2015高考数学模拟试卷及答案解析-理科
2015年陕西省高考模拟考试数学(理)试卷(含答案解析)
2015年陕西省高考模拟考试数学(理)试卷(含答案解析)注意:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,总分150分,考试时间120分钟.第I 卷(选择题 共50分)一、选择题:在每小题给出的四个选项中,只有一个是符合题目要求的(本大 题共10小题,每小题5分,共50分).1. 全集{}{}{}213,13,20U x Z x A x Z x B x Z x x =∈-≤≤=∈-<<=∈--≤,则()U C A B ⋂=( )A. {}1-B. {}1,2-C.{}12x x -<<D.{}12x x -≤≤ 2.12+12ππcoslog sin log 22的值为 ( )A .4B .-4C .2D .-23.已知等差数列{}n a 中,121,2a a =-=,则45a a +=( )A3B .8C .14D .194.函数()tan (0)f x x ωω=>的图象的相邻两支截直线4π=y 所得线段长为4π,则)4(πf 的值是 ( ) A .0 B .1 C .-1 D .4π 5.已知12,5||,3||=⋅==b a b a 且,则向量a 在向量b 上的投影为( )A .512 B .3 C .4 D .56.为了得到函数13sin 2cos 222y x x =-的图像,可以将函数sin 2y x =的图像( )A .向左平移6π个长度单位 B .向右平移3π个长度单位 C .向右平移6π个长度单位 D .向左平移3π个长度单位7.若关于x 的不等式m m x x 29222+<++有实数解,则实数m 的取值范围是( ).A ),2()4,(+∞⋃--∞ .B (][)+∞⋃-∞-,24, .C )2,4(- .D (][)+∞⋃-∞-,42,8. 函y=||x xa x(0<a<1)的图象的大致形状是( )9.已知函数m m x f xx624)(-+=恰有一个零点,则实数m 的取值范围是( ) .A {}0,24- .B {}24- .C {}),0(24+∞⋃- .D ),0()24,(+∞⋃--∞10.已知点P 为△ABC 所在平面上的一点,且13AP AB t AC =+,其中t 为实数,若点P 落在△ABC 的内部,则t 的取值范围是A .104t <<B .103t << C. 102t << D .203t <<Ⅱ卷(非选第择题 共100分)二、填空题:把答案填在答题卷题号后对应的横线上(本大题共5小题,每小题5分,共25分)11.已知0,2sin 2sin ,cos(2)2παπααα<<=-则= .12.已知数列12211,5,,()n n n a a a a a n N *++===-∈,则2011a 的值是______ . 13.设p :|43|1x -≤;q :2(21)(1)0x a x a a -+++≤.若p q ⌝⌝是的必要而不充分条件,则实数a 的取值范围为________.14.已知M 是ABC ∆内的一点,且23,30AB AC BAC ⋅=∠=,若,MBC MCA ∆∆和MAB ∆的面积分别为1,,2x y ,则14x y+的最小值是 .15.下面三个试题选做一题,并把答案填在答题卷题号后对应的横线上 :A .曲线cos (1sin x y ααα=⎧⎨=+⎩为参数)与曲线22cos 0ρρθ-=的交点个数为 . B .设函数()|1||2|f x x x a =++--,若函数()f x 的定义域为R ,则实数a 的取值范围是 .C .如图,从圆O 外一点A 引圆的切线AD 和割线ABC ,已知AC=6, 圆O 的半径为3,圆心O 到AC 的距离为5,则AD= .三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题, 共75分).16.(本小题满分12分)已知等差数列}{n a 中,(1)若231=a ,312a =,15-=n S ,求n 及12a ; (2)若10100S =,求74a a +17. (本小题满分12分) 已知向量()c o s s i n ,s i n a x xxωωω→=-,()cos sin ,23cos b x x x ωωω→=--,设函数()()f x a b x R λ→→=+∈的图象关于直线πx =对称,其中ω,λ为常数,且1,12ω⎛⎫∈ ⎪⎝⎭.(1)求函数()f x 的最小正周期;(2)若()y f x =的图象经过点,04π⎛⎫ ⎪⎝⎭,求函数()y f x =在区间30,5π⎡⎤⎢⎥⎣⎦上的 取范值围18.(本小题满分12分)设函数L n x xbax x f +-=2)(若1()1,2f x x x ==在处取得极值,(1)求a 、b 的值;(2)存在,]2,41[0∈x 使得不等式0)(0≤-c x f 成立,求c 的最小值;19.(本小题满分12分) 如图,在某港口A 处获悉,其正东方向20海里B 处有一艘渔船遇险等待营救,此时救援船在港口的南偏西030据港口10海里的C 处,救援船接到救援命令立即从C 处沿直线前往B 处营救渔船. (1) 求接到救援命令时救援船据渔船的距离;(2)试问救援船在C 处应朝北偏东多少度的方向沿直线前往B 处救援?(已知72141sin 49cos 00==)20.(本小题满分13分) 数列}{n a 的前n 项和记为n S ,t a =1,121()n n a S n ++=+∈N .(1)当t 为何值时,数列}{n a 是等比数列?(2)在(1)的条件下,若等差数列}{n b 的前n 项和n T 有最大值,且153=T ,又11b a +,22b a +,33b a +成等比数列,求n T .21 (本小题满分14分)设函数()()()212ln 1f x x x =+-+(1)若关于x 的不等式()0f x m -≥在[]0,1e -有实数解,求实数m 的取值范围; (2)设()()21g x f x x =--,若关于x 的方程()g x p =至少有一个解,求p 的最小值.(3)证明不等式:()()*111ln 1123n n N n+<++++∈30°1020北CBA2012-2013学年度第一学期高三年级第二次模拟考试数学(理科)试题参考答案注意:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,总分150分,考试时间120分钟.第I 卷(选择题 共50分)一、选择题:在每小题给出的四个选项中,只有一个是符合题目要求的(本大 题共10小题,每小题5分,共50分).1—5 ADDAA 6—10 CADCDⅡ卷(非选第择题 共100分)二、填空题:把答案填在答题卷题号后对应的横线上(本大题共5小题,每小题5分,共25分)11. 81512. 1 13. [0 , 21 ] 14. 1815. A 2个 B a ≤3 C 32三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题, 共75分).16.【解析】(Ⅰ)15)21(2)1(23-=--+⋅=n n n S n ,整理得06072=--n n , 解之得12=n ,或5-=n (舍去),4)21()112(2312-=-⨯-+=a ---------6分(2)由1002)(1010110=+=a a S ,得20101=+a a ,2010174=+=+a a a a ---------------------12分17.(1)因为22()sin cos 23sin cos f x x x x x ωωωωλ=-+⋅+cos23sin 2x x ωωλ=-++π2sin(2)6x ωλ=-+.由直线πx =是()y f x =图象的一条对称轴,可得πsin(2π)16ω-=±,所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z . ≤又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=.所以()f x 的最小正周期是6π5. ------------------------6分(2)由()y f x =的图象过点π(,0)4,得π()04f =,即5πππ2sin()2sin 26264λ=-⨯-=-=-,即2λ=-.故5π()2sin()236f x x =--,由3π05x ≤≤,有π5π5π6366x -≤-≤,所以15πsin()1236x -≤-≤,得5π122sin()22236x --≤--≤-,故函数()f x 在3π[0,]5上的取值范围为[12,22]---.------- 12分18.解析(1)()21bf x ax nx x=-+,定义域为),0(+∞ 21'()2b f x a x x∴=++1()1,2f x x x ==在处取得极值, 1'(1)0,'()02f f ∴==即12103242013a a b a b b ⎧=-⎪++=⎧⎪⎨⎨++=⎩⎪=-⎪⎩解得 1,3a b ∴-1所求、的值分别为-3 …6分 (2)在1[,2],4o x 存在使得不等式min ()0[()]o f x c c f x -≤≥成立,只需,由2211'()33f x x x x =--+222313x x x -+=-2(21)(1)3x x x --=-, 11[,]'()0,42x f x ∴∈<当时,故1(),]2f x 1在[是单调递减4;当1[,1]'()02x f x ∈>时,,故1()[,1]2f x 在是单调递增;[1,2]'()0x f x ∈<当时,,故()[1,2]f x 在是单调递减;11()()[,2]24f f x ∴是在上的极小值.而1111()1122323f n n =+=-,7(2)126f n =-+,且3213()(2)14114,22f f n ne n -=-=- 又332160,1140e ne n ->∴->min [()](2)f x f ∴=, []2ln 67)(min +-=≥∴x f c -------12分19解:(1) 由题意得:ABC ∆中,CAB AC AB AC AB CB ∠⋅-+=∴cos 2222 即,700120cos 1020210200222=⨯⨯-+=CB 710=BC ,所以接到救援 命令时救援船据渔船的距离为710海里. ……………6 (2)ABC ∆中, ,20=AB 710=BC ,0120=∠CAB ,由正弦定理得C A BBCACB AB ∠=∠sin sin 即120sin 710sin 20∠=∠ACB 721sin =∠∴ACB 72141sin 49cos 00==,041=∠∴ACB ,故沿北偏东071的方向救援. --------------12分20. 解:(1)由121+=+n n S a ,可得121(2)n n a S n -=+≥,两式相减得)2(3,211≥==-++n a a a a a n n n n n 即, ∴当2≥n 时,}{n a 是等比数列, 要使1≥n 时,}{n a 是等比数列,则只需31212=+=tt a a ,从而1=t .----6分 (2)设}{n b 的公差为d ,由153=T 得15321=++b b b ,于是52=b , 故可设d b d b +=-=5,531,又9,3,1321===a a a ,由题意可得2)35()95)(15(+=+++-d d ,解得10,221-==d d , ∵等差数列}{n b 的前n 项和n T 有最大值,∴10,0-=<d d ∴2520)10(2)1(15n n n n n T n -=-⨯-+=. --------------13分 21.(1)依题意得m x f m ≥ax )(,[0,1]x e ?()12212)1(2)(++=+-+='x x x x x x f ,而函数)(x f 的定义域为),1(∞+- )(x f 在)0,1(-上为减函数,在),0(∞+上为增函数,则)(x f 在]1,0[-e 上为增函数2)1()(2max -=-=∴e e f x f即实数m 的取值范围为22-≤e m ----------------- 4分(2)1)()(g 2--=x x f x )]1ln(x [2)1ln(22x x x +-=+-= 则函数)(g x 的最小值为0)0(g =所以,要使方程p x =)(g 至少有一个解,则0≥p ,即p 的最小值为0 ---9分 (3)由(2)可知: 0)]1ln(x [2)(g ≥+-=x x 在),1(∞+-上恒成立 所以 x x ≤+)1l n (,当且仅当x=0时等号成立令)(1x *N n n ∈=,则)1,0(∈x 代入上面不等式得:n n 1)11ln(<+ 即n n n 11ln <+, 即 nn n 1ln )1ln(<-+ 所以,11ln 2ln <-,212ln 3ln <-,313ln 4ln <-,…,nn n 1ln )1ln(<-+将以上n 个等式相加即可得到:nn 131211)1ln(++++<+ -----------------14分。
2015年高三数学理科模拟试卷及参考答案
2015年高三数学理科模拟试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若复数221z i i=++,其中i 是虚数单位,则复数z 的模为( )A.22B. 2C. 3D. 2 2.设a ∈R ,则“4a =”是“直线1:230l ax y +-=与直线2:20l x y a +-=平行”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要3.设函数()2xf x =,则下列结论中正确的是( ) A. (1)(2)(2)f f f -<<- B. (2)(1)(2)f f f -<-<C. (2)(2)(1)f f f <-<-D. (1)(2)(2)f f f -<-<4.设等差数列{n a 的前n 项和是n S ,若11m m a a a +-<<-(m ∈N *,且2m ≥),则必定有( )A. 0m S >,且10m S +<B. 0m S <,且10m S +>C. 0m S >,且10m S +>D. 0m S <,且10m S +<5.已知实数x ∈[1,9],执行如图所示的流程图, 则输出的x 不小于55的概率为( ) A.14B.23C.28D.386.某几何体的立体图如图所示,该几何体的三视图不可能是( )A .B .C .D .7.设函数()log (01)a f x x a =<<的定义域为[,](m n m <)n ,值域为[0,1],若n m -的最小值为13,则实数a 的值为( )A. 14B.14或23C.23D.23或348.设双曲线22143x y-=的左,右焦点分别为12,F F,过1F的直线l交双曲线左支于,A B两点,则22BF AF+的最小值为( )A.192B. 11C. 12D. 169.已知集合{}(,)(1)(1)A x y x x y y r=-+-≤,集合{}222(,)B x y x y r=+≤,若BA⊂,则实数r可以取的一个值是( )A. 21+ B. 3 C. 2 D.212+10.设函数11,(,2)()1(2),[2,)2x xf xf x x⎧--∈-∞⎪=⎨-∈+∞⎪⎩,则函数()()1F x xf x=-的零点的个数为( )A. 4B. 5C. 6D. 711.设等差数列{}na满足:22222233363645sin cos cos cos sin sin1sin()a a a a a aa a-+-=+,公差(1,0)d∈-.若当且仅当9n=时,数列{}n a的前n项和n S取得最大值,则首项1a的取值范围是( )A.74,63ππ⎛⎫⎪⎝⎭B.43,32ππ⎛⎫⎪⎝⎭C.74,63ππ⎡⎤⎢⎥⎣⎦D.43,32ππ⎡⎤⎢⎥⎣⎦12.已知椭圆,过椭圆右焦点F的直线L交椭圆于A、B两点,交y轴于P点.设,则λ1+λ2等于()A.B.C.D.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.从3,2,1,0中任取三个数字,组成无重复数字的三位数中,偶数的个数是(用数字回答).14.若整数..,x y满足不等式组70y xx yx-≥⎧⎪+-≤⎨⎪≥⎩,则2x y+的最大值为15.已知正三棱锥P﹣ABC中,E、F分别是AC,PC的中点,若EF⊥BF,AB=2,则三棱锥P﹣ABC的外接球的表面积为.16.设P(x,y)为函数y=x2﹣1图象上一动点,记,则当m最小时,点P的坐标为.三.解答题。
2015高考数学模拟试卷及答案解析-理科
2015高考数学模拟试卷及答案解析(理科)本试卷满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数321i i -(i 为虚数单位)的虚部是A .15iB .15C .15i -D .15-2.设全集U=R ,A={x|2x (x-2)<1},B={x|y=1n (l -x )},则右图中阴影部分表示的集合为 A .{x |x≥1} B .{x |x≤1} C .{x|0<x≤1} D .{x |1≤x<2}3.等比数列{a n }的各项均为正数,且564718a a a a +=,则log 3 a 1+log 3a 2+…+log 3 a l0= A .12 B .10C .8D .2+log 3 54.若x=6π是f (x )=3sin x ω+cos x ω的图象的一条对称轴,则ω可以是 A .4 B .8 C .2 D .15.己知某几何体的三视图如图所示,则该几何体的体积是 A .233π+ B .2323π+ C .232π+ D .23π+6.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有’5架舰载机准备着舰.如果甲乙2机必须相邻着舰,而丙丁不能相邻着舰,那么不同的着舰方法有( )种 A .12 B .18 C .24 D .487.已知M=3(,)|3,{(,)|20}2y x y N x y ax y a x -⎧⎫==++=⎨⎬-⎩⎭且M N =∅I ,则a= A .-6或-2 B .-6 C .2或-6 D .-28.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.己知在过滤过程中废气中的污染物数量尸(单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为:P= P 0e -kt ,(k ,P 0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%.那么,至少还需( )时间过滤才可以排放.A .12小时 B .59小时 c .5小时 D .10小时9.己知抛物线22(0)y px p =>的焦点F 恰好是双曲线22221(0,0)x y a b a b-=>>的右焦点,且两条曲线的交点的连线过点F ,则该双曲线的离心率为 A .2+1B .2C .2D .2-110.实数a i (i =1,2,3,4,5,6)满足(a 2-a 1)2+(a 3-a 2)2+(a 4-a 3)2+(a 5-a 4)2+(a 6-a 5)2=1则(a 5+a 6)-(a 1+a 4)的最大值为A .3B .22C .6D .1二、填空题(本大题共6小题,考生共需作答5小题.每小题5分,共25分,请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.)(一)必考题.(11-14题) 11.己知0(sin cos )xa t t dt =+⎰,则(1x ax-)6的展开式中的常数项为 。
2015年高考数学模拟试题及答案
(1)求数列 a n 的通项公式; (2)设 bn
1 ,数列 bn 的前 n 项和为 Tn ,求证: Tn 2 . 2 an
20. (本小题共 13 分) 若双曲线 E :
x2 y 2 1(a 0, b 0) 的离心率等于 2 ,焦点到渐近线的距离为 1,直线 y kx 1 与双 a 2 b2
D C
A.
3 10 10
B.
10 10
C.
5 10
D.
5 15
E
B A 7. 已知正四棱柱 ABCD A1B1C1D1 中,AB 2, CC1 2 2 ,E 为 CC1 的中点, 则直线 AC1 与平面 BED
的距离为 A.2 B.
3
C. 2
D.1
8.将甲、乙、丙等六人分配到高中三个年级,每个年级 2 人,要求甲必须在高一年级,乙和丙均不能在高 三年级,则不同的安排种数为
(2)由(1)可知 bn 20. (本小题共 13 分)
c a 2 1 2 解: (1)由 a 得 b2 1 b 1
设 A x1 , y1 , B x2 , y2 , 由
故双曲线 E 的方程为 x y 1
2 2
y kx 1 得 1 k 2 x 2 2kx 2 0 2 2 x y 1
x 1 0 , 则 A B x 3
2 3
D. (, 1)
A. (3, )
B. (1, )
2 3
C. ( ,3)
2
2. 设 x R , i 是虚数单位,则“ x 3 ”是“复数 z ( x 2 x 3) ( x 1)i 为纯虚数” 的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 3.某几何体的正视图和侧视图均如图 1 所示,则该几何体的俯视图不可能是
九江市2015年高考模拟理科数学卷及答案
九江市2015年第二次高考模拟统一考试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.5. 解:111(1)333j j a j =+-⋅=,11111()()232i i ij j j a a --∴=⋅=⋅ 6168811()3212a -∴=⋅=,故选A.6. 解:()22sin f x x x '=-,令()22sin g x x x =-,()22cos 0g x x '=-≥()g x ∴在R 上单调递增 (0)0g =,(,0)x ∴∈-∞时,()0f x '<,函数()f x单调递减;(0,)x ∈+∞时,()0f x '> ,函数()fx 单调递增,()f x 为偶函数,22()()()()f f f f αβαβαβαβ∴>⇒>⇒>⇒>,故选D.7. 解:如图所示,两曲线共有5个交点, 故选B.9. 解:取CD 的中点N ,1CC 的中点R ,11B C 的中点H , 则1MN B C HR ////,MH AC // 故平面MNRH //平面C AB 1,MP Ü平面MNRH ,线段MP 扫过的图形是MNR ∆,设2AB =,则MN =NR =MR =222MN NR MR ∴=+MNR ∴∆是直角三角形,故选B.10. 解:当123a a a ,,互不相同时,123a a a 共有33848A =个,当123a a a ,,有且仅有两个相同时,123a a a 共有13618A =个,当123a a a ,,均相同时,123a a a 共有6个,∴所求概率为4818616663P ++==⨯⨯,故选D.11. 解:当1n =时,111S T +=,即112S =,当2n =时,2121S S S +=,即223S =,当3n =时,31231S S S S +=,即334S =,…,猜想1n nS n =+,1111(1)n n n n n a S S n n n n --∴=-=-=++ 1(1)nn n a ∴=+D AB CM C 1 B 1A 1D 1P N R H∴数列1{}n a 中最接近2015的项是44144451980a =⨯=,故选B.12. 解:结合函数()f x 的图像可知,234a a -=-,即1a =或3a = 当1a =时,2431b b -+-=-(3b >),解得2b =+当3a =时,212279b b -+-=-(9b >),解得6b =+,故选D.二、填空题:本大题共4小题,每小题5分,共20分. 13.23π14.60 15. 解:设函数()sin f x x a =-,(502x π≤≤)的三个零点从小到大依次为1x ,2x ,3x , 则122322133x x x x x x xππ+=⎧⎪+=⎨⎪=⎩,2222()(3)x x x ππ∴=--,234x π∴=,3sin 4a π∴==1a ∴==-. 16. 解:如图所示,点F 及直线l 分别是抛物线C点B 作BD l ⊥于D ,则BD BF =,2AB BF =,060ABD ∴∠= 02tan 6013m m∴=+解得m =.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 解:(1)法1:由角60A ︒=,得120C B ︒=-代入B C C cos 3cos sin =+得sin(120)cos(120)B B B ︒︒-+-=………1分0sin120cos cos120sin cos120cos sin120sin B B B B B ︒︒︒∴-++= 即B B cos sin =,tan 1B ∴=………4分又0120B ︒︒<<,45B ︒∴=,75C ︒=………6分法2:由角60A ︒=,得120B C ︒=-代入B C C cos 3cos sin =+得 )120cos(3cos sin C C C -=+︒………1分sin cos cos sin120sin )C C C C ︒︒∴+=+即sin (2cos C C =+,即tan 2C =+………4分 又0120C ︒︒<<,75C ︒∴=,45B ︒=………6分法3:由60A ︒=知B A B B cos sin 2cos 232cos 3⋅=⋅=………1分 因此有B A C C cos sin 2cos sin =+又B A B A B A C sin cos cos sin )sin(sin ⋅+⋅=+=,代入上式得)sin(cos B A C -=即)60sin()90sin(B C -=-︒︒………4分又︒︒︒<-<-909030C ,︒︒<-︒<-606060B9060C B ︒︒∴-=- 即30C B ︒-=,又120C B ︒+= 45B ︒∴=,75C ︒=………6分(2)法1:由正弦定理得2sin sin sin b c aB C A===,设ABC ∆的周长为y 则3)120sin(2sin 23sin 2sin 2+-+=++=︒B B C B y 3)30sin(32++=︒B (8)分又0120B ︒︒<<,即︒︒︒<+<1503030B ,1sin(30)12B ︒∴<+≤………10分从而333)30sin(3232≤++<︒B ABC ∴∆周长的取值范围是]33,32( (12)分 法2:由余弦定理得2222cos3b c bc π=+-,即2()33b c bc +-=22()33()2b c b c +∴+-≤,即b c +≤………8分 又b c a +>,b c ∴+>……10分ABC ∴∆周长的取值范围是]33,32(………12分18. 解:(1)监控抽查采取的是系统抽样方法………1分 6段区间的人数依次是4,10,16,4,4,2人 故中位数落在(90,100]内………3分 (2)这40辆小型汽车的平均车速为475108516954105411521259540⨯+⨯+⨯+⨯+⨯+⨯=(/km h )………6分(3)0,50,100,200,250,400X = ………7分2421062(0)4515C P X C ====,114421016(50)45C C P X C ⋅===,2421062(100)4515C P X C ====, 11422108(200)45C C P X C ⋅===,11422108(250)45C C P X C ⋅===,222101(400)45C P X C === ∴X (102162881050100200250400120154515454545)EX ∴=⨯+⨯+⨯+⨯+⨯+⨯=(元)……12分 19. 解:(1)取AD 的中点E ,连CE ,由条件可知四边形ABCE 是正方形,三角形CED 是等腰直角三角形,所以454590ACD ACE ECD ︒︒︒∠=∠+∠=+= 即AC DC ⊥………2分平面⊥DAC 平面ABC ,DC ∴⊥平面ABC ………4分 (2)DC ⊥平面ABC ,DC AB ∴⊥又AB BC ⊥,所以AB ⊥平面DBC ,AB DB ∴⊥,即90ABD ACD ︒∠=∠=,∴四面体ABCD 的外接球的球心是AD 的中点E ………6分即四面体ABCD 的外接球的半径1=R ,故四面体ABCD 的外接球的体积为43π (8)分(3)以B 为原点,建立如图空间直角坐标系,则(0,1,0)A ,(1,0,0)C ,D ,(0,1,0)BA ∴=,BD =设平面ABD 的法向量),,(z y x n =,则00n BA n BD ⎧⋅=⎪⎨⋅=⎪⎩,即00y x =⎧⎪⎨=⎪⎩令1z =,则x =(2,0,1)n ∴=- (10)设(0,,0)P t (0t >),则)0,,1(t CP -=,sin 45CP n CP n︒⋅∴=⋅,即221322=+⋅t , 解得33=t ,即33=PB 故存在点P ,使得直线CP 与平面ABD 所成的角为︒45,且33=PB ………12分 (用其它方法做请酌情给分)20. 解: (1)2221()1x kx f x x -+'=+,]1,0[∈x ………1分 解法一:①1≤k 时,由10≤≤x 知x kx 22-≥-,故0)1(1212222≥-=+-≥+-x x x kx x ()0,[0,1]f x x ∴'≥∈恒成立,即()f x 在区间]1,0[上是增函数,min ()(0)0f x f ∴== 满足题意………3分②当1>k 时,令()0f x '=得x k =±注意到21x k =+>,1(0,1)x k =-=,又当10x x <≤时,()0f x '>,)(x f 是增函数,当11≤<x x 时,()0f x '<,)(x f 是减函数,故要使函数()y f x =在区间[0,1]上的最小值为0,只需0)0()1(=≥f f ,即1ln 20k -⋅≥,又1>k ,11ln 2k ∴<≤综上所述,实数k 的取值范围是1(,]ln 2-∞………6分解法二:令2()21g x x kx =-+,]1,0[∈x 244k ∆=-①当0∆≤时,即11k -≤≤,()0g x ≥,()0f x '≥,()f x 在区间]1,0[上是增函数, min ()(0)0f x f ∴== 满足题意………3分②当0∆>,即1k <-或1k >,设()0g x =的两根为12,x x (12x x <),则122x x k +=, 121x x =若1k <-,则120x x <<,()0g x >,()0f x '>,()f x 在区间]1,0[上是增函数,min ()(0)0f x f ∴== 满足题意若1k >,则1201x x <<<,1(0,)x x ∈,()0g x >,()0f x '>,()f x 在区间1(0,)x 单调递增,1(,1)x x ∈,()0g x <,()0f x '<,()f x 在区间1(,1)x 单调递减min ()min{(0),(1)}f x f f ∴=,又(0)0f =,(1)1ln 20f k ∴=-≥,11ln 2k <≤综上所述,实数k 的取值范围是1(,]ln 2-∞………6分 (2)由(1)知,当[0,1]x ∈,且1ln 2k =时,0)0()(=≥f x f 恒成立,即 21ln(1)0ln 2x x -⋅+≥ 221x x ∴≥+,[0,1]x ∈时恒成立………9分 令12k x =,则有121124kk +<(1,2,,k n =)………11分21111122222111(1)(1)(1)222444n n n +++-∴+++<=<………12分21. 解:(1)依题意,得满足条件的0x 满足220022004113xy x y ⎧+=⎪⎨+>⎪⎩………1分 即220033(14)1x x +->,0x << 故0x 的取值范围是(………2分(2)设(,)S x y 00(,)P x y 在椭圆1422=+y x 上,220041x y ∴+=………① OP OS ⊥ 000xx y y ∴+=………②………3分 在Rt OPS ∆中,斜边PS 上的高等于33222213|OP OSOP OS⋅∴=+,即22113OP OS+= 222200113x y x y ∴+=++………③………5分(ⅰ)当0y ≠时,由②得00x x y y=-代入①得220224y x x y =+2222222200022411131314x y y x y x x y x y +∴===+-+-+ 代入③得222222413x y x y x y++=++,化简得2221x y -=………7分 (ⅱ)当0y =时,代入②得00x x =,显然此时0x ≠,否则切线l 过原点,不成立,即00x =此时201y =,代入③得221x =,即此时2221x y -=也成立.综上所述,点S 的轨迹所在的曲线方程为1222=-y x ………8分 (3)解法一:由(2)知222200113x y x y +=++ 又2222200()()PSx y x y =+++222200222200111[()()]()3x y x y x y x y=+++⋅+++ 22220022220014(2)33x y x y x y x y ++=++≥++………10分 当且仅当22220023x y x y +=+=时,取等号………11分PS ∴的最小值为332,此时121233OPS S ∆=⨯=………12分 解法二:由(2)知222200113x y x y+=++ 令22000u x y =+>,220v x y =+>,则113u v+=,3u v uv ∴+=233()2u v u v uv +∴+=≤ 即43u v +≥………10分又243PS u v =+≥ 从而 当且仅当23u v ==时,取等号………11分PS ∴的最小值为332,此时121233OPS S ∆=⨯=………12分22. 证明:(1)连接AD ,在ADB ∆和EFB ∆中BD BE BA BF ⋅=⋅ BD BFBA BE∴=又DBA FBE ∠=∠ ADB ∴∆∽EFB ∆…………3分则90EFB ADB ∠=∠= EF FB ∴⊥…………5分(2)在ADB ∆中,90ADB ADE ∠=∠=又90EFB ∠= ∴E F A D 、、、四点共圆DFB AEB ∴∠=∠ …………8分又AB 是⊙O 的直径,则90ACB ∠=∴DFB DBC AEB ∠+∠=∠+∠…………10分23. 解:(1)直线l的普通方程是10x =………2分圆C 的普通方程为224x y +=………4分(2)直线l 的参数方程可化为1112x y t ⎧=+'⎪⎪⎨⎪=+'⎪⎩,(t '是参数)………6分 代入圆C :224x y +=中,整理得21)20t t '++'-=,121)t t '+'=-+,122t t ''=-………8分1211PA PB t t t ∴-='-'='+………10分24. 解: (1)由26x a a -+≤,得26x a a -≤-,60a -≥,6a ∴≤626a x a a ∴-≤-≤-,即33≤≤-x a ………2分 32a ∴-=-,即1=a ………4分(2)由(1)知()211f x x =-+ 令)()()(n f n f n -+=ϕ,则 124()211()212124()22124()2n n n n n nn n ϕ⎧-≤-⎪⎪⎪=-+++=-<≤⎨⎪⎪+>⎪⎩………6分九江市2015年高考模拟理科数学卷及答案)(n ϕ的最小值为4………8分 4m ∴≥,即实数m 的取值范围是),4[+∞………10分。
2015高考模拟试卷及答案解析-理科全套
2015高考理科模拟试卷及答案解析目录2015高考理科数学模拟试卷 (2)2015高考理科数学模拟试卷答案解析 (5)2015高考理综模拟试卷 (12)2015高考理综模拟试卷答案解析 (24)2015高考理综化学模拟试卷答案解析 (24)2015高考理综生物模拟试卷答案解析 (25)2015高考理综物理模拟试卷答案解析 (26)2015高考语文模拟试卷 (27)2015高考语文模拟试卷答案解析 (34)2015高考英语模拟试卷 (36)2015高考英语模拟试卷答案解析 (44)2015高考理科数学模拟试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,3}A =,{1,3,9}B =,x A ∈,且x B ∉,则x =A .1B .2C .3D .92.在复平面内,复数11i+-对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限3.若01a <<,log (1)log a a x x -<,则A .01x <<B .12x <C .102x <<D .112x <<4.函数2cos2sin y x x =+,R ∈x 的值域是A .[0,1]B .1[,1]2C .[1,2]-D .[0,2]5.在5(12)(1)x x -+的展开式中,3x 的系数是A .20B .20-C .10D .10- 6.某几何体的三视图如图所示,其中三角形的三边长与圆的直径均为2则该几何体的体积为A πB C .32π3 D .4π3+ 7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c , m =(3b -c ,cos C ),n =(a ,cos A ),m ∥n ,则cos A 的值等于( )A.36 B.34 C.33 D.328.设不等式组4,010x y y x x +≤⎧⎪-≥⎨⎪-≥⎩表示的平面区域为D .若圆C :222(1)(1)(0)x y r r +++=>不经过区域D 上的点,则r 的取值范围是A .B .正视图 侧视图俯视图 (第6题)C.(25,)+∞ D.(25,)+∞9.若,a b 表示直线,α表示平面,且b α⊂,则“//a b ”是“//a α”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.已知, 圆222π=+y x 内的曲线sin ,[,]y x x ππ=-∈-与x 轴围成的阴影部分区域记为Ω(如图),随机往圆内投掷一个点A ,则点A 落在区域Ω的概率为 A .33πB .34π . 32πC D .31π11.已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,F 1,F 2是双曲线的左、右两个焦点,且PF 1⊥PF 2,PF 2与两条渐近线相交M ,N 两点(如图),点N 恰好平分线段PF 2,则双曲线的离心率是AB .2 CD12.已知方程sin xk x=在(0,)+∞有两个不同的解,αβ(αβ<),则下面结论正确的是: A .1tan()41πααα++=- B .1tan()41πβββ++=- C . 1tan()41πααα-+=+ D .1tan()41πβββ-+=+ 非选择题(共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.设数列{}n a 满足11a =,13n n a a +=,则5a = . 14.若某程序框图如图所示,则运行结果为 .15.甲、乙、丙等五人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为 .16.已知点(3,0)A -和圆O :229x y +=,AB 是圆O 的直径,M 和N 是AB 的三等分点,P (异于,A B )是圆O 上的动点,PD AB ⊥于D ,(0)PE ED λλ=>,直线PA 与BE 交于C ,则当λ= 时,(第14题)||||CM CN +为定值.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分12分)在△ABC 中,角,,A B C 所对的边分别为,,a b c ,满足sin sin sin sin a c A Bb A C+-=-. (Ⅰ)求角C ; (Ⅱ)求a bc+的取值范围. 18.(本题满分12分)一个袋中装有大小相同的黑球和白球共9个,从中任取3个球,记随机变量X 为取出3球中白球的个数,已知5(3)21P X ==. (Ⅰ)求袋中白球的个数;(Ⅱ)求随机变量X 的分布列及其数学期望. 19.(本题满分12分)如图,在四棱锥P-ABCD 中,AB 丄平面PAD,PD=AD, E 为PB 的中点,向量12DF AB =,点H 在AD 上,且0PH AD ⋅= (I)EF//平面PAD.(II)若(1)求直线AF 与平面PAB 所成角的正弦值.(2)求平面PAD 与平面PBC 所成锐二面角的平面角的余弦值. 20.(本题满分12分)如图,已知抛物线21:2C x py =的焦点在抛物线221:12C y x =+上,点P 是抛物线1C 上的动点.(Ⅰ)求抛物线1C 的方程及其准线方程;(Ⅱ)过点P 作抛物线2C 的两条切线,M 、N 分别为两个切点,设点P 到直线MN 的距离为d ,求d 的最小值. 21.(本题满分12分)已知R a ∈,函数()ln (1)f x x a x =--. (Ⅰ)若11a e =-,求函数|()|y f x =的极值点;(第20题)(Ⅱ)若不等式22(12)()ax a ea xf x e e+-≤-+恒成立,求a 的取值范围.(e 为自然对数的底数)请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分.做答时请写清题号.22.(本题满分10分)选修4-1:几何证明选讲如图,,,A B C 是圆O 上三个点,AD 是BAC ∠的平分线,交圆O 于D ,过B 做直线BE 交AD 延长线于E ,使BD 平分EBC ∠.(1)求证:BE 是圆O 的切线;(2)若6AE =,4AB =,3BD =,求DE 的长.一、(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为12x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,圆C的方程为2sin 10ρθ--=. 设圆C 与直线l 交于点A ,B,且(0,P .(1)求AB 中点M 的极坐标; (2)求|PA |+|PB |的值.24.(本小题满分10分)选修4-5:不等式选讲已知函数()12f x m x x =----,R ∈m ,且(1)0f x +≥的解集为[]1,0. (1)求m 的值;(2)若R ,,,,,∈z y x c b a ,且222222,x y z a b c m ++=++= 求证: 1ax by cz ++≤.2015高考理科数学模拟试卷答案解析一、选择题(本大题共10小题,每题5分,共50分)1.B ;2.B ;3.C ;4.A ;5.D ;6.A ;7.C ;8.C 9.D ;10.B ;11.A .12.A 第9题提示:动直线n 的轨迹是以点P 为顶点、以平行于m 的直线为轴的两个圆锥面,而点Q 的轨迹就是这两个圆锥面与平面α的交线.第12题提示:数列20132,,3,2,1 共有20132项,它们的乘积为!22013.经过20122次变换,产生了有20122项的一个新数列,它们的乘积也为!22013.对新数列进行同样的变换,直至最后只剩下一个数,它也是!22013,变换终止.在变换过程中产生的所有的项,可分为2013组,每组的项数依次为01201120122,2,,2,2 ,乘积均为!22013,故答案为20132013)!2(.二、填空题(本大题共4小题,每题5分,共20分)13.81; 14.5; 15.36; 16.81. 第17题提示:设),(00y x P ,则)11,(00y x E λ+,)3(3:00++=x x y y PA …① )3(311:00--+=x x y y BE λ…② 由①②得)9()9)(1(220202--+=x x y y λ, 将20209xy -=代入,得119922=++λy x .由1199=+-λ,得到81=λ. 三、解答题 17.解:(Ⅰ)C A B A b c a sin sin sin sin --=+ca b a --=,化简得222c ab b a =-+, …4分所以212cos 222=-+=ab c b a C ,3π=C .…7分(Ⅱ)C B A c b a sin sin sin +=+)]32sin([sin 32A A -+=π)6sin(2π+=A .…11分因为)32,0(π∈A ,)65,6(6πππ∈+A ,所以]1,21()6sin(∈+πA . 故,cba +的取值范围是]2,1(.…14分18. 解:(Ⅰ)设袋中有白球n 个,则215)3(393===C C X P n ,…4分即215789)2)(1(=⨯⨯--n n n ,解得6=n . …7分 (Ⅱ)随机变量X 的分布列如下:…11分221532815214318410)(=⨯+⨯+⨯+⨯=X E .…14分19.【答案】(Ⅰ) 取PA 的中点Q,连结EQ 、DQ,则E 是PB 的中点,∴1//,2EQ AB AB 且EQ=12DF AB =又1//,2DF AB AB ∴且DF=∴DF EQ DF EQ =且,//,∴四边形EQDF 为平行四边形, ∴//EF QD ,,EF PAD PAD ⊄⊂又平面且DQ 平面,//EF PAD 平面(Ⅱ)⑴解法一:证明: 0PH AD ∙=,∴PH AD ⊥ ∴PH⊥AD,又 AB⊥平面PAD,PH ⊂平面PAD,∴AB⊥PH,又PH ⋂AD=H,∴PH⊥平面ABCD; ---------------------------------连结AE ,PD AD Q PA =为的中点DQ PA ∴⊥又AB PAD ⊥平面且DQ PAD ⊂平面AB DQ ∴⊥AB PA A = DQ PAB ∴⊥平面由(Ⅰ)知 //EF DQ EF PAB ∴⊥平面AE AF PAB ∴为在平面上的射影 FAE AF PAB ∴∠为直线与平面所成的角2PD AD == PH =Rt PHD ∆在中 1HD ===H ∴为AD 中点, 又PH AD ⊥ 2PA PD AD ∴=== EF DQ PH ∴===AB PAD ⊥平面 AB AD ∴⊥ //DF AB DF AD ∴⊥在Rt ADF ∆中 AF ===又EF PAB ⊥平面 EF AE ∴⊥Rt AEF ∴∆在中 sin EF FAE AF ∠===155AF PAB ∴直线与平面所成的角的正弦值为515 (2)延长DA,CB 交于点M,连接PM,则PM 为平面PAD 与平面PBC 所成二面角的交线. 因为CD AB CD AB 21,//=,所以点A,B 分别为DM,CM 的中点,所以DM=4, 在PHM RT ∆中:222MH PH PM+=,32=∴PM 222DM PM PD =+∴ PD PM ⊥∴,又因为PMD CD 平面⊥,所以PM CP ⊥CPD ∠即为所求的二面角的平面角.所以在PCD RT ∆中:55522cos ===∠PC PD CPD 解法二:(向量法)(1)由(Ⅰ)可得 PH ABCD ⊥平面 又AB PAD ⊥平面在平面ABCD内过点//H HG AB 作HG PAD ∴⊥平面,以H为原点,以..HA HG HP x y z 的方向分别为轴、轴、轴正方向建立空间直角坐标系 H xyz - 2PD AD ==PH =Rt PHD ∆在中1HD ===H AD ∴为中点()100A ∴,, (,P O O ()12,0B ,1,12E ⎛ ⎝ ()110F -,, ()210AF ∴=-,, 设平面PAB 的一个法向量为(),,n x y z= (1,0,PA =, (1,2,PB =00n PA n PA n PB n PB ⎧⎧⊥⋅=⎪⎪⎨⎨⊥⋅=⎪⎪⎩⎩由得020x x y ⎧=⎪∴⎨+-=⎪⎩ 得y=0 令z =得x=3 (n ∴=设直线AF 与平面PAB 所成的角为θ 则(sin cos ,AF n AF n AF nθ====AF PAB ∴直线与平面分 ) (2) 显然向量为平面PAD 的一个法向量,且)0,2,0(= 设平面PBC 的一个法向量为),,(1111z y x n =,(1,2,PB =,)0,2,2(-=,由,01=∙n PB 得到032111=-+z y x由,01=∙n 得到02211=+-y x ,令11=x ,则3,111==z y所以)3,1,1(1=n ,111cos,AB nAB nAB n===所以平面PAD与平面PBC(14分 )20.解:(Ⅰ)1C的焦点为)2,0(pF,…2分所以12+=p,2=p.…4分故1C的方程为yx42=,其准线方程为1-=y.…6分(Ⅱ)设),2(2t tP,)121,(211+xxM,)121,(222+xxN,则PM的方程:)()121(1121xxxxy-=+-,所以12122112+-=xtxt,即02242121=-+-ttxx.同理,PN:121222+-=xxxy,02242222=-+-ttxx.…8分MN的方程:)()121(121)121(121222121xxxxxxxy--+-+=+-,即))((21)121(12121xxxxxy-+=+-.由⎪⎩⎪⎨⎧=-+-=-+-22422422222121ttxxttxx,得txx421=+,21211221ttxx-=-.…10分所以直线MN的方程为222ttxy-+=.…12分于是222222241)1(241|24|ttttttd++=+-+-=.令)1(412≥+=sts,则366216921=+≥++=ssd(当3=s时取等号).所以,d的最小值为3.…15分21.解:(Ⅰ)若11-=ea,则11ln)(---=exxxf,111)('--=exxf.(第20题)当)1,0(-∈e x 时,0)('>x f ,)(x f 单调递增; 当),1(+∞-∈e x 时,0)('<x f ,)(x f 单调递减. …2分又因为0)1(=f ,0)(=e f ,所以当)1,0(∈x 时,0)(<x f ;当)1,1(-∈e x 时,0)(>x f ; 当),1(e e x -∈时,0)(>x f ;当),(+∞∈e x 时,0)(<x f . …4分 故|)(|x f y =的极小值点为1和e ,极大值点为1-e .…6分(Ⅱ)不等式exea a e ax x f )21()(22-++-≤,整理为0)21(ln 22≤++-+a e xa eax x .…(*) 设a e xa eax x x g ++-+=)21(ln )(22, 则eae ax x x g 2121)('2+-+=(0>x ) xe e ex a ax 222)21(2++-=xe e ax e x 2)2)((--=. …8分①当0≤a 时,02<-e ax ,又0>x ,所以,当),0(e x ∈时,0)('>x g ,)(x g 递增; 当),(+∞∈e x 时,0)('<x g ,)(x g 递减. 从而0)()(max ==e g x g . 故,0)(≤x g 恒成立. …11分②当0>a 时,x e e ax e x x g 2)2)(()('--=)12)((2exe ae x --=. 令2212e a ex e a =-,解得a e x =1,则当1x x >时,2212e a ex e a >-;再令1)(2=-e ae x ,解得e a e x +=22,则当2x x >时,1)(2>-e ae x . 取),max(210x x x =,则当0x x >时,1)('>x g .所以,当),(0+∞∈x x 时,00)()(x x x g x g ->-,即)()(00x g x x x g +->. 这与“0)(≤x g 恒成立”矛盾. 综上所述,0≤a .…14分22. (1)证明:连接BO 并延长交圆O 于G ,连接GCDBC DAC ∠=∠,又AD 平分BAC ∠,BD 平分EBC ∠,EBC BAC ∴∠=∠.又BGC BAC ∠=∠,EBC BGC ∴∠=∠,90GBC BGC ∠+∠=,∴90GBC EBC ∠+∠=,∴OB BE ⊥. ……………5分∴BE 是圆O 的切线.(2)由(1)可知△BDE ∽△ABE ,BE BDAE AB=,BE AB BD AE ⋅=⋅∴, 6=AE ,4AB =,3BD =,92BE ∴=. ……8分由切割线定理得:2BE DE AE =⋅278DE ∴=. ……………10分 23.由2sin 10ρθ--=,得2210x y +--=,即(224x y +=. …………3分将直线l 的参数方程代入圆C 的直角坐标方程,得212t ⎛⎫ ⎪⎝⎭+22⎛ ⎝=4,即2680t t -+=, 40∆=>,故可设t 1,t 2是上述方程的两实根,所以121268t t t t +=⎧⎨=⎩, …………6分12t 2,t 4.==解得(1)1232t t +=,∴32M ⎛ ⎝⎭,∴点M的极坐标为6π⎫⎪⎭. ………………8分 (2)又直线l 过点,故由上式及参数t 的几何意义得PA PB +=12t t +=126t t +=. .........10分 24.(1)(1)0f x +≥,1x x m ∴+-≤.当m <1时,11≥-+x x ,∴不等式m x x ≤-+1的解集为φ,不符题意. 当1≥m 时,①当0<x 时,得21m x -≥,0<21x m≤-∴. ②当10≤≤x 时,得m x x ≤-+1,即m ≤1恒成立.③当1>x 时,得21+≤m x ,21<1+≤∴m x .综上m x x ≤-+1的解集为⎭⎬⎫⎩⎨⎧+≤≤-2121m x m x.由题意得⎪⎪⎩⎪⎪⎨⎧=+=-121021m m,1=∴m . ……………………………5分(2)222x a ax +≥,222y b by +≥,222z c cz +≥,()2222222a b c x y z ax by cz ∴+++++≥++,由(1)知2222221,x y z a b c ++=++=()22ax by cz ∴++≤, 1.ax by cz ∴++≤ …………………………10分2015高考理综模拟试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共300分。
浙江省宁波市2015年高考模拟考试数学(理科)试题含答案
理科数学试卷(第1页,共12页)宁波市2015年高考模拟考试数学(理科)试题说明:本试题卷分选择题和非选择题两部分.全卷共4页,满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上. 参考公式:柱体的体积公式:V Sh = 其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式:13V Sh =其中S 表示锥体的底面积,h 表示锥体的高台体的体积公式:)(312211S S S S h V ++=其中S 1、S 2分别表示台体的上、下底面积,h 表示台体的高球的表面积公式:24S R π=球的体积公式:334R V π= 其中R 表示球的半径第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
1、下列函数中,在区间(0,+∞)上为增函数的是( )A.y=x-1B. y=(12)xC. y=x+1xD. y=ln(x+1)2、设a ∈R ,则“a=-32”是“直线l 1: ax+2y -1=0与直线l 2: x+a(a+1)y+4=0垂直”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3、将一个长方体截掉一个小长方体,所得几何体的俯视图与侧视图如右图所示,则该几何体的正视图为 ( )A. B. C. D.4、设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题正确的是( )A.m ⊥α,n ⊥β,且α⊥β,则m ⊥nB. m ∥α,n ∥β,且α∥β,则m ∥nC. m ⊥α, n ⊂β, m ⊥n ,则α⊥βD.m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β理科数学试卷(第2页,共12页)5、已知F 是抛物线y 2=4x 的焦点,A ,B 是抛物线上的两点,|AF|+|BF|=12,则线段AB 的中点到y轴的距离为( ) A. 4 B. 5 C. 6 D. 11 6、将函数f(x)=2sin(2x+4π)的图象向右平移φ(φ>0)个单位,再将图象上每一点的横坐标缩短到原来的12倍(纵坐标不变),所得图象关于直线x=4π对称,则φ的最小值为( )A.18πB. 12πC. 34πD. 38π7、在平面直角坐标系xOy 中,已知点A 是半圆)42(0422≤≤=+-x y x x 上的一个动点,点C 在线段OA 的延长线上,当OA OC ⋅ =20时,点C 的轨迹为 ( )A. 椭圆一部分B.抛物线一段C. 线段D. 圆弧8、已知点(x ,y)的坐标满足条件302602290x y a x y x y --<⎧⎪+->⎨-+>⎪⎩,且x ,y 均为正整数。
2015年湖南高考数学模拟试卷(理科)解析版
2015年全国高考山东卷(文科)数学模拟2015年湖南省高考数学(理科)模拟试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出书写的答案无效.........,在试题卷........。
....、草稿纸上答题无效考试结束后,务必将试题卷和答题卡一并上交。
一.选择题(本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2012•日照二模)已知集合M={y|y=x2﹣1,x∈R},N={x|y=},则M∩N=() A. [﹣1,+∞)B.[﹣1,] C.[,+∞)D.(﹣1,)2.(2015•永州二模)已知i为虚数单位,若数列{a n}满足:a1=i,且(1﹣i)a n+1=(1+i)a n,则复数a5=()A.﹣i B.﹣1 C.i D.13.(2012•北京)已知{a n}为等比数列,下面结论中正确的是()A. a1+a3≥2a2B.a12+a32≥2a22C.若a1=a3,则a1=a2D.若a3>a1,则a4>a24.(2015•怀化一模)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,则α∥β;③若α∥β,β∥γ,m⊥α,则m⊥γ;④若α∩γ=m,β∩γ=n,m∥n,则α∥β.其中正确命题的序号是()A.①和③B.②和③C.③和④D.①和④5.(2014秋•资阳区校级月考)定义×=||||sinθ,其中θ为向量与的夹角,若||=5,||=13,•=﹣25,则×等于()A.﹣60 B.60 C.﹣60或60 D.66.(2015•永州二模)(1﹣x)2(1+y)3的展开式中xy2的系数是()A.﹣6 B.﹣3 C.3D.67.(2015•湘西州校级模拟)设x,y满足约束条件,则目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为()A.B.C.6D.58.(2015•株洲一模)已知关于x的方程|x﹣k|=k在区间[k﹣1,k+1]上有两个不相等的实根,则实数k的取值范围是()A. 0<k≤1B.0<k≤C.1≤k D.k≥19.(2015•永州二模)过双曲线﹣=1(a>0,b>0)的上顶点 A作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为 B、C,若=2,则双曲线的离心率是()A.B.C.D.10.(2015•衡阳校级模拟)某同学在研究函数f(x)=+的性质时,受到两点间距离公式的启发,将f(x)变形为f(x)=+,则f(x)表示|PA|+|PB|(如左图),则①f(x)的图象是中心对称图形;②f(x)的图象是轴对称图形;③函数f(x)的值域为;④函数f(x)在区间(﹣∞,3)上单调递减;⑤方程有两个解.上述关于函数f(x)的描述正确的个数为()A. 1 B.2C.3D.4二.填空题(共6小题)11.(2015•衡阳校级模拟)某班有60名学生,一次考试后数学成绩ξ~N(110,102),若P(100≤ξ≤110)=0.35,则估计该班学生数学成绩在120分以上的人数为.12.(2015•株洲一模)(x2+)6展开式的中间项系数为20,如图阴影部分是由曲线y=x2和圆x2+y2=a 及x轴围成的封闭图形,则封闭图形的面积S= .13.(2015•湖北模拟)执行如图所示的程序框图,若输出结果是i=3,则正整数a0的最大值为.2015年全国高考山东卷(文科)数学模拟14.(2015•怀化一模)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若曲线C1的参数方程为(t为参数),曲线C2的极坐标方程为ρsinθ﹣ρcosθ=﹣1.则曲线C1与曲线C2的交点个数为个.15.(2014•衡阳县校级模拟)已知AB是半圆O的直径,点C在半圆上,CD⊥AB于点D,且AD=4DB,设∠COD=θ,则cos2θ= .16.(2015•郴州二模)若实数x,y,z满足x2+y2+z2=4,则x+2y﹣2z的取值范围为.三.解答题(共6小题)17.(2015•株洲一模)设a∈R,满足,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)设△ABC三内角A,B,C所对边分别为a,b,c且,求f(x)在(0,B]上的值域.18.(2015•衡阳校级模拟)2014年巴西世界杯的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,(1(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).19.(2015•湖北模拟)如图,正四棱锥S﹣ABCD中,SA=AB,E、F、G分别为BC、SC、DC的中点,设P 为线段FG上任意一点.(l)求证:EP⊥AC;(2)当直线BP与平面EFG所成的角取得最大值时,求二面角P﹣BD﹣C的大小.2015年全国高考山东卷(文科)数学模拟20.(2015•湖北模拟)设{a n}为公比不为1的等比数列,a4=16,其前n项和为S n,且5S1、2S2、S3成等差数列.(l)求数列{a n}的通项公式;(2)设b n=,T n为数列{b n}的前n项和.是否存在正整数k,使得对于任意n∈N*不等式T n>()k恒成立?若存在,求出k的最小值;若不存在,请说明理由.21.(2012•湘潭四模)设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:y=x2﹣1与y轴的交点为B,且经过F1,F2点.(Ⅰ)求椭圆C1的方程;(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求△MPQ面积的最大值.22.(2015•衡阳校级模拟)已知函数g(x)=alnx,f(x)=x3+x2+bx.(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;(2)若对任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,求实数a的取值范围;(3)当b=0时,设F(x)=,对任意给定的正实数a,曲线y=F(x)上是否存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在y轴上?请说明理由.2015年全国高考山东卷(文科)数学模拟2015年湖南省高考数学(理科)模拟试卷参考答案与试题解析一.选择题(共10小题)1.(2012•日照二模)已知集合M={y|y=x2﹣1,x∈R},N={x|y=},则M∩N=(),,,}]=2.(2015•永州二模)已知i为虚数单位,若数列{a n}满足:a1=i,且(1﹣i)a n+1=(1+i)a n,则复数,可得=i==i,当且仅当,所以,当且仅当,∴4.(2015•怀化一模)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,则α∥β;③若α∥β,β∥γ,m⊥α,则m⊥γ;④若α∩γ=m,β∩γ=n,m∥n,则α∥β.5.(2014秋•资阳区校级月考)定义×=||||sinθ,其中θ为向量与的夹角,若||=5,||=13,•=﹣25,则×等于()2015年全国高考山东卷(文科)数学模拟×=||||sinθ的值..,×=|||=5×13×=602327.(2015•湘西州校级模拟)设x,y满足约束条件,则目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为()C,要求+,而(+)≥,当且仅当a=b=,取最小值8.(2015•株洲一模)已知关于x的方程|x﹣k|=k在区间[k﹣1,k+1]上有两个不相等的实根,则<k≤k|=可化为kkk2k+9.(2015•永州二模)过双曲线﹣=1(a>0,b>0)的上顶点 A作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为 B、C,若=2,则双曲线的离心率是()C2015年全国高考山东卷(文科)数学模拟解:双曲线﹣x,)x,)=2,可得,),)=,===.10.(2015•衡阳校级模拟)某同学在研究函数f(x)=+的性质时,受到两点间距离公式的启发,将f(x)变形为f(x)=+,则f(x)表示|PA|+|PB|(如左图),则①f(x)的图象是中心对称图形;②f(x)的图象是轴对称图形;③函数f(x)的值域为;④函数f(x)在区间(﹣∞,3)上单调递减;⑤方程有两个解.上述关于函数f(x)的描述正确的个数为())的最小值为,轴交点的横坐标为,显然有,x=在区间,由二.填空题(共6小题)11.(2015•衡阳校级模拟)某班有60名学生,一次考试后数学成绩ξ~N(110,102),若P(100≤ξ≤110)=0.35,则估计该班学生数学成绩在120分以上的人数为9 .(2015年全国高考山东卷(文科)数学模拟12.(2015•株洲一模)(x2+)6展开式的中间项系数为20,如图阴影部分是由曲线y=x2和圆x2+y2=a及x轴围成的封闭图形,则封闭图形的面积S= .,中间项为第四项,系数为﹣=﹣(=﹣故答案为:13.(2015•湖北模拟)执行如图所示的程序框图,若输出结果是i=3,则正整数a0的最大值为 3 .+12<14.(2015•怀化一模)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若曲线C1的参数方程为(t为参数),曲线C2的极坐标方程为ρsinθ﹣ρcosθ=﹣1.则曲线C1与曲线C2的交点个数为 1 个.(的参数方程为解得.2015年全国高考山东卷(文科)数学模拟15.(2014•衡阳县校级模拟)已知AB是半圆O的直径,点C在半圆上,CD⊥AB于点D,且AD=4DB,设∠COD=θ,则cos2θ= ﹣.﹣1=2×,=故答案为:16.(2015•郴州二模)若实数x,y,z满足x2+y2+z2=4,则x+2y﹣2z的取值范围为[﹣6,6] .++(+)≥,利三.解答题(共6小题)17.(2015•株洲一模)设a∈R,满足,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)设△ABC三内角A,B,C所对边分别为a,b,c且,求f(x)在(0,B]上的值域.(Ⅱ)利用余弦定理化简,通过正弦定理求出.得,解得.的单调递增区间(,所以时,18.(2015•衡阳校级模拟)2014年巴西世界杯的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,2015年全国高考山东卷(文科)数学模拟(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).)样品中优等品的频率为,由分层抽样方法能求出乙厂生产的优等品的数量.=35)样品中优等品的频率为,.…(===19.(2015•湖北模拟)如图,正四棱锥S﹣ABCD中,SA=AB,E、F、G分别为BC、SC、DC的中点,设P 为线段FG上任意一点.(l)求证:EP⊥AC;(2)当直线BP与平面EFG所成的角取得最大值时,求二面角P﹣BD﹣C的大小.,,),,故点,=,令=(2015年全国高考山东卷(文科)数学模拟的距离为20.(2015•湖北模拟)设{a n}为公比不为1的等比数列,a4=16,其前n项和为S n,且5S1、2S2、S3成等差数列.(l)求数列{a n}的通项公式;(2)设b n=,T n为数列{b n}的前n项和.是否存在正整数k,使得对于任意n∈N*不等式T n>()k恒成立?若存在,求出k的最小值;若不存在,请说明理由.不等式都成立,则=,即,即不等式都成立,,,,解得不等式都成立,且正整数21.(2012•湘潭四模)设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:y=x2﹣1与y轴的交点为B,且经过F1,F2点.(Ⅰ)求椭圆C1的方程;(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求△MPQ面积的最大值.2015年全国高考山东卷(文科)数学模拟.,.,则.==的面积的最大值为.22.(2015•衡阳校级模拟)已知函数g(x)=alnx,f(x)=x3+x2+bx.(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;(2)若对任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,求实数a的取值范围;(3)当b=0时,设F(x)=,对任意给定的正实数a,曲线y=F(x)上是否存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在y轴上?请说明理由.第21页=为坐标原点)为直角顶点的直角三角形,得到恒成立,即a≤,求导得,上为增函数,∴,第22页2015年全国高考山东卷(文科)数学模拟=lnt+第23页。
2015届高考模拟试卷数学试题(理科)附答案
2015届高考模拟试卷数学试题(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.1. 若复数z 满足i i z -=+1)1((i 是虚数单位),则z 的共轭复数z = A .i -B .i 2-C .iD .i 22.某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( )A.32π B .π+ 3 C.32π+ 3 D.52π+ 33.在极坐标系中,过点(2,)6π且垂直于极轴的直线的极坐标方程是( )A.ρθ=B.ρθ=C.sin ρθ=D.cos ρθ=4.图(1)是某高三学生进入高中三年来 的数学考试成绩茎叶图,第1次到第 14次的考试成绩依次记为A 1,A 2,…, A 14.图(2)是统计茎叶图中成绩在一定 范围内考试次数的一个算法流程图. 那么算法流程图输出的结果是( )A .7B .8C .9D .105.已知“命题p :∃x ∈R ,使得ax 2+2x +1<0成立”为真命题,则实数a 满足( ) A .[0,1) B .(-∞,1) C .[1,+∞) D .(-∞,1]6.若函数f (x )=(k -1)·a x -a -x (a >0且a ≠1) 在R 上既是奇函数,又是减函数, 则g (x )=log a (x +k )的图象是( )7.等比数列{}n a 的首项为1,公比为q ,前n 项和记为S,由原数列各项的倒数组成一个新数列1{}n a ,则1{}na 的前n 项之和'S 是( )A.1SB.1n q SC.n q SD. 1n S q -8. 若实数,x y 满足1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则23x yz +=的最小值是( )A .9. 若二项式*(2)()n x n N -∈的展开式中所有项的系数的绝对值之和是a ,所有项的二项式系数之和是b ,则b aa b+的最小值是( ) A.2 B.136 C.73 D.15610.有7张卡片分别写有数字1,1,1,2,2,3,4,从中任取4张,可排出的四位数有( )个A.78B. 102C.114D.120第Ⅱ卷(非选择题共100分)请用0 5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。
2015年高考模拟考试数学(理科)试卷附答案
2015年高考模拟考试数学(理科)试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷一.选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}log ,3{2a P =,{}b a Q ,=,若}0{=Q P ,则=Q P ( ) A.{}0,3 B.{}2,0,3 C.{}1,0,3 D.{}2,1,0,3 2.若复数(21a -)+(1a -)i (i 为虚数单位)是纯虚数,则实数a = ( ) A .±1 B .-1 C .0 D .1 3.有下列关于三角函数的命题:1:,()2P x x k k ∀∈≠+∈R Z ππ,若tan 0x >,则sin 20x >;23:sin()2P y x π=-函数与函数cos y x =的图象相同;300:,2cos 3P x x ∃∈=R ;4:|cos |P y x =函数()x ∈R 的最小正周期为2π.其中的真命题是( )A .1P ,4PB .2P ,4PC .2P ,3PD .1P ,2P4.若某程序框图如图所示,则输出的n 的值是 ( )A. 3B. 4C. 5D. 65.已知函数 y = 2sin x 的定义域为[a,b] ,值域为[-2,1] ,则 b-a 的值不可能是( ) A.56π B.π C. 76π D. 2π(第4题图)6.某校通过随机询问100名性别不同的学生是否能做到“光盘”行动,得到如下联表:附:22112212211212()n n n n n K n n n n ++++-=,则下列结论正确的是( )A .在犯错误的概率不超过1%的前提下,认为“该校学生能否做到…光盘‟与性别无关”B .有99%以上的把握认为“该校学生能否做到…光盘‟与性别有关”C .在犯错误的概率不超过10%的前提下,认为“该校学生能否做到…光盘‟与性别有关”D .有90%以上的把握认为“该校学生能否做到…光盘‟与性别无关”7.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x=-的最小值为-2,则k 的值为( ) A. 1 B.-1 C. 2 D. --2 8. 已知菱形ABCD 的边长为3,060B?,沿对角线AD 折成一个四面体,使得平面ACD ^平面ABD ,则经过这个四面体所有顶点的球的表面积为( )A. 15pB. 154pC. D. 6p9.定义在(0,)+∞上的单调递减函数()f x ,若()f x 的导函数存在且满足'()()f x x f x >,则下列不等式成立的是( )A .3(2)2(3)f f <B .3(4)4(3)f f <C .2(3)3(4)f f <D .(2)2(1)f f <10. 已知12F F 、分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点2F 与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段12F F 为直径的圆外,则双曲线离心率的取值范围是( )A.B.)+∞C. D. (2,)+∞11. 如图,长方形ABCD 的长2AD x =,宽(1)AB x x =≥,线段MN 的长度为1,端点N M ,在长方形ABCD 的四边上滑动,当N M ,沿长方形的四边滑动一周时,线段MN 的中点P 所形成的轨迹为G ,记G 的周长与G 围成的面积数值的差为y ,则函数()y f x =的图象大致为( )12.已知函数1ln 1)(-+=x xx f ,*)()(N k x k x g ∈=,若对任意的1c >,存在实数b a ,满足0a b <<c <,使得)()()(b g a f c f ==,则k 的最大值为( )A. 2B. 3C. 4D. 5第Ⅱ卷本卷包括必考题和选考题两部分。
2015高考理科模拟数学试题及答案
7.设a ∈R ,若函数3ax y e x =+,x ∈R 有大于零的极值点,则( ) A .3a >-B .3a <-C .13a >-D .13a <-7.B 【解析】'()3ax f x ae =+,若函数在x R ∈上有大于零的极值点,即'()30ax f x ae =+=有正根。
当有'()30ax f x ae =+=成立时,显然有0a <,此时13ln()x a a=-,由0x >我们马上就能得到参数a 的范围为3a <-。
11.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 . 12.已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是 . 11.【解析】易知点C 为(1,0)-,而直线与0x y +=垂直,我们设待求的直线的方程为y x b =+,将点C 的坐标代入马上就能求出参数b 的值为1b =,故待求的直线的方程为10x y -+=。
12.【解析】21cos 211()sin sin cos sin 2)2242x f x x x x x x π-=-=-=-+,故函数的最小正周期22T ππ==。
15.【解析】依题意,我们知道PBA PAC ∆∆,由相似三角形的性质我们有2PA PBR AB=,即2221PA AB R PB ∙===⨯14.(几何证明选讲选做题)已知PA 是圆O 的切线,切点为A ,2PA =.AC 是圆O 的直径,PC 与圆O 交于点B ,1PB =,则圆O 的半径R = . 17.(本小题满分13分)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ. (1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?17.解:(1)ξ的所有可能取值有6,2,1,-2;126(6)0.63200P ξ===,50(2)0.25200P ξ===图4图420(1)0.1200P ξ===,4(2)0.02200P ξ=-== 故ξ的分布列为:(2)60.6320.2510.1(2)0.02 4.34E ξ=⨯+⨯+⨯+-⨯= (3)设技术革新后的三等品率为x ,则此时1件产品的平均利润为()60.72(10.70.01)(2)0.01 4.76(00.29)E x x x x =⨯+⨯---+-⨯=-≤≤依题意,() 4.73E x ≥,即4.76 4.73x -≥,解得0.03x ≤ 所以三等品率最多为3%18.(本小题满分14分)设0b >,椭圆方程为222212x y b b+=,抛物线方程为28()x y b =-.如图4所示,过点(02)F b +,作x 轴的平行线,与抛物线在第一象限的交点为G ,已知抛物线在点G 的切线经过椭圆的右焦点1F .(1)求满足条件的椭圆方程和抛物线方程;(2)设A B ,分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P ,使得ABP △为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).18.解:(1)由28()x y b =-得218y x b =+, 当2y b =+得4x =±,∴G 点的坐标为(4,2)b +,1'4y x =, 4'|1x y ==,过点G 的切线方程为(2)4y b x -+=-即2y x b =+-, 令0y =得2x b =-,1F ∴点的坐标为(2,0)b -, 由椭圆方程得1F 点的坐标为(,0)b ,2b b ∴-=即1b =,即椭圆和抛物线的方程分别为2212x y +=和28(1)x y =-; (2)过A 作x 轴的垂线与抛物线只有一个交点P ,∴以PAB ∠为直角的Rt ABP ∆只有一个,同理∴以PBA ∠为直角的Rt ABP ∆只有一个。
高考数学模拟试卷 理(含解析)-人教版高三全册数学试题
某某市南开中学2015届高考数学模拟试卷(理科)一、选择题(每小题有且只有1个选项符合题意,将正确的选项涂在答题卡上,每小题5分,共40分.)1.(5分)复数z满足(z﹣i)(2﹣i)=5,则z=()A.﹣2﹣2i B.﹣2+2i C.2﹣2i D.2+2i2.(5分)已知全集U=R,A={y|y=2x+1},B={x||x﹣1|+|x﹣2|<2},则(∁U A)∩B=()A.∅B.{x|<x≤1}C.{x|x<1} D.{x|0<x<1}3.(5分)设变量x,y满足约束条件,则目标函数z=2x+3y的最小值为()A.2 B.4 C.5 D.204.(5分)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l5.(5分)设x,y∈R,a>1,b>1,若a x=b y=3,a+b=2的最大值为()A.2 B.C.1 D.6.(5分)设,则对任意实数a,b,a+b≥0是f(a)+f (b)≥0的()A.充分必要条件B.充分而非必要条件C.必要而非充分条件D.既非充分也非必要条件7.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.8.(5分)在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L﹣距离”定义为|P1P2|=|x1﹣x2|+|y1﹣y2|.则平面内与x轴上两个不同的定点F1,F2的“L﹣距离”之和等于定值(大于|F1F2|)的点的轨迹可以是()A. B. C.D.二、填空题:(每小题5分,共30分.)9.(5分)如图是某算法的程序框图,则程序运行后输出的结果是.10.(5分)已知,则二项式的展开式中含x2项的系数是.11.(5分)如图,在△ABC中,AB=3,BC=4,CA=5,D是BC的中点,BE⊥AC于E,BE的延长线交△DEC的外接圆于F,则EF的长为.12.(5分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数)则圆C上的点到直线l的距离的最大值为.13.(5分)如图,在四边形ABCD中,AB⊥BC,AB=3,BC=4,△ACD是等边三角形,则的值为.14.(5分)已知函数f(x)=a x+x2﹣xlna,对∀x1,x2∈[0,1]不等式|f(x1)﹣f(x2)|≤a ﹣1恒成立,则a的取值X围.三、解答题:(15-18每小题13分,19-20每小题13分,共80分.)15.(13分)甲、乙两人参加某种选拔测试.规定每人必须从备选的6道题中随机抽出3道题进行测试,在备选的6道题中,甲答对其中每道题的概率都是,乙只能答对其中的3道题.答对一题加10分,答错一题(不答视为答错)得0分.(Ⅰ)求乙得分的分布列和数学期望;(Ⅱ)规定:每个人至少得20分才能通过测试,求甲、乙两人中至少有一人通过测试的概率.16.(13分)已知函数f(x)=2sinxcosx﹣2cos2x+1(1)求函数f(x)的最小正周期及单调递增区间;(2)在△ABC中,若f()=2,b=1,c=2,求a的值.17.(13分)如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.18.(13分)如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.19.(14分)已知数列{a n}的前n项和为S n,若4S n=(2n﹣1)a n+1+1,且a1=1.(Ⅰ)证明:数列{a n}是等差数列,并求出{a n}的通项公式;(Ⅱ)设b n=,数列{b n}的前n项和为T n,证明:T n<.20.(14分)设函数f(x)=lnx+x2﹣ax(a∈R).(Ⅰ)当a=3时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)有两个极值点x1,x2,且x1∈(0,1],求证:f(x1)﹣f(x2)≥﹣+ln2;(Ⅲ)设g(x)=f(x)+2ln,对于任意a∈(2,4),总存在,使g(x)>k(4﹣a2)成立,某某数k的取值X围.某某市南开中学2015届高考数学模拟试卷(理科)参考答案与试题解析一、选择题(每小题有且只有1个选项符合题意,将正确的选项涂在答题卡上,每小题5分,共40分.)1.(5分)复数z满足(z﹣i)(2﹣i)=5,则z=()A.﹣2﹣2i B.﹣2+2i C.2﹣2i D.2+2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由复数z满足(z﹣i)(2﹣i)=5,变形为,再利用复数的运算法则即可得出.解答:解:∵复数z满足(z﹣i)(2﹣i)=5,∴==2+2i.故选:D.点评:本题考查了复数的运算法则,属于基础题.2.(5分)已知全集U=R,A={y|y=2x+1},B={x||x﹣1|+|x﹣2|<2},则(∁U A)∩B=()A.∅B.{x|<x≤1}C.{x|x<1} D.{x|0<x<1}考点:绝对值不等式的解法;交、并、补集的混合运算;函数的值域.专题:集合.分析:求出两个集合,然后求解补集以及交集即可.解答:解:全集U=R,A={y|y=2x+1}={y|y>1},∴∁U A={y|y≤1}B={x||x﹣1|+|x﹣2|<2}={x|},则(∁U A)∩B={x|<x≤1}.故选:B.点评:本题考查函数的定义域,绝对值不等式的解法,集合的交、并、补的运算,考查计算能力.3.(5分)设变量x,y满足约束条件,则目标函数z=2x+3y的最小值为()A.2 B.4 C.5 D.20考点:简单线性规划.专题:不等式的解法及应用.分析:本题主要考查线性规划的基本知识,先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数2x+3y的最小值.解答:解:由约束条件得如图所示的三角形区域,令2x+3y=z,显然当平行直线过点A(2,0)时,z取得最小值为4;故选B.点评:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.4.(5分)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l考点:平面与平面之间的位置关系;平面的基本性质及推论.专题:空间位置关系与距离.分析:由题目给出的已知条件,结合线面平行,线面垂直的判定与性质,可以直接得到正确的结论.解答:解:由m⊥平面α,直线l满足l⊥m,且l⊄α,所以l∥α,又n⊥平面β,l⊥n,l⊄β,所以l∥β.由直线m,n为异面直线,且m⊥平面α,n⊥平面β,则α与β相交,否则,若α∥β则推出m∥n,与m,n异面矛盾.故α与β相交,且交线平行于l.故选D.点评:本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.5.(5分)设x,y∈R,a>1,b>1,若a x=b y=3,a+b=2的最大值为()A.2 B.C.1 D.考点:基本不等式在最值问题中的应用.专题:不等式的解法及应用.分析:将x,y用a,b表示,用基本不等式求最值解答:解:∵a x=b y=3,∴x=log a3=,y=log b3=,∴当且仅当a=b时取等号故选项为C点评:本试题考查指数式和对数式的互化,以及均值不等式求最值的运用,考查了变通能力6.(5分)设,则对任意实数a,b,a+b≥0是f(a)+f (b)≥0的()A.充分必要条件B.充分而非必要条件C.必要而非充分条件D.既非充分也非必要条件考点:必要条件、充分条件与充要条件的判断;函数单调性的性质;奇函数.专题:计算题;压轴题.分析:由f(﹣x)=﹣x3+log2(﹣x+)=﹣x3+log2=﹣x3﹣log2(x+)=﹣f(x),知f(x)是奇函数.所以f(x)在R上是增函数,a+b≥0可得af(a)+f(b)≥0成立;若f(a)+f(b)≥0则f(a)≥﹣f(b)=f(﹣b)由函数是增函数知a+b≥0成立a+b >=0是f(a)+f(b)>=0的充要条件.解答:解:f(x)=x3+log2(x+),f(x)的定义域为R∵f(﹣x)=﹣x3+log2(﹣x+)=﹣x3+log2=﹣x3﹣log2(x+)=﹣f(x).∴f(x)是奇函数∵f(x)在(0,+∞)上是增函数∴f(x)在R上是增函数a+b≥0可得a≥﹣b∴f(a)≥f(﹣b)=﹣f(b)∴f(a)+f(b)≥0成立若f(a)+f(b)≥0则f(a)≥﹣f(b)=f(﹣b)由函数是增函数知a≥﹣b∴a+b≥0成立∴a+b≥0是f(a)+f(b)≥0的充要条件.点评:本题考查充要条件的判断,解题时要注意单调性的合理运用.7.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.解答:解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2=2,∴双曲线C2的离心率e===.故选D.点评:本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.8.(5分)在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L﹣距离”定义为|P1P2|=|x1﹣x2|+|y1﹣y2|.则平面内与x轴上两个不同的定点F1,F2的“L﹣距离”之和等于定值(大于|F1F2|)的点的轨迹可以是()A. B. C.D.考点:轨迹方程.专题:圆锥曲线的定义、性质与方程.分析:设出F1,F2的坐标,在设出动点M的坐标,由新定义列式后分类讨论去绝对值,然后结合选项得答案.解答:解:设F1(﹣c,0),F2(c,0),再设动点M(x,y),动点到定点F1,F2的“L﹣距离”之和等于m(m>2c>0),由题意可得:|x+c|+|y|+|x﹣c|+|y|=m,即|x+c|+|x﹣c|+2|y|=m.当x<﹣c,y≥0时,方程化为2x﹣2y+m=0;当x<﹣c,y<0时,方程化为2x+2y+m=0;当﹣c≤x<c,y≥0时,方程化为y=;当﹣c≤x<c,y<0时,方程化为y=c﹣;当x≥c,y≥0时,方程化为2x+2y﹣m=0;当x≥c,y<0时,方程化为2x﹣2y﹣m=0.结合题目中给出的四个选项可知,选项A中的图象符合要求.故选:A.点评:本题考查轨迹方程的求法,考查了分类讨论的数学思想方法,解答的关键是正确分类,是中档题.二、填空题:(每小题5分,共30分.)9.(5分)如图是某算法的程序框图,则程序运行后输出的结果是10.考点:程序框图.专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出S值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.解答:解:程序在运行过程中各变量的值如下表示:S n 是否继续循环循环前0 1第一圈0 2 是第二圈 3 3 是第三圈 5 4 是第四圈10 5 否此时S值为10.故答案为:10.点评:本题主要考查了直到型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.10.(5分)已知,则二项式的展开式中含x2项的系数是﹣192.考点:二项式定理的应用;定积分.专题:计算题;概率与统计.分析:先求定积分得出a的值,再在二项式展开式的通项公式中,再令x的系数等于2,求得r的值,即可求得展开式中含x2项的系数.解答:解:∵已知=(sinx﹣cosx)=2,则二项式=的展开式的通项公式为T r+1=••(﹣1)r•=•x3﹣r.令3﹣r=2,解得 r=1,故展开式中含x2项的系数是=﹣192,故答案为﹣192.点评:本题主要考查求定积分,二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.11.(5分)如图,在△ABC中,AB=3,BC=4,CA=5,D是BC的中点,BE⊥AC于E,BE的延长线交△DEC的外接圆于F,则EF的长为.考点:与圆有关的比例线段.专题:直线与圆;推理和证明.分析:由已知条件求出BD=2,BE=,再由切割线定理知BE•BF=BD•BC,由此能求出EF.解答:解:∵在△ABC中,AB=3,BC=4,CA=5,D是BC的中点,BE⊥AC于E,∴BD=2,BE==,∵BE•BF=BD•BC,∴,解得EF=.故答案为:.点评:本题考查线段长的求法,是中档题,解题时要认真审题,注意切割线定理的合理运用.12.(5分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数)则圆C上的点到直线l的距离的最大值为3.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:直线l的参数方程为(t为参数),消去参数化为3x﹣4y+4=0,圆C的参数方程为(θ为参数),利用cos2θ+sin2θ=1,可得圆的普通方程.求出圆心到直线l的距离d.即可得出圆C上的点到直线l的距离的最大值=d+r.解答:解:直线l的参数方程为(t为参数),消去参数化为3x﹣4y+4=0,圆C的参数方程为(θ为参数),∵cos2θ+sin2θ=1,∴圆的普通方程为(x﹣2)2+y2=1.圆心(2,0)到直线l的距离d==2.则圆C上的点到直线l的距离的最大值=d+r=3.故答案为:3.点评:本题考查了参数方程化为普通方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)如图,在四边形ABCD中,AB⊥BC,AB=3,BC=4,△ACD是等边三角形,则的值为.考点:平面向量数量积的运算.专题:平面向量及应用.分析:通过题意可知AD=AC=5,cos∠CAD=,cos∠BAC=,利用=•﹣•,代入计算即可.解答:解:∵AB⊥BC,AB=3,BC=4,∴AC==5,cos∠BAC=,又∵△ACD是等边三角形,∴AD=AC=5,cos∠CAD=,∴=•(﹣)=•﹣•=﹣=,故答案为:.点评:本题考查平面向量数量积的运算,注意解题方法的积累,属于中档题.14.(5分)已知函数f(x)=a x+x2﹣xlna,对∀x1,x2∈[0,1]不等式|f(x1)﹣f(x2)|≤a ﹣1恒成立,则a的取值X围a≥e.考点:利用导数求闭区间上函数的最值.专题:计算题;导数的综合应用.分析:对∀x1,x2∈[0,1]不等式|f(x1)﹣f(x2)|≤a﹣1恒成立等价于|f(x1)﹣f(x2)|max≤a﹣1,而|f(x1)﹣f(x2)|max=f(x)max﹣f(x)min,利用导数可判断函数的单调性,由单调性可求得函数的最值,解不等式即可.解答:解:f′(x)=a x lna+2x﹣lna=(a x﹣1)lna+2x,当a>1时,x∈[0,1]时,a x≥1,lna>0,2x≥0,此时f′(x)≥0;当0<a<1时,a x≤1,lna<0,2x≥0,此时也有f′(x)≥0,综上知,f(x)在[0,1]上单调递增,f(x)min=f(0)=1,f(x)max=f(1)=a+1﹣lna,而|f(x1)﹣f(x2)|≤f(x)max﹣f(x)min=a﹣lna,由题意得,a﹣lna≤a﹣1,解得a≥e,故答案为:a≥e.点评:本题考查利用导数求闭区间上函数的最值,考查恒成立问题,考查转化思想,考查学生解决问难的能力.三、解答题:(15-18每小题13分,19-20每小题13分,共80分.)15.(13分)甲、乙两人参加某种选拔测试.规定每人必须从备选的6道题中随机抽出3道题进行测试,在备选的6道题中,甲答对其中每道题的概率都是,乙只能答对其中的3道题.答对一题加10分,答错一题(不答视为答错)得0分.(Ⅰ)求乙得分的分布列和数学期望;(Ⅱ)规定:每个人至少得20分才能通过测试,求甲、乙两人中至少有一人通过测试的概率.考点:离散型随机变量的期望与方差.专题:概率与统计.分析:(Ⅰ)确定乙得分的取值,求出相应的概率,即可求得分布列和数学期望;(Ⅱ)利用对立事件的概率公式,即可求得甲、乙两人中至少有一人通过测试的概率.解答:解:(Ⅰ)设乙的得分为X,X的可能值有0,10,20,30…(1分),,…(5分)乙得分的分布列为:X 0 10 20 30P…(6分)所以乙得分的数学期望为15…(8分)(Ⅱ)乙通过测试的概率为…(9分)甲通过测试的概率为…(11分)甲、乙都没通过测试的概率为因此甲、乙两人中至少有一人通过测试的概率为…(13分)点评:本题考查概率的求解,考查离散型随机变量的分布列与期望,考查学生分析解决问题的能力,属于中档题.16.(13分)已知函数f(x)=2sinxcosx﹣2cos2x+1(1)求函数f(x)的最小正周期及单调递增区间;(2)在△ABC中,若f()=2,b=1,c=2,求a的值.考点:两角和与差的正弦函数;三角函数的周期性及其求法;余弦定理.专题:三角函数的图像与性质;解三角形.分析:(Ⅰ)函数解析式利用二倍角的正弦、余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值代入周期公式即可求出函数f(x)的最小正周期,由正弦函数的单调性即可确定出f(x)的单调递增区间;(Ⅱ)由f()=2,得到sin(A﹣)=1,确定出A的度数,求出cosA的值,再由b,c的值,利用余弦定理即可求出a的值.解答:解:(Ⅰ)f(x)sin2x﹣cos2x=2(sin2x﹣cos2x)=2sin(2x﹣),∵ω=2,∴最小正周期T==π;由2kπ﹣≤2x﹣≤2kπ+,k∈Z得,kπ﹣≤x≤kπ+,k∈Z,则f(x)的单调递增区间为[kπ﹣,kπ+](k∈Z);(Ⅱ)∵f()=2,∴2sin(A﹣)=2,即sin(A﹣)=1,∴A﹣=+2kπ,k∈Z,即A=+2kπ,k∈Z,又0<A<π,∴A=,由余弦定理及b=1,c=2,cosA=﹣得:a2=b2+c2﹣2bccosA=7,即a2=1+4+2=7,解得:a=.点评:此题考查了两角和与差的正弦函数公式,二倍角的正弦、余弦函数公式,余弦定理,熟练掌握定理及公式是解本题的关键.17.(13分)如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间角.分析:(I)利用AA1C1C是正方形,可得AA1⊥AC,再利用面面垂直的性质即可证明;(II)利用勾股定理的逆定理可得AB⊥AC.通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得到二面角;(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,利用向量垂直于数量积得关系即可得出.解答:(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)解:由AC=4,BC=5,AB=3.∴AC2+AB2=BC2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,,.设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).则,令y1=4,解得x1=0,z1=3,∴.,令x2=3,解得y2=4,z2=0,∴.===.∴二面角A1﹣BC1﹣B1的余弦值为.(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,∴=,=(0,3,﹣4),∵,∴,∴,解得t=.∴.点评:本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.18.(13分)如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:综合题;压轴题.分析:(Ⅰ)根据过F1的直线交椭圆于A、B两点,且△ABF2的周长为8,可得4a=8,即a=2,利用e=,b2=a2﹣c2=3,即可求得椭圆E的方程.(Ⅱ)由,消元可得(4k2+3)x2+8kmx+4m2﹣12=0,利用动直线l:y=kx+m与椭圆E有且只有一个公共点P(x0,y0),可得m≠0,△=0,进而可得P(,),由得Q(4,4k+m),取k=0,m=;k=,m=2,猜想满足条件的点M存在,只能是M(1,0),再进行证明即可.解答:解:(Ⅰ)∵过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.∴4a=8,∴a=2∵e=,∴c=1∴b2=a2﹣c2=3∴椭圆E的方程为.(Ⅱ)由,消元可得(4k2+3)x2+8kmx+4m2﹣12=0∵动直线l:y=kx+m与椭圆E有且只有一个公共点P(x0,y0)∴m≠0,△=0,∴(8km)2﹣4×(4k2+3)×(4m2﹣12)=0∴4k2﹣m2+3=0①此时x0==,y0=,即P(,)由得Q(4,4k+m)取k=0,m=,此时P(0,),Q(4,),以PQ为直径的圆为(x﹣2)2+(y﹣)2=4,交x轴于点M1(1,0)或M2(3,0)取k=,m=2,此时P(1,),Q(4,0),以PQ为直径的圆为(x﹣)2+(y﹣)2=,交x轴于点M3(1,0)或M4(4,0)故若满足条件的点M存在,只能是M(1,0),证明如下∵∴故以PQ为直径的圆恒过x轴上的定点M(1,0)点评:本题主要考查抛物线的定义域性质、圆的性质、直线与圆锥曲线的位置关系,考查运算能力,考查化归思想,属于中档题.19.(14分)已知数列{a n}的前n项和为S n,若4S n=(2n﹣1)a n+1+1,且a1=1.(Ⅰ)证明:数列{a n}是等差数列,并求出{a n}的通项公式;(Ⅱ)设b n=,数列{b n}的前n项和为T n,证明:T n<.考点:数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)利用4S n=(2n﹣1)a n+1+1,写出4S n﹣1=(2n﹣3)a n+1,两式相减,得,利用累加法求解a n,判断数列{a n}是首项为1,公差为2的等差数列.(Ⅱ)利用放缩法以及裂项法,直接证明求解即可.解答:(Ⅰ)证明:因为4S n=(2n﹣1)a n+1+1,所以当n≥2时,4S n﹣1=(2n﹣3)a n+1,两式相减,得4a n=(2n﹣1)a n+1﹣(2n﹣3)a n(n≥2),所以(2n+1)a n=(2n﹣1)a n+1,即,在4S n=(2n﹣1)a n+1+1中,令n=1,得a2=3,所以=,所以a n﹣a n﹣1=(2n﹣1)﹣(2n﹣3)=2(n≥2),故数列{a n}是首项为1,公差为2的等差数列,且a n=2n﹣1.(Ⅱ)解:由(Ⅰ)知,,当n=1时,;当n≥1时,,所以.点评:本题考查等差数列的判定,数列的递推关系式的应用,放缩法以及裂项求和的应用,考查分析问题解决问题的能力.20.(14分)设函数f(x)=lnx+x2﹣ax(a∈R).(Ⅰ)当a=3时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)有两个极值点x1,x2,且x1∈(0,1],求证:f(x1)﹣f(x2)≥﹣+ln2;(Ⅲ)设g(x)=f(x)+2ln,对于任意a∈(2,4),总存在,使g(x)>k(4﹣a2)成立,某某数k的取值X围.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;利用导数研究函数的极值.专题:综合题;导数的综合应用.分析:(Ⅰ)当a=3时,求导数,利用导数的正负,即可求函数f(x)的单调区间;(Ⅱ)函数f(x)有两个极值点x1,x2,则f′(x)==0,即2x2﹣ax+1=0有两个不相等的实数根,结合韦达定理,可得f(x1)﹣f(x2),构造新函数F(x)=2lnx﹣x2++ln2(0<x≤1),确定其单调性,即可得出结论;(Ⅲ)确定g(x)在上单调递增,可得g(x)max=g(2)=2ln(2a+2)﹣2a+4﹣2ln6,h(a)=)=2ln(2a+2)﹣2a+4﹣2ln6﹣k(4﹣a2),分类讨论,确定单调性,即可得出结论.解答:(Ⅰ)解:f(x)的定义域为(0,+∞),f′(x)=,令f′(x)>0,可得0<x<或x>1,f′(x)<0,可得<x<1,∴f(x)的递增区间为(0,)和(1,+∞),递减区间为(,1);(Ⅱ)证明:∵函数f(x)有两个极值点x1,x2,∴f′(x)==0,即2x2﹣ax+1=0有两个不相等的实数根,∴x1+x2=,x1x2=∴2(x1+x2)=a,x2=,∴f(x1)﹣f(x2)=lnx1+x12﹣ax1﹣(lnx2+x22﹣ax2)=2lnx1﹣x12++ln2(0<x≤1).设F(x)=2lnx﹣x2++ln2(0<x≤1),则F′(x)=﹣<0,∴F(x)在(0,1)上单调递减,∴F(x)≥F(1)=﹣+ln2,即f(x1)﹣f(x2)≥﹣+ln2;(Ⅲ)解:g(x)=f(x)+2ln=2ln(ax+2)+x2﹣ax﹣2ln6,∴g′(x)=,∵a∈(2,4),∴x+>0,∴g′(x)>0,∴g(x)在上单调递增,∴g(x)max=g(2)=2ln(2a+2)﹣2a+4﹣2ln6,∴2ln(2a+2)﹣2a+4﹣2ln6>k(4﹣a2)在(2,4)上恒成立.令h(a)=2ln(2a+2)﹣2a+4﹣2ln6﹣k(4﹣a2),则h(2)=0,∴h(a)>0在(2,4)上恒成立.∵h′(a)=,k≤0时,h′(a)<0,h(a)在(2,4)上单调递减,h(a)<h(2)=0,不合题意;k>0时,h′(a)=0,可得a=.①>2,即0<k<时,h(a)在(2,)上单调递减,存在h(a)<h(2)=0,不合题意;②≤2,即k≥时,h(x)在(2,4)上单调递增,h(a)>h(2)=0,满足题意.综上,实数k的取值X围为[,+∞).点评:本题考查导数的综合运用,考查函数的单调性,考查不等式的证明,考查分类讨论的数学思想,属于难题.。
贵州省2015年高考数学理模拟试题及答案解析
(Ⅰ)求椭圆C1的方程;
(Ⅱ)若曲线C2的方程为 ,过椭圆C1左顶点的直线 与曲线C2相切,求直线 被椭圆C1截得的线段长的最小值.
贵州省2015年高考数学理模拟试题
一、选择题(本大题共12小题)
设集合A={x||2x-1|≤3},集合B为函数 的定义域,则 =( )
A.(1, 2)B.[1, 2]C.[1, 2)D.(1, 2]
【答案解析】D
解析:
所以 ,故选D.
复数 ( 为虚数单位)在复平面上对应的点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
【答案解析】C
解析:∵
∴
∴ ,即 ,选C.
如图,在矩形ABCD中,AB= ,BC=2,点E为BC的中点,点F在CD上,若 ,则 的值是( )
A. B.2C.0D.1
【答案解析】A
解析:设DF=a,建立坐标系如图所示,
∴ ,故选A.
下列命题中假命题的是()
A.,∈R,使sin(+)=sin+sin
B.∈R,函数 都不是偶函数
第一次:k=1<4,s=2-1=1
第二次:k=2<4,s=2-2=0
第三次:k=3<4,s=0-3=-3
第四次:k=4>4,输出s=-3,故选A.
右图是一个几何体的三视图,则该几何体的体积等于( )
A.2B. C. D.4
【答案解析】D
解析:由图可以知道体积为:4,故选D.
若 等于( )
A. B. C. D.
∴ ,从而
∵ ,∴ 的周期为3
∴
∵ 是定义在R上的奇函数,故
浙江省2015届高考数学全真模拟试卷(理科)(Word版含解析)
浙江省2015届高考数学全真模拟试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若U={1,2,3,4,5,6},M={1,2,4},N={2,3,6},则∁U(M∪N)=()A.{1,2,3} B.{5} C.{1,3,4} D.{2}2.(5分)已知p:x2﹣5x+6≤0,q:|x﹣a|<1,若p是q的充分不必要条件,则实数a的取值范围为()A.(﹣∞,3]B.[2,3]C.(2,+∞)D.(2,3)3.(5分)设变量x,y满足约束条件则目标函数z=2x+y的最小值为()A.6B.4C.3D.24.(5分)设α,β,γ是三个互不重合的平面,m,n是两条不重合的直线,下列命题中正确的是()A.若α⊥β,β⊥γ,则α⊥γB.若m∥α,n∥β,α⊥β,则m⊥nC.若α⊥β,m⊥α,则m∥βD.若α∥β,m⊄β,m∥α,则m∥β5.(5分)设,为两个互相垂直的单位向量,已知=,=,=m+n.若△ABC是以A为直角顶点的等腰直角三角形,则m+n=()A.1或﹣3 B.﹣1或3 C.2或﹣4 D.﹣2或46.(5分)已知xy=1,且O<y<,则的最小值为()A.2B.C.4D.47.(5分)如图,正△ABC的中心位于点G(0,1),A(0,2),动点P从A点出发沿△ABC 的边界按逆时针方向运动,设旋转的角度∠AGP=x(0≤x≤2π),向量在=(1,0)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是()A.B.C.D.8.(5分)如图,已知点S(0,3),SA,SB与圆C:x2+y2﹣my=0(m>0)和抛物线x2=﹣2py(p>0)都相切,切点分别为M,N和A,B,SA∥ON,=λ,则实数λ的值为()A.4B.2C.3D.3二、填空题:本大题有7小题,共36分(其中1道三空题,每空2分,3道两空题,每空3分,3道一空题,每空4分).9.(6分)函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0,0<φ<π)的图象如图所示,则A=,ω=,F()=.10.(6分)已知等差数列{a n)的前n项和为S n=﹣n2+(10+k)n+(k﹣1),则实数k=,a n=.11.(6分)设函数f(x)=,则f(1)=,若f(f(a))≤3,则实数a的取值范围是.12.(6分)若如图为某直三棱柱(侧棱与底面垂直)被削去一部分后的直观图与三视图中的侧视图、俯视图,则其正视图的面积为,三棱锥D﹣BCE的体积为.13.(4分)点F是抛物线T:x2=2py(y>0)的焦点,F1是双曲线C:﹣=1(a>0,b>0)的右焦点,若线段FF1的中点P恰为抛物线T与双曲线C的渐近线在第一象限内的交点,则双曲线C的离心率e=.14.(4分)已知向量=(1,),=(﹣2,0)若⊥(≠),当t∈[﹣,2]时,|﹣t|的取值范围为.15.(4分)对于任意实数x,记[x]表示不超过x的最大整数,{x}=x﹣[x],<x>表示不小于x的最小整数,若x1,x2,…x m(0≤x1<x2<…<x m≤n+1是区间[0,n+1]中满足方程[x]•{x}•<x>=1的一切实数,则x1+x2+…+x m的值是.三、解答题:本大题共5小题,共74分(16.17.18.19小题各为15分,20小题为14分).解答应写出文字说明、证明过程或演算步骤.16.(15分)在△ABC中,角A,B,C所对的边分别为a,b,c,若1+=.(1)求角A的大小;(2)若函数f(x)=2sin2(x+)﹣cos2x,x∈[,],在x=B处取到最大值a,求△ABC的面积.17.(15分)如图,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2AB,F是CD的中点.(1)求证:平面CBE⊥平面CDE;(2)求二面角C﹣BE﹣F的余弦值.18.(15分)如图,椭圆M:+=1(a>b>0)的离心率为,上、下顶点为A,B,点P(0,2)关于直线y=﹣x的对称点在椭圆M上,过点P的直线l与椭圆M相交于两个不同的点C,D(C在线段PD之间).(1)求椭圆M的方程;(2)求•的取值范围;(3)当AD与BC相交于点Q时,试问:点Q的纵坐标是否为定值?若是,求出该定值;若不是,请说明理由.19.(15分)已知等差数列{a n}的公差为d(d≠0),等比数列{b n}的公比为q(q>0),且满足a1=b1=1,a2=b3,a6=b5(1)求数列{a n}的通项公式;(2)数列{b n}的前n项和为T n,求证:++…+<2.20.(14分)已知函数f(x)=log22x﹣mlog2x+a,g(x)=x2+1.(1)当a=1时,求f(x)在x∈[1,4]上的最小值;(2)当a>0,m=2时,若对任意的实数t∈[1,4],均存在x i∈[1,8](i=1,2),且x1≠x2,使得=f(t)成立,求实数a的取值范围.浙江省2015届高考数学全真模拟试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若U={1,2,3,4,5,6},M={1,2,4},N={2,3,6},则∁U(M∪N)=()A.{1,2,3} B.{5} C.{1,3,4} D.{2}考点:并集及其运算.专题:计算题.分析:由M与N求出两集合的并集,根据全集U求出并集的补集即可.解答:解:∵M={1,2,4},N={2,3,6},∴M∪N={1,2,3,4,6},∵U={1,2,3,4,5,6},∴∁U(M∪N)={5}.故选B点评:此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.(5分)已知p:x2﹣5x+6≤0,q:|x﹣a|<1,若p是q的充分不必要条件,则实数a的取值范围为()A.(﹣∞,3]B.[2,3]C.(2,+∞)D.(2,3)考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:求出不等式的等价条件,根据充分条件和必要条件的定义建立条件关系即可.解答:解:由x2﹣5x+6≤0得,即2≤x≤3,由|x﹣a|<1得a﹣1<x<a+1,若p是q的充分不必要条件,则,即,则2<a<3.故选:D点评:本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题的等价条件是解决本题的关键.3.(5分)设变量x,y满足约束条件则目标函数z=2x+y的最小值为()A.6B.4C.3D.2考点:简单线性规划.专题:计算题;数形结合.分析:本题主要考查线性规划的基本知识,先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数2x+y的最小值.解答:解:由约束条件得如图所示的三角形区域,令2x+y=z,y=﹣2x+z,显然当平行直线过点A(1,1)时,z取得最小值为3;故选C.点评:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.4.(5分)设α,β,γ是三个互不重合的平面,m,n是两条不重合的直线,下列命题中正确的是()A.若α⊥β,β⊥γ,则α⊥γB.若m∥α,n∥β,α⊥β,则m⊥nC.若α⊥β,m⊥α,则m∥βD.若α∥β,m⊄β,m∥α,则m∥β考点:命题的真假判断与应用;空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:逐个选项进行验证:A中α与γ可以平行,也可以相交;B中的直线m与n可以平行、相交或异面;C中可能有m⊂β;选项D由条件可得m∥β.解答:解:选项A中α与γ可以平行,也可以相交,故错误;选项B中的直线m与n可以平行、相交或异面,故错误;选项C中可能有m⊂β,故错误;选项D正确,若α∥β,m∥α,可得m⊄β,或m∥β,结合条件可得m∥β.故选D点评:本题为直线与平面位置关系的判断,熟练掌握定理结合图象是解决问题的关键,属基础题.5.(5分)设,为两个互相垂直的单位向量,已知=,=,=m+n.若△ABC是以A为直角顶点的等腰直角三角形,则m+n=()A.1或﹣3 B.﹣1或3 C.2或﹣4 D.﹣2或4考点:平面向量的基本定理及其意义.专题:空间向量及应用.分析:根据△ABC是以A为直角顶点的等腰直角三角形可得出和的关系,用已知向量表示出和,列出关系式,即可求出答案.解答:解:∵△ABC是等腰直角三角形,∠A为直角,∴AB⊥AC,=0;由已知得,==;==(m﹣1)+n;∴=()[(m﹣1)+n]=m﹣n﹣1=0;即m﹣n=1;又△ABC是等腰三角形,∴AB=AC,=;∵=,∴==,得(m﹣1)2+n2=2;∵m﹣n=1,∴m=n+1,代入方程,得2n2=2,n=±1;∴或;∴m+n=3或m+n=﹣1.故答案选:B.点评:本题考查了平面向量的基本定理,解题的关键是熟练掌握向量的运算法则.6.(5分)已知xy=1,且O<y<,则的最小值为()A.2B.C.4D.4考点:基本不等式.专题:不等式的解法及应用.分析:xy=1,且O<y<,可得4y=,x>2,.代入变形利用基本不等式的性质即可得出.解答:解:∵xy=1,且O<y<,∴4y=,x>2,∴.则===+=4,当且仅当x﹣=2,解得x=时取等号.∴的最小值为4.故选:C.点评:本题考查了基本不等式的性质、变形能力,考查了推理能力与计算能力,属于中档题.7.(5分)如图,正△ABC的中心位于点G(0,1),A(0,2),动点P从A点出发沿△ABC 的边界按逆时针方向运动,设旋转的角度∠AGP=x(0≤x≤2π),向量在=(1,0)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是()A.B.C.D.考点:函数的图象.专题:综合题;函数的性质及应用.分析:由题意,可通过几个特殊点来确定正确选项,可先求出射影长最小时的点B时x的值及y的值,再研究点P从点B向点C运动时的图象变化规律,由此即可得出正确选项.解答:解:设BC边与Y轴交点为M,已知可得GM=0.5,故AM=1.5,正三角形的边长为连接BG,可得tan∠BGM==,即∠BGM=,所以tan∠BGA=,由图可得当x=时,射影为y取到最小值,其大小为﹣(BC长为),由此可排除A,B两个选项;又当点P从点B向点M运动时,x变化相同的值,此时射影长的变化变小,即图象趋于平缓,由此可以排除D,C是适合的;故选:C.点评:由于本题的函数关系式不易获得,可采取特值法,找几个特殊点以排除法得出正确选项,这是条件不足或正面解答较难时常见的方法.8.(5分)如图,已知点S(0,3),SA,SB与圆C:x2+y2﹣my=0(m>0)和抛物线x2=﹣2py(p>0)都相切,切点分别为M,N和A,B,SA∥ON,=λ,则实数λ的值为()A.4B.2C.3D.3考点:抛物线的简单性质.专题:平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:由圆的切线的性质,结合平行的条件可得四边形MSNO为菱形,由直线和圆相切的条件和勾股定理、弦长公式,解方程可得m=2,直线的斜率为,可得MN=,由直线和抛物线相切的条件:判别式为0,可得切点A,B的坐标,可得AB的长为4,由向量共线定理,即可得到所求值.解答:解:由S向圆作切线,可得SM=SN,∠MSO=∠NSO,若SA∥ON,即有四边形MSNO为菱形,在直角△SMO中,tan∠SMN==,圆C:x2+y2﹣my=0的圆心为(0,),半径r=,设切线为y=kx+3,k>0,由相切的条件可得=,①MN=2=,即有k=,②将②代入①可得m=2,k=,则MN=,由y=x+3和抛物线x2=﹣2py,可得x2+2px+6p=0,由判别式12p2﹣24p=0,解得p=2,求得切点A(﹣2,﹣3),由于=λ,即MN∥AB,则AB=4,即有λ==4.故选:A.点评:本题考查直线和圆、抛物线相切的条件,向量共线的定理的运用,考查直线和圆相交的弦长公式,以及平面几何的勾股定理,考查运算能力,属于中档题.二、填空题:本大题有7小题,共36分(其中1道三空题,每空2分,3道两空题,每空3分,3道一空题,每空4分).9.(6分)函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0,0<φ<π)的图象如图所示,则A=2,ω=2,F()=1.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:根据图象由最值确定A=2,由周期确定ω=2π÷T=2,得到f(x)=2sin(2x+φ),然后以点(,2)代人求φ.解答:解:由图象易知A=2,T=π﹣,∴T=π,ω==2,∴f(x)=2sin(2x+φ),由f()=2sin(2×+φ=2,且0<φ<π,∴φ=,∴f(x)=2sin(2x+),∴f()=2sin(2×+)=1,故答案为:2;2;1.点评:本题主要考查由部分图象怎样求函数的解析式问题及计算能力.10.(6分)已知等差数列{a n)的前n项和为S n=﹣n2+(10+k)n+(k﹣1),则实数k=1,a n=﹣2n+12.考点:等差数列的前n项和.专题:等差数列与等比数列.分析:等差数列{a n)的前n项和为S n=﹣n2+(10+k)n+(k﹣1),可得k=1,可得S n=﹣n2+11n;当n=1时,可得a1;当n≥2时,a n=S n﹣S n﹣1,即可得出.解答:解:∵等差数列{a n)的前n项和为S n=﹣n2+(10+k)n+(k﹣1),∴k=1,∴S n=﹣n2+11n,当n=1时,a1=﹣1+11=10;当n≥2时,a n=S n﹣S n﹣1=﹣n2+11n﹣[﹣(n﹣1)2+11(n﹣1)]=﹣2n+12,当n=1时上式也成立.∴a n=﹣2n+12.故答案为:1;﹣2n+12.点评:本题考查了等差数列的通项公式及其前n项和公式、递推式的应用,考查了推理能力与计算能力,属于中档题.11.(6分)设函数f(x)=,则f(1)=﹣1,若f(f(a))≤3,则实数a的取值范围是(﹣∞,].考点:分段函数的应用.专题:函数的性质及应用.分析:由已知中函数f(x)=,将x=1代入,可求出f(1);再讨论f(a)的正负,代入求出f(a)≥﹣3,再讨论a的正负,求实数a的取值范围.解答:解:∵函数f(x)=,∴f(1)=﹣12=﹣1,①若f(a)<0,则f2(a)+2f(a)≤3,解得,﹣3≤f(a)≤1,即﹣3≤f(a)<0,②若f(a)≥0,则﹣f2(a)≤3,显然成立;则f(a)≥﹣3,③若a<0,则a2+2a≥﹣3,解得,a∈R,即a<0.④若a≥0,则﹣a2≥﹣3,解得,0≤a≤,综上所述,实数a的取值范围是:(﹣∞,].故答案为:﹣1;(﹣∞,].点评:本题考查了分段函数的应用,再已知函数值的范围时,要对自变量讨论代入函数求解,属于基础题.12.(6分)若如图为某直三棱柱(侧棱与底面垂直)被削去一部分后的直观图与三视图中的侧视图、俯视图,则其正视图的面积为4,三棱锥D﹣BCE的体积为.考点:棱柱、棱锥、棱台的体积.专题:综合题;空间位置关系与距离.分析:由题意可知,正视图为直角三角形,直角边长为2,4,可得正视图的面积;证明AB⊥平面ACDE,求出四棱锥B﹣ACDE的体积、三棱锥E﹣ACB的体积,即可求出三棱锥D﹣BCE的体积.解答:解:由题意可知,正视图为直角三角形,直角边长为2,4,故正视图的面积为=4;四棱锥B﹣ACDE中,AE⊥平面ABC,∴AE⊥AB,又AB⊥AC,且AE和AC相交,∴AB⊥平面ACDE,又AC=AB=AE=2,CD=4,则四棱锥B﹣ACDE的体积V==4,又三棱锥E﹣ACB的体积为=,∴三棱锥D﹣BCE的体积为4﹣=.故答案为:4;.点评:本题考查正视图的面积,考查考查几何体的体积,考查学生分析解决问题的能力,难度中等.13.(4分)点F是抛物线T:x2=2py(y>0)的焦点,F1是双曲线C:﹣=1(a>0,b>0)的右焦点,若线段FF1的中点P恰为抛物线T与双曲线C的渐近线在第一象限内的交点,则双曲线C的离心率e=.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线C的渐近线方程为y=x,代入x2=2py,可得P(,),利用P是线段FF1的中点,可得P(,),由此即可求出双曲线C的离心率.解答:解:双曲线C的渐近线方程为y=x,代入x2=2py,可得P(,),∵F(0,),F1(c,0)∴线段FF1的中点P(,),∴=,=,∴a2=8b2,∴c2=9b2,∴e==.故答案为:.点评:本题考查双曲线C的离心率,考查抛物线、双曲线的性质,考查学生的计算能力,确定P的坐标是关键.14.(4分)已知向量=(1,),=(﹣2,0)若⊥(≠),当t∈[﹣,2]时,|﹣t|的取值范围为[1,].考点:平面向量数量积的运算.专题:平面向量及应用.分析:由已知求出用t表示的坐标,得到t的坐标,然后用t表示|﹣t|,根据t∈[﹣,2]求其范围.解答:解:由已知向量=(1,),=(﹣2,0)若⊥(≠),设=(x,y),则﹣2x+0=0,即x=0,所以=(0,y),则t=(0,t),所以﹣t=(1,﹣t),所以,|﹣t|2=1+(﹣t)2,又t∈[﹣,2],所以当t=时,|﹣t|2的最小值为1;当t=时,|﹣t|2的最大值为13;所以|﹣t|的取值范围为[1,];故答案为:[1,].点评:本题考查了向量的加减法的坐标运算以及向量模的求法.15.(4分)对于任意实数x,记[x]表示不超过x的最大整数,{x}=x﹣[x],<x>表示不小于x的最小整数,若x1,x2,…x m(0≤x1<x2<…<x m≤n+1是区间[0,n+1]中满足方程[x]•{x}•<x>=1的一切实数,则x1+x2+…+x m的值是+.考点:数列与函数的综合;函数的值.专题:新定义;函数的性质及应用.分析:根据新定义,[x]表示不超过x的最大整数,{x}=x﹣[x],需要分类讨论,根据条件得到x═a+,继而求出a的可能值,最后代入计算即可.解答:解:显然,x不可能是整数,否则由于{x}=0,方程[x]•{x}•<x>=1不可能成立.设[x]=a,则{x}=x﹣a,x=a+1,代入得a(x﹣a)(a+1)=1,解得x=a+.考虑到x∈[0,n+1],且[x]≠0,所以a=1,2,3,4,5,…,n,故符合条件的解有n个,即m=n,则x1+x2+…+x m=x1+x2+…+x n=+1﹣+…+﹣=+1﹣=+.故答案为:+.点评:本题考查了函数的值,需要分类进行讨论,新定义一般需要认真读题,理解题意,灵活利用已知定义,属于中档题.三、解答题:本大题共5小题,共74分(16.17.18.19小题各为15分,20小题为14分).解答应写出文字说明、证明过程或演算步骤.16.(15分)在△ABC中,角A,B,C所对的边分别为a,b,c,若1+=.(1)求角A的大小;(2)若函数f(x)=2sin2(x+)﹣cos2x,x∈[,],在x=B处取到最大值a,求△ABC的面积.考点:正弦定理;同角三角函数基本关系的运用.专题:解三角形.分析:(1)把已知等式中的切化弦,利用正弦定理把边转化为角的正弦,整理可求得cosA 的值,进而求得A.(2)把利用两角和公式对函数解析式化简,利用正弦函数的性质求得函数最大值时B,C 和a的值,进而利用正弦定理求得c,最后利用三角形面积公式求得答案.解答:解:(1)因为1+•=,所以=2sinC,又因为sinC≠0,所以cosA=,所以A=.(2)因为f(x)=2sin2(x+)﹣cos2x=1+2sin(2x﹣),所以,当2x﹣=,即x=时,f(x)max=3,此时B=,C=,a=3.因为=,所以c===,则S=acsinB=×3××=.点评:本题主要考查了正弦定理和三角函数图象与性质.考查了学生基础公式的运用和一定的运算能力.17.(15分)如图,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2AB,F是CD的中点.(1)求证:平面CBE⊥平面CDE;(2)求二面角C﹣BE﹣F的余弦值.考点:二面角的平面角及求法;平面与平面垂直的判定.分析:(1)取CE的中点M,连接BM、FM,通过证明BM⊥平面CDE,利用平面与平面垂直的判定定理证明平面BCE⊥平面CDE.(2)过F作FN⊥CE交CE于N,过N作NH⊥BE,连接HF,则∠NHF就是二面角C﹣BE﹣F的平面角.解答:(1)证明:因为DE⊥平面ACD,DE⊂平面CDE,所以平面CDE⊥平面ACD.在底面ACD中,AF⊥CD,由面面垂直的性质定理知,AF⊥平面CDE.取CE的中点M,连接BM、FM,由已知可得FM=AB且FM∥AB,则四边形FMBA为平行四边形,从而BM∥AF.所以BM⊥平面CDE.又BM⊂平面BCE,则平面CBE⊥平面CDE.…(7分)(2)解:过F作FN⊥CE交CE于N,过N作NH⊥BE,连接HF,则∠NHF就是二面角C﹣BE﹣F的平面角.在Rt△FNH中,NH=,FH=,所以cos∠NHF==故二面角C﹣BE﹣F的余弦值为…(15分)点评:本题考查平面与平面垂直的判定,考查二面角的余弦值,考查学生分析解决问题的能力,属于中档题.18.(15分)如图,椭圆M:+=1(a>b>0)的离心率为,上、下顶点为A,B,点P(0,2)关于直线y=﹣x的对称点在椭圆M上,过点P的直线l与椭圆M相交于两个不同的点C,D(C在线段PD之间).(1)求椭圆M的方程;(2)求•的取值范围;(3)当AD与BC相交于点Q时,试问:点Q的纵坐标是否为定值?若是,求出该定值;若不是,请说明理由.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)由已知得a=2,又e==,故c=,b=1,即可求椭圆M的方程;(2)分类讨论,y=kx+2代入椭圆方程消去y,得(1+4k2)x2+16kx+12=0,利用数量积公式求•的取值范围;(3)由题意得:AD:y=x+1,BC:y=x﹣1,联立方程组,消去x,解得y=,即可得出结论.解答:解:(1)由已知得a=2,又e==,故c=,b=1,∴椭圆M的方程.…(4分)(2)①当直线l斜率不存在时,C(0,1),D(0,﹣1),•=﹣1;…(5分)当直线斜率存在时,设直线l方程为y=kx+2,C(x1,y1),D(x2,y2),则y=kx+2代入椭圆方程消去y,得(1+4k2)x2+16kx+12=0,x1+x2=﹣,x1x2=,△>0,可得4k2>3,…(7分)•=x1x2+y1y2=﹣1+,∴得﹣1<•<.综上可知,•的取值范围是[﹣1,).…(10分)②由题意得:AD:y=x+1,BC:y=x﹣1,联立方程组,消去x,解得y=,又4kx1x2=﹣3(x1+x2),得y=.∴点Q的纵坐标为定值.…(15分)点评:本题考查椭圆方程,考查直线与椭圆的位置关系,考查向量知识的运用,考查学生的计算能力,属于中档题.19.(15分)已知等差数列{a n}的公差为d(d≠0),等比数列{b n}的公比为q(q>0),且满足a1=b1=1,a2=b3,a6=b5(1)求数列{a n}的通项公式;(2)数列{b n}的前n项和为T n,求证:++…+<2.考点:数列的求和;等差数列的性质.专题:等差数列与等比数列.分析:(1)利用等差数列与等比数列的通项公式即可得出;(2)由(1)可得:b n=2n﹣1,可得T n=2n﹣1,可得<(n≥2时),即可证明.解答:(1)解:满足a1=b1=1,a2=b3,a6=b5,∴,解得:,故a n=3n﹣2.(2)证明:由(1)可得:b n=2n﹣1,∴T n==2n﹣1,∵<(n≥2时),∴当n≥2时,∴++…+=+…+<+…+=1+++…+==2<2.当n=1时,=1<2符合.综上所述,不等式成立.点评:本题考查了等差数列与等比数列的通项公式及其前n项和公式、“放缩法”,考查了推理能力与计算能力,属于中档题.20.(14分)已知函数f(x)=log22x﹣mlog2x+a,g(x)=x2+1.(1)当a=1时,求f(x)在x∈[1,4]上的最小值;(2)当a>0,m=2时,若对任意的实数t∈[1,4],均存在x i∈[1,8](i=1,2),且x1≠x2,使得=f(t)成立,求实数a的取值范围.考点:函数恒成立问题.专题:函数的性质及应用.分析:(1),转化成二次函数问题,利用单调性研究最小值.(2)令log2t=u(0≤u≤2),则f(t)=u2﹣2u+a的值域是[a﹣1,a].由条件列式求解.解答:解:(1),其中0≤log2x≤2.所以①,即m≤0,此时f(x)min=f(1)=1,②当,即m≥4,此时f(x)min=f(4)=5﹣2m,③0<m<4时,当时,.所以,f(x)min=…(6分)(2)令log2t=u(0≤u≤2),则f(t)=u2﹣2u+a的值域是[a﹣1,a].因为y=,利用图形可知解得…(14分)点评:本题主要考查以对数函数为背景的二次函数问题,属于中档题目,2015届高考常考题型.。
2015年高考数学模拟试题及答案(理科)
高中数学高考模拟试卷(理科)2015.10(本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 复数111-++-=iiz ,在复平面内z 所对应的点在(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 2.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是 (A(B )(C(D ) 833.下列命题错误的是(A )命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠” (B )若命题2:,10p x R x x ∃∈++=,则2:,10p x R x x ⌝∀∈++≠ (C )若p q ∧为假命题,则p 、q 均为假命题(D ) “2x >”是“2320x x -+>”的充分不必要条件4.如图,该程序运行后输出的结果为(A )1 (B )2 (C )4 (D )165.设γβα,,为两两不重合的平面,,,l m n 为两两不重合的直线,给出下列四个命题:①若γβγα⊥⊥,,则βα//;②若ββαα//,//,,n m n m ⊂⊂,则βα//; ③若βα//,α⊂l ,则β//l ;④若γαγγββα//,,,l n m l === ,则n m //. 其中真命题的个数为(A )1(B )2(C )3(D )4俯视图6.已知n S 是等差数列}{n a 的前n 项和,若12852=++a a a ,则9S 等于(A )18 (B )36 (C )72 (D )无法确定 7. P 是ABC ∆所在平面内一点,若+=λ,其中R ∈λ,则P 点一定在(A )ABC ∆内部 (B )AC 边所在直线上 (C )AB 边所在直线上 (D )BC 边所在直线上8. 抛物线212y x =-的准线与双曲线22193x y -=的两条渐近线所围成的三角形的面积等于(A ) (B ) (C )2 (D 9. 定义行列式运算12212121b a b a b b a a -=,将函数xx x f cos 1sin 3)(=的图象向左平移)0(>t t 个单位,所得图象对应的函数为偶函数,则t 的最小值为 (A )6π (B )3π (C )65π (D )32π10. 设方程|)lg(|3x x-=的两个根为21,x x ,则(A ) 021<x x (B )021=x x (C ) 121>x x (D ) 1021<<x x 11. 王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的130网,经调查其收费标准见下表:(注:本地电话费以分为计费单位,长途话费以秒为计费单位.)若王先生每月拨打本地电话的时间是拨打长途电话时间的5倍,若要用联通130应最少打多长时间的长途电话才合算.(A )300秒 (B )400秒 (C )500秒 (D )600秒12. 两个三口之家,共4个大人,2个小孩,约定星期日乘“奥迪”、“捷达”两辆轿车结伴郊游,每辆车最多只能乘坐4人,其中两个小孩不能独坐一辆车,则不同的乘车方法种数是(A )40 (B )48 (C )60 (D )68第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分.13.在棱长为a 的正方体1111ABCD A BC D -内任取一点P ,则点P 到点A 的距离小于a 的概率为 .14.若等比数列}{n a 的首项为32,且⎰+=4 1 4)21(dx x a ,则公比q 等于 .15. 已知)(x f 为奇函数,且当x >0时, 0)('>x f ,0)3(=f ,则不等式0)(<x xf 的解集为____________.16. 数列 ,,,,,,,,,,1423324113223112211,则98是该数列的第 项. 三.解答题:本大题共6小题,共74分. 17. (本小题满分12分)已知角C B A 、、是ABC ∆的三个内角,c b a 、、是各角的对边,若向量⎪⎭⎫⎝⎛-+-=2cos),cos(1B A B A , ⎪⎭⎫ ⎝⎛-=2cos ,85B A ,且89=⋅.(Ⅰ)求B A tan tan ⋅的值; (Ⅱ)求222sin cb a Cab -+的最大值.18. (本小题满分12分)正ABC ∆的边长为4,CD 是AB 边上的高,E 、F 分别是AC 和BC 的中点(如图(1)).现将ABC ∆沿CD 翻折成直二面角A -DC -B (如图(2)). 在图形(2)中:(Ⅰ)试判断直线AB 与平面DEF 的位置关系,并说明理由; (Ⅱ)求二面角E -DF -C 的余弦值;(Ⅲ)在线段BC 上是否存在一点P ,使DE AP ⊥?证明你的结论.19. (本小题满分12分)张明要参加某单位组织的招聘面试.面试要求应聘者有7次选题答题的机会(选一题答一题),若答对4题即终止答题,直接进入下一轮,否则则被淘汰.已知张明答对每一道题的概率都为21. (Ⅰ)求张明进入下一轮的概率;(Ⅱ)设张明在本次面试中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望.20.(本小题满分12分)数列}{n a 满足)2,(122*1≥∈++=-n N n a a n n n ,273=a . (Ⅰ)求21,a a 的值; (Ⅱ)已知))((21*N n t a b n n n ∈+=,若数列}{n b 成等差数列,求实数t ; (Ⅲ)求数列}{n a 的前n 项和n S .21. (本小题满分12分)已知A 为椭圆)0(12222>>=+b a by a x 上的一个动点,弦AB 、AC 分别过焦点F 1、F 2,当AC 垂直于x 轴时,恰好有13||||21::=. (Ⅰ)求椭圆离心率;(Ⅱ)设F AF B F 222111λλ==,试判断21λλ+是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.22. (本小题满分14分)已知0>a ,)1ln(12)(2+++-=x x ax x f ,l 是曲线)(x f y =在点))0(,0(f P 处的切线. (Ⅰ)求l 的方程;(Ⅱ)若切线l 与曲线)(x f y =有且只有一个公共点,求a 的值;(Ⅲ)证明对任意的n a =)(*N n ∈,函数)(x f y =总有单调递减区间,并求出)(x f 单调递减区间的长度的取值范围.(区间],[21x x 的长度=12x x -)高中数学高考模拟试卷(理科)参考答案一.选择题: BCCCB BBACD BB1.解析:B. 21(1)1111(1)(1)i i z i i i i -+--=-=-=-++-,故选B.2. 解析:C.该几何体为正四棱锥,底面边长为22=1223V =⨯⨯=. 3. 解析:C .由“且”命题的真假性知,p 、q 中至少有一个为假命题,则p q ∧为假,故选项C 错误. 4. 解析:D.每次循环对应的b a ,的值依次为11,1,2,112a b b a ====+=;22,24,213a b a ====+=;43,4,216,314a b b a =====+=. 5. 解析:B.根据面面平行的判定可知①是假命题;②是假命题; ③是真命题;④是真命题.6. 解析:B. 2585312a a a a ++==,∴54a =,19592993622a a aS +=⨯=⨯=. 7. 解析:B. CB PA PB CB BP PA λλ=+⇒+= CP PA λ⇒=,∴C 、P 、A 三点共线.8. 解析:A. 抛物线212y x =-的准线方程为3x =,双曲线22193x y -=的渐近线为y x =,如图,它们相交得OAB ∆,则(3,A B ,∴132OAB S ∆=⨯=.9. 解析:C. 1sin ()sin sin )2cos xf x x x x x x==-=-2cos()6x π=+.函数()f x 向左平移65π后为55()2cos()2cos()2cos 666f x x x x ππππ+=++=+=-,所以5()2c o s6f x x π+=-为偶函数. 10. 解析:D. 如图,易知231x x =,3120x x x <<<,∴1201x x <<.11. 解析:B. 设王先生每月拨打长途x 秒,拨打本地电话5x 秒,根据题意应满足50.3650.60120.060.076060x x x x ⋅⋅++≤+,解得400x ≥. 12. 解析:B. 只需选出乘坐奥迪车的人员,剩余的可乘坐捷达.若奥迪车上没有小孩,则有2344C C +=10种;若有一个小孩,则有11232444()C C C C ++=28种;若有两个小孩,则有1244C C +=10种.故不同的乘车方法种数为10+28+10=48种. 二.填空题13.6π;14.3;15. {|033x 0}x x <<-<<或;16.128. 13. 解析:6π.易知,在正方体内到点A 的距离小于a 的点分布在以A 为球心,以a 为半径的球的18部分内.故所求概率即为体积之比3341386a P a ππ⋅==.14. 解析:3. 42224 14(12)()44(11)181a x dx x x =+=+=+-+=⎰;123a =,341a a q =⋅得公比3q =.15. 解析:{|033x 0}x x <<-<<或.根据题意,函数()f x 的图象如图,可得0)(<x xf 的解集为{|033x 0}x x <<-<<或.16. 解析:128.分子、分母之和为2的有1项,为3的有2项,…,为16的有15项.而98是分子、分母之和为17的第8项.故共有1511581282+⨯+=项. 三.解答题17. (本题小满分12分)已知角C B A 、、是ABC ∆的三个内角,c b a 、、是各角的对边,若向量⎪⎭⎫⎝⎛-+-=2cos),cos(1B A B A , ⎪⎭⎫ ⎝⎛-=2cos ,85B A n ,且89=⋅.(Ⅰ)求B A tan tan ⋅的值;(Ⅱ)求222sin c b a Cab -+的最大值. 解:(Ⅰ)由(1cos(),cos )2A B m A B -=-+ ,5(,cos )82A Bn -= ,且98m n ⋅= , 即259[1cos()]cos 828A B A B --++=.---------------------------------------------------------------------------2分 ∴4cos()5cos()A B A B -=+,-------------------------------------------------------------------------------------4分即cos cos 9sin sin A B A B =,∴1tan tan 9A B =.--------------------------------------------------------------6分 (Ⅱ)由余弦定理得222sin sin 1tan 2cos 2ab C ab C C a b c ab C ==+-,-------------------------------------------------8分而∵tan tan 9tan()(tan tan )1tan tan 8A B A B A B A B ++==+-9384≥⨯=, 即tan()A B +有最小值34.-----------------------------------------------------------------------------------------10分又tan tan()C A B =-+,∴tan C 有最大值34-(当且仅当1tan tan 3A B ==时取等号),所以222sin ab C a b c +-的最大值为38-.-------------------------------------------------------------------------------12分18. (本题小满分12分)正ABC ∆的边长为4,CD 是AB 边上的高,E 、F 分别是AC 和BC 的中点(如图(1)).现将ABC ∆沿CD 翻折成直二面角A -DC -B (如图(2)). 在图形(2)中:(Ⅰ)试判断直线AB 与平面DEF 的位置关系,并说明理由; (Ⅱ)求二面角E -DF -C 的余弦值;(Ⅲ)在线段BC 上是否存在一点P ,使DE AP ⊥?证明你的结论.解法一:(Ⅰ)如图(2):在ABC ∆中,由EF 分别是AC 、BC 的中点,得EF//AB ,又⊄AB 平面DEF ,⊂EF 平面DEF . ∴//AB 平面DEF.-----------------------------------------------------------------------3分(Ⅱ)CD BD CD AD ⊥⊥,,∴ADB ∠是二面角A -CD -B 的平面角.-------------------------------------------------------------------------------------4分∴BD AD ⊥,∴⊥AD 平面BCD .取CD 的中点M ,则EM //AD ,∴EM ⊥平面BCD .过M 作MN ⊥DF 于点N ,连结EN ,则EN ⊥DF ,MNE ∠是二面角E -DF -C 的平面角.----------------------------------------------------6分在EMN Rt ∆中,EM =1,MN =23,∴721cos =∠MNE .----------------------------------8分(Ⅲ)在线段BC 上取点P ,使BP =BC 31,过P 作PQ ⊥CD 于点Q ,∴⊥PQ 平面ACD .-----------------11分∵,33231==DC DQ ∴ADQ Rt ∆中,33tan =∠DAQ .在等边ADE ∆中, ,30 =∠DAQ ∴DE AP DE AQ ⊥⊥,.------------------------------------------------------12分解法二:(Ⅱ)以点D 为坐标原点,以直线DB 、DC 、DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则)0,3,1(),1,3,0(),0,32,0(002(),2,0,0(F E C B A ),,,------------------------------------------4分平面CDF 的法向量)2,0,0(=.设平面EDF 的法向量为n=(x ,y ,z ).则⎪⎩⎪⎨⎧=⋅=⋅0DE n DF ,即⎩⎨⎧=+=+0303z y y x ,取)3,3,3(-=------------------------------------------6分721||||cos =⋅>=⋅<n DA .二面角E -DF -C 的平面角的余弦值为721.------------------------------------8分 (Ⅲ)在平面坐标系x D y 中,直线BC 的方程为323+-=x y ,设)0,332,(x x P -,则)2,332,(--=x x .--------------------------------------------------------------------------------------------------------10分∵x DE AP 31340=⇒=⇒=⋅⇒⊥. ∴在线段BC 上存在点P ,使AP ⊥DE .---------------------------------------------------------------12分.19. (本题小满分12分)张明要参加某单位组织的招聘面试.面试要求应聘者有7次选题答题的机会(选一题答一题),若答对4题即终止答题,直接进入下一轮,否则则被淘汰.已知张明答对每一道题的概率都为21. (Ⅰ)求张明进入下一轮的概率;(Ⅱ)设张明在本次面试中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望.解法一:(Ⅰ)张明答4道题进入下一轮的概率为161)21(4=;----------------------------------------------------1分 答5道题进入下一轮的概率为812121)21(334=⋅⋅C ;--------------------------------------------------------------------2分答6道题进入下一轮的概率为32521)21()21(2335=⋅⋅C ;--------------------------------------------------------------3分答7道题进入下一轮的概率为32521)21()21(3336=⋅⋅C ;-------------------------------------------------------------5分张明进入下一轮的概率为1155116832322P =+++=.---------------------------------------------------------------6分 (Ⅱ)依题意,ξ的可能取值为4,5,6,7.当ξ=4时可能答对4道题进入下一轮,也可能打错4道题被淘汰.81)21()21()4(44=+==ξP ; 类似有4121)21()21(21)21()21()5(334334=⋅⋅+⋅⋅==C C P ξ;)6(=ξP =+⋅⋅21)21()21(2335C 16521)21()21(2335=⋅⋅C ; )7(=ξP =+⋅⋅21)21()21(3336C 16521)21()21(3336=⋅⋅C .----------------------------------------------10分 于是ξ的分布列为161671664584=⨯+⨯+⨯+⨯=ξE ---------------------------------------------------------------------12分解法二:(Ⅱ)设张明进入下一轮的概率为1P ,被淘汰的概率为2P ,则121=+P P ,又因为张明答对每一道题的概率都为21,答错的概率也都为21.所以张明答对4题进入下一轮与答错4题被淘汰的概率是相等的.即21P P =. 所以张明进入下一轮的概率为21.--------------------------------------------------------------------------------------6分20.(本小题满分12分)数列}{n a 满足)2,(122*1≥∈++=-n N n a a n n n ,273=a . (Ⅰ)求21,a a 的值; (Ⅱ)已知))((21*N n t a b n n n ∈+=,若数列}{n b 成等差数列,求实数t ; (Ⅲ)求数列}{n a 的前n 项和n S .解法一:(Ⅰ)由)2,(122*1≥∈++=-n N n a a n n n ,得33222127a a =++=29a ⇒=.2212219a a =++=12a ⇒=.--------------------------------------------------------------3分(Ⅱ)*11221(,2)(1)2(1)2nnn n n n a a n N n a a --=++∈≥⇒+=++*(,2)n N n ∈≥1111122n n nn a a --++⇒=+*(,2)n N n ∈≥---------------------------------------------------------5分 1111122n n n n a a --++⇒-=*(,2)n N n ∈≥,令*1(1)()2n n nb a n N =+∈,则数列}{n b 成等差数列,所以1t =. ---------------------------------------------------------------------------------------------7分(Ⅲ))}{n b 成等差数列,1(1)n b b n d =+-321(1)22n n +=+-=.121(1)22n n n n b a +=+=; 得1(21)21n n a n -=+⋅-*()n N ∈.--------------------------------------------------------------8分n S =21315272(21)2n n n -⋅+⋅+⋅+++⋅- -----------①2n S =23325272(21)22n n n ⋅+⋅+⋅+++⋅- --------------------② ① - ② 得213222222(21)2n n n S n n --=+⋅+⋅++⋅-+⋅+233222(21)2nnn n =++++-+⋅+ 14(12)3(21)212n n n n --=+-+⋅+- =(21)21nn n -+⋅+-.所以(21)21n n S n n =-⋅-+*()n N ∈-------------------------------------------------------------12分.解法二:(Ⅱ)))((21*N n t a b n n n ∈+=且数列}{n b 成等差数列,所以有1()n n b b +-*()n N ∈为常数. 11111()()22n n n n n n b b a t a t +++-=+-+*()n N ∈1111(221)()22n n n n n a t a t ++=+++-+*()n N ∈111112222n n n n n n t ta a ++=++--*()n N ∈ 1112n t+-=+*()n N ∈,要使1()n n b b +-*()n N ∈为常数.需1t =.---------------------------------7分21. (本题小满分12分)已知A 为椭圆)0(12222>>=+b a by a x 上的一个动点,弦AB 、AC 分别过焦点F 1、F 2,当AC 垂直于x 轴时,恰好有13||||21::=.(Ⅰ)求椭圆离心率;(Ⅱ)设F AF B F AF 222111λλ==,试判断21λλ+是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.解:(Ⅰ)当AC 垂直于x 轴时,a b 22||=,13||||21::=,∴ab 213||=∴a a b 242=,∴222b a =,∴22c b =,故22=e .-----------------------------------------3分 (Ⅱ)由(Ⅰ)得椭圆的方程为22222b y x =+,焦点坐标为)0,(),0,(21b F b F -.①当弦AC 、AB 的斜率都存在时,设),(),,(),,(221100y x C y x B y x A ,则AC 所在的直线方程为)(00b x bx y y --=, 代入椭圆方程得0)(2)23(20200202=--+-y b y b x by y bx b .∴02222023bx b y b y y --=,--------------------------------------------------------------5分F AF 222λ=,bx b y y 020223-=-=λ.--------------------------------------------------7分 同理bx b 0123+=λ,∴621=+λλ------------------------------------------------------9分 ②当AC 垂直于x 轴时,则bbb 23,112+==λλ,这时621=+λλ; 当AB 垂直于x 轴时,则5,121==λλ,这时621=+λλ.综上可知21λλ+是定值 6.---------------------------------------------------------------12分22. (本题小满分14分)已知0>a ,)1ln(12)(2+++-=x x ax x f ,l 是曲线)(x f y =在点))0(,0(f P 处的切线. (Ⅰ)求l 的方程;(Ⅱ)若切线l 与曲线)(x f y =有且只有一个公共点,求a 的值;(Ⅲ)证明对任意的n a =)(*N n ∈,函数)(x f y =总有单调递减区间,并求出)(x f 单调递减区间的长度的取值范围.(区间],[21x x 的长度=12x x -)解:(Ⅰ)1)0(),1ln(12)(2=+++-=f x x ax x f ,11)22(21122)(2'+--+=++-=x x a ax x ax x f , 1)0('=f ,切点)1,0(P ,l 斜率为1-.∴切线l 的方程:1+-=x y ------------------------------------------------------3分(Ⅱ)切线l 与曲线)(x f y =有且只有一个公共点等价于方程1)1ln(122+-=+++-x x x ax 有且只有一个实数解.令)1ln()(2++-=x x ax x h ,则0)(=x h 有且只有一个实数解.---------------------------4分 ∵0)0(=h ,∴0)(=x h 有一解0=x .------------------------------------------------------5分1)]121([21)12(21112)(2'+--=+-+=++-=x a x ax x x a ax x ax x h --------------------------------6分 ①)(),1(01)(,212'x h x x x x h a ->≥+==在),1(+∞-上单调递增, ∴0=x 是方程0)(=x h 的唯一解;------------------------------------------------------7分 ②0)(,210'=<<x h a ,0121,021>-==ax x∴0)11ln(11)1(,0)0()121(2>++-⨯==<-a a aa a h h a h , ∴方程0)(=x h 在),121(+∞-a上还有一解.故方程0)(=x h 的解不唯一;--------------------8分③当0)(,21'=>x h a ,)0,1(121,021-∈-==ax x∴0)0()121(=>-h ah ,而当1->x 且x 趋向-1时,)1ln(,12++<-x a x ax 趋向∞-,)(x h 趋向∞-. ∴方程0)(=x h 在)1211(--a,上还有一解.故方程0)(=x h 的解不唯一.综上,当l 与曲线)(x f y =有且只有一个公共点时,21=a .-------------------------10分(Ⅲ)11)22(2)(2'+--+=x x a ax x f ;∵,1->x ∴0)('<x f 等价于01)22(2)(2<--+=x a ax x k .∵0)1(48)22(22>+=+-=∆a a a ,对称轴12121422->+-=--=aa a x ,011202(2)1(>=---=-a a k ,∴0)(=x k 有解21,x x ,其中211x x <<-.∴当),(21x x x ∈时,0)('<x f .所以)(x f y =的减区间为],[21x x22122121211214)222(4)(aa a a x x x x x x +=⨯+--=-+=---------------------------12分 当)(*N n n a ∈=时,区间长度21211n x x +=-21112=+≤ ∴减区间长度12x x -的取值范围为)2,1(--------------------------------------------------14分。
2015年浙江高考模拟试卷 数学卷(理科)(含答案答卷)
2015年浙江高考模拟试卷数学卷(理科)本试卷分第(Ⅰ)卷(选择题)和第(Ⅱ)卷(非选择题)两部分.满分150分,考试时间120分钟请考生按规定用笔将所有试题的答案涂、写在答题纸上。
参考公式:球的表面积公式:24πS R =,其中R 表示球的半径;球的体积公式:34π3V R =,其中R 表示球的半径;棱柱体积公式:V Sh =,其中S 为棱柱的底面面积,h 为棱柱的高; 棱锥体积公式:13V Sh =,其中S 为棱柱的底面面积,h 为棱柱的高;台体的体积公式:()1213V h S S = 其中12,S S 分别表示台体的上底、下底面积,h 表示台体的高.第Ⅰ卷(选择题 共40分)注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(改编)集合{3,2}aA =,{,}B a b =,若{2}A B =,则A B =( )A .{1,2,3}B .{0,1,3}C .{0,1,2,3}D .{1,2,3,4}2.(改编)已知,sin 3cos R ααα∈+=tan 2α的值是( ) A .3-4 B .2 C .4-3D .433.(摘录)已知q 是等比数列}{n a 的公比,则“1>q ”是“数列}{n a 是递增数列”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(摘录)已知n m ,为异面直线,βα,为两个不同平面,α⊥m ,β⊥n ,且直线l 满足m l ⊥,n l ⊥,α⊄l ,β⊄l ,则( )A .βα//且α//lB .βα⊥且β⊥lC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(改编)函数)sin()(ϕω+=x x f )2,0(πϕω<>的最小正周期为π,若其图象向右平移3π个单位后关于y 轴对称,则)(x f y =对应的解析式可为( ) A .)62sin(π-=x y B .)62cos(π+=x yC .)32cos(π-=x yD .)672sin(π+=x y 6. (改编)若等差数列{}n a 满足2211010a a +=,则101119...S a a a =+++的最大值为( )A .60B .50C . 45D .407.(摘录)将正方形ABCD 沿对角线BD 折叠成一个四面体ABCD ,当该四面体的体积最大时,直线AB 与CD 所成的角为( )A .090B .060C .045D .0308.(摘录)如图所示,已知双曲线22221(0)x y a b a b-=>>的右焦点为F ,过F 的直线l 交双曲线的渐近线于A 、B 两点,且直线l 的倾斜角是 渐近线OA 倾斜角的2倍,若2AF FB =,则该双曲线的离心率为( )A .4 B第Ⅱ卷(非选择题 共110分)注意事项:1.黑色字迹的签字笔或钢笔填写在答题纸上,不能答在试题卷上。
2015年高考模拟试卷(理)及参考答案
2015年高考模拟试卷(理)一、选择题(每小题5分,共60分,每小题且只有一个选项符合题目要求)1. 集合{{}11)},2(2>-∈=-=∈=x R x N x x g y R x M 则下列结论正确的是( ). A.N M ⊆ B.)(N C M R ⊆ C.N M C R ⊆)( D.)()(N C M C R R ⊆ 2. 若复数211ii a -+-(i 为虚数单位)的实部和虚部互为相反数,则实数a 的值为( ). A.-1 B.0 C.1 D.23. 设非零向量,,===+,则,,的夹角为( ). A.150° B.120° C.60° D.30°4. 如图所示,在边长为1的正方形OABC 内任取一点P ,则点P 恰好取自阴影部分的概率为( ). A.31 B.41 C.51 D.61 5. 已知等差数列b a ,1,,等比数列5,2,3++b a ,则该等差数列的公差为( ) ). A.3或-3 B.3或-1 C.3 D.-3 6. 将函数)4(cos 22π+=x y 的图象沿x 轴向右平移a 个单位)0(>a ,所得到图象关于y 轴对称,则a 的最小值为( ). A.π B.43π C.2π D.4π 7. 已知一个棱长为2的正方体,被一个平面截后所得几何体 的三视图如图所示,则该截面的面积为( ) A.29 B.3 C.4 D.21038. 已知F 是抛物线x y =2的焦点,B A 、为抛物线上的两点, 且3=+BF AF ,则线段AB 的中点M 到y 轴的距离为( ).A.45B.47C.23D.439. 运行右边的程序框图,输出S 的值为( ).A.0B.3C.23 D.23- 10.过双曲线)0,0(12222>>=-b a by a x 的左焦点F 作圆222a y x =+的两条切线,切点分别为B A 、,双曲线左顶点为M ,若150=∠AMB ,则该双曲线的离心率为( ).A.3B.2C.36 D.332 11.已知三棱锥ABC O -中,C B A 、、三点在以O 为球心的球面上,若ABC BC AB ∠==,1120=,三棱锥ABC O -的体积为45,则球O 的表面积为( ). A.332πB.π16C.π64D.544π 12.定义域为R 的偶函数)(x f 满足对R x ∈∀,有)1()()2(f x f x f -=+且当]3,2[∈x 时,)(x f =221218x x -+-,若函数()log (1)a y f x x =-+在),0(+∞上至少有三个零点,则a 的取值范围是( ).A.B.C.D. 二、填空题(每小题5分,共20分) 13.已知函数)1(1255)(>-+-=x x x x f 的最小值为n ,则二项式n xx )1(-展开式 中2x 项的系数为 .(用数字作答)14.已知不等式组,,,y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域S 的面积为4,点S y x P ∈),(,则2z x y =+的最大值为 .15.已知数列}{n a 满足211112311,+(),(*),+4+4++44n n n n n n a a a n N S a a a a -+==∈=,类比课本中推导等比数列前n 项和公式的方法,可求得=∙-n nn a S 45 .16.已知函数2)1ln()(x x a x f -+=在区间1,2()内任取两个实数q p ,且q p ≠,不等式1)()(>--qp q f p f 恒成立,则实数a 的取值范围为 .三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.(12分)在ABC ∆中,角C B A 、、所对的边长分别是c b a 、、,又B b cos 是C a cos 和A c cos 的等差中项.(1)求角B 的值;(2)当ABC ∆的外接圆面积为π时,求ABC ∆面积的最大值.18.(12分)如图,菱形ABCD 的边长为6,O BD AC BAD ==∠ ,60.将菱形ABCD 沿对角线AC 折起,得到三棱锥,ACD B -点M 是棱BC 的中点,.23=DM (1)求证:⊥OD 平面ABM ; (2)求二面角D BC A --的余弦值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015高考数学模拟试卷及答案解析(理科)本试卷满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数321i i -(i 为虚数单位)的虚部是A .15iB .15C .15i -D .15-2.设全集U=R ,A={x|2x (x-2)<1},B={x|y=1n (l -x )},则右图中阴影部分表示的集合为 A .{x |x≥1} B .{x |x≤1} C .{x|0<x≤1} D .{x |1≤x<2}3.等比数列{a n }的各项均为正数,且564718a a a a +=,则log 3 a 1+log 3a 2+…+log 3 a l0= A .12 B .10C .8D .2+log 3 54.若x=6π是f (x )3x ω+cos x ω的图象的一条对称轴,则ω可以是 A .4 B .8 C .2 D .15.己知某几何体的三视图如图所示,则该几何体的体积是 A 23π+ B 232π+ C .232π D .3π+6.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有’5架舰载机准备着舰.如果甲乙2机必须相邻着舰,而丙丁不能相邻着舰,那么不同的着舰方法有( )种 A .12 B .18 C .24 D .487.已知M=3(,)|3,{(,)|20}2y x y N x y ax y a x -⎧⎫==++=⎨⎬-⎩⎭且M N =∅,则a= A .-6或-2 B .-6 C .2或-6 D .-28.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.己知在过滤过程中废气中的污染物数量尸(单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为:P= P 0e -kt ,(k ,P 0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%.那么,至少还需( )时间过滤才可以排放. A .12小时 B .59小时 c .5小时 D .10小时9.己知抛物线22(0)y px p =>的焦点F 恰好是双曲线22221(0,0)x y a b a b-=>>的右焦点,且两条曲线的交点的连线过点F ,则该双曲线的离心率为 A 2+1B .2C 2D 2-110.实数a i (i =1,2,3,4,5,6)满足(a 2-a 1)2+(a 3-a 2)2+(a 4-a 3)2+(a 5-a 4)2+(a 6-a 5)2=1则(a 5+a 6)-(a 1+a 4)的最大值为A .3B .2C 6D .1二、填空题(本大题共6小题,考生共需作答5小题.每小题5分,共25分,请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.)(一)必考题.(11-14题) 11.己知0(sin cos )xa t t dt =+⎰,则(1x ax-)6的展开式中的常数项为 。
12.按照如图程序运行,则输出K 的值是 . 13.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.己知铜钱是直径为4cm 的圆面,中间有边长为。
lcm 的正方形孔,若随机向铜钱上滴一滴油(油滴整体落在铜钱内.........), 则油滴整体(油滴是直径为0.2cm 的球)正好落入孔中的概率是一jL —(不作近似计算).14.如图,己知2,1OA OB ==, ∠AOB 为锐角,OM 平分∠AOB ,点N 为线段AB 的中点,OP xOA yOB =+,若点P 在阴影部分(含边界)内,则在下列给出的关于x 、y 的式子中,满足题设条件的为 (写出所有正确式子的序号). ①x≥0,y≥0; ②x -y≥0; ③x -y≤0; ④x -2y≥0; ⑤2x -y≥0.(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.) 15.(选修4-1:几何证明选讲)如图,如图,A ,B 是圆O 上的两点,且OA ⊥OB ,OA=2,C 为OA 的中点,连接BC并延长交圆O 于点D ,则CD= 。
16.(选修4-4:坐标系与参数方程) 已知直线1()42x t t R y t =+⎧∈⎨=-⎩与圆2cos 2([0,2]2sin x y θθπθ=+⎧∈⎨=⎩相交于AB ,则以AB 为直径的圆的面积为 。
三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)己知函数2()2sin coscos sin sin (0)2f x x x x ϕϕϕπ=+-<<在x π=处取最小值.(I )求ϕ的值。
(II )在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,已知a=l ,b=2,3()2f A =,求角C .18.(本小题满分12分)己知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列.(I )求数列{a n }的通项公式; (II )设T n 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,若T n ≤1n a λ+¨对*n N ∀∈恒成立,求实数λ的最小值.19.(本小题满分12分)如图甲,△ABC 是边长为6的等边三角形,E ,D 分别为AB 、AC靠近B 、C 的三等分点,点G 为BC 边的中点.线段AG 交线段ED 于F 点,将△AED 沿ED 翻折,使平面AED ⊥平面BCDE ,连接AB 、AC 、AG 形成如图乙所示的几何体。
(I )求证BC ⊥平面AFG ; (II )求二面角B -AE -D 的余弦值.20.(本小题满分12分)甲乙两人进行乒乓球比赛,约定每局胜者得1分,负看得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,比赛停止时一共已打ξ局: (I )列出随机变量ξ的分布列; (II )求ξ的期望值E ξ.21.(本小题满分,13分)己知⊙O :x 2 +y 2=6,P 为⊙O 上动点,过P 作PM ⊥x 轴于M ,N 为PM 上一点,且2PM NM =.(I )求点N 的轨迹C 的方程;(II )若A(2,1),B(3,0),过B 的直线与曲线C 相交于D 、E 两点,则k AD +k AE 是否为定值?若是,求出该值;若不是,说明理由.22.(本小题满分14分)定义在R 上的函数()g x 及二次函数()h x 满足: 2()2()9,(2)(0)1x xg x g x e h h e +-=+--==且(3)2h -=-。
(I )求()g x 和()h x 的解析式;(II)1211222,[1,1],()5()(),x x h x ax g x x g x a ∈-++≥-对于均有成立求的取值范围;(III )设(),(0)()(),(0)g x x f x h x x >⎧=⎨≤⎩,讨论议程[()]2f f x =的解的个数情况.参考答案一、选择题(每小题5分,共50分) BDBCD CACAB10.【解析】()()()()()[]()14111256245234223212++++-+-+-+-+-a a a a a a a a a a()()()()()2213243546511121a a a a a a a a a a ⎡-⨯+-⨯+-⨯+-⨯+-⨯⎤⎣⎦≥ ()()[]24156a a a a +-+= ()()6514a a a a ∴+-+≤.二、填空题(每小题5分,共25分) 11. 25-12.3 13. 64361π 14. ①③⑤ 15. 553 16. 16π514.【解析】当点P 在射线OM 上时,()2OA OB OP OA OB OAOBλλλ=+=+,,2λλ==∴y x 则.2x y =当点P 在射线ON 上时,()OP OA OB λ=+,.0=-∴y x 故应选 ① ③ ⑤ .因为)(x f 在πx =处取得最小值,所以1)sin(-=+ϕx ,故1sin =ϕ,又0πϕ<<18.(Ⅱ)11(1)(2)12n n a a n n n n +==-++++,11112334n T ∴=-+-+…11122(2)n n n n +-=+++……………………………9分 1n n T a λ+≤对n N *∀∈恒成立,即22(2)n n λ+≤(+)对n N *∀∈恒成立又 211142(2)2(44)162(4)n n n n ==++++≤ ∴λ116……………………………………………………………12分19.(Ⅰ) 在图甲中,由△ABC 是等边三角形,E ,D 分别为AB ,AC 的三等分点,点G 为BC 边的中点,易知DE ⊥AF ,DE ⊥GF ,DE //BC .……………………………… 2分 在图乙中,因为DE ⊥AF ,DE ⊥GF ,AF FG =F ,所以DE ⊥平面AFG .又DE //BC ,所以BC ⊥平面AFG .…………………………………………………… 4分 (Ⅱ) 因为平面AED ⊥平面BCDE ,平面AED 平面BCDE =DE ,DE ⊥AF ,DE ⊥GF ,所以F A ,FD ,FG 两两垂直.以点F 为坐标原点,分别以FG ,FD ,F A 所在的直线为z y x ,,轴,建立如图所示的空间直角坐标系xyz F -.则)32,0,0(A ,)0,3,3(-B ,)0,2,0(-E ,所以)32,3,3(--=AB ,,1,3(-=BE 0).…………………………………… 6分设平面ABE 的一个法向量为),,(z y x n =.则⎪⎩⎪⎨⎧=⋅=⋅00BE n AB n ,即⎪⎩⎪⎨⎧=+-=--0303233y x z y x ,取1=x ,则3=y ,1-=z ,则)1,3,1(-=n .……………………………… 8分显然)0,0,1(=m 为平面ADE 的一个法向量, 所以55||||,cos =⋅<n m n m n m .………………………………………………10分 二面角D AE B --为钝角,所以二面角D AE B --的余弦值为55-.………12分 20.解法1:(Ⅰ)依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为(32)2+(31)2=95. ………4分 若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从在则有254520416(2),(4),(6)()99981981P P P ξξξ====⋅====,……………………………7分∴ξ的分布列为分(Ⅱ)E ξ=2×95分 解法2:(Ⅰ)依题意知,ξ的所有可能值为2,4,6.令A k 表示甲在第k 局比赛中获胜,则A k 表示乙在第k 局比赛中获胜. 由独立性与互斥性得(2)P ξ==P (A 1A 2)+P (1A 2A )=95, …………………………………………2分 (4)P ξ==P (4321A A A A )+P (4321A A A A )+P (4321A A A A )+P (4321A A A A )=2[(32)3(31)+(31)3(32)]=8120, …………………………………………4分 (6)P ξ==P (4321A A A A )+P (4321A A A A )+P (4321A A A A )+P (4321A A A A )=4(32)2(31)2=8116, …………………………………………7分 ∴ξ的分布列为分(Ⅱ)E ξ=2×9521. (Ⅰ)设()y x N ,,()00,y x P ,则()0,0x M ,()00,PM y =,()0,NM x x y =--由2PM NM =,得()⎪⎩⎪⎨⎧-=--=yy x x 22000,⎪⎩⎪⎨⎧==∴y y xx 200………………………………………3分由于点P 在圆6:22=+y x O 上,则有()6222=+y x ,即13622=+y x . ∴点N 的轨迹C 的方程为13622=+y x .…………………………………………………………6分 (Ⅱ) 设()11,y x D ,()22,y x E ,过点B 的直线DE 的方程为()3-=x k y ,由()⎪⎩⎪⎨⎧=+-=136322y x x k y 消去y 得: ()061812122222=-+-+k x k x k ,其中0>∆ 12618,121222212221+-=+=+∴k k x x k k x x ;…………………………………………………………8分 ()()213213212122112211-+-+-+-=--+--=+∴x k kx x k kx x y x y k k AE AD ()()()4212415221212121++-++++-=x x x x k x x k x kx ……………………………………………10分()4121221261812412121512618222222222++⋅-+-+++⋅+-+-⋅=k kk k k k k k k k k 2224422-=-+-=k k AE AD k k +∴是定值2-.………………………………………………………………………………13分22. (Ⅰ) 92)(2)(-+=-+x xee x g x g ,① ,92)(2)(-+=+---x x e e x g x g 即,912)(2)(-+=+-xxe e x g x g ②由①②联立解得: 3)(-=xe x g . ………………………………………………………………2分)(x h 是二次函数, 且1)0()2(==-h h ,可设()12)(++=x ax x h ,由2)3(-=-h ,解得1-=a .()1212)(2+--=++-=∴x x x x x h,3)(-=∴x e x g 12)(2+--=x x x h .………………………………………………………………4分(Ⅱ)设()625)()(2+-+-=++=x a x ax x h x ϕ,()()33133)(-+-=---=x e x e x e x F x x x ,依题意知:当11x -≤≤时, min max ()()x F x φ≥()()()1333x x x F x e x e xe '=-+--+=-+,在[]1,1-上单调递减,min ()(1)30F x F e ''∴==-> ………………………………………………………………6分)(x F ∴在[]1,1-上单调递增, ()01)(max ==∴F x F()()170,130a a φφ⎧-=-⎪∴⎨=+⎪⎩≥≥解得:37a -≤≤ ∴实数a 的取值范围为[]7,3-.……………………………9分(Ⅲ)设5+=a t ,由(Ⅱ)知, 212t ≤≤)(x f 的图象如图所示:设T x f =)(,则t T f =)(当2=t ,即3-=a 时, 5ln ,121=-=T T ,1)(-=x f 有两个解, 5ln )(=x f 有3个解;当322-<<e t ,即832-<<-e a 时, ()ln 3T t =+且ln52T <<,()f x T =有3个解; ……………………………………………………………………………………………………………11分 当32-=e t ,即82-=e a 时, 2=T ,T x f =)(有2个解;当2312e t -<≤,即287e a -<≤时, ()23ln >+=t T ,T x f =)(有1个解. ……13分 综上所述:当3-=a 时,方程有5个解; 当832-<<-e a 时,方程有3个解; 当82-=e a 时,方程有2个解;当287e a -<≤时,方程有1个解. …………………………………………………………………14分。