信号与系统课前介绍.
《信号与系统》教学大纲
《信号与系统》教学大纲信号与系统是电子信息类专业中一门重要的基础课程。
它是研究信号的产生、传输、处理和控制的学科,涉及到电子、通信、自动化等领域。
本文将从课程目标、内容安排、教学方法和评价方式等方面来探讨《信号与系统》教学大纲。
一、课程目标《信号与系统》作为一门基础课程,旨在培养学生对信号与系统的基本概念、原理和方法的理解与应用能力。
具体目标包括:1. 掌握信号的定义、分类和描述方法,了解信号的特性和变换;2. 理解系统的基本概念、特性和分类,掌握系统的时域和频域分析方法;3. 学习信号与系统的线性时不变(LTI)模型和卷积运算;4. 熟悉傅里叶变换、拉普拉斯变换和Z变换的定义、性质和应用;5. 培养分析和设计信号与系统的能力,为后续专业课程打下坚实基础。
二、内容安排《信号与系统》的内容安排通常包括以下几个方面:1. 信号的基本概念:介绍信号的定义、分类和描述方法,包括连续信号和离散信号;2. 时域分析:学习信号的时域表示方法,如冲激函数、阶跃函数和周期信号的分析;3. 频域分析:引入傅里叶级数和傅里叶变换的概念,掌握信号的频域表示方法;4. 系统的基本概念:介绍系统的定义、特性和分类,包括线性系统和非线性系统;5. 系统的时域分析:学习系统的时域描述方法,如冲激响应和单位脉冲响应;6. 系统的频域分析:引入拉普拉斯变换和Z变换的概念,掌握系统的频域表示方法;7. 系统的稳定性和滤波器设计:研究系统的稳定性判据和滤波器设计方法;8. 信号与系统的应用:介绍信号与系统在通信、控制和信号处理等领域的应用。
三、教学方法在教学过程中,可以采用多种教学方法来提高学生的学习效果和兴趣:1. 理论讲解:通过讲解基本概念、原理和方法,帮助学生建立起完整的知识体系;2. 数学推导:引导学生进行数学推导和证明,加深对信号与系统理论的理解;3. 实例分析:通过实际案例和应用实例,将抽象的理论联系到实际问题,提高学生的应用能力;4. 计算实践:引入计算工具和软件,让学生进行信号与系统的计算和仿真实验;5. 小组讨论:组织学生进行小组讨论和合作学习,促进彼此之间的交流和思维碰撞。
《信号与系统》课程思政教学案例
《信号与系统》课程思政教学案例一、教学目标1. 知识与技能:使学生掌握信号与系统的基本概念、理论和分析方法。
2. 思政目标:通过课程思政元素的融入,培养学生的爱国情怀、科学精神和职业道德,增强学生的社会责任感和使命感。
二、教学内容与思政元素结合点1. 信号与系统的基本概念在介绍信号与系统的基本概念时,可以引入我国通信行业的发展现状,激发学生的爱国热情和自豪感。
例如,介绍华为在5G技术方面的领先地位,以及我国通信行业在国际市场上的竞争力。
2. 信号的描述与分类在讲解信号的描述与分类时,可以通过实例展示信号处理技术在国家重大科技项目中的应用,如航天、深海探测等领域。
这有助于学生理解信号与系统知识在实际问题中的价值,并激发学生的科学探索精神。
3. 系统的分析方法在教授系统的分析方法时,可以结合我国科学家在相关领域的研究成果和贡献,强调科学精神和创新精神的重要性。
同时,通过介绍科学家的事迹,培养学生的职业道德和刻苦钻研的精神。
三、教学方法与思政渗透1. 案例教学选择具有思政意义的案例,如我国在信号处理技术方面的重大突破,或者科学家在信号与系统领域的研究故事。
通过案例分析,引导学生深入思考课程知识与国家利益、社会进步的关系。
2. 课堂讨论与互动组织学生就信号与系统相关的热点问题进行课堂讨论,鼓励学生发表自己的观点和看法。
在讨论过程中,教师可以适时引导,将讨论内容引向思政方面的话题,如科技创新、国家安全等。
3. 实验教学在实验教学中,可以安排与信号处理相关的实验项目,让学生亲身体验信号处理技术的魅力。
同时,在实验过程中培养学生的团队合作精神和实践能力。
四、教学评价与反馈1. 知识评价通过考试、作业等形式评价学生对信号与系统知识的掌握情况。
2. 思政表现评价观察并记录学生在课堂讨论、案例分析等环节中的思政表现,如是否积极参与讨论、是否表现出对国家科技发展的关注等。
将思政表现纳入课程评价体系,以激励学生更加注重思政方面的学习。
大学二年级信息工程课教案信号与系统
大学二年级信息工程课教案信号与系统【大学二年级信息工程课教案】信号与系统【引言】信号与系统作为信息工程课程中的重要组成部分,在大学二年级承担着培养学生综合应用电子与通信知识的重要任务。
本教案旨在通过系统化的教学安排和内容设计,帮助学生全面理解信号与系统的基本概念和理论,并培养学生的工程实践能力。
通过本课程的学习,学生将能够深入了解信号与系统的原理与应用,为将来在信息工程领域的研究和实践打下坚实的基础。
【教学目标】本课程的教学目标是:1. 理解信号与系统的基本概念,包括信号、系统、线性时不变系统等;2. 掌握信号与系统的数学表示方法,如离散/连续时间信号的表达和运算;3. 理解信号与系统的时域分析方法,包括冲激响应、单位阶跃响应和卷积等;4. 掌握信号与系统的频域分析方法,包括傅里叶变换和拉普拉斯变换等;5. 学习应用信号与系统的基本原理解决实际问题,如系统的稳定性分析、滤波器设计等。
【教学内容】1. 信号与系统的基本概念1.1 信号的定义与分类1.2 系统的定义与分类1.3 时变与时不变系统2. 信号的数学表示方法2.1 离散时间信号与连续时间信号的表示2.2 时域离散信号与频域连续信号的转换2.3 时域连续信号与频域离散信号的转换3. 信号的时域分析3.1 冲激响应与单位阶跃响应3.2 线性时不变系统的冲激响应与单位阶跃响应4. 信号的频域分析4.1 傅里叶变换的定义与性质4.2 频域表示与逆变换4.3 拉普拉斯变换的定义与性质4.4 频域表示与逆变换5. 应用信号与系统5.1 系统的稳定性分析5.2 信号的滤波与滤波器设计5.3 信号采样与重构【教学方法】1. 授课法:通过讲授基本概念、理论和方法,帮助学生全面掌握信号与系统的基本知识;2. 实例分析法:通过实际问题的分析与解决,培养学生应用信号与系统知识的能力;3. 实验教学法:通过实验引导学生进行实际操作,加深对信号与系统原理的理解;4. 讨论与互动:鼓励学生积极参与课堂讨论、提问与互动,促进思维碰撞与知识共享。
信号与系统课件(奥本海姆+第二版)+中文课件.pdf
解:因为 x[n] = e jω0n = cos ω0n + j sin ω0n (欧拉公式)
则有 e jω0n = 1
∑ ∑ ∞
∞
E∞ = x[n] 2 = 1= ∞
n=−∞
n=−∞
∑ P∞
=
lim
N→∞
1N 2N +1n=−N
x[n] 2
= lim N→∞
1 ×(2N 2N +1
+1)
=1
所以是功率信号
控制
执行机构
网络
图 1 控制系统
R+
uc (t)
x (t)
C
uc (t)
-
t
图 2 RC电路
6 / 94
二、信号的分类 信号的分类方法很多。
1、确定性信号与随机信号 按信号与时间的函数关系来分,信号可分为确定性信号与随
机信号。 1)、确定性信号——指能够表示为确定的时间函数的信号。 当给定某一时间值时,信号有确定的数值。 例如:正弦信号、指数信号和各种周期信号等。 2)、随机信号——不是时间t的确定函数的信号。 它在每一个确定时刻的分布值是不确定的。 例如:电器元件中的热噪声等。
11 / 94
5、连续时间信号和离散时间信号——按自变量的取值是否连续来分。
1、连续时间信号——自变量是连续可变的,因此信号在自变量的连续值上 都有定义。我们用t表示连续时间变量,用圆括号(.)把自变量括在里面。例 如 图一的 x(t)。
x (t)
x [n]
X[1] X[-1]
0
t
图一 连续时间信号
1)、时间特性——波形、幅度、重复周期及信号变化的快慢等。 ω
2)、频率特性——振幅频谱和相位频谱。即从频域 来研究信号的变化情 况。
【课程思政优秀案例】《信号与系统》:连续时间信号的时域抽样
课程思政优秀案例——《信号与系统》:连续时间信号的时域抽样一、课程和案例的基本情况课程名称:信号与系统授课对象:电子信息类专业本科二年级学生课程性质:专业核心课程课程简介:我们已进入以信息化和智能化为主要特征的新工科时代,信号与系统课程是电子信息类专业重要的专业基础课程,为相关专业提供了重要的基础理论。
该课程主要阐述信号的时域分析和变换域分析,以及信号与系统的作用机理。
该课程具有“原理深厚、方法多元、应用广泛”等特点,蕴含了丰富的课程思政元素,课程思政与课程教学深度融合,启发了学生的辩证思维能力,熏陶了学生的科学探索精神,厚植了学生的家国情怀。
思想价值引领贯穿于课程教学全过程,课程教学改革取得了显著成效,形成了“名课程、名教材、名团队”协同推进的良好格局。
该课程囊括了各类课程称号(图1)。
图1 课程教学改革成果课程教学改革和建设水平处于全国领先地位,示范引领,为推进全国信号与系统课程建设发挥了重要作用。
牵头组织成立了覆盖全国50多所高校的“信号处理课程群”虚拟教研室,牵头撰写了“全国信号与系统课程思政教学指南”。
建设了该课程的中文和英文MOOC,选学人数约30万。
编著的教材发行20多万册,被全国200多所高校选用。
应邀在全国性教学会议做大会特邀报告20多次,在40多所高校做专题报告。
案例简介:该案例的教学内容为“连续时间信号的时域抽样”,处于课程教学的中间阶段,紧随连续信号和离散信号的时域分析和频域分析。
主要阐述“为何要进行信号抽样、信号抽样的理论分析、抽样定理的本质内容、抽样定理的工程应用”,其为连续信号的数字化分析与处理提供了理论支撑,是课程教学的重点内容之一。
没有信息化就没有现代化,而信息化的基础是数字化。
信号的时域抽样正是阐述信号数字化的基本原理和方法,其架设了现实的模拟世界与虚拟的数字世界之间的桥梁,为信息化和智能化奠定了重要的理论基础。
本讲内容的教学目标:知识传授:※了解信号的时域抽样对信息化时代的重要意义;※理解信号时域抽样定理的基本原理和本质内容;※掌握实际工程应用中常见信号的时域抽样方法。
电子信息工程专业公开课信号与系统分析
电子信息工程专业公开课信号与系统分析电子信息工程专业公开课信号与系统分析是该专业的一门重要课程,主要讲解信号与系统的基本概念、理论和应用。
本文将从信号与系统的基本概念、信号与系统的数学表示以及信号与系统的应用等方面进行探讨。
一、信号与系统的基本概念在电子信息工程中,信号是指携带有用信息和数据的电波或电流,它可以是数字信号或模拟信号。
系统是指处理信号的一种装置或方法。
信号与系统的基本概念涉及信号的分类、信号的特性、系统的分类以及系统的特性等。
在信号的分类中,常见的包括连续时间信号和离散时间信号。
连续时间信号是指信号在时间上是连续的,而离散时间信号是指信号在时间上是离散的。
在信号的特性中,常见的包括能量信号和功率信号。
能量信号是指信号在有限时间内的总能量有界,而功率信号是指信号的功率在无限时间内是有限的。
系统的分类主要包括线性系统和非线性系统。
线性系统是指系统的输出与输入之间存在线性关系,而非线性系统则没有线性关系。
在系统的特性中,常见的包括时不变系统和时变系统。
时不变系统是指系统的输出与输入之间不随时间变化,而时变系统则随时间变化。
二、信号与系统的数学表示为了方便分析和处理信号与系统,我们需要利用数学方法对其进行表示。
连续时间信号可以用函数表示,离散时间信号可以用数列表示。
连续时间信号的数学表示主要包括信号的幅度、相位和频率等。
离散时间信号的数学表示主要包括信号的取样、量化和编码等。
在系统的数学表示中,常见的包括系统的冲激响应、传递函数和频率响应等。
系统的冲激响应是指系统在输入为冲激函数时的输出响应,传递函数是指系统的输出与输入之间的关系,频率响应是指系统对输入信号频率的响应情况。
三、信号与系统的应用信号与系统在电子信息工程中有着广泛的应用。
在通信系统中,信号与系统分析可以用于信号的调制和解调、信号的传输和接收等方面。
在控制系统中,信号与系统分析可以用于系统的建模与仿真、系统的控制和稳定性分析等方面。
教案信号与系统
教案:信号与系统一、教学目标:1. 了解信号与系统的基本概念和基本理论。
2. 掌握信号的分类与性质。
3. 理解系统的概念和特点。
4. 学习信号与系统的基本运算和变换。
5. 培养分析和处理信号与系统问题的能力。
二、教学内容:1. 信号与系统的概述1.1 信号的定义和分类1.2 系统的定义和特征1.3 信号与系统的关系2. 基本信号的性质2.1 常用信号的定义和特点2.2 奇偶信号与周期信号2.3 指数信号和复指数信号3. 连续时间信号与系统3.1 连续时间信号的表示与性质3.2 连续时间系统的表示与性质3.3 连续时间信号的基本运算和变换4. 离散时间信号与系统4.1 离散时间信号的表示与性质4.2 离散时间系统的表示与性质4.3 离散时间信号的基本运算和变换5. 线性时不变系统5.1 线性系统的定义和特性5.2 时不变系统的定义和特性5.3 线性时不变系统的性质和表示6. 信号和系统的连续时间和离散时间表示关系6.1 数模转换和模数转换6.2 连续时间信号的采样与重构6.3 采样定理和抽样定理三、教学方法:1. 讲授教学法:通过讲解教师将信号与系统的基本概念和基本理论传授给学生。
2. 实践教学法:通过实际操作和实验,让学生亲自感受信号与系统的性质和运算。
3. 讨论教学法:组织学生进行讨论,促进彼此之间的思维碰撞和交流。
四、教学重点:1. 信号与系统的基本概念和分类。
2. 信号和系统的基本运算和变换。
3. 线性时不变系统的特性和表示。
五、教学评价:1. 课堂小测验:通过课堂小测验检查学生对信号与系统基本概念和基本理论的掌握情况。
2. 实验报告:通过学生完成的实验和实验报告,评价其对信号与系统的基本运算和变换的理解和掌握情况。
3. 期末考试:通过期末考试检查学生对信号与系统整体知识体系的掌握情况。
六、教学资源:1. 课本:信号与系统教材。
2. 电子实验设备:电脑、信号发生器、示波器等。
七、教学反思:信号与系统作为电子信息工程专业的一门重要基础课程,对于学生的综合能力培养具有重要意义。
西安电子科技大学信号与系统课件ppt-第1章信号与系统
反转;
(3)若信号f(mt+n)→f(at+b),则先实现f(mt+n)→f(t), 再进行f(t)→f(at+b)。
例1―4试粗略地画出下列信号的波形图: (1) f1(t)=(2-3e-t)· u(t); (2) f2(t)=(5e-t-5e-3t)· u(t); (3) f3(t)=e-|t|(-∞<t<∞); (4) f4(t)=cosπ(t-1)· u(t+1); (5) f5(t)=sin π /2 (1-t)· u(t-1); (6) f6(t)=e-tcos10πt(u(t-1)-u(t-2));
系统的输入和输出是连续时间变量 t 的函数,叫作
连续时间系统。输入用f(t)表示,输出用y(t)表示。
图1.6 连续时间信号及反转波形
图1.7 离散时间信号及反转波形
7.平移
以变量t- t0代替信号f(t)中的独立变量t,得信号f(tt0) ,它是信号 f(t) 沿时间轴平移 t0 的波形。这里 f(t) 与 f(t-t0)的波形形状完全一样,只是在位置上移动了t0(t0为 一实常数)。 t0 >0,f(t)右移; t0 <0,f(t)左移;平移距 离为| t0 |。 图1.8表示连续时间信号的平移。这类信号在雷 达、声纳和地震信号处理中经常遇到。利用位移信号
图1.9 f(t)、f(2t)、f(t/2)的波形
9.综合变换 以变量at+b代替f(t)中的独立变量t,可得一新的信 号函数 f(at+b) 。当 a> 0时,它是 f(t) 沿时间轴展缩、平 移后的信号波形;当a<0时,它是f(t)沿时间轴展缩平 移和反转后的信号波形,下面举例说明其变换过程。
【课程思政优秀案例】《信号与系统》课程
一、课程简介
《信号与系统》是电类专业本科生的核心技术基础课程,是通信原理和数字信号处理课程的基础,在教学中具有承前启后、继往开来的作用,是学生合理知识结构的重要组成部分,在发展智力、培养能力和良好的非智力素质方面,具有极为重要作用。
本课程坚持传授知识、发展智力与培养能力相统一的教学原则,注重学生的思维能力、分析问题、解决问题能力培养,注重将国家需求与课程学习相结合,课程思政激励学生学习,践行“立德树人”教育理念。
二、思政目标
1. 培养学生科学的思想观与价值观;
2. 告诫学生人生无法复制,要在最灿烂的年华谱写最美的篇章;
3. 培养家国情怀。
三、案例设计及实施过程
教学案例1:信号的调制与解调
信号调制:
信号解调:
思政内容:
①频分复用技术极大地提高了频谱利用率和用户服务质量。
人的一生就如同频谱资源一样是有限的,虽然频谱可以复用,但人生无法复制。
珍惜时光,善待时光,在最灿烂的年华谱写人生最美的篇章。
②介绍中国北斗发展史,仰望星空、北斗璀璨,脚踏实地、行稳致远,继续弘扬“自主创新、开放融合、万众一心、追求卓越”新时代北斗精神。
③“乌、俄军事冲突”,信息战在现代战争中的作用,通信的重要性。
教学案例2:周期信号的傅里叶级数展开
思政内容:
①傅里叶级数的发展史,Euler曾提出过类似的结论,但未深入探索。
行路百里半九十,人生道路如逆水行舟,不进则退。
②傅里叶生于法国中部奥塞尔的一个平民家庭,9岁时变成一个孤儿,后来却成为一名伟大的数学家,物理学家,激励同学们树立远大目标,克服困难。
信号与系统-吴大正PPT课件
§1.2 信号的描述和分类
信号的描述 信号的分类 几种典型确定性信号
■ 第 18 页
一、信号的描述
信号是信息的一种物理体现。它一般是随时间或 位置变化的物理量。
信号按物理属性分:电信号和非电信号。它们 可以相互转换。
电信号容易产生,便于控制,易于处理。本课 程讨论电信号——简称“信号”。
▲
■
第1页
信号与系统
是电子技术、信息工程、通信工程 等专业重要的学科基础课
课程介绍
Signals and Systems
电子技术、 信息工程、 通信工程 等专业的 考研课程
■
第3页
课程位置
先修课
后续课程
《高等数学》 《通信原理》
《线性代数》 《数字信号处理》
《复变函数》 《自动控制原理》
《电路分析基础》 《数字图像处理》
▲
■
第7页
参考书目
(1)郑君里等. 信号与系统(第二版) . 北京:高等教育出 版社, 2000 (2) 管致中等 . 信号与线性系统 (第四版) . 北京:高等 教育出版 社, 2004 (3)A.V.OPPENHEIM. 信号与系统 (第二版) .北京 :电 子工业出版 社, 2002 (4)王松林、张永瑞、郭宝龙、李小平.信号与线性系统 分析 (第4版) 教学指导书. 北京:高等教育出版 社, 2006
▲
■
第8页
信号与系统
第一章 信号与系统
第二章 连续系统的时域分析
第三章 离散系统的时域分析
第四章 傅里叶变换和系统的频域分析
第五章 连续系统的s域分析
第六章 离散系统的z域分析
第七章 系统函数
第八章 系统的状态变量分析
《信号与系统》课程教学大纲
《信号与系统》课程教学大纲一、课程基本信息1、课程编号:14L181Q2、课程体系/类别:大类专业基础/主干课程3、学时/学分:48/34、先修课程:高等数学、工程数学、电路分析5、适用专业:通信工程、自动化、铁道信号、电子科学与技术二、课程教学目标及学生应达到的能力本课程是大学本科二年级电子信息类本科生必选的技术基础课程。
本课程教学目标是使学生牢固掌握信号与系统的基本原理和基本分析方法,掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、z变换)的基本内容、性质与应用。
特别要建立信号与系统的频域分析的概念以及系统函数的概念,为学生进一步学习后续课程打下坚实的基础。
通过本课程的学习,使学生在分析问题和解决问题的能力上有所提高,并能够自主性学习,具有一定的创造性工作能力。
本课程主要支撑以下毕业要求指标点:1.2 将具体工程问题抽象为数学、物理问题,选择适当的模型进行描述,并理解其局限性本课程核心内容是信号的表示和系统的描述,包括利用数学的方法将信号从不同角度进行表示;根据实际系统建立描述系统的数学模型,并从不同的域对系统进行描述;理解信号与系统时域、频域和复频域的特点及适用情况,从而根据具体问题选择合适的域进行分析。
1.3 对模型进行推理求解和必要的修正改进本课程在讲授信号的表示和系统的描述的基础上,介绍根据系统的描述,利用信号的表示和线性非时变系统的特性从不同域求解系统模型,即求解系统的响应。
2.2 运用专业基础理论与方法,进行通信信号分析和通信系统设计实现本课程讲授了从时域、频域和复频域进行信号分析,从时域、频域和复频域进行系统描述及系统响应求解,为通信工程、铁道信号、自动化、电子技术等电子信息类专业奠定基础。
三、课程教学内容和要求(一)课程主要知识点、要求及课时分配(二)课程重点、难点1.信号与系统分析导论(2学时)重点:确定信号及线性非时变系统的特性。
难点:线性非时变系统的判断。
信号与系统PPT全套课件
T T
T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T
T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。
教案信号与系统
信号与系统授课教案一、授课内容:1.学科名称:信号与线性系统分析(第四版)2.授课题目:2.1 LTI连续系统的响应:微分方程经典解法和初始值0+的求法。
3.教学形式:讲授+课堂练习4.授课教师:X X X5.学时:1二、教学目的:1.掌握连续时间系统微分方程的建立与微分方程经典解法。
2.掌握系统起始点的跳变,0+和0-的求解。
三、教学重点:微分方程的求解,起始点状态的转换。
四、难点分析及对策:难点1:微分方程的建立难点在于有电路定理推导并建立微分方程,这一部分内容属于电路理论的基础知识,但是由于电路理论中对相对复杂电路的分析与计算过程比较繁琐,计算量较大,有的电路甚至会涉及到多变量方程组求解,多种电路定理的应用,因此学生大多觉得学习过程比较困难。
解决方法:主要进行举例分析。
难点2:连续时间系统中起始点的跳变,即从0-到0+的转换过程的求解是一个难点。
解决办法:以例题进行详细讲解并布置相关习题多加练习。
五、教学过程:(一)导课:对第一张内容简单回顾一下,以介绍本节课的教学目的和要求,以及主要知识点和重点的导课方式,进入这节课的教学内容。
(二)教学内容:LTI连续系统的时域分析过程可以理解为建立并求解线性微分方程,因其分析过程涉及的函数变量均为时间t,故称为时域分析法。
本章知识的前期预备知识为高等数学的线性微分方程的求解,后续内容是连续时间系统的频域分析——傅里叶变换,连续时间系统的S 域分析——拉氏变换。
因此,本章是知识的学习非常重要。
主要知识点如下:(1)经典法求解微分方程主要包括:a.微分方程的建立b.微分方程的经典法求解(2)关于0-与0+主要包括:从已知的初始状态y (j)(0-)设法求得y (j)(0+)LTI 连续系统的响应1.微分方程的经典解法LTI 连续系统可以由常系数线性微分方程来描述。
例如:u C (t ))()(d )(d d )(d 22t u t u tt u RC t t u LC S C C C =++ 22d ()d ()11()()d d C C C S u t u t R u t u t t L t LC LC ++=二阶常系数线性微分方程抽去具有的物理含义,可写成100''()'()()()y t a y t a y t b f t ++=一般LTI 连续系统常系数线性微分方程通式可写为:y (n)(t) + a n-1y(n-1)(t) + …+ a 1y (1)(t) + a 0y(t) = b m f (m)(t) + b m-1f(m-1)(t) + …+ b 1f (1)(t) + b 0f(t) 方程解的形式: y(t)(全解) =y h (t)(齐次解) +y p (t)(特解)(1)齐次解齐次解是齐次微分方程y(n)+a n-1y(n-1)+…+a1y(1)(t)+a0y(t)=0 的解。
《信号与系统及实验》课程教学大纲
《信号与系统及实验》课程教学大纲一、课程概述1. 课程名称:《信号与系统及实验》2. 课程性质:必修课3. 学时安排:64学时(理论课32学时,实验课32学时)4. 授课对象:电子信息类相关专业本科生二、课程目标1. 理论掌握:通过本课程的学习,学生将掌握信号与系统的基本理论知识,包括信号的表示与处理、系统的特性与分析等方面的内容。
2. 实验能力:学生将具备进行相关实验的基本能力,能够独立完成信号与系统相关的实验设计、实施和数据分析。
3. 应用水平:学生将具备将所学知识应用于实际工程问题的能力,为日后的专业发展打下扎实的基础。
三、教学内容与教学安排1. 信号的基本概念与表示(4学时)2. 信号的操作与运算(4学时)3. 常用信号的分类与性质(4学时)4. 离散时间信号与系统(8学时)5. 连续时间信号与系统(8学时)6. 系统特性与分析方法(8学时)7. 信号与系统的转换(4学时)8. 信号处理器件与应用(4学时)9. 信号与系统实验(32学时)四、教材与参考书1. 主教材:《信号与系统》,作者:Alan V. Oppenheim,Alan S. Willsky,S. Hamid Nawab,出版社:Prentice Hall2. 参考书:- 《信号与系统分析》,作者:张三,出版社:清华大学出版社- 《信号与系统实验》,作者:李四,出版社:电子工业出版社五、考核方式与成绩评定1. 平时成绩(20):包括课堂讨论、作业等2. 实验成绩(30):包括实验报告、实验操作等3. 期中考试(20)4. 期末考试(30)六、教学保障1. 课程实验室:学校配备专门的信号与系统实验室,满足学生的实验需求。
2. 实验设备:提供符合课程要求的实验设备和器材,保证实验教学的质量和安全。
3. 教师队伍:授课教师均具备相关领域的丰富教学与工程实践经验,保证教学质量。
七、教学展望《信号与系统及实验》课程作为电子信息类专业的重要基础课程,旨在培养学生的工程实践能力和创新思维,为学生的专业发展打下扎实的基础。
电子工程优质课信号与系统分析
电子工程优质课信号与系统分析信号与系统是电子工程专业中非常重要的一门课程,它涉及到信号的产生、传输、处理和分析等方面内容,是电子工程师必须掌握的基础知识之一。
本文将对电子工程中的信号与系统分析进行详细介绍和阐述。
一、信号与系统的概念及基本特性信号是一种事物的特征或变化规律在一定时间内的表现,比如声音、图像等。
系统是指将输入信号转换为输出信号的过程,它可以是物理系统、电子系统或者其他形式的系统。
信号与系统分析就是研究信号在系统中传递、处理和改变的过程。
信号与系统分析的基本特性有时域特性和频域特性两个方面。
时域特性是指信号与系统在时间上的表现,包括信号的幅度、相位、波形等;频域特性是指信号与系统在频率上的表现,包括频谱分析、频率响应等。
二、信号与系统的数学表示信号与系统可以用数学模型进行描述和表示。
常见的信号有连续时间信号和离散时间信号两种形式。
连续时间信号是在连续时间域上变化的信号,可以用函数表示;离散时间信号是在离散时间点上变化的信号,可以用数列表示。
系统也可以用数学模型进行描述,常见的有线性时不变系统(LTI系统)。
LTI系统具有线性性质和时不变性质,可以用差分方程或者传递函数表示。
通过对信号与系统的数学表示,可以进行信号与系统的分析和理论推导。
三、信号的频谱分析频谱分析是信号与系统分析中非常重要的一个环节。
信号的频谱分析可以得到信号在频率上的分布情况,从而了解信号中包含的不同频率成分。
常见的频谱分析方法有傅里叶变换、快速傅里叶变换、功率谱密度分析等。
傅里叶变换可以将信号从时域转换到频域,得到信号的频谱图。
功率谱密度分析可以得到信号的能量在不同频率上的分布情况,用于描述信号的频率特性。
四、系统的频率响应系统的频率响应描述了系统对不同频率信号的传递特性。
常见的系统频率响应有幅频响应和相频响应两种形式。
幅频响应是指系统对输入信号幅度的变化情况,描述了系统对不同频率信号的衰减或放大程度。
相频响应是指系统对输入信号相位的变化情况,描述了系统对不同频率信号的相位差异。
信号与系统教案
信号与系统教案第1次课2学时授课时间课题(章节)第一章绪论引言信号概述教学目的与要求:了解信号与常用信号,熟练掌握信号描述的各种方法。
教学重点、难点:对该课程的认识,强调该课的研究方法和要求,以及该课程在今后课程中的作用。
信号的表示方法。
教学方法及师生互动设计:以通信系统为例,导入信号与系统的教学任务,简单介绍通信系统的知识,让学生逐渐进入专业研究,领会该课程在今后专业研究中所发挥的作用。
板书与PPT演示相结合介绍常见信号,并通过若干例子进一步阐述所讲内容,深化理解信号的表示方法。
课堂练、作业:课后小结:按计划完成内容,通过通信系统实例讲解信号与系统课程作用,使学生对专业有进一步了解。
讲解常见信号,使学生能运用表达式、图形等来描述信号。
第2次课2学时授课时间课题(章节)2信号运算教学目的与要求:熟练掌握信号描述的各种方法,及信号的基本变换,能熟练进行信号的运算。
教学重点、难点:信号的变换及计算。
教学方法及师生互动设计:板书与PPT演示相结合渐渐引见信号的加、减、乘、除,和时移、反转等变更。
通过部分题例子来讲解信号是如何变更及计算的,最后布置题,让学生进一步加强对知识的理解,并通过题对其加深理解。
课堂练、作业:补充题课后小结:本节是重点内容,讲解稍慢。
通过多举题,提高学生解题能力。
与学生互动发现学生接收过程偏慢,其缘故原由是学生的基本计算能力还需求提高,应讲解更详尽更慢。
第3次课2学时授课时间课题(章节)3系统概述教学目的与要求:了解系统分类的思路,熟练掌握连续﹑动态﹑时不变线性系统的描述方法和数学模型,对算子法表示系统应能正确运用。
教学重点、难点:掌握线性时不变系统的辨别,强调线性、时不变性、因果性的独立。
教学方法及师生互动设计:先列举部分系统,导入LTI系统,然后列举题,让学生判别LTI系统。
板书与PPT演示相结合介绍其系统的描述方法和数学模型。
课堂练、作业:课后小结:此部分内容稍易,大多数同学在研究过程中思路清晰,理解较为容易。
专科专业课信号与系统
专科专业课信号与系统专科专业课《信号与系统》是电子信息类专业的一门重要课程,它是电子信息科学与技术、通信工程、自动化等专业的基础课之一。
本文将从信号与系统的基本概念、信号的分类、系统的特性以及信号与系统的应用等几个方面进行介绍和分析。
一、信号与系统的基本概念信号是一种随时间、空间或其他独立变量变化的物理量或非物理量。
信号可以分为连续信号和离散信号两种类型。
连续信号是在时间和幅度上连续变化的信号,如音频信号、视频信号等;离散信号是在时间上离散变化的信号,如数字信号、脉冲信号等。
系统是对输入信号进行处理或转换的装置或过程。
系统可以分为线性系统和非线性系统、时不变系统和时变系统、因果系统和非因果系统等不同类型。
线性系统具有叠加性和比例性质,时不变系统的输出只与输入当前时刻的取值有关,因果系统的输出仅依赖于输入信号的过去和当前时刻的取值。
二、信号的分类根据信号的性质和特点,信号可以分为连续信号和离散信号。
连续信号是在时间和幅度上连续变化的信号,可以用函数表示;离散信号是在时间上离散变化的信号,通常用序列表示。
此外,根据信号的能量和功率特性,信号还可以分为能量信号和功率信号。
能量信号在有限时间内的总能量是有限的,如矩形脉冲信号;功率信号在无限时间内的平均功率是有限的,如正弦信号。
三、系统的特性系统的特性主要包括线性性、时不变性、因果性和稳定性。
线性性是指系统满足叠加性和比例性,即输入信号的线性组合经过系统后,输出信号也是对应线性组合的结果。
时不变性是指系统的输入输出关系不随时间的变化而变化,即输入信号的平移导致输出信号的相同平移。
因果性是指系统的输出仅依赖于输入信号的过去和当前时刻的取值,而不依赖于未来时刻的取值。
稳定性是指系统的输出对有界输入有有界输出,不会出现无限增长或发散的情况。
四、信号与系统的应用信号与系统是电子信息类专业的重要基础课程,它在通信工程、自动化、电子电路、图像处理等领域有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号 分析 处理
实验
(仿真)
信号与系统
(原理)
3
“信号与系统”课程知识架构 系统分析 变换域分析
三大
变换
信号分析
系统响应?三大变换? 信号表示 系统描述
时域分析
4
信号分析
y(t)=x(t)*h(t)
系统分析
y[k]=x[k]*h[k]
连续分析
时域抽样定理 频域抽样定理
自适应信号处理(智能信号处理): 是通信、自动控制与人工智能的交叉学科, 目前一个研究方向是解决信号混叠,包括混叠图像的分离问题。 盲分离(信号的复原与重构): 如子带编码在传输过程,如何从丢失部分子带情 况下恢复原信号,如何从观测的地震数据中推求原地震源的状态,如何从CT 断层图像数据中推求人体组织结构情况等等,都属于通过盲分离或半盲分离
达到信号的重构与恢复。特别是独立分量分析(ICA)技术近年来已成为科技界
与公安部门研究的热点和难点。
其他方面: 如信号分形分析,非线性信号处理(人工神经网络信号分析,信号 的混沌分析)等都涉及交叉学科领域的问题,所以为科技界所重视。
9
典型应用(引入频域分析)
原信号的时域波形
原信号的频谱
10
含噪信号的时域波形
离散分析
Fourier变换
时域分析
Laplace变换、Z变换
变换域分析
5
6
电子信息学科发展迅速,课程也要反映当前理
论和技术的发展趋势。但是:
知识没有“有用”与“无用”之分 但有“有用”与“更加有用”之别
7
输入信号x(t)
输出信号y(t)
输入信号x[k]
系统H
输出信号y[k]
(a) 若已知输入x[k]及系统单位脉冲响应h[k],随即求得系统的输出y[k], 称为正问题。
18
x+H y
Analysis 分析
(b) 若已知输出y[k]及h[k]求输入x[k],或者已知y[k]及x[k]求h[k]都需解卷积 (deconvolution),称为逆问题。
Controly[k]及不完整的 控制 x[k] 求h[k], (c) 当给定y[k]及不完整的h[k]求x[k],或者当给定 称为半盲解卷(半盲分离 semi-blind separation),或称为灰盒问题。
17
2、全通系统与最小相位系统
全通系统A(z):
幅度特性|A(ejW)|为常数的系统 相位特性fA(ejW)为非正且单调减。
最小相位系统Hmin(z):
Hmin(z)的零极点都在Z平面单位圆内 相位特性fmin(ejW)具有最大的相位,最小的延迟
任意因果稳定的LTI系统H(z): H(z)= Hmin(z) A(z)
含噪信号的频谱
11
滤波器的幅度响应
滤波后信号的频谱
滤波后信号的波形
12
时间/秒
男生信号时域波形
时间/秒
女生信号时域波形
13ห้องสมุดไป่ตู้
0 0
2000
4000
6000
8000
10000
频率/Hz
男生信号幅度频谱
0 0
2000
4000
6000
8000
10000
频率/Hz
女生信号幅度频谱
14
697 Hz
1
2
3
(d) 当给定y[k],不知x[k]与h[k]的有关信息,则称之为盲解卷(blind Design 设计 deconvolution)或盲分离(blind separation) ,或称为黑盒问题。
8
y+H x
x+ y H
信号处理研究的热点与难点
小波变换: 在语音、图像、通信、雷达、水声、地震、生物医学、机械振动、 化工、湍流分析等领域都已得到有效应用,如信号检测、特征提取、故障诊 断与定位、数据压缩等,多学科关注的热点,也是信号处理的前沿课题。
1. 连续信号的Fourier变换
1 j t x(t ) X ( j ) e d 2 π
1 j st x(t ) X ( s) e ds 2πj j
2. 连续信号的Laplace变换
3. 离散信号的Z变换 1 k 1 x[k ] X ( z ) z dz 2πj C
信号与系统课程综述
1
课程教学体系
新的电子信息学科专业基础课程体系由“电子电路、电 磁场、信号处理”三大课群构成,体现了“三个并重”。
电子电路、电磁场、 信号处理并重 理论教学、实验教学、自主教育并重 基础理论、分析方法、综合技术并重
2
根据信号处理课群进行整体优化,实现原理、 技术和应用的有机结合
A
770 Hz
4
5
6
B
852 Hz
7
8
9
C
941 Hz
*
0
#
D
1209 Hz 1336 Hz 1477 Hz 1633 Hz
电话拨号中的双音多频信号(DTMF)
15
键 ’1’ 的波形
键 ’1’ 的频谱
键 ’2’ 的波形
键 ’2’ 的频谱
DTMF 信号的时域波形和频谱
16
课前复习工程数学内容
1、三大变换