根式用分配律合并【教学说明】类比于合并同类项,逐步引导学生探究二次根式加减的运算方法和步骤. 3.算式与算式有什么相同点与不同点?请化简算式,并说出每一步化简的理由. 能否把这种计算方法推广到一般?【教学说明】通过对比,引导学生进行探究,逐步掌握相关步骤. 4.请计算,并说出计算依据. 【教学说明】让学生自主完成,并进行思考和总结. 5.请总结二次根式加减的步骤、依据和基本思想. 步骤:“一化简、二判断、三合并”;依据:二次根式的性质、分配律和整式加减法则;基本思想:把二次根式加减问题转化为整式加减问题.【教学说明】教师根据学生的回答进行总结和强调,学生做好笔记. 三、示例讲解,掌握新知例1 计算【分析】第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.【教学说明】例1比较简单,可以让学生自主对照步骤进行计算,教师再根据学生出现的问题进行强调. 例2 计算【教学说明】例2(1)稍微复杂些,教师可以引导学生完成,然后让学生自主完成(2),重点强调化简的步骤. 四、练习反馈,巩固提高 1.以下二次根式:①;②;③;④中,与是同类二次根式的是()A.①和②B.②和③C.①和④D.③和④【教学说明】1、2两题主要要掌握最简二次根式的特征和化简方法,3、4、5主要是计算,要注意计算的步骤. 五、师生互动,课堂小结(1)二次根式的加减运算分哪几步进行?每一个步骤的依据是什么?(2)在二次根式的加减中,主要的想法是怎样的?(3)在二次根式加减中,有哪些地方容易出现错误?【教学说明】教师引导学生对本节课的重点知识进行回顾,重点强调二次根式加减的步骤以及每一步要注意什么,加深学生的印象,形成计算方法. 完成同步练习册中本课时的练习. 本节课先复习合并同类项、整式的加减,为学习二次根式的加减做好准备.通过具体的实际问题,引出二次根式的加减问题,激发学生的学习兴趣和强烈的求知欲望.在解决实际问题时,根据所得到的式子,需要先对二次根式进行化简,化简为最简二次根式后仿照合并同类项的方式,合并同类二次根式.然后借助详细的探究再与学生共同总结出“二次根式的加减”的具体步骤和注意问题:①化成最简二次根式;②找出同类二次根式;③合并同类二次根式,不是同类二次根式的不能合并. 通过本节课的教学,应该注意以下问题:1.将二次根式化简为最简二次根式是这节课的关键一步,不化简为最简二次根式,合并同类二次根式、二次根式的加减就无从谈起,因此这一环节应多下一些功夫,多用些时间. 2.在讲授例题时应仿照合并同类项的方法进行,学生更容易接受一些,以免显得太突然. 3.对易出错的地方应重点强调,再三强调,如:“二次根式的系数是带分数的要写成假分数的形式”,真正做到让每一名学生都清楚这一要求. 第2课时二次根式的混合运算【知识与技能】会进行二次根式的混合运算. 【过程与方法】通过对二次根式的加减乘除的混合运算,提高学生综合解题的能力. 【情感态度】通过本节的学习培养学生:利用规定准确计算和化简的严谨科学精神,发展学生观察、分析、发现问题的能力. 【教学重点】会进行二次根式的混合运算. 【教学难点】二次根式混合运算的顺序的确定和运算的准确性. 一、复习问题,导入新课【教学说明】让学生自主完成,检验计算的掌握情况. 2.在整式乘法中,单项式与多项式相乘的法则是什么?多项式与多项式的乘法法则是什么?什么是完全平方式?分别用式子表示出来. 答:单项式与多项式相乘的法则是,用单项式去乘多项式的每一项,再把所得的积相加.用式子表示为 m(a+b+c)=ma+mb+mc 多项式与多项式相乘的法则是,先用一个多项式的每一项乘以另一个多项式的每项,再把所得的积相加.用式子表示为(a+b)(m+n)=am+an+bm+bn,其中a,b,m,n都是单项式. 完全平方式是(a+b)2=a2+b2+2ab;(a-b)2=a2+b2-2ab. 【教学说明】通过对相关的运算律的回顾,为后面的运用奠定基础. 3.在实数范围内,整式中的乘法法则及乘法公式仍然适用,运用乘法法则及乘法公式可以进行二次根式的混合运算. 【教学说明】教师引导学生回答整式的运算律在二次根式的运算中同样适用. 二、示例讲解,掌握新知例1 计算: 【分析】刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律. 【教学说明】学生初次在二次根式的计算中使用运算律,还不太习惯,教师可以适当引导学生先观察式子的特征,确定可以使用什么运算律进行计算,然后再尝试运用.还要注意比较使用运算律后是否便于计算. 例2 计算【分析】刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立. 【教学说明】让学生先观察,再进行计算,注意计算的结果要进行化简,能合并的一定要合并.(2)可以使用平方差公式进行计算,这里可以将使用公式和不使用公式相比较,体会使用公式计算的简便性.同时对使用公式要注意的问题进行强调. 三、练习反馈,巩固提高 1.(-+)2的计算结果(用最简根式表示)是 .2.(1-2)(1+2)-(2-1)2的计算结果(用最简二次根式表示)是.3.若x=-1,则x2+2x+1= .4.已知a=3+2,b=3-2,则a2b-ab2= .5.化简. 【答案】【教学说明】第1、2、3题要注意完全平方公式的使用,第4、5两题可以先分解因式,再进行化简比较简单.第6题比较复杂,教师可适当进行引导. 四、师生互动,课堂小结 1.进行二次根式的混合运算应该注意哪些问题?(1)注意理清运算的顺序,(2)结果化为最简二次根式,(3)正确进行每一步的运算 2.可以利用运算律进行运算完成同步练习册中本课时的练习. 二次根式的混合运算是本章学习的落脚点,是前面学过的二次根乘法、除法及加减法的综合运用.学习二次根式的混合运算应注意以下几点:(1)二次根式的混合运算顺序与实数运算类似,先算乘方,再算乘除,最后算加减,有括号先算括号里面的. (2)对于二次根式混合运算,原来学过的所有运算律、运算法则及乘法公式仍然适用. (3)整式和分式的运算法则对于二次根式同样适用. (4)在二次根式混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. (5)运算的结果可能是二次根式,也可能是有理式,如果最终结果是二次根式要化为最简二次根式. 章末复习【知识与技能】引导学生自己回顾本章内容,以独立思考和小组讨论的学习方式,以便学生自己梳理知识,形成知识的联系,使新旧知识成为一个有机的整体. 【过程与方法】通过小结与复习加深对二次根式概念和性质理解,通过练习,进一步提高学生的计算能力和解决简单实际问题的能力. 【情感态度】培养学生反思意识,进一步体会数学来源于生活,应用于生活. 【教学重点】二次根式性质的运用和含二次根式的式子的混合运算. 【教学难点】综合运用二次根式的性质及运算法则化简和计算含二次根式的式子. 一、知识框图,整体把握【教学说明】以框图的形式对本章内容做一个形象的解读,便于学生对本章的知识脉络有一个形象的了解,对各知识点之间的关系有一个形象的把握. 二、释疑解惑,加深理解 1.二次根式的定义. 式子(a≥0)叫做二次根式.(当a≥0时,≥0;当a≥0时,在实数范围内有意义.)2.最简二次根式. 必须同时满足下列条件:(1)被开方数中不含开方开的尽的因数或因式;(2)被开方数中不含分母;(3)分母中不含根式. 3.同类二次根式:。
沪科版八年级数学下册教案20.2平均数
图20-2-3“十一黄金周”期间枣庄接待游客近50万人次请看数据.【教学反思】学习目标:1.理解平均数的概念,会计算平均数。
2.理解平均数的简化计算方法,并会简单的应用。
3.通过平均数的不同计算方法解决实际问题,进一步增强统计意识和数学应用的能力。
学习过程:一、预习:1、知道两个数2、4, 则其平均数是; 若两个数分别为m、n,则其平均数是 .2、一组数据2,4,6,x,的平均数是4,则x的数是.3、七位裁判给某体操运动员打的分数分别为: 7, 8, 9, 7, 5, 4, 8. 如果去掉一个最高分和去掉一个最低分,那么, 这位运动员平均得分是.二、活动:活动一:自主学习1、看课本P56合作学习,结合学案的内容,进行讨论、交流。
例题:在刚结束的月考中,小明和小丽所在的A组和B组同学数学成绩非常出色,他们的成绩如下:2、哪个小组同学的成绩较好?你是如何判断的?3、你觉的小明和小丽谁的成绩较好?说说你的看法?4、如何计算A、B这两组合在一起的平均数?5、算术平均数的概念:如果有n个数x1,x2,…,x n,我们把,叫做这n个数的算术平均数,简称平均数,记做x(读做“x拔” )x= 。
日常生活中,我们常用 表示一组数据的“平均水平”。
6、讨论:想一想、怎样计算最快! 求下列各组数据的平均数:(1)3,3,2,2,2,2,2,5,5,5; (2)7,7,8,7,7,8,10,8,8,9;活动二:观察活动一中的A 组和B 组 两组数据特点,1、 你有没有简便的方法计算B 组的平均成绩呢?2、当一组数据中的若干个数据多次重复出现时可以考虑的做法:一般的,如果在n 个数中,1X 出现1f 次,2X 出现2f 次, …,K X 出现K f 次,(这里1f +2f +…K f =n), 那么x = 。
3、做一做:、我们班 名学生中,13岁的有人 ,14岁的有 人,15岁的有 人。
求我们这个班级学生的平均年龄。
4、想一想、说一说:你打算怎样最快! 求下列各组数据的平均数: (1)101、102、103、104、105.(2)121、120、122、123、119、125、126、117、125,113; 5、你有简便的方法计算A 组同学平均成绩吗?6、一般地,当一组数据x 1,x 2,…,x n 的各个数值比较大时,我们可以把各个数据同时减去一个适当的常数C ,得到一组新的数据11x,12x ,…,1n x ,先算出'x ,再求出x =7、做一做: 计算下列各组数据的平均数:(1)99,101,103,97,98,102,96,104,95,105; 三、达标练习:1. 将一组数据中每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A .50B .52C .48D .22. 如果一组数据85,x ,80,90的平均数是85,那么x=( )A .84B .85C .86D .903. 一组数据2011、2012、2013、2014、2015的平均数是 .四、拓展:1. 已知一组数据4,5,6,m ,n ,p 的平均数是8,则数据m ,n ,p 的平均数为 .2. 设一组数据x 1,x 2,…,x n 的平均数是m ,求下列各组数据的平均数: (1)x 1+3,x 2+3,…,x n +3; (2)2x 1-3,2x 2-3,…,2x n -3.五、巩固:作业本相关练习.。
样本平均数估计总体平均数-沪科版八年级数学下册教案
样本平均数估计总体平均数-沪科版八年级数学下册教案一、教学目标1.了解平均数的概念。
2.掌握整体估计法求总体平均数。
3.掌握样本平均数估计总体平均数的方法。
二、教学重点1.总体平均数的概念。
2.使用整体估计法求总体平均数。
3.使用样本估计法求总体平均数。
三、教学难点1.样本估计法求总体平均数的理解和应用。
2.学生在实践中掌握计算方法。
四、教学准备PPT讲解文档、练习题和教学实例。
五、教学过程5.1 概念解释1.“平均数”的概念:数列的平均数是指一个数列中所有数的和除以这个数列中数的个数。
比如上述数列中的平均数是:平均数 = (1+2+3+4+5)/5 = 32.“总体平均数”的概念:总体平均数是对一组有限个数来说的平均值。
比如在一项调查中,我们要求出一国家乡村地区家庭的人均消费水平,那么这个国家所有家庭的人均消费水平的平均数就是总体平均数。
5.2 整体估计法整体估计法又叫“认为所检总体是同质的估计法”,是指对于任一样本均值 x~\_n,将其看做是所检总体均值μ的估计值。
若样本容量充分大,且样本来自的试验或调查随机性好,则用整体估计法可以获得较准确的估计值。
举个例子:一项调查中,抽取了100个人进行问卷调查,平均身高为1.75米,现在需要一个总体身高的估计值,那么我们可以用抽到的人中的平均身高1.75米估算总体身高。
5.3 样本平均数法样本平均数估计总体平均数是通过样本均值来估计总体均值,其中样本均值是指在同一总体中,同一规模(或容量)的有限个样本所及其全部观测值算术平均数。
事先从总体中抽取一个容量为n的简单随机样本,计算样本均值X~,则以此作为总体均值的估计值μ^。
样本平均数法与整体估计法不同的是,样本平均数法需要用到样本数据,而整体估计法并不需要。
举个例子:从某一服装店销售记录中随机抽取30件服装,测量一下大小并求出平均值。
然后使用这个平均大小值去估算整个服装店的平均服装大小。
5.4 练习使用样本平均数法,计算以下数列的平均数:1、2、3、4、5、6、7、8、9 (每题10分)5.5 实例演练该实例根据学生实际情况进行选择。
沪教版数学八年级下册全册教案-沪教版八年级下册数学
变式训练: 见《学练优》本课时练习“课堂达标训练”第 3 题 【类型二】 利用 a2=|a|计算
计算:
(1) 22; (2) (- 23)2; (3)- (- π)2. 解析: 利用 a2= |a|进行计算. 解: (1) 22=2;
(2)
第 20 章“数据的分析”主要研究平均数(主要是加权平均数) 、中 位数、众数以及方差
3
【教学目标】 通过本期的学习, 使学生了解引入二次根式的必要性, 理解二次根式 的意义,经历二次根式性质的探究过程, 经历探究二次根式的加减乘 除运算法则的过程, 学会运用二次根式性质化简二次根式, 了解最简 二次根式和同类二次根式。 会用它们进行有关实数的四则运算。 了解 一元二次方程及其相关概念, 理解一元二次方程解法的基本思想, 理 解配方法的意义,会用开平方法、配方法、公式法、因式分解法解简 单的数字系数的一元二次方程, 了解勾股定理的证明, 会运用勾股定 理解决简单的数学实际问题, 了解逆命题的概念, 理解勾股定理逆定 理及其证明, 会用勾股定理的逆定理判定直角三角形, 培养学生良好 的思维习惯, 培养学生的爱国主义思想情感。 了解四边形的概念及正 多边形的概念,了解四边形的不稳定性。掌握平行四边形、矩形、菱 形、正方形的性质与判定定理。掌握平行线间距离处处相等的性质。 了解四边形与特殊四边形等概念之间的联系与区别, 培养学生的辩证 唯物主义观点和分析问题解决问题的能力。 理解平均数的意义, 能计 算中位数、众数、 加权平均数,了解它们对数据集中趋势喝离散程度 的刻画,会计算简单数据的方差,体会样本与总体的关系,知道可以 通过样本平均数、样本方差推断总体平均数、总体方差,并能解释统 计的结果。 【教学重难点】 重点;二次根式性质及其计算 ;一元二次方程的解法;勾股定理的 逆定理的应用 ;平行四边形性质与判定;数据的集中趋势。
沪科版八年级数学下册教案最新
沪科版八年级数学下册教案最新沪科版八年级数学下册教案最新经验丰富的老师,有时不写教案也能上好课,而有的教师写了教案也不一定能把课上好,这里除了教师个人的素质差异之外,恐怕就是备课的原因了。
今天在这里整理了一些沪科版八年级数学下册教案2021最新,我们一起来看看吧!沪科版八年级数学下册教案2021最新1教学目标:1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。
2.掌握勾股定理和他的简单应用重点难点:重点:能熟练运用拼图的方法证明勾股定理难点:用面积证勾股定理教学过程七、创设问题的情境,激发学生的学习热情,导入课题我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。
在同学操作的过程中,教师展示投影1(书中p7图1—7)接着提问:大正方形的面积可表示为什么?(同学们回答有这几种可能:(1)(2))在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。
=请同学们对上面的式子进行化简,得到:即=这就可以从理论上说明勾股定理存在。
请同学们去用别的拼图方法说明勾股定理。
八、讲例1.飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?分析:根据题意:可以先画出符合题意的图形。
如右图,图中△ABC的米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。
这里一定要注意单位的换算。
解:由勾股定理得即BC=3千米飞机20秒飞行3千米,那么它1小时飞行的距离为:答:飞机每个小时飞行540千米。
最新沪科版八年级数学下册教案87466
第1课时二次根式的概念1.了解二次根式的概念;(重点)2.理解二次根式有意义的条件;(重点)3.理解a(a≥0)是一个非负数,并会应用a(a≥0)的非负性解决实际问题.(难点)一、情境导入1.小明准备了一张正方形的纸剪窗花,他算了一下,这张纸的面积是8平方厘米,那么它的边长是多少?2.已知圆的面积是6π,你能求出该圆的半径吗?大家在七年级已经学习过数的开方,现在让我们一起来解决这些问题吧!二、合作探究探究点一:二次根式的概念【类型一】二次根式的识别(2015·安顺期末)下列各式:①12;②2x;③x2+y2;④-5;⑤35,其中二次根式的个数有( )A.1个 B.2个 C.3个 D.4个解析:根据二次根式的概念可直接判断,只有①③满足题意.故选B.方法总结:判断一个式子是否为二次根式,要看式子是否同时具备两个特征:①含有二次根号“”;②被开方数为非负数.两者缺一不可.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】二次根式有意义的条件代数式x+1x-1有意义,则x的取值范围是( )A.x≥-1且x≠1 B.x≠1C.x≥1且x≠-1 D.x≥-1解析:根据题意可知x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.方法总结:(1)要使二次根式有意义,必须使被开方数为非负数,而不是所含字母为非负数;(2)若式子中含有多个二次根式,则字母的取值必须使各个被开方数同时为非负数;(3)若式子中含有分母,则字母的取值必须使分母不为零.变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点二:利用二次根式的非负性求值【类型一】 利用被开方数的非负性求字母的值(1)已知a ,b 满足2a +8+|b -1|=0,求2a -b 的值; (2)已知实数a ,b 满足a =b -2+2-b +3,求a ,b 的值.解析:根据二次根式的被开方数是非负数及绝对值的意义求值即可.解:(1)由题意知⎩⎪⎨⎪⎧2a +8=0,b -1=0,得2a =-8,b =1,则2a -b =-9;(2)由题意知⎩⎪⎨⎪⎧b -2≥0,2-b ≥0,解得b =2.所以a =0+0+3=3.方法总结:①当几个非负数的和为0时,这几个非负数均为0;②当题目中,同时出现a 和-a 时(即二次根式下的被开方数互为相反数),则可得a =0.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】 与二次根式有关的最值问题当x =________时,3x +2+3的值最小,最小值为________.解析:由二次根式的非负性知3x +2≥0,∴当3x +2=0即x =-23时,3x +2+3的值最小,此时最小值为3.故答案为-23,3.方法总结:对于二次根式a ≥0(a ≥0),可知其有最小值0. 变式训练:见《学练优》本课时练习“课后巩固提升”第8题 三、板书设计本节课的内容是在我们已学过的平方根、算术平方根知识的基础上,进一步引入二次根式的概念.教学过程中,应鼓励学生积极参与,并让学生探究和总结二次根式在实数范围内有意义的条件第2课时 二次根式的性质1.理解和掌握(a )2=a (a ≥0)和a 2=|a |;(重点)2.能正确运用二次根式的性质1和性质2进行化简和计算.(难点)一、情境导入如果正方形的面积是3,那么它的边长是多少?若边长是3,则面积是多少? 如果正方形的面积是a ,那么它的边长是多少?若边长是a ,则面积是多少?你会计算吗?二、合作探究探究点一:利用二次根式的性质进行计算【类型一】 利用(a )=a (a ≥0)计算计算:(1)(0.3)2;(2)(-13)2;(3)(23)2; (4)(2x -y )2.解析:(1)可直接运用(a )2=a (a ≥0)计算,(2)(3)(4)在二次根号前有一个因数,先利用(ab )2=a 2b 2,再利用(a )2=a (a ≥0)进行计算.解:(1)(0.3)2=0.3;(2)(-13)2=(-1)2×(13)2=13;(3)(23)2=22×(3)2=12;(4)(2x -y )2=22×(x -y )2=4(x -y )=4x -4y .方法总结:形如(n m )2(m ≥0)的二次根式的化简,可先利用(ab )2=a 2b 2,化为n 2·(m )2(m ≥0)后再化简.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型二】 利用a =|a |计算计算: (1)22; (2)(-23)2; (3)-(-π)2.解析:利用a 2=|a |进行计算.解:(1)22=2; (2)(-23)2=|-23|=23;(3)-(-π)2=-|-π|=-π. 方法总结:a 2=|a |的实质是求a 2的算术平方根,其结果一定是非负数. 变式训练:见《学练优》本课时练习“课堂达标训练”第9题 【类型三】 利用二次根式的性质化简求值先化简,再求值:a +1+2a +a 2,其中a =-2或3. 解析:先把二次根式化简,再代入求值,即可解答.解:a +1+2a +a 2=a +(a +1)2=a +|a +1|,当a =-2时,原式=-2+|-2+1|=-2+1=-1;当a =3时,原式=3+|3+1|=3+4=7.方法总结:本题考查了二次根式的性质,解决本题的关键是先化简,再求值. 变式训练:见《学练优》本课时练习“课堂达标训练”第10题 探究点二:利用二次根式的性质进行化简 【类型一】 与数轴的综合如图所示为a ,b 在数轴上的位置,化简2a 2-(a -b )2+(a +b )2.解析:由a ,b 在数轴上的位置确定a <0,a -b <0,a +b <0.再根据a 2=|a |进行化简.解:由数轴可知-2<a<-1,0<b<1,则a-b<0,a+b<0.原式=2|a|-|a-b|+|a+b|=-2a+a-b-(a+b)=-2a-2b.方法总结:利用a2=|a|化简时,先必须弄清楚被开方数的底数的正负性,计算时应包括两个步骤:①把被开方数的底数移到绝对值符号中;②根据绝对值内代数式的正负性去掉绝对值符号.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型二】与三角形三边关系的综合已知a、b、c是△ABC的三边长,化简(a+b+c)2-(b+c-a)2+(c-b-a)2.解析:根据三角形的三边关系得出b+c>a,b+a>c,根据二次根式的性质得出含有绝对值的式子,最后去绝对值符号后合并即可.解:∵a、b、c是△ABC的三边长,∴b+c>a,b+a>c,∴原式=|a+b+c|-|b+c -a|+|c-b-a|=a+b+c-(b+c-a)+(b+a-c)=a+b+c-b-c+a+b+a-c=3a+b-c.方法总结:解答本题的关键是根据三角形的三边关系(三角形中任意两边之和大于第三边),得出不等关系,再结合二次根式的性质进行化简.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计二次根式的性质是建立在二次根式概念的基础上,同时又为学习二次根式的运算打下基础.本节教学始终以问题的形式展开,使学生在教师设问和自己释问的过程中萌生自主学习的动机和欲望,逐渐养成思考问题的习惯.性质1和性质2容易混淆,教师在教学中应注意引导学生辨析它们的区别,以便更好地灵活运用第1课时二次根式的乘法1.掌握二次根式的乘法运算法则;(重点)2.会进行二次根式的乘法运算.(重点、难点)一、情境导入小颖家有一块长方形菜地,长6m,宽3m,那么这个长方形菜地的面积是多少?二、合作探究探究点一:二次根式的乘法法则成立的条件式子x +1·2-x =(x +1)(2-x )成立的条件是( ) A .x ≤2 B .x ≥-1C .-1≤x ≤2D .-1<x <2解析:根据题意得⎩⎪⎨⎪⎧x +1≥0,2-x ≥0.解得-1≤x ≤2.故选C.方法总结:运用二次根式的乘法法则:a ·b =ab (a ≥0,b ≥0),必须注意被开方数是非负数这一条件.变式训练:见《学练优》本课时练习“课堂达标训练”第2题 探究点二:二次根式的乘法【类型一】 二次根式的乘法运算计算:(1)53×27125; (2)918×(-1654);(3)135·23·(-3416); (4)2a 8ab ·(-236a 2b )·3a (a ≥0,b ≥0).解析:第(1)小题直接按二次根式的乘法法则进行计算,第(2),(3),(4)小题把二次根式前的系数与系数相乘,被开方数与被开方数相乘.解:(1)原式=53×27125=35; (2)原式=-(9×16)18×54=-32182×3=-273;(3)原式=-(2×34)85×3×16=-3245=-355; (4)原式=-2a ×238ab ·6a 2b ·3a =-16a 3b .方法总结:二次根式与二次根式相乘时,可类比单项式与单项式相乘,把系数与系数相乘,被开方数与被开方数相乘.最后结果要化为最简二次根式,计算时要注意积的符号.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】 逆用性质3(即ab =a ·b ,a ≥0,b ≥0)进行化简化简: (1)196×0.25; (2)(-19)×(-6481);(3)225a 6b 2(a ≥0,b ≥0).解析:利用积的算术平方根的性质,把它们化为几个二次根式的积,(2)小题中先确定符号.解:(1)196×0.25=196×0.25=14×0.5=7; (2)(-19)×(-6481)=19×6481=19×6481=13×89=827; (3)225a 6b 2=225·a 6·b 2=15a 3b . 方法总结:利用积的算术平方根的性质进行计算或化简,其实质就是把被开方数中的完全平方数或偶次方进行开平方计算,要注意的是,如果被开方数是几个负数的积,先要把符号进行转化,如(2)小题.变式训练:见《学练优》本课时练习“课堂达标训练”第8题 【类型三】 二次根式的乘法的应用 小明的爸爸做了一个长为588πcm ,宽为48πcm 的矩形木板,还想做一个与它面积相等的圆形木板,请你帮他计算一下这个圆的半径(结果保留根号).解析:根据“矩形的面积=长×宽”“圆的面积=π×半径的平方”进行计算. 解:设圆的半径为r cm.因为矩形木板的面积为588π×48π=168π(cm)2,所以πr 2=168π,r =242(r =-242舍去). 答:这个圆的半径为242cm.方法总结:把实际问题转化为数学问题,列出相应的式子进行计算,体现了转化思想. 变式训练:见《学练优》本课时练习“课后巩固提升”第9题 三、板书设计本节课学习了二次根式的乘法和积的算术平方根的性质,两者是可逆的,它们成立的条件都是被开方数为非负数.在教学中通过情境引入激发学生的学习兴趣,让学生自主探究二次根式的乘法法则,鼓励学生运用法则进行二次根式的乘法运算第2课时 二次根式的除法1.会利用商的算术平方根的性质化简二次根式;(重点,难点)2.掌握二次根式的除法法则,并会运用法则进行计算;(重点、难点)3.掌握最简二次根式的概念,并会熟练运用.(重点)一、情境导入计算下列各题,观察有什么规律? (1)3649=________;3649=________. (2)916=________;916=________. 3649________3649;916________916. 二、合作探究探究点一:二次根式的除法计算:(1)4872; (2)612518; (3)27a 2b312ab2; (4)12a 3b 5÷(-23a 2b 6)(a >0,b >0). 解析:(1)直接把被开方数相除;(2)把系数与系数相除,被开方数与被开方数相除;(3)被开方数相除时,注意约分;(4)系数相除时,把除法转化为乘法,被开方数相除时,写成商的算术平方根的形式,再化简.解:(1)4872=4872=23=63; (2)612518=651218=6523=256; (3)27a 2b 312ab2=27a 2b312ab2=9ab 4=32ab ; (4)12a 3b 5÷(-23a 2b 6) =12×(-32)a 3b 5a 2b 6=-34a b =-34bab . 方法总结:①二次根式的除法运算,可以类比单项式的除法运算,当被除式或除式中有负号时,要先确定商的符号;②二次根式相除,根据除法法则,把被开方数与被开方数相除,转化为一个二次根式;③二次根式的除法运算还可以与商的算术平方根的性质结合起来,灵活选取合适的方法;④最后结果要化为最简二次根式.变式训练:见《学练优》本课时练习“课堂达标训练”第8题 探究点二:最简二次根式下列二次根式中,最简二次根式是( )A.8aB.3aC.a3D.a 2+a 2b 解析:A 选项8a 中含能开得尽方的因数4,不是最简二次根式;B 选项是最简二次根式;C 选项a3中含有分母,不是最简二次根式;D 选项a 2+a 2b 中被开方数用提公因式法因式分解后得a 2+a 2b =a 2(1+b )含能开得尽方的因数a 2,不是最简二次根式.故选B.方法总结:最简二次根式必须同时满足下列两个条件:①被开方数中不含能开得尽方的因数或因式;②被开方数不含分母.判定一个二次根式是不是最简二次根式,就是看是否同时满足最简二次根式的两个条件,同时满足的就是最简二次根式,否则就不是.变式训练:见《学练优》本课时练习“课堂达标训练”第6题 探究点三:商的算术平方根的性质【类型一】 利用商的算术平方根的性质确定字母的取值若a2-a=a2-a,则a 的取值范围是( ) A .a <2 B .a ≤2 C .0≤a <2 D .a ≥0解析:根据题意得⎩⎪⎨⎪⎧a ≥0,2-a >0,解得0≤a <2.故选C.方法总结:运用商的算术平方根的性质:b a =ba(a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.【类型二】 利用商的算术平方根的性质化简二次根式化简:(1)179; (2)3c34a 4b2(a >0,b >0,c >0). 解析:按商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根. 解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式.变式训练:见《学练优》本课时练习“课后巩固提升”第8题 探究点四:二次根式除法的应用 已知某长方体的体积为3010cm 3,长为20cm ,宽为15cm ,求长方体的高. 解析:因为“长方体的体积=长×宽×高”,所以“高=长方体的体积÷(长×宽)”,代入计算即可.解:长方体的高为3010÷(20×15)=301020×15=30130=30(cm).方法总结:本题也可以设高为x,根据长方体体积公式建立方程求解.三、板书设计二次根式的除法是建立在二次根式乘法的基础上,所以在学习中应侧重于引导学生利用与学习二次根式乘法相类似的方法学习,从而进一步降低学习难度,提高学习效率第1课时二次根式的加减1.经历探索二次根式的加减运算法则的过程,让学生理解二次根式的加减法则;2.掌握二次根式的加减运算.(重点、难点)一、情境导入计算:(1)2x-5x;(2)3a2-a2+2a2.上述运算实际上就是合并同类项,如果把题中的x换成3,a2换成5,这时上述两小题就成为如下题目:计算:(1)23-53;(2)35-5+2 5.这时怎样计算呢?二、合作探究探究点一:同类二次根式下列二次根式中与2是同类二次根式的是( )A.12B.3 2C.23D.18解析:选项A中,12=23与2被开方数不同,故与2不是同类二次根式;选项B中,32=62与2被开方数不同,故与2不是同类二次根式;选项C中,23=63与2被开方数不同,故与2不是同类二次根式;选项D 中,18=32与2被开方数相同,故与2是同类二次根式.故选D.方法总结:要判断两个二次根式是否是同类二次根式,根据二次根式的性质,把每个二次根式化为最简二次根式,如果被开方数相同,这样的二次根式就是同类二次根式.变式训练:见《学练优》本课时练习“课堂达标训练”第1题 探究点二:二次根式的加减【类型一】 二次根式的加法或减法(1)8+32; (2)1223+1332; (3)448-375; (4)1816-3296. 解析:先把每个二次根式化为最简二次根式,再把同类二次根式合并. 解:(1)原式=22+42=(2+4)2=62; (2)原式=166+166=(16+16)6=63;(3)原式=163-153=(16-15)3=3;(4)原式=36-66=(3-6)6=-3 6. 方法总结:二次根式加减的实质就是合并同类二次根式,合并同类二次根式可以类比合并同类项进行,不是同类二次根式的不能合并.变式训练:见《学练优》本课时练习“课堂达标训练”第6题 【类型二】 二次根式的加减混合运算计算:(1)12-33-273; (2)324x -3x9+3x1x;(3)3123-45+220-1260; (4)0.5-213-(18-75). 解析:先把每个二次根式化为最简二次根式,再把同类二次根式合并. 解:(1)原式=23-3-3=0; (2)原式=3x -x +3x =5x ;(3)原式=15-35+45-15=5; (4)原式=22-233-24+53=24+1333. 方法总结:二次根式的加减混合运算步骤:①把每个二次根式化为最简二次根式;②运用加法交换律和结合律把同类二次根式移到一起;③把同类二次根式的系数相加减,被开方数不变.变式训练:见《学练优》本课时练习“课堂达标训练”第8题 【类型三】 二次根式加减法的应用 一个三角形的周长是(23+32)cm ,其中两边长分别是(3+2)cm ,(33-22)cm ,求第三边长.解析:第三边长等于(23+32)-(3+2)-(33-22),再去括号,合并同类二次根式.解:第三边长是(23+32)-(3+2)-(33-22)=23+32-3-2-33+22=42-23(cm).方法总结:由三角形周长的意义可知,三角形的周长减去已知两边的长,可得第三边的长.解决问题的关键在于把实际问题转化为二次根式的加减混合运算.变式训练:见《学练优》本课时练习“课后巩固提升”第4题三、板书设计通过合并同类项引入二次根式的加减法,让学生类比学习.引导学生归纳总结出二次根式加减运算的两个关键步骤:①把每个二次根式化为最简二次根式;②合并同类二次根式.并让学生按步骤解题,养成规范解题的良好习惯.教学过程中,注重数学思想方法的渗透(类比),培养学生良好的思维品质第2课时二次根式的混合运算1.了解二次根式的混合运算顺序;2.会进行二次根式的混合运算.(重点、难点)一、情境导入如果梯形的上、下底边长分别为22cm,43cm,高为6cm,那么它的面积是多少?毛毛是这样算的:梯形的面积:12(22+43)×6=(2+23)×6=2×6+23×6=2×6+218=23+62(cm2).他的做法正确的吗?二、合作探究探究点一:二次根式的混合运算【类型一】二次根式的混合运算计算:(1)48÷3-12×12+24;(2)12÷43×23-50. 解析:(1)先算乘除,再算加减;(2)先计算第一部分,把除法转化为乘法,再化简.解:(1)原式=16-6+24=4-6+26=4+6;(2)原式=12×34×233-52=38×233-52=64×233-52=22-52=-922. 方法总结:二次根式的混合运算与实数的混合运算一样,先算乘方,再算乘除,最后算加减,如果有括号就先算括号里面的.变式训练:见《学练优》本课时练习“课后巩固提升”第8题【类型二】 运用乘法公式进行二次根式的混合运算计算:(1)(5+3)(5-3);(2)(32-23)2-(32+23)2.解析:(1)用平方差公式计算;(2)逆用平方差公式计算. 解:(1)(5+3)(5-3)=(5)2-(3)2=5-3=2;(2)(32-23)2-(32+23)2=(32-23+32+23)(32-23-32-23)=-24 6.方法总结:多项式的乘法公式在二次根式的混合运算中仍然适用,计算时应先观察式子的特点,能用乘法公式的用乘法公式计算.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型三】 二次根式的化简求值 先化简,再求值:x +xy xy +y +xy -y x -xy(x >0,y >0),其中x =3+1,y =3-1. 解析:首先根据约分的方法和二次根式的性质进行化简,然后再代值计算.解:原式=x (x +y )y (x +y )+y (x -y )x (x -y )=x y +y x =x +y xy. ∵x =3+1,y =3-1,∴x +y =23,xy =3-1=2,∴原式=232= 6. 方法总结:在解答此类代值计算题时,通常要先化简再代值,如果不化简,直接代入,虽然能求出结果,但往往导致烦琐的运算.化简求值时注意整体思想的运用.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型四】 二次根式混合运算的应用一个三角形的底为63+22,这条边上的高为33-2,求这个三角形的面积.解析:根据三角形的面积公式进行计算.解:这个三角形的面积为12(63+22)(33-2)=12×2×(33+2)(33-2)=(33)2-(2)2=27-2=25.方法总结:根据题意列出关系式,计算时注意观察式子的特点,选取合适的方法求解,能应用公式的尽量用公式计算.变式训练:见《学练优》本课时练习“课后巩固提升”第10题探究点二:二次根式的分母有理化【类型一】 分母有理化计算: (1)215+122; (2)3-23+2+3+23-2.解析:(1)把分子、分母同乘以2,再约分计算;(2)把3-23+2的分子、分母同乘以3-2,把3+23-2的分子、分母同乘以3+2,再运用公式计算. 解:(1)215+122=(215+12)×22×2=230+262=30+6; (2)3-23+2+3+23-2=(3-2)2(3+2)(3-2)+(3+2)2(3-2)(3+2)=5-263-2+5+263-2=5-26+5+26=10. 方法总结:把分母中的根号化去就是分母有理化,分母有理化时,分子、分母应同乘以一个适当的式子,如果分母只有一个二次根式,则乘以这个二次根式,使得分母能写成a ·a 的形式;如果分母有两项,分子、分母乘以一个二项式,使得能运用平方差公式计算.如分母是a +b ,则分子、分母同乘以a -b .【类型二】 分母有理化的逆用比较15-14与14-13的大小解析:把15-14的分母看作“1”,分子、分母同乘以15+14;把14-13的分母看作“1”大的反而小”,得到它们的大小关系.解:15-14=(15-14)(15+14)15+14=115+14,14-13=(14-13)(14+13)14+13=114+13.∵15+14>14+13>0,∴115+14<114+13即15-14<14-13.方法总结:把分母为“1”的式子化为分子为“1”的式子,根据分母大的反而小可以比较两个数的大小.三、板书设计二次根式的混合运算可类比整式的运算进行,注意运算顺序,最后的结果应化简.引导学生勇于尝试,加强训练,从解题过程中发现问题,解决问题.本节课的易错点是运算错误,要求学生认真细心,养成良好的习惯。
沪教版八年级数学下册教案[001]
沪教版八年级数学下册教案[001]
课程目标
通过本节课的学习,学生应该能够:
1.认识二阶行列式的概念
2.掌握二阶行列式的计算方法
3.了解二阶行列式的几何意义
教学重点
•二阶行列式的概念
•二阶行列式的计算方法
教学难点
•二阶行列式的几何意义
教学准备
•课件
•黑板、粉笔
教学过程
导入(5分钟)
1.引导学生回忆行列式的概念和计算方法。
2.介绍本节课要学习的新知识:二阶行列式。
讲解(20分钟)
1.介绍二阶行列式的概念。
2.讲解二阶行列式的计算方法。
3.进行一些列式计算练习,让学生熟悉计算方法。
4.介绍二阶行列式的几何意义。
练习(20分钟)
1.学生自行完成一些熟练练习,巩固计算方法。
2.分组练习,让学生相互问答,互相辅导,增加交流的机会。
总结(5分钟)
课堂小结
1.回顾二阶行列式的概念和计算方法。
2.回顾二阶行列式的几何意义。
课后作业
1.完成课本上的练习题。
2.扩展阅读:通过网站或者书籍了解更多关于行列式的知识。
教学效果评估
1.学生能够熟练掌握二阶行列式的计算方法。
2.学生能够了解二阶行列式的几何意义。
3.学生能够完成相应的作业。
反思
•本节课讲解部分略长,时间分配不够均匀。
•互动性不够,应当更好地利用互动环节。
沪科版初二下册数学全册教案(教学设计)
沪科版八年级下册初中数学全册资料汇编教案(教学设计)16.1二次根式(1)主备人:教学反思16.1二次根式(2)主备人:教学反思16.2 二次根式的运算第1课时二次根式的乘法第2课时 二次根式的除法学习目标1.会利用商的算术平方根的性质化简二次根式.(重点、难点) 2.掌握二次根式的除法法则,并会运用法则进行计算.(重点、难点) 3.掌握最简二次根式的概念,并会熟练运用.(重点) 教学过程一、情境导入计算下列各题,观察有什么规律? (1)3649=________;3649=________. (2)916=________;916=________. 3649________3649;916________916. 二、合作探究探究点一:二次根式的除法计算:(1)4872; (2)612518; (3)27a 2b 312ab 2;(4)12a 3b 5÷(-23a 2b 6)(a >0,b >0). 解析:(1)直接把被开方数相除;(2)把系数与系数相除,被开方数与被开方数相除;(3)被开方数相除时,注意约分;(4)系数相除时,把除法转化为乘法,被开方数相除时,写成商的算术平方根的形式,再化简.解:(1)4872=4872=23=63; (2)612518=651218=6523=256; (3)27a 2b 312ab2=27a 2b 312ab 2=9ab 4=32ab ;(4)12a 3b 5÷(-23a 2b 6) =12×(-32)a 3b 5a 2b 6=-34a b =-34bab . 方法总结:①二次根式的除法运算,可以类比单项式的除法运算,当被除式或除式中有负号时,要先确定商的符号;②二次根式相除,根据除法法则,把被开方数与被开方数相除,转化为一个二次根式;③二次根式的除法运算还可以与商的算术平方根的性质结合起来,灵活选取合适的方法;④最后结果要化为最简二次根式.探究点二:最简二次根式下列二次根式中,最简二次根式是( ) A.8a B.3a C.a3D.a 2+a 2b 解析:A 选项8a 中含能开得尽方的因数4,不是最简二次根式;B 选项是最简二次根式;C 选项a3中含有分母,不是最简二次根式;D 选项a 2+a 2b 中被开方数用提公因式法因式分解后得a 2+a 2b =a 2(1+b )含能开得尽方的因数a 2,不是最简二次根式.故选B.方法总结:最简二次根式必须同时满足下列两个条件:①被开方数中不含能开得尽方的因数或因式;②被开方数不含分母.判定一个二次根式是不是最简二次根式,就是看是否同时满足最简二次根式的两个条件,同时满足的就是最简二次根式,否则就不是.探究点三:商的算术平方根的性质【类型一】 利用商的算术平方根的性质确定字母的取值若a2-a=a2-a,则a 的取值范围是( )A .a <2B .a ≤2 C.0≤a <2 D .a ≥0解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C.方法总结:运用商的算术平方根的性质:b a =ba(a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.【类型二】 利用商的算术平方根的性质化简二次根式化简:(1)179; (2)3c 34a 4b 2(a >0,b >0,c >0). 解析:按商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根. 解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式.探究点四:二次根式除法的应用已知某长方体的体积为3010 cm 3,长为20 cm ,宽为15 cm ,求长方体的高. 解析:因为“长方体的体积=长×宽×高”,所以“高=长方体的体积÷(长×宽)”,代入计算即可.解:长方体的高为3010÷(20×15)=301020×15=30130=30(cm). 方法总结:本题也可以设高为x ,根据长方体的体积公式建立方程求解. 教学反思二次根式的除法是建立在二次根式乘法的基础上,所以在学习中应侧重于引导学生利用与学习二次根式乘法相类似的方法学习,从而进一步降低学习难度,提高学习效率。
【沪科版八年级数学下册教案】19.3.1第1课时矩形的性质
第 1 课时矩形的性质1.掌握矩形的看法和性质,理解矩形与平行四边形的差别与联系; ( 要点 )2.会运用矩形的看法和性质来解决有关问题. (难点 )一、情境导入1.展现生活中一些平行四边形的实质应用图片 (推拉门、活动衣架、篱笆、井架等 ),想想:这里面应用了平行四边形的什么性质?2.思虑:拿一个活动的平行四边形教具,轻轻拉动一个点,无论怎么拉,它还是一个平行四边形吗?为何 ( 动画演示拉动过程如图 )?3.再次演示平行四边形的挪动过程,当挪动到一个角是直角时停止,让学生观察这是什么图形(小学学过的长方形),引出本课题及矩形定义.矩形是我们最常有的图形之一,比方书桌面、教科书的封面等都是矩形.有一个角是直角的平行四边形是矩形.矩形是平行四边形,但平行四边形不必定是矩形,矩形是特别的平行四边形,它拥有平行四边形的全部性质.二、合作研究研究点一:矩形的性质【种类一】矩形的四个角都是直角如图,矩形 ABCD 中,点 E 在 BC 上,且 AE 均分∠ BAC.若 BE= 4, AC= 15,则△ AEC 的面积为 ()A.15 B.30 C.45D.60分析:如图,过 E 作 EF⊥ AC,垂足为F .∵AE 均分∠ BAC, EF⊥ AC, BE⊥ AB,∴ EF=BE =4,∴S△AEC=12AC · EF=12× 15× 4= 30.故选 B.方法总结:矩形的四个角都是直角,常作为证明或求值的隐含条件.【种类二】矩形的对角线相等以下列图,矩形ABCD 的两条对角线订交于点O,∠AOD= 60°,AD= 2,则 AC的长是 ()A . 2B. 4C.23D.43分析:依据矩形的对角线相互均分且相1等可得OC= OD = OA=2AC ,由∠ AOD =60°得△AOD 为等边三角形,即可求出AC的长.应选 B.方法总结:矩形的两条对角线相互均分且相等,即对角线把矩形分成四个等腰三角形,当两条对角线的夹角为60°或120°时,图中有等边三角形,可以利用等边三角形的性质解题.研究点二:直角三角形斜边上的中线等于斜边的一半如图,已知 BD , CE 是△ ABC 不一样边上的高,点 G,F 分别是 BC ,DE 的中点,试说明 GF ⊥ DE.分析:本题的已知条件中已经有直角三角形,有斜边上的中点,由此可联想到应用“ 直角三角形斜边上的中线等于斜边的一半” 这必定理.解:连接 EG, DG.∵BD,CE 是△ ABC 的高,∴∠ BDC =∠ BEC = 90° .∵点 G 是 BC 的中点,∴ EG=1BC, DG=1B C,22∴ EG=DG .又∵点 F 是 DE 的中点,∴GF⊥DE .方法总结:在直角三角形中,遇到斜边中点常作斜边中线,从而可将问题转变成等∴∠ AEF +∠ CED= 90°,∴∠ AEF =∠ ECD.而 EF=EC,∴△ AEF ≌△ DCE,∴AE=CD .设 AE=xcm,∴CD= xcm, AD = (x+ 4)cm,则有 2(x+ 4+ x)= 32,解得 x= 6.即 AE 的长为 6cm.方法总结:矩形的各角为直角,常作为全等的一个条件用来证三角形全等,可借助直角的条件解决直角三角形中的问题.【种类二】利用矩形的性质求有关角度的大小如图,在矩形 ABCD 中, AE⊥ BD 于 E,∠ DAE ∶∠ BAE= 3∶ 1,求∠ BAE 和∠ EAO 的度数.腰三角形的问题,而后利用等腰三角形“三线合一” 的性质解题.研究点三:矩形的性质的运用【种类一】利用矩形的性质求有关线段的长度如图,已知矩形 ABCD 中, E 是 AD 上的一点, F 是 AB 上的一点, EF ⊥ EC,且 EF= EC,DE= 4cm,矩形 ABCD 的周长为 32cm,求 AE 的长.分析:先判断△ AEF ≌△ DCE ,得 CD =AE,再依据矩形的周长为 32cm 列方程求出AE 的长.解:∵四边形 ABCD 是矩形,∴∠ A=∠ D= 90°,∴∠ CED +∠ ECD = 90°.又∵ EF⊥EC ,分析:由∠BAE 与∠ DAE 之和为 90°及这两个角之比可求得这两个角的度数,从而得∠ ABO 的度数,再依据矩形的性质易得∠EAO 的度数.解:∵四边形 ABCD 是矩形,∴∠ DAB =90°,11AO=2AC, BO=2BD, AC=BD,∴∠ BAE+∠ DAE= 90°, AO= BO.又∵∠ DAE:∠ BAE = 3:1,∴∠ BAE= 22.5°,∠ DAE = 67.5°.∵AE⊥BD ,∴∠ABE= 90°-∠BAE= 90° -22.5°= 67.5°,∴∠ OAB=∠ ABE= 67.5°,∴∠ EAO=67.5°- 22.5°= 45° .方法总结:矩形的性质是证明线段相等或倍分、角的相等与求值及线段平行或垂直的重要依照.【种类三】利用矩形的性质求图形的面积以下列图,EF 过矩形ABCD 对角线的交点 O,且分别交 AB、 CD 于 E、 F,那么暗影部分的面积是矩形ABCD 面积的()1113A.5B. 4C.3D. 10分析:由四边形ABCD 为矩形,易证得△BEO ≌△ DFO ,则暗影部分的面积等于△AOB 的面积,而△ AOB 的面积为矩形ABCD面积的14,故暗影部分的面积为矩形1面积的4.应选 B.方法总结:求暗影部分的面积时,当阴影部分不规则或比较分别时,平时运用割补∴∠ 1=∠ 3,∴ BE= DE .设 BE=DE = x,则 AE = 8- x.∵在 Rt△ ABE 中, AB2+AE2= BE2,∴42+(8- x)2=x2,解得 x= 5.即 DE= 5.11× 5× 4= 10.∴ S△BED= DE ·AB=22方法总结:矩形的折叠问题是常有的问题,本题的易错点是对△ BED是等腰三角形认识不足,解题的要点是对折叠后的几何形状要有一个正确的分析.三、板书设计法将暗影部分转变成较规则的图形,再求其面积.【种类四】矩形中的折叠问题如图,将矩形 ABCD 沿着直线 BD 折叠,使点 C 落在 C′处,BC′交 AD 于点 E,AD = 8, AB= 4,求△ BED 的面积.分析:这是一道折叠问题,折后的图形与原图形全等,从而得△ BCD ≌△ BC′D,则易得 BE= DE.在 Rt△ ABE 中,利用勾股定理列方程求出BE 的长,即可求得△ BED 的面积.解:∵四边形 ABCD 是矩形,∴AD∥BC ,∠ A=90°,∴∠ 2=∠ 3.又由折叠知△ BC ′D≌△ BCD ,∴∠ 1=∠ 2,经历矩形的看法和性质的研究过程,掌握平行四边形的演变过程,迁徙到矩形的看法与性质上来,明确矩形是特别的平行四边形.培育学生的推理能力以及自主合作精神,掌握几何思想方法,领悟逻辑推理的思想价值 .。
沪科版初二下册数学全册教案(教学设计)
沪科版八年级下册初中数学全册资料汇编教案(教学设计)16.1二次根式(1)主备人:教学反思16.1二次根式(2)主备人:教学反思16.2 二次根式的运算第1课时二次根式的乘法第2课时 二次根式的除法学习目标1.会利用商的算术平方根的性质化简二次根式.(重点、难点) 2.掌握二次根式的除法法则,并会运用法则进行计算.(重点、难点) 3.掌握最简二次根式的概念,并会熟练运用.(重点) 教学过程一、情境导入计算下列各题,观察有什么规律? (1)3649=________;3649=________. (2)916=________;916=________. 3649________3649;916________916. 二、合作探究探究点一:二次根式的除法计算:(1)4872; (2)612518; (3)27a 2b 312ab 2;(4)12a 3b 5÷(-23a 2b 6)(a >0,b >0). 解析:(1)直接把被开方数相除;(2)把系数与系数相除,被开方数与被开方数相除;(3)被开方数相除时,注意约分;(4)系数相除时,把除法转化为乘法,被开方数相除时,写成商的算术平方根的形式,再化简.解:(1)4872=4872=23=63; (2)612518=651218=6523=256; (3)27a 2b 312ab2=27a 2b 312ab 2=9ab 4=32ab ;(4)12a 3b 5÷(-23a 2b 6) =12×(-32)a 3b 5a 2b 6=-34a b =-34bab . 方法总结:①二次根式的除法运算,可以类比单项式的除法运算,当被除式或除式中有负号时,要先确定商的符号;②二次根式相除,根据除法法则,把被开方数与被开方数相除,转化为一个二次根式;③二次根式的除法运算还可以与商的算术平方根的性质结合起来,灵活选取合适的方法;④最后结果要化为最简二次根式.探究点二:最简二次根式下列二次根式中,最简二次根式是( ) A.8a B.3a C.a3D.a 2+a 2b 解析:A 选项8a 中含能开得尽方的因数4,不是最简二次根式;B 选项是最简二次根式;C 选项a3中含有分母,不是最简二次根式;D 选项a 2+a 2b 中被开方数用提公因式法因式分解后得a 2+a 2b =a 2(1+b )含能开得尽方的因数a 2,不是最简二次根式.故选B.方法总结:最简二次根式必须同时满足下列两个条件:①被开方数中不含能开得尽方的因数或因式;②被开方数不含分母.判定一个二次根式是不是最简二次根式,就是看是否同时满足最简二次根式的两个条件,同时满足的就是最简二次根式,否则就不是.探究点三:商的算术平方根的性质【类型一】 利用商的算术平方根的性质确定字母的取值若a2-a=a2-a,则a 的取值范围是( )A .a <2B .a ≤2 C.0≤a <2 D .a ≥0解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C.方法总结:运用商的算术平方根的性质:b a =ba(a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.【类型二】 利用商的算术平方根的性质化简二次根式化简:(1)179; (2)3c 34a 4b 2(a >0,b >0,c >0). 解析:按商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根. 解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式.探究点四:二次根式除法的应用已知某长方体的体积为3010 cm 3,长为20 cm ,宽为15 cm ,求长方体的高. 解析:因为“长方体的体积=长×宽×高”,所以“高=长方体的体积÷(长×宽)”,代入计算即可.解:长方体的高为3010÷(20×15)=301020×15=30130=30(cm). 方法总结:本题也可以设高为x ,根据长方体的体积公式建立方程求解. 教学反思二次根式的除法是建立在二次根式乘法的基础上,所以在学习中应侧重于引导学生利用与学习二次根式乘法相类似的方法学习,从而进一步降低学习难度,提高学习效率。
【沪科版八年级数学下册教案】19.3.2第1课时菱形的性质
第 1 课时菱形的性质1.经过折、剪纸张的方法,研究菱形独到的性质,理解菱形与平行四边形之间的联系;2.经过学生间的交流、谈论、分析、类比、归纳,运用已学过的知识总结菱形的特色;3.掌握菱形的看法和菱形的性质以及菱形的面积公式的推导. (要点、难点 )一、情境导入请看演示: (可用早先按如图做成的一组对边可以活动的教具进行演示 )如图,改变平行四边形的边,使一组邻边相等,从而引出菱形看法.方法总结:假如一个菱形的内角为60°或 120 °则两边与较短对角线可构成等边三,角形,这是特别实用的基本图形.【种类二】菱形的对角线相互垂直以下列图,在菱形 ABCD 中,对角线 AC、BD 订交于点 O,BD= 12cm,AC= 6cm,求菱形的周长.分析:因为菱形的四条边都相等,所以要求其周长就要先求出其边长.由菱形性质可知,其对角线相互垂直均分,所以可以在直角三角形中利用勾股定理进行计算.让学生举一些平常生活中所见到过的菱形的例子.二、合作研究研究点一:菱形的性质【种类一】菱形的四条边相等以下列图,在菱形 ABCD 中,已知∠ A=60°, AB= 5,则△ ABD 的周长是()A. 10B. 12C. 15D. 20解:因为四边形 ABCD 是菱形,所以 AC⊥ BD,11AO=2AC, BO=2BD.因为 AC= 6cm, BD= 12cm,所以 AO= 3cm, BO=6cm.在 Rt△ ABO 中,由勾股定理,得AB = AO2+BO2= 32+ 62= 3 5 (cm) .所以菱形的周长=4AB= 4×3 5 =12 5(cm) .方法总结:因为菱形的对角线把菱形分分析:依据菱形的性质可判断△ABD 是等边三角形,再依据成四个全等的直角三角形,所以菱形的有关AB= 5 求出△ABD 的周长.计算问题常转变到直角三角形中求解.∵四边形 ABCD 是菱形,∴AB=AD.变式训练:见《学练优》本课时练习“课又∵∠ A= 60°,堂达标训练”第 3 题∴△ ABD 是等边三角形,【种类三】菱形是轴对称图形∴△ ABD 的周长= 3AB= 15.如图,在菱形 ABCD 中, CE⊥ AB 应选 C.于点 E, CF⊥ AD 于点 F.求证: AE= AF.又因为菱形两组对边的距离相等,所以 S 菱形ABCD=AB ·h= 13h,120所以 13h=120,得 h=.分析:要证明AE = AF ,需要先证明△ACE ≌△ ACF .证明:连接 AC.∵四边形 ABCD 是菱形,∴AC 均分∠ BAD ,方法总结:菱形的面积计算有以下方法: (1) 一边长与两对边的距离(即菱形的高 )的积; (2) 四个小直角三角形的面积之和(或即∠ BAC=∠ DAC .∵CE⊥ AB, CF⊥AD ,∴∠ AEC=∠ AFC= 90° .在△ ACE 和△ ACF 中,∠AEC=∠ AFC ,∠EAC=∠ FAC,AC= AC,∴△ ACE≌△ ACF,∴AE= AF .一个小直角三角形面积的 4 倍) ;(3)两条对角线长度乘积的一半.三、板书设计方法总结:菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线均分一组对角.研究点二:菱形的面积的计算方法以下列图,在菱形ABCD 中,点O 为对角线 AC 与 BD 的交点,且在△ AOB 中,AB=13,OA=5,OB =12.求菱形ABCD 两对边的距离 h.分析:先利用菱形的面积等于两条对角线长度乘积的一半求得菱形的面积,又因为菱形是特别的平行四边形,其面积等于底乘高,也就是一边长与两边之间距离的乘积,从而求得两对边的距离.解:在 Rt△ AOB 中, AB= 13,OA=5,OB= 12,11,即 S△AOB= OA·OB =× 5× 12= 3022所以 S 菱形ABCD= 4S△AOB= 4× 30=120.本节课不但安排了菱形性质的研究,并且穿插了菱形两种面积公式的研究,课堂中为了突出学生的主体地位,留给学生充足的时间思虑交流,发挥学生的主体地位,使学生经历实践、推理、交流等数学活动过程,亲自体验数学思想方法及数学看法,培育学生能力,促进学生发展.。
沪教版八年级数学下册教案[001]
沪教版八年级数学下册教案[001]课程简介本教案所涉及的课程是沪教版八年级数学下册,本节课将讲授数学知识点:解一元二次方程。
在此之前,学生已经学会了二次根式及其性质,变形中的二次项系数的处理,两种形式的一元二次方程,解一元二次方程的基本方法等知识。
教学目标1.掌握一元二次方程的解法;2.能够根据问题建立一元二次方程,解决实际问题。
教学重点1.一元二次方程的解法;2.建立一元二次方程的方法。
教学难点1.建立实际问题的一元二次方程;2.通过解决实际问题,掌握一元二次方程的应用。
教学流程导入(5分钟)通过用幻灯片或板书展示一个实际问题,让学生明确本堂课的目的,即:掌握一元二次方程的解法,解决实际问题。
讲解(20分钟)1.回顾一元二次方程的基本形式及解法;2.讲解建立实际问题的一元二次方程的方法。
实例演练(25分钟)1.根据实际问题,让学生自己尝试建立一元二次方程;2.对学生的答案进行讲解和解释。
拓展(5分钟)展示一些使用一元二次方程解决实际问题的例子,拓宽学生的思路和视野。
练习(25分钟)根据教材提供的练习题,进行个人或小组讨论和解答。
总结(5分钟)让学生总结一下本节课所学的内容,回答一些问题,检查学生掌握程度。
教学工具1.幻灯片或板书;2.教材;3.练习题材料;4.课堂作业。
教学评估通过教师对学生在课堂练习中的表现进行评估,了解学生掌握情况,是否需要延长授课时间或调整教学计划。
同时,根据课堂作业的情况,可以进一步了解学生的掌握程度,调整教学内容和方法。
教学反思对于本节课的教学效果,应该做到:1.对一元二次方程的基本形式和解法进行讲解,让学生掌握基本知识;2.讲解建立实际问题的一元二次方程的方法,让学生建立正确的思维方式;3.综合运用基本知识和方法,解决实际问题,增强学生的应用能力;4.通过教学评估和反思,不断改进教学方法,提高教学效果。
教师应该充分利用教材和自己的教学经验,为学生提供丰富多彩的学习方式和方法,让学生在轻松愉悦的氛围中,更好地掌握知识,实现教育目标。
最新沪科版八年级数学下册教案(2021年整理)
(完整)最新沪科版八年级数学下册教案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)最新沪科版八年级数学下册教案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)最新沪科版八年级数学下册教案(word版可编辑修改)的全部内容。
第1课时二次根式的概念1.了解二次根式的概念;(重点)2.理解二次根式有意义的条件;(重点)3.理解错误!(a≥0)是一个非负数,并会应用错误!(a≥0)的非负性解决实际问题.(难点)一、情境导入1.小明准备了一张正方形的纸剪窗花,他算了一下,这张纸的面积是8平方厘米,那么它的边长是多少?2.已知圆的面积是6π,你能求出该圆的半径吗?大家在七年级已经学习过数的开方,现在让我们一起来解决这些问题吧!二、合作探究探究点一:二次根式的概念【类型一】二次根式的识别(2015·安顺期末)下列各式:①错误!;②错误!;③错误!;④错误!;⑤ 错误!,其中二次根式的个数有()A.1个 B.2个 C.3个 D.4个解析:根据二次根式的概念可直接判断,只有①③满足题意.故选B。
方法总结:判断一个式子是否为二次根式,要看式子是否同时具备两个特征:①含有二次根号“”;②被开方数为非负数.两者缺一不可.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】二次根式有意义的条件代数式错误!有意义,则x的取值范围是()A.x≥-1且x≠1 B.x≠1C.x≥1且x≠-1 D.x≥-1解析:根据题意可知x+1≥0且x-1≠0,解得x≥-1且x≠1。
故选A。
沪科八年级数学下册全册教案
第1课时二次根式的概念1.了解二次根式的概念;(重点)2.理解二次根式有意义的条件;(重点)3.理解a(a≥0)是一个非负数,并会应用a(a≥0)的非负性解决实际问题.(难点)一、情境导入1.小明准备了一张正方形的纸剪窗花,他算了一下,这张纸的面积是8平方厘米,那么它的边长是多少?2.已知圆的面积是6π,你能求出该圆的半径吗?大家在七年级已经学习过数的开方,现在让我们一起来解决这些问题吧!二、合作探究探究点一:二次根式的概念【类型一】二次根式的识别(2015·安顺期末)下列各式:①12;②2x;③x2+y2;④-5;⑤35,其中二次根式的个数有()A.1个B.2个C.3个D.4个解析:根据二次根式的概念可直接判断,只有①③满足题意.故选B.方法总结:判断一个式子是否为二次根式,要看式子是否同时具备两个特征:①含有二次根号“”;②被开方数为非负数.两者缺一不可.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】二次根式有意义的条件代数式x+1x-1有意义,则x的取值范围是()A.x≥-1且x≠1 B.x≠1C.x≥1且x≠-1 D.x≥-1解析:根据题意可知x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.方法总结:(1)要使二次根式有意义,必须使被开方数为非负数,而不是所含字母为非负数;(2)若式子中含有多个二次根式,则字母的取值必须使各个被开方数同时为非负数;(3)若式子中含有分母,则字母的取值必须使分母不为零.变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点二:利用二次根式的非负性求值【类型一】 (1)已知a ,b 满足2a +8+|b -1|=0,求2a -b 的值; (2)已知实数a ,b 的值.解析:根据二次根式的被开方数是非负数及绝对值的意义求值即可. 解:(1)由题意知⎩⎪⎨⎪⎧2a +8=0,b -1=0,得2a =-8,b =1,则2a -b =-9;(2)由题意知⎩⎪⎨⎪⎧b -2≥0,2-b ≥0,解得b =2.所以a =0+0+3=3.方法总结:①当几个非负数的和为0时,这几个非负数均为0;②当题目中,同时出现a 和-a 时(即二次根式下的被开方数互为相反数),则可得a =0.变式训练:见《学练优》本课时练习“课堂达标训练”第8题 【类型二】 与二次根式有关的最值问题当x =________时,3x +2+3的值最小,最小值为________.解析:由二次根式的非负性知3x +2≥0,∴当3x +2=0即x =-23时,3x +2+3的值最小,此时最小值为3.故答案为-23,3.方法总结:对于二次根式a ≥0(a ≥0),可知其有最小值0. 变式训练:见《学练优》本课时练习“课后巩固提升”第8题 三、板书设计本节课的内容是在我们已学过的平方根、算术平方根知识的基础上,进一步引入二次根式的概念.教学过程中,应鼓励学生积极参与,并让学生探究和总结二次根式在实数范围内有意义的条件第2课时 二次根式的性质1.理解和掌握(a )2=a (a ≥0)和a 2=|a |;(重点)2.能正确运用二次根式的性质1和性质2进行化简和计算.(难点)一、情境导入如果正方形的面积是3,那么它的边长是多少?若边长是3,则面积是多少? 如果正方形的面积是a ,那么它的边长是多少?若边长是a ,则面积是多少?你会计算吗?二、合作探究探究点一:利用二次根式的性质进行计算【类型一】 计算: (1)(0.3)2; (2)(-13)2;(3)(23)2; (4)(2x -y )2.解析:(1)可直接运用(a )2=a (a ≥0)计算,(2)(3)(4)在二次根号前有一个因数,先利用(ab )2=a 2b 2,再利用(a )2=a (a ≥0)进行计算.解:(1)(0.3)2=0.3;(2)(-13)2=(-1)2³(13)2=13; (3)(23)2=22³(3)2=12; (4)(2x -y )2=22³(x -y )2=4(x -y )=4x -4y .方法总结:形如(n m )2(m ≥0)的二次根式的化简,可先利用(ab )2=a 2b 2,化为n 2·(m )2(m ≥0)后再化简.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型二】 利用a =|a |计算计算: (1)22; (2)(-23)2; (3)-(-π)2.解析:利用a 2=|a |进行计算. 解:(1)22=2; (2)(-23)2=|-23|=23;(3)-(-π)2=-|-π|=-π.方法总结:a 2=|a |的实质是求a 2的算术平方根,其结果一定是非负数. 变式训练:见《学练优》本课时练习“课堂达标训练”第9题 【类型三】 利用二次根式的性质化简求值先化简,再求值:a +1+2a +a 2,其中a =-2或3. 解析:先把二次根式化简,再代入求值,即可解答.解:a +1+2a +a 2=a +(a +1)2=a +|a +1|,当a =-2时,原式=-2+|-2+1|=-2+1=-1;当a =3时,原式=3+|3+1|=3+4=7.方法总结:本题考查了二次根式的性质,解决本题的关键是先化简,再求值. 变式训练:见《学练优》本课时练习“课堂达标训练”第10题 探究点二:利用二次根式的性质进行化简 【类型一】 与数轴的综合如图所示为a ,b 在数轴上的位置,化简2a 2-(a -b )2+(a +b )2.解析:由a ,b 在数轴上的位置确定a <0,a -b <0,a +b <0.再根据a 2=|a |进行化简. 解:由数轴可知-2<a <-1,0<b <1,则a -b <0,a +b <0.原式=2|a |-|a -b |+|a+b|=-2a+a-b-(a+b)=-2a-2b.方法总结:利用a2=|a|化简时,先必须弄清楚被开方数的底数的正负性,计算时应包括两个步骤:①把被开方数的底数移到绝对值符号中;②根据绝对值内代数式的正负性去掉绝对值符号.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型二】与三角形三边关系的综合已知a、b、c是△ABC的三边长,化简(a+b+c)2-(b+c-a)2+(c-b-a)2.解析:根据三角形的三边关系得出b+c>a,b+a>c,根据二次根式的性质得出含有绝对值的式子,最后去绝对值符号后合并即可.解:∵a、b、c是△ABC的三边长,∴b+c>a,b+a>c,∴原式=|a+b+c|-|b+c-a|+|c-b-a|=a+b+c-(b+c-a)+(b+a-c)=a+b+c-b-c+a+b+a-c=3a+b-c.方法总结:解答本题的关键是根据三角形的三边关系(三角形中任意两边之和大于第三边),得出不等关系,再结合二次根式的性质进行化简.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计二次根式的性质是建立在二次根式概念的基础上,同时又为学习二次根式的运算打下基础.本节教学始终以问题的形式展开,使学生在教师设问和自己释问的过程中萌生自主学习的动机和欲望,逐渐养成思考问题的习惯.性质1和性质2容易混淆,教师在教学中应注意引导学生辨析它们的区别,以便更好地灵活运用第1课时二次根式的乘法1.掌握二次根式的乘法运算法则;(重点)2.会进行二次根式的乘法运算.(重点、难点)一、情境导入小颖家有一块长方形菜地,长6m,宽3m,那么这个长方形菜地的面积是多少?二、合作探究探究点一:二次根式的乘法法则成立的条件式子x +1²2-x =(x +1)(2-x )成立的条件是( ) A .x ≤2 B .x ≥-1C .-1≤x ≤2D .-1<x <2解析:根据题意得⎩⎪⎨⎪⎧x +1≥0,2-x ≥0.解得-1≤x ≤2.故选C.方法总结:运用二次根式的乘法法则:a ·b =ab (a ≥0,b ≥0),必须注意被开方数是非负数这一条件.变式训练:见《学练优》本课时练习“课堂达标训练”第2题 探究点二:二次根式的乘法【类型一】 二次根式的乘法运算计算:(1)53³27125; (2)918³(-1654);(3)135²23²(-3416); (4)2a 8ab ²(-236a 2b )·3a (a ≥0,b ≥0).解析:第(1)小题直接按二次根式的乘法法则进行计算,第(2),(3),(4)小题把二次根式前的系数与系数相乘,被开方数与被开方数相乘.解:(1)原式=53³27125=35; (2)原式=-(9³16)18³54=-32182³3=-273;(3)原式=-(2³34)85³3³16=-3245=-355; (4)原式=-2a ³238ab ²6a 2b ²3a =-16a 3b .方法总结:二次根式与二次根式相乘时,可类比单项式与单项式相乘,把系数与系数相乘,被开方数与被开方数相乘.最后结果要化为最简二次根式,计算时要注意积的符号.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】 化简: (1)196³0.25; (2)(-19)³(-6481);(3)225a 6b 2(a ≥0,b ≥0).解析:利用积的算术平方根的性质,把它们化为几个二次根式的积,(2)小题中先确定符号.解:(1)196³0.25=196³0.25=14³0.5=7; (2)(-19)³(-6481)=19³6481=19³6481=13³89=827; (3)225a 6b 2=225²a 6²b 2=15a 3b . 方法总结:利用积的算术平方根的性质进行计算或化简,其实质就是把被开方数中的完全平方数或偶次方进行开平方计算,要注意的是,如果被开方数是几个负数的积,先要把符号进行转化,如(2)小题.变式训练:见《学练优》本课时练习“课堂达标训练”第8题 【类型三】 二次根式的乘法的应用 小明的爸爸做了一个长为588πcm ,宽为48πcm 的矩形木板,还想做一个与它面积相等的圆形木板,请你帮他计算一下这个圆的半径(结果保留根号).解析:根据“矩形的面积=长³宽”“圆的面积=π³半径的平方”进行计算. 解:设圆的半径为r cm.因为矩形木板的面积为588π³48π=168π(cm)2, 所以πr 2=168π,r =242(r =-242舍去). 答:这个圆的半径为242cm.方法总结:把实际问题转化为数学问题,列出相应的式子进行计算,体现了转化思想. 变式训练:见《学练优》本课时练习“课后巩固提升”第9题 三、板书设计本节课学习了二次根式的乘法和积的算术平方根的性质,两者是可逆的,它们成立的条件都是被开方数为非负数.在教学中通过情境引入激发学生的学习兴趣,让学生自主探究二次根式的乘法法则,鼓励学生运用法则进行二次根式的乘法运算第2课时 二次根式的除法1.会利用商的算术平方根的性质化简二次根式;(重点,难点)2.掌握二次根式的除法法则,并会运用法则进行计算;(重点、难点)3.掌握最简二次根式的概念,并会熟练运用.(重点)一、情境导入计算下列各题,观察有什么规律? (1)3649=________;3649=________. (2)916=________;916=________. 3649________3649;916________916. 二、合作探究探究点一:二次根式的除法计算: (1)4872; (2)612518; (3)27a 2b 312ab 2;(4)12a 3b 5÷(-23a 2b 6)(a >0,b >0). 解析:(1)直接把被开方数相除;(2)把系数与系数相除,被开方数与被开方数相除;(3)被开方数相除时,注意约分;(4)系数相除时,把除法转化为乘法,被开方数相除时,写成商的算术平方根的形式,再化简.解:(1)4872=4872=23=63; (2)612518=651218=6523=256; (3)27a 2b 312ab 2=27a 2b 312ab 2=9ab 4=32ab ; (4)12a 3b 5÷(-23a 2b 6) =12³(-32)a 3b 5a 2b 6=-34a b =-34bab . 方法总结:①二次根式的除法运算,可以类比单项式的除法运算,当被除式或除式中有负号时,要先确定商的符号;②二次根式相除,根据除法法则,把被开方数与被开方数相除,转化为一个二次根式;③二次根式的除法运算还可以与商的算术平方根的性质结合起来,灵活选取合适的方法;④最后结果要化为最简二次根式.变式训练:见《学练优》本课时练习“课堂达标训练”第8题 探究点二:最简二次根式下列二次根式中,最简二次根式是( )A.8aB.3aC.a3D.a 2+a 2b 解析:A 选项8a 中含能开得尽方的因数4,不是最简二次根式;B 选项是最简二次根式;C 选项a3中含有分母,不是最简二次根式;D 选项a 2+a 2b 中被开方数用提公因式法因式分解后得a 2+a 2b =a 2(1+b )含能开得尽方的因数a 2,不是最简二次根式.故选B.方法总结:最简二次根式必须同时满足下列两个条件:①被开方数中不含能开得尽方的因数或因式;②被开方数不含分母.判定一个二次根式是不是最简二次根式,就是看是否同时满足最简二次根式的两个条件,同时满足的就是最简二次根式,否则就不是.变式训练:见《学练优》本课时练习“课堂达标训练”第6题 探究点三:商的算术平方根的性质【类型一】 利用商的算术平方根的性质确定字母的取值若a 2-a =a2-a,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥0解析:根据题意得⎩⎪⎨⎪⎧a ≥0,2-a >0,解得0≤a <2.故选C.方法总结:运用商的算术平方根的性质:b a =ba(a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.【类型二】 利用商的算术平方根的性质化简二次根式化简:(1)179; (2)3c 34a 4b 2(a >0,b >0,c >0). 解析:按商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根. 解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式.变式训练:见《学练优》本课时练习“课后巩固提升”第8题 探究点四:二次根式除法的应用 已知某长方体的体积为3010cm 3,长为20cm ,宽为15cm ,求长方体的高. 解析:因为“长方体的体积=长³宽³高”,所以“高=长方体的体积÷(长³宽)”,代入计算即可.解:长方体的高为3010÷(20³15)=301020³15=30130=30(cm). 方法总结:本题也可以设高为x ,根据长方体体积公式建立方程求解. 三、板书设计二次根式的除法是建立在二次根式乘法的基础上,所以在学习中应侧重于引导学生利用与学习二次根式乘法相类似的方法学习,从而进一步降低学习难度,提高学习效率第1课时 二次根式的加减1.经历探索二次根式的加减运算法则的过程,让学生理解二次根式的加减法则;2.掌握二次根式的加减运算.(重点、难点)一、情境导入 计算:(1)2x -5x ; (2)3a 2-a 2+2a 2.上述运算实际上就是合并同类项,如果把题中的x 换成3,a 2换成5,这时上述两小题就成为如下题目:计算:(1)23-53; (2)35-5+2 5. 这时怎样计算呢? 二、合作探究探究点一:同类二次根式下列二次根式中与2是同类二次根式的是( ) A.12 B.32C.23D.18 解析:选项A 中,12=23与2被开方数不同,故与2不是同类二次根式;选项B 中,32=62与2被开方数不同,故与2不是同类二次根式;选项C 中,23=63与2被开方数不同,故与2不是同类二次根式;选项D 中,18=32与2被开方数相同,故与2是同类二次根式.故选D.方法总结:要判断两个二次根式是否是同类二次根式,根据二次根式的性质,把每个二次根式化为最简二次根式,如果被开方数相同,这样的二次根式就是同类二次根式.变式训练:见《学练优》本课时练习“课堂达标训练”第1题 探究点二:二次根式的加减【类型一】 二次根式的加法或减法(1)8+32; (2)1223+1332; (3)448-375; (4)1816-3296. 解析:先把每个二次根式化为最简二次根式,再把同类二次根式合并.解:(1)原式=22+42=(2+4)2=62; (2)原式=166+166=(16+16)6=63;(3)原式=163-153=(16-15)3=3;(4)原式=36-66=(3-6)6=-3 6. 方法总结:二次根式加减的实质就是合并同类二次根式,合并同类二次根式可以类比合并同类项进行,不是同类二次根式的不能合并.变式训练:见《学练优》本课时练习“课堂达标训练”第6题 【类型二】 二次根式的加减混合运算计算:(1)12-33-273;(2)324x -3x 9+3x 1x; (3)3123-45+220-1260; (4)0.5-213-(18-75). 解析:先把每个二次根式化为最简二次根式,再把同类二次根式合并. 解:(1)原式=23-3-3=0; (2)原式=3x -x +3x =5x ;(3)原式=15-35+45-15=5; (4)原式=22-233-24+53=24+1333. 方法总结:二次根式的加减混合运算步骤:①把每个二次根式化为最简二次根式;②运用加法交换律和结合律把同类二次根式移到一起;③把同类二次根式的系数相加减,被开方数不变.变式训练:见《学练优》本课时练习“课堂达标训练”第8题 【类型三】 二次根式加减法的应用 一个三角形的周长是(23+32)cm ,其中两边长分别是(3+2)cm ,(33-22)cm ,求第三边长.解析:第三边长等于(23+32)-(3+2)-(33-22),再去括号,合并同类二次根式.解:第三边长是(23+32)-(3+2)-(33-22)=23+32-3-2-33+22=42-23(cm).方法总结:由三角形周长的意义可知,三角形的周长减去已知两边的长,可得第三边的长.解决问题的关键在于把实际问题转化为二次根式的加减混合运算.变式训练:见《学练优》本课时练习“课后巩固提升”第4题 三、板书设计通过合并同类项引入二次根式的加减法,让学生类比学习.引导学生归纳总结出二次根式加减运算的两个关键步骤:①把每个二次根式化为最简二次根式;②合并同类二次根式.并让学生按步骤解题,养成规范解题的良好习惯.教学过程中,注重数学思想方法的渗透(类比),培养学生良好的思维品质第2课时 二次根式的混合运算1.了解二次根式的混合运算顺序;2.会进行二次根式的混合运算.(重点、难点)一、情境导入如果梯形的上、下底边长分别为22cm ,43cm ,高为6cm ,那么它的面积是多少?毛毛是这样算的:梯形的面积:12(22+43)³6=(2+23)³6=2³6+23³6=2³6+218=23+62(cm 2).他的做法正确的吗?二、合作探究探究点一:二次根式的混合运算【类型一】 二次根式的混合运算计算: (1)48÷3-12³12+24; (2)12÷43³23-50. 解析:(1)先算乘除,再算加减;(2)先计算第一部分,把除法转化为乘法,再化简.解:(1)原式=16-6+24=4-6+26=4+6;(2)原式=12³34³233-52=38³233-52=64³233-52=22-52=-922. 方法总结:二次根式的混合运算与实数的混合运算一样,先算乘方,再算乘除,最后算加减,如果有括号就先算括号里面的.变式训练:见《学练优》本课时练习“课后巩固提升”第8题【类型二】 运用乘法公式进行二次根式的混合运算计算: (1)(5+3)(5-3); (2)(32-23)2-(32+23)2.解析:(1)用平方差公式计算;(2)逆用平方差公式计算.解:(1)(5+3)(5-3)=(5)2-(3)2=5-3=2; (2)(32-23)2-(32+23)2=(32-23+32+23)(32-23-32-23)=-24 6.方法总结:多项式的乘法公式在二次根式的混合运算中仍然适用,计算时应先观察式子的特点,能用乘法公式的用乘法公式计算.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型三】 二次根式的化简求值 先化简,再求值:x +xy xy +y +xy -y x -xy(x >0,y >0),其中x =3+1,y =3-1. 解析:首先根据约分的方法和二次根式的性质进行化简,然后再代值计算.解:原式=x (x +y )y (x +y )+y (x -y )x (x -y )=x y +y x =x +y xy. ∵x =3+1,y =3-1,∴x +y =23,xy =3-1=2,∴原式=232= 6. 方法总结:在解答此类代值计算题时,通常要先化简再代值,如果不化简,直接代入,虽然能求出结果,但往往导致烦琐的运算.化简求值时注意整体思想的运用.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型四】 二次根式混合运算的应用一个三角形的底为63+22,这条边上的高为33-2,求这个三角形的面积.解析:根据三角形的面积公式进行计算.解:这个三角形的面积为12(63+22)(33-2)=12³2³(33+2)(33-2)=(33)2-(2)2=27-2=25.方法总结:根据题意列出关系式,计算时注意观察式子的特点,选取合适的方法求解,能应用公式的尽量用公式计算.变式训练:见《学练优》本课时练习“课后巩固提升”第10题探究点二:二次根式的分母有理化【类型一】 分母有理化计算:(1)215+122; (2)3-23+2+3+23-2. 解析:(1)把分子、分母同乘以2,再约分计算;(2)把3-23+2的分子、分母同乘以3-2,把3+23-2的分子、分母同乘以3+2,再运用公式计算.解:(1)215+122=(215+12)³22³2=230+262=30+6; (2)3-23+2+3+23-2=(3-2)2(3+2)(3-2)+(3+2)2(3-2)(3+2)=5-263-2+5+263-2=5-26+5+26=10. 方法总结:把分母中的根号化去就是分母有理化,分母有理化时,分子、分母应同乘以一个适当的式子,如果分母只有一个二次根式,则乘以这个二次根式,使得分母能写成a ·a的形式;如果分母有两项,分子、分母乘以一个二项式,使得能运用平方差公式计算.如分母是a +b ,则分子、分母同乘以a -b .【类型二】 分母有理化的逆用比较15-14与14-13的大小解析:把15-14的分母看作“1”,分子、分母同乘以15+14;把14-13的分母看作“1”,分子、分母同乘以14+13,再根据“分子相同的两个正分数比较大小,分母大的反而小”,得到它们的大小关系.解:15-14=(15-14)(15+14)15+14=115+14,14-13=(14-13)(14+13)14+13=114+13.∵15+14>14+13>0, ∴115+14<114+13即15-14<14-13. 方法总结:把分母为“1”的式子化为分子为“1”的式子,根据分母大的反而小可以比较两个数的大小.三、板书设计二次根式的混合运算可类比整式的运算进行,注意运算顺序,最后的结果应化简.引导学生勇于尝试,加强训练,从解题过程中发现问题,解决问题.本节课的易错点是运算错误,要求学生认真细心,养成良好的习惯。
沪教版八年级数学下册教案[001]
沪教版八年级数学下册教案[001]一、教学目标1.知识与技能:•掌握扇形的定义及相关术语。
•学会计算扇形的周长和面积。
•能够应用扇形的相关知识解决实际问题。
2.过程与方法:•通过教师讲解、例题演示和学生练习相结合的方式,引导学生掌握相关知识和计算方法。
•引导学生主动思考、合作探究,培养解决问题的能力。
3.情感态度价值观:•培养学生对数学的兴趣,增强数学学习的主动性和积极性。
•培养学生的观察、分析和解决问题的能力,培养合作学习和团队合作的意识。
二、教学重点与难点•重点:扇形的定义、扇形周长和面积的计算。
•难点:应用扇形相关知识解决实际问题。
三、教学内容与学时安排本节课主要通过教师讲解和学生练习的方式,完成以下内容:1.扇形的定义和扇形相关术语(30分钟)2.计算扇形的周长(30分钟)3.计算扇形的面积(30分钟)4.应用扇形知识解决实际问题(30分钟)四、教学方法与学习策略1.教学方法:•教师讲解法:通过板书、示例和讲解,引导学生理解和掌握扇形相关知识。
•课堂讨论法:通过提问、学生回答和讨论,激发学生思维,培养学生自主学习能力。
•合作学习法:组织学生分小组合作,共同解决问题,培养学生合作和团队精神。
2.学习策略:•主动学习策略:学生通过师生互动、课堂讨论和自主思考,主动参与学习过程,培养自主学习能力。
•合作学习策略:学生通过小组讨论和合作解决问题,培养团队合作和沟通能力,提高学习效果。
五、教学资源准备•教学课件•教材和练习册•演示工具(黑板、彩色笔等)•学生参考资料六、教学步骤与内容安排步骤一:导入(5分钟)•教师通过展示一张扇形的图片,向学生引入本节课的内容,激发学生对扇形的兴趣和好奇心。
步骤二:扇形的定义和相关术语(30分钟)•教师向学生讲解扇形的定义和相关术语,如弧、弦、圆心角等。
•教师通过示例,让学生观察和理解扇形相关术语的含义。
步骤三:计算扇形的周长(30分钟)•教师向学生讲解如何计算扇形的周长,并通过示例演示计算步骤和方法。
沪科版数学八年级下册16.1二次根式教学设计
(二)教学设想
1.创设情境,激发兴趣:通过生活中的实例,如勾股定理的应用、面积计算等,引入二次根式的概念,使学生感受到数学的实用性和趣味性。
2.分层次教学,因材施教:针对学生的个体差异,设计不同难度的教学活动,使每个学生都能在原有基础上得到提高。
此外,学生在解决实际问题时,可能会对二次根式的应用感到陌生,难以将理论知识与实际问题相结合。因此,在教学过程中,教师应关注学生的个体差异,充分调动学生的学习积极性,通过生动的实例和丰富的教学活动,帮助学生克服恐惧心理,提高解决问题的能力。
同时,八年级学生的思维逐渐由具体形象思维向抽象逻辑思维转变,教师应抓住这一特点,引导学生运用二次根式解决实际问题,培养学生的抽象思维能力和创新意识。在这个过程中,教师要关注学生的情感态度,鼓励学生积极参与,使他们在探索中获得成就感,从而提高学习兴趣和自信心。
4.利用数形结合的方法,帮助学生理解二次根式的性质和运算法则,培养学生的直观想象能力。
5.引导学生运用二次根式解决实际问题,培养学生的应用意识和实践能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的学习热情,使学生在二次根式的学习中感受到数学的魅力。
2.培养学生勇于探索、善于思考的精神,鼓励学生在面对困难时保持积极的态度,增强克服困难的信心。
2.应用题:结合实际情境,设计一些需要运用二次根式解决问题的题目。这些题目旨在培养学生将数学知识应用于解决实际问题的能力,增强学生对数学实用性的认识。
例题:小华家的花园是一个矩形,长比宽多2米,如果花园的面积为48平方米,求花园的长和宽。
3.提高题:设置一些具有一定难度的题目,要求学生运用所学的二次根式性质和运算法则,进行混合运算。这类题目能够锻炼学生的逻辑思维能力和解题技巧。
沪科版八年级下册数学全教案
沪科版八年级下册数学全教案沪科版八年级下册数学全教案作为一名无私奉献的老师,很有必要精心设计一份教案,教案有利于教学水平的提高,有助于教研活动的开展。
教案应该怎么写呢?以下是小编整理的沪科版八年级下册数学全教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
沪科版八年级下册数学全教案1第一章勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。
满足的三个正整数称为勾股数。
第二章实数1.平方根和算术平方根的概念及其性质:(1)概念:如果,那么是的平方根,记作: ;其中叫做的算术平方根。
(2)性质:①当≥0时,≥0;当<0时,无意义;② = ;③ 。
2.立方根的概念及其性质:(1)概念:若,那么是的立方根,记作: ;(2)性质:① ;② ;③ =3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的`一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
因此,数轴正好可以被实数填满。
5.算术平方根的运算律:( ≥0,≥0); ( ≥0, >0)。
第三章图形的平移与旋转1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
沪科版数学八年级下册教案 17.2.3教案
3.因式分解法1.理解并掌握用因式分解法解方程的依据;(难点)2.会用因式分解法解一些特殊的一元二次方程.(重点)一、情境导入我们知道ab=0,那么a=0或b=0,类似的解方程(x+1)(x-1)=0时,可转化为两个一元一次方程x+1=0或x-1=0来解,你能求(x+3)(x-5)=0的解吗?二、合作探究探究点:用因式分解法解一元二次方程【类型一】利用提公因式法分解因式解一元二次方程用因式分解法解下列方程:(1)x2+5x=0;(2)(x-5)(x-6)=x-5.解析:变形后方程右边是零,左边是能分解的多项式,可用因式分解法.解:(1)原方程转化为x(x+5)=0,所以x=0或x+5=0,所以原方程的解为x1=0,x2=-5;(2)原方程转化为(x-5)(x-6)-(x-5)=0,所以(x-5)[(x-6)-1]=0,所以(x-5)(x-7)=0,所以x-5=0或x-7=0,所以原方程的解为x1=5,x2=7.方法总结:利用提公因式法时先将方程右边化为0,观察是否有公因式,若有公因式,就能快速分解因式求解.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】利用公式法分解因式解一元二次方程用公式法分解因式解下列方程:(1)x2-6x=-9;(2)4(x-3)2-25(x-2)2=0.解:(1)原方程可变形为x 2-6x +9=0,则(x -3)2=0,∴x -3=0,∴原方程的解为x 1=x 2=3;(2)[2(x -3)]2-[5(x -2)]2=0,[2(x -3)+5(x -2)][2(x -3)-5(x -2)]=0,(7x -16)(-3x +4)=0,∴7x -16=0或-3x +4=0,∴原方程的解为x 1=167,x 2=43. 方法总结:用因式分解法解一元二次方程的一般步骤是:①将方程的右边化为0;②将方程的左边分解为两个一次因式的乘积;③令每一个因式分别为零,就得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.变式训练:见《学练优》本课时练习“课后巩固提升”第7题(3)(4)小题三、板书设计本节课通过学生自学探讨一元二次方程的解法,使他们知道分解因式是一元二次方程中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度.牢牢把握用因式分解法解一元二次方程的一般步骤,通过练习加深学生用因式分解法解一元二次方程的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪科版八年级下册数学全教案
好的教案还可以给八年级数学教师带来更多的反思,更好地促进教师的专业成长与发展。
下面是小编为大家精心整理的沪科版八年级下册数学的教案,仅供参考。
沪科版八年级下册数学教案设计《17.1 一元二次方程》
一、教学目标
1.掌握一元二次方程的定义,能够判断一个方程是否是一元二次方程.
2.能够将一元二次方程化为一般形式并确定a,b,c的值.
二、(重)难点预见
重点:知道什么叫做一元二次方程,能够判断一个方程是否是一元二次方程. 难点:能够将一元二次方程化为一般形式并确定a,b,c的值.
三、学法指导
结合教材和预习学案,先独立思考,遇到困难小对子之间进行帮扶,完成学习任务.
四、教学过程
开场白设计:
一元二次方程是初中数学中非常重要的内容,它在实际生活中有着非常广泛的应用.什么形式的方程是一元二次方程?这样的方程怎么解答呢?它又能解决哪些问题呢?带着这些问题,让我们一起学习
《一元二次方程》这一章,今天我们来学习第一节课,同学们肯定有很多新的收获.
1、忆一忆
在前面我们曾经学习了什么叫做一元一次方程?一元指的是什么含义?一次呢?你能猜想什么叫做一元二次方程吗?
学法指导:
本节课学习一元二次方程先让学生回忆一元一次方程.学习四边形可以让学生回忆三角形,学习四边形的边、角、顶点,可以让学生回忆三角形的边、角、顶点,则可达到水到渠成的效果.
2、想一想
请同学们根据题意,只列出方程,不进行解答:
(1)一个矩形的长比宽多2cm,矩形的面积是15cm,求这个矩形的长和宽.
(2)两个连续正整数的平方和是313,求这两个正整数.
(3)直角三角形三边的长都是整数,它的斜边长为13cm,两条直角边的差为7cm,求两条直角边的长.
预习困难预见:
(1)学生在列方程时没有搞清楚平方和与和的平方的区别,以至于把方程列错了.
(2)学生在解答第(3)题时,设未知数时忘记带单位.
(3)还有的同学没有注意只列方程,以至于学生列出方程后尝试着解方程,导致耽误了一些时间.
改进措施:
教师巡视指导,发现失误及时引导;小组内互查,辩论,质疑.
3、议一议
请同学们将上面的方程按照以下要求进行整理:
(1)使方程的右边为0(2)方程的左边按x的降幂排列.我们会得到:
①②③
你能发现上面三个方程有什么共同点?
_____________________叫做一元二次方程.在定义中着重强调了几点?哪几点?如果给你一个方程,让你判定它是否是一元二次方程,你关键看哪几方面?
学法指导
学习一元二次方程的概念,让同学们剖析定义,总结判定一个方程是否是一元二次方程的方法.
4、试一试
下面方程是一元二次方程吗?为什么?
①ax-x+2=0;②-x+x=0;③x=1;④-2x+1=0;⑤x+y-1=0; ⑥2x+3=2-x;⑦y-4y=0
方法提升:
由一元二次方程的定义可知,只有同时满足下列三个条件:①整式方程;②只含有一个未知数;③未知数的最高次数是2,这样的方程才是一元二次方程,否则缺少其中任何一个条件的方程都不是一元二次方程.
口诀生成:
判断一元二次方程并不难,三个条件要找全:一元,二次,整式判,正确答案就出现.
5、学一学
一元二次方程都可以化为ax+bx +c =0(a,b,c为常数,a0)的形式,称为一元二次方程的一般形式,其中ax,bx,c 分别称为这个方程的二次项,一次项和常数项,a,b分别称为二次项系数,一次项系数.你能指出下列方程的二次项系数,一次项系数,常数项吗?请你用a,b,c表示出来.
八年级数学复习提纲第一章勾股定理
1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。
满足的三个正整数称为勾股数。
第二章实数
1.平方根和算术平方根的概念及其性质:
(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。
(2)性质:①当0时,0;当0时,无意义;②= ;③。
2.立方根的概念及其性质:
(1)概念:若,那么是的立方根,记作:;
(2)性质:①;②;③=
3.实数的概念及其分类:
(1)概念:实数是有理数和无理数的统称;
(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
因此,数轴正好可以被实数填满。
5.算术平方根的运算律:( 0,0); ( 0,0)。
第三章图形的平移与旋转
1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
这点定点称为旋转中心,转动的角称为旋转角。
旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋
转中心的距离相等。
3.作平移图与旋转图。
猜你感兴趣:
1.沪科版八年级数学下册目录
2.沪科版八年级下册数学目录
3.沪科版八年级数学教案
4.八年级数学下册教学计划沪科版
5.沪科版八年级下册数学教学计划。