四川省绵阳中学2020中考提前自主招生数学模拟试卷(9套)附解析
绵阳中学自主招生模拟精彩试题
数学素质考察卷一 . 选择题:(本大题共 12 个小题,每个 4 分,共 48 分,将所选答案填涂在机读卡上) 1、以下因式分解中,结果正确的选项是()A. x 2 y y 3 y(x 2 y 2 )B. x 44 (x 22)( x 2)( x2)C. x 2x 1 x( x1 1 )D. 1 (a 2)2(a1)(a 3)x2、“已知二次函数 yax 2 bxc 的图像以下图, 试判断 a b c 与0 的大小 . ”一起学是这样回答的: “由图像可知:当 x 1 时 y0 ,所以 a b c0 . ”他这类说明问题的方式表现的数学思想方法叫做()A. 换元法B. 配方法C. 数形联合法D. 分类议论法3、已知实数 x 知足 x 21 x 14,则 4 1 的值是()x 2xx或 2D.-2 或 1 4、若直线 y2x 1与反比率函数 yk的图像交于点 P(2, a) ,则反比率函数yk的图像还必过xx 点( )A. (-1,6)B.(1,-6)C.(-2,-3)D.(2,12)5、现规定一种新的运算: “ * ”: m * n ( m ) nmn,那么5 *1=()2 2A.546、一副三角板, 以下图叠放在一起, 则 AOBCOD =()A.180 °B.150 °C.160 °D.170 °7、某中学对 2005 年、 2006 年、 2007 年该校住校人数统计时发现,2006 年比 2005 年增添 20%,2007 年比 2006 年减少 20%,那么 2007 年比 2005 年()A. 不增不减B. 增添 4%C. 减少 4%D. 减少 2%8、一半径为8 的圆中,圆心角 θ 为锐角,且3,则角 θ 所对的弦长等于()2C. 8 29、一支长为 13cm 的金属筷子(粗细忽视不计),放入一个长、宽、高分别是 4cm 、 3cm 、16cm 的长方体水槽中,那么水槽起码要放进()深的水才能完好吞没筷子。
【2020-2021自招】四川绵阳中学实验学校初升高自主招生数学模拟试卷【4套】【含解析】
第一套:满分150分2020-2021年四川绵阳中学实验学校初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。
【2020-2021自招】四川省绵阳南山中学初升高自主招生数学模拟试卷【4套】【含解析】
第一套:满分150分2020-2021年四川省绵阳南山中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。
2020年四川省绵阳市中考数学模拟测试卷
2020年四川省绵阳市中考数学模拟测试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)36的算术平方根是()A.±6B.6C.﹣6D.±182.(3分)纳米是非常小的长度单位,0.22纳米是0.00000000022米,将0.00000000022用科学记数法表示为()A.0.22×10﹣9B.2.2×10﹣10C.22×10﹣11D.0.22×10﹣8 3.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.4.(3分)下列几何体中,主视图和左视图相同的是()A.B.C.D.5.(3分)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y 轴上,则点C的坐标是()A.(﹣5,4)B.(0,4)C.(﹣5,3)D.(﹣5,5)6.(3分)的相反数的倒数是()A.B.C.D.7.(3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数小于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.乙运动员的成绩比甲运动员的成绩稳定8.(3分)若2m=a,32n=b,m,n为正整数,则23m+10n的值等于()A.a3b2B.a2b3C.a3+b2D.3a+2b9.(3分)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55B.72C.83D.8910.(3分)勾股定理有着悠久的历史,它曾引起很多人的兴趣.英国佩里加(H.Perigal,1801﹣1898)用“水车翼轮法”(图1)证明了勾股定理.该证法是用线段QX,ST,将正方形BIJC分割成四个全等的四边形,再将这四个四边形和正方形ACYZ拼成大正方形AEFB(图2).若AD=,tan∠AON=,则正方形MNUV的周长为()A.B.18C.16D.11.(3分)如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a ﹣2b+c<0;③b2﹣4ac>0;④当y<0时,x<﹣1或x>2.其中正确的有()A.4个B.3个C.2个D.1个12.(3分)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE是直角三角形时,t的值为()A.4或5B.4或7C.4或5或7D.4或7或9二.填空题(共6小题,满分18分,每小题3分)13.(3分)分解因式:3y2﹣12=.14.(3分)将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=.15.(3分)已知代数式2a2b n+3与﹣3a m﹣1b2是同类项,则m+n=.16.(3分)某学校为了丰富学生的课外活动,准备购买一批体育器材,已知A类器材比B 类器材的单价高10元,用300元购买A类器材与用200元购买B类器材的数量相同,则B类器材的单价为元.17.(3分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D,若AB=4,AC=3,则cos∠BAD的值为.18.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D是AC的中点,直角∠EDF的两边分别交AB、BC于点E、F,给出以下结论:①AE=BF;②S四边形BEDF=S;③EF=BD;④∠BFE=∠CDF;⑤△DEF是等腰直角三角形,当∠EDF在△ABC △ABC内绕顶点D旋转时(点E不与点A、B重合),上述结论始终成立的有个.三.解答题(共7小题,满分86分)19.(16分)(1)计算:|2﹣|+()0+3tan30°+(﹣1)2019﹣()﹣1(2)先化简,再求值:,其中x满足x2﹣2x﹣2=0.20.(11分)某校组织代表队参加市“与经典同行”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分).A组:75≤x<80;B组:80≤x<85;C 组:85≤x<90;D组:90≤x<95;E组:95≤x<100,并绘制如下两幅不完整的统计图:请根据图中信息,解答下列问题:(1)参加初赛的选手共有名,请补全频数分布直方图;(2)扇形统计图中,E组人数占参赛选手的百分比是多少?它对应的圆心角是多少度?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中两名女生的概率.21.(11分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.(1)求该文具店购进A、B两种钢笔每支各多少元?(2)经统计,B种钢笔售价为30元时,每月可卖64支;每涨价3元,每月将少卖12支,求该文具店B种钢笔销售单价定为多少元时,每月获利最大?最大利润是多少元?22.(11分)如图,在平面直角坐标系xOy中,直线y=x﹣2与双曲线y=(k≠0)相交于A,B两点,且点A的横坐标是3.(1)求k的值;(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线y=x﹣2交于点M,与双曲线y=(k≠0)交于点N,若点M在N右边,求n的取值范围.23.(11分)如图,AB为⊙O的直径,ABCD为圆的内接四边形,CD=BC.(1)求证:OC∥AD;(2)若AB=5,AC=2,求AD的长.24.(12分)如图1,抛物线y1=﹣x2﹣tx﹣t+2与x轴交于点A,B(点A在点B的左侧),过y轴上的点C(0,4),直线y2=kx+3交x轴,y轴于点M、N,且ON=OC.(1)求出t与k的值.(2)抛物线的对称轴交x轴于点D,在x轴上方的对称轴上找一点E,使△BDE与△AOC 相似,求出DE的长.(3)如图2,过抛物线上动点G作GH⊥x轴于点H,交直线y2=kx+3于点Q,若点Q'是点Q关于直线MG的对称点,是否存在点G(不与点C重合),使点Q'落在y轴上?若存在,请直接写出点G的横坐标;若不存在,请说明理由.25.(14分)如图1,平面内有一点P到△ABC的三个顶点的距离分别为P A、PB、PC,若有P A2=PB2+PC2则称点P为△ABC关于点A的勾股点.(1)如图2,在4×5的网格中,每个小正方形的长均为1,点A、B、C、D、E、F、G 均在小正方形的顶点上,则点D是△ABC关于点的勾股点;在点E、F、G三点中只有点是△ABC关于点A的勾股点.(2)如图3,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,①求证:CE=CD;②若DA=DE,∠AEC=120°,求∠ADE的度数.(3)矩形ABCD中,AB=5,BC=6,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,①若△ADE是等腰三角形,求AE的长;②直接写出AE+BE的最小值.试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)36的算术平方根是()A.±6B.6C.﹣6D.±18解:36的平方根是±6,36的算术平方根是6,故选:B.2.(3分)纳米是非常小的长度单位,0.22纳米是0.00000000022米,将0.00000000022用科学记数法表示为()A.0.22×10﹣9B.2.2×10﹣10C.22×10﹣11D.0.22×10﹣8解:0.00000000022=2.2×10﹣10.故选:B.3.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.解:A、是轴对称图形,也是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项正确.故选:D.4.(3分)下列几何体中,主视图和左视图相同的是()A.B.C.D.解:A、主视图与左视图都是相同的等腰三角形,符合题意;B、主视图与左视图都是长方形,但形状不一定相同,不合题意;C、主视图是两个有公共边的长方形,左视图是一个长方形,不合题意;D、横放的圆柱的主视图是长方形,左视图是圆,不合题意;故选:A.5.(3分)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y 轴上,则点C的坐标是()A.(﹣5,4)B.(0,4)C.(﹣5,3)D.(﹣5,5)解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD===4,∴点C的坐标是:(﹣5,4).故选:A.6.(3分)的相反数的倒数是()A.B.C.D.解:=,的相反数是﹣,﹣的倒数是﹣.故选:D.7.(3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数小于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.乙运动员的成绩比甲运动员的成绩稳定解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,此选项正确,不符合题意;B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,此选项错误,符合题意;C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,此选项正确,不符合题意;D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,所以此选项正确,不符合题意.故选:B.8.(3分)若2m=a,32n=b,m,n为正整数,则23m+10n的值等于()A.a3b2B.a2b3C.a3+b2D.3a+2b解:∵32n=b,∴25n=b,∴210n=b2,∴23m+10n=(2m)3•210n=a3b2,故选:A.9.(3分)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55B.72C.83D.89解:设该村共有x户,则母羊共有(5x+17)只,由题意知,解得:<x<12,∵x为整数,∴x=11,则这批种羊共有11+5×11+17=83(只),故选:C.10.(3分)勾股定理有着悠久的历史,它曾引起很多人的兴趣.英国佩里加(H.Perigal,1801﹣1898)用“水车翼轮法”(图1)证明了勾股定理.该证法是用线段QX,ST,将正方形BIJC分割成四个全等的四边形,再将这四个四边形和正方形ACYZ拼成大正方形AEFB(图2).若AD=,tan∠AON=,则正方形MNUV的周长为()A.B.18C.16D.解:延长QN交AE于H.由题意AO=AD=DE=,AE=2,在Rt△AOH中,∵tan∠AOH==,∴AH=,∴OH==,DH=AH=AD=,∵△NHD∽△HAO,∴==,∴DN=1,HN=,∴ON=OH﹣HN=5,∵OM=DN=1,∴MN=5﹣1=4,∴正方形MNUV的周长为16,故选:C.11.(3分)如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a ﹣2b+c<0;③b2﹣4ac>0;④当y<0时,x<﹣1或x>2.其中正确的有()A.4个B.3个C.2个D.1个解:∵二次函数y=ax2+bx+c(a≠0)的对称轴为x=1,∴﹣=1,得2a+b=0,故①正确;当x=﹣2时,y=4a﹣2b+c<0,故②正确;该函数图象与x轴有两个交点,则b2﹣4ac>0,故③正确;∵二次函数y=ax2+bx+c(a≠0)的对称轴为x=1,点B坐标为(﹣1,0),∴点A(3,0),∴当y<0时,x<﹣1或x>3,故④错误;故选:B.12.(3分)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE是直角三角形时,t的值为()A.4或5B.4或7C.4或5或7D.4或7或9解:在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵D为BC中点,∴BD=2cm,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=tcm,BE=BC﹣AE=(8﹣t)cm,当∠EDB=90°时,则有AC∥ED,∵D为BC中点,∴E为AB中点,此时AE=4cm,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故选:D.二.填空题(共6小题,满分18分,每小题3分)13.(3分)分解因式:3y2﹣12=3(y+2)(y﹣2).解:3y2﹣12=3(y2﹣4)=3(y+2)(y﹣2),故答案为:3(y+2)(y﹣2).14.(3分)将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=58°.解:由折叠可得,∠2=∠CEF,∵∠1=64°,∴∠2=(180°﹣64°)=58°,故答案为:58°.15.(3分)已知代数式2a2b n+3与﹣3a m﹣1b2是同类项,则m+n=2.解:∵代数式2a2b n+3与﹣3a m﹣1b2是同类项,∴m﹣1=2,n+3=2,解得:m=3,n=﹣1,则m+n=3﹣1=2.故答案为:2.16.(3分)某学校为了丰富学生的课外活动,准备购买一批体育器材,已知A类器材比B 类器材的单价高10元,用300元购买A类器材与用200元购买B类器材的数量相同,则B类器材的单价为20元.解:设B类器材的单价为x元,∴A类器材的单价为(x+10)元,∴,解得:x=20,经检验,x=20是原分式方程的解,故答案为:2017.(3分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D,若AB=4,AC=3,则cos∠BAD的值为.解:∵在△ABC中,∠BAC=90°,AB=4,AC=3,∴BC==5.∵AD⊥BC,∴AD==,∴cos∠BAD===.故答案为:.18.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D是AC的中点,直角∠EDF的两边分别交AB、BC于点E、F,给出以下结论:①AE=BF;②S四边形BEDF=S;③EF=BD;④∠BFE=∠CDF;⑤△DEF是等腰直角三角形,当∠EDF在△ABC △ABC内绕顶点D旋转时(点E不与点A、B重合),上述结论始终成立的有4个.解:∵ED⊥FD,BD⊥AC,∴∠BDE+∠BDF=90°,∠BDF+∠FDC=90°,∴∠BDE=∠FDC,∵B、E、D、F四点共圆,∴∠BFE=∠BDE,∴∠BFE=∠CDF,选项④正确;∵△ABC为等腰直角三角形,BD⊥AC,∴∠EBD=∠C=45°,BD=CD,在△BED和△CFD中,,∴△BED≌△CFD(ASA),∴BE=CF,∴AE=BF,选项①正确;DE=DF,∴△DEF为等腰直角三角形,选项⑤正确;∴S四边形BEDF=S△BED+S△BDF=S△CFD+S△BDF=S△BDC=S△ABC,选项②正确.∵BD是定值,EF随DF的变化而变化,只有当DF⊥BC时,EF=BD,∴③不正确上述结论中始终成立的有4个.故答案为:4.三.解答题(共7小题,满分86分)19.(16分)(1)计算:|2﹣|+()0+3tan30°+(﹣1)2019﹣()﹣1(2)先化简,再求值:,其中x满足x2﹣2x﹣2=0.解:(1)原式=2﹣+1+3×﹣1﹣2=2﹣+1+﹣1﹣2=0;(2)原式=•=•=•=,∵x2﹣2x﹣2=0.∴x2=2x+2,∴原式===.20.(11分)某校组织代表队参加市“与经典同行”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分).A组:75≤x<80;B组:80≤x<85;C 组:85≤x<90;D组:90≤x<95;E组:95≤x<100,并绘制如下两幅不完整的统计图:请根据图中信息,解答下列问题:(1)参加初赛的选手共有40名,请补全频数分布直方图;(2)扇形统计图中,E组人数占参赛选手的百分比是多少?它对应的圆心角是多少度?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中两名女生的概率.解:(1)参加初赛的选手共有:8÷20%=40(人),B组有:40×25%=10(人),频数分布直方图补充如下:故答案为:40;(2)E组人数占参赛选手的百分比是:×100%=15%;E组对应的圆心角度数是:360°×15%=54°;(3)根据题意画树状图如下:由上图可以看出,所有可能出现的结果有l2种,这些结果出现的可能性相等,选中两名女生的结果有2种,则选中两名女生的概率是==.21.(11分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.(1)求该文具店购进A、B两种钢笔每支各多少元?(2)经统计,B种钢笔售价为30元时,每月可卖64支;每涨价3元,每月将少卖12支,求该文具店B种钢笔销售单价定为多少元时,每月获利最大?最大利润是多少元?解:(1)设文具店购进A种钢笔每支m元,购进B种钢笔每支n元,根据题意,得:,解得:,答:文具店购进A种钢笔每支15元,购进B种钢笔每支20元;(2)设B种钢笔每支售价为x元,每月获取的总利润为W,则W=(x﹣20)(64﹣12×)=﹣4x2+264x﹣3680=﹣4(x﹣33)2+676,∵a=﹣4<0,∴当x=33时,W取得最大值,最大值为676,答:该文具店B种钢笔销售单价定为33元时,每月获利最大,最大利润是676元.22.(11分)如图,在平面直角坐标系xOy中,直线y=x﹣2与双曲线y=(k≠0)相交于A,B两点,且点A的横坐标是3.(1)求k的值;(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线y=x﹣2交于点M,与双曲线y=(k≠0)交于点N,若点M在N右边,求n的取值范围.解:(1)令x=3,代入y=x﹣2,则y=1,∴A(3,1),∵点A(3,1)在双曲线y=(k≠0)上,∴k=3;(2)联立得:,解得:或,即B(﹣1,﹣3),如图所示:当点M在N右边时,n的取值范围是n>1或﹣3<n<0.23.(11分)如图,AB为⊙O的直径,ABCD为圆的内接四边形,CD=BC.(1)求证:OC∥AD;(2)若AB=5,AC=2,求AD的长.(1)证明:如图,连接OD.∵CD=BC,∴∠DOC=∠BOC,∴∠BOC=∠BOD,∵∠DAB=∠BOD,∴∠DAB=∠BOC,∴OC∥AD;(2)解:如图,连接BD,则OC⊥BD,垂足为E,E为BD中点.∵AB为⊙O的直径,∴∠ACB=90°,∠ADB=90°,∵AB=5,AC=2,∴BC==.设OE=x,则CE=﹣x.∵BE2=OB2﹣OE2=BC2﹣CE2,∴()2﹣x2=5﹣(﹣x)2,解得x=,∴BE2=()2﹣()2=4,∴BE=2,∴BD=2BE=4,∴AD==3.24.(12分)如图1,抛物线y1=﹣x2﹣tx﹣t+2与x轴交于点A,B(点A在点B的左侧),过y轴上的点C(0,4),直线y2=kx+3交x轴,y轴于点M、N,且ON=OC.(1)求出t与k的值.(2)抛物线的对称轴交x轴于点D,在x轴上方的对称轴上找一点E,使△BDE与△AOC 相似,求出DE的长.(3)如图2,过抛物线上动点G作GH⊥x轴于点H,交直线y2=kx+3于点Q,若点Q'是点Q关于直线MG的对称点,是否存在点G(不与点C重合),使点Q'落在y轴上?若存在,请直接写出点G的横坐标;若不存在,请说明理由.解:(1)将点C(0,4)代入抛物线y1=﹣x2﹣tx﹣t+2,得,﹣t+2=4,∴t=﹣2,∴抛物线y1=x2+x+4,∵C(0,4),ON=OC,∴N(﹣4,0),将N(﹣4,0)代入直线y2=kx+3,得,﹣4k+3=0,∴,∴直线,∴t的值为﹣2,k的值为;(2)如图1,连接BE,在y1=﹣x2++4中,当y=0时,x1=﹣1,x2=3,∴A(﹣1.0),B(3,0),对称轴为x=﹣=1,∴D(1,0),∴AO=1,CO=4,BD=2,∵∠AOC=∠EDB=90°,①∴当△AOC∽△BDE时,∴,∴,∴DE=8,②当△AOC∽△EDB时,∴,∴,∴,综上所述,DE的长为8或.(3)如图2﹣1,点Q′是点Q关于直线MG的对称点,且点Q′在y轴上时,由轴对称的性质知,QM=Q'M,QG=Q'G,∠Q'MG=∠QMG,∵QG⊥x轴,∴QG∥y轴,∴∠Q'MG=∠QGM,∴∠QMG=∠QGM,∴QM=QG,∴QM=Q'M=QG=Q'G,∴四边形QMQ'G为菱形,设G(a,﹣a2++4),则Q(a,a+3),过点G作GK⊥y轴于点K,∵GQ'∥QN,∴∠GQ'K=∠NMO,在Rt△NMO中,NM==5,∴sin∠NMO=,∴sin∠GQ'K=,①当点G在直线MN下方时,QG=Q'G=a2﹣﹣1,∴,解得,a1=,a2=,②如图2﹣2,当点G在直线MN上方时,QG=Q'G=﹣(),∴,解得,,,综上所述,点G的横坐标为,,或.25.(14分)如图1,平面内有一点P到△ABC的三个顶点的距离分别为P A、PB、PC,若有P A2=PB2+PC2则称点P为△ABC关于点A的勾股点.(1)如图2,在4×5的网格中,每个小正方形的长均为1,点A、B、C、D、E、F、G 均在小正方形的顶点上,则点D是△ABC关于点B的勾股点;在点E、F、G三点中只有点F是△ABC关于点A的勾股点.(2)如图3,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,①求证:CE=CD;②若DA=DE,∠AEC=120°,求∠ADE的度数.(3)矩形ABCD中,AB=5,BC=6,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,①若△ADE是等腰三角形,求AE的长;②直接写出AE+BE的最小值.解:(1)∵DA2=12+22=5,DB2=12+32=10,DC2=DA2=5∴DB2=DC2+DA2∴点D是△ABC关于点B的勾股点∵EA2=42+42=32,EB2=22+52=29,EC2=4∴点E不是△ABC的勾股点∵F A2=32+42=25,FB2=22+42=20,FC2=12+22=5∴F A2=FB2+FC2∴点F是△ABC关于点A的勾股点∵GA2=42+22=20,GB2=22+32=13,GC2=22+22=8∴点G不是△ABC的勾股点故答案为:B;F.(2)①证明:∵点C是△ABE关于点A的勾股点∴CA2=CB2+CE2∵四边形ABCD是矩形∴AB=CD,AD=BC,∠ADC=90°∴CA2=AD2+CD2=CB2+CD2∴CB2+CE2=CB2+CD2∴CE=CD②设∠CED=α,则∠CDE=∠CED=α∴∠ADE=∠ADC﹣∠CDE=90°﹣α∵∠AEC=120°∴∠AED=∠AEC﹣∠CED=120°﹣α∵DA=DE∴∠DAE=∠DEA=120°﹣α∵∠DAE+∠DEA+∠ADE=180°∴2(120°﹣α)+(90°﹣α)=180°解得:α=50°∴∠ADE=90°﹣50°=40°(3)①∵矩形ABCD中,AB=5,BC=6∴AD=BC=6,CD=AB=5∵点C是△ABE关于点A的勾股点∴CE=CD=5i)如图1,若DE=DA,则DE=6过点E作MN⊥AB于点M,交DC于点N∴∠AME=∠MND=90°∴四边形AMND是矩形∴MN=AD=6,AM=DN设AM=DN=x,则CN=CD﹣DN=5﹣x∵Rt△DEN中,EN2+DN2=DE2;Rt△CEN中,EN2+CN2=CE2∴DE2﹣DN2=CE2﹣CN2∴62﹣x2=52﹣(5﹣x)2解得:x=∴EN=,AM=DN=∴ME=MN﹣EN=6﹣∴Rt△AME中,AE=ii)如图2,若AE=DE,则E在AD的垂直平分线上过点E作PQ⊥AD于点P,交BC于点Q∴AP=DP=AD=3,∠APQ=∠PQC=90°∴四边形CDPQ是矩形∴PQ=CD=5,CQ=PD=3∴Rt△CQE中,EQ=∴PE=PQ﹣EQ=1∴Rt△APE中,AE=iii)如图3,若AE=AD=6,则AE2+CE2=AD2+CD2=AC2∴∠AEC=90°取AC中点O,则点A、B、C、D在以O为圆心、OA为半径的⊙O上∴点E也在⊙O上∴点E不在矩形ABCD内部,不符合题意综上所述,若△ADE是等腰三角形,AE的长为或.②在CB上截取CH=,连接EH∴∵∠ECH=∠BCE∴△ECH∽△BCE∴∴EH=BE∴AE+BE=AE+EH∴当点A、E、H在同一直线上时,AE+BE=AH取得最小值∵BH=BC﹣CH=6﹣∴AH=∴AE+BE的最小值为.。
绵阳中学自主招生模拟试题及答案(数-理-化)
数学素质考查卷一.选择题:(本大题共12个小题,每个4分,共48分,将所选答案填涂在机读卡上)F 列因式分解中,结果正确的是(1、2、 3、 4、 5、 6、 7、 8、 9、 2 3 2 2 A. x y —y y(x -y )2 1 C. x 「x -1 =x(x —1 ) x B. x 4 -4 =(x 2 2)(x — . 2)(x /2)2D. 1—(a_2)二(a_1)(a_3) "已知二次函数 y = ax 2 bx c 的图像如图所示,试判断 a b c 与 0的大小•”一同学是这样回答的:“由图像可知:当x =1时y :::0 , 所以a b c <0. ”他这种说明问题的方式体现的数学思想方法叫 做( ) A.换元法 C.数形结合法 已知实数x 满足x 2A.-2 1 -—x = 4 , x xB.1B.配方法 D.分类讨论法 1 则4 -―的值是( xC.-1 或 2 若直线y =2x -1与反比例函数y 芒的图像交于点P (2, a ),则反比例函数 x B.(1,-6) A. (-1,6)现规定一种新的运算:“ * ”: m * n * A. 54一副三角板,如图所示叠放在一起,则 A.180 ° B.150 ° B.5 C.(-2,-3) m)n m 』,那么| C.3 AOB COD C.160 ° =( D.170 某中学对2005年、2006年、2007年该校住校人数统计时发现, 年比2006年减少20% 那么2007年比2005年( A.不增不减 B.增加4 % 半径为 A.8一支长为 体水槽中, A.13cm 8的圆中,圆心角0为锐角,且 B.1013cm 的金属筷子(粗细忽略不计) 那么水槽至少要放进( B. 4 10 cm D.-2 或 1k的图像还必过点 x D.(2,12)D.92006年比2005年增加20% 2007 ) C.减少4 % 3 二二宁,则角&所对的弦长等于( D.减少2 %C. 8.2D.16,放入一个长、宽、高分别是 )深的水才能完全淹没筷子。
四川省绵阳市 中考数学模拟试卷含答案解析
四川省绵阳市中考数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.下列四个数中,比0大的是()A.﹣B.﹣C.0 D.|﹣2|2.下列计算正确的是()A.2x+x=x3B.x3÷x=x2C.(﹣2x2y)3•4x﹣3=﹣32x2y3 D.(x﹣y)2=x2﹣y23.与如图所示的三视图对应的几何体是()A.B.C.D.4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10 D.3.4×10﹣115.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0 B.﹣3 C.﹣2 D.﹣16.下列说法中正确的是()A.四边相等的四边形是菱形B.一组对边相等,另一组对边平行的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相平分的四边形是菱形7.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tanB的值为()A.B.C.D.8.清明小长假期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩,已知甲地到乙地有2条公路,乙地到丙地有3条公路,每一条公路的长度如图,梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是()A.B.C.D.9.已知a、b为两个连续整数,且a<﹣<b,则a+b=()A.4 B.5 C.6 D.810.如图,在正五边形ABCDE中,∠ACD=()A.30°B.36°C.40°D.72°11.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使点C和点A重合,则折痕EF的长为()A.B.C.15 D.1612.如图,已知在⊙O中,AB=4,AF=6,AC是直径,AC⊥BD于F,图中阴影部分的面积是()A.π﹣2B.π﹣2C.π﹣4D.π﹣4二.填空题(本大题共6小题,每小题3分,共18分)13.因式分解:x3﹣9x=.14.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=.15.如图,直线a∥b,点B在直线b上,∠1=38°,∠ABC=90°,则∠2=.16.绵阳市在改造剑南路西段工程中为治理污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽量减少施工对城市交通所造成的影响,后来每天的工作效率比原计划提高20%,结果共用30天完成这一任务.如果设原计划每天铺设x米管道,那么根据题意可列方程.17.已知M,N两点关于y轴对称,且点M在双曲线y=上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a﹣b)x的顶点坐标为.18.如图,在△ABC中,AB=AC=3,高BD=,AE平分∠BAC,交BD于点E,则DE的长为.三.解答题(本大题共7小题,共86分)19.(1)计算:(sin30°)﹣1﹣(2015)0+|1﹣|﹣.(2)解不等式组:,并判断x=是否为该不等式组的解.20.某中学在“五月份学习竞赛月”中举办了演讲、书法、作文、手抄报、小品、漫画六项比赛(2013•红河州模拟)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地1800元/台1600元/台B地1600元/台1200元/台(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.22.关于x的一元二次方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β.(1)求k的取值范围;(2)若α+β+αβ=6,求(α﹣β)2+3αβ﹣5的值.23.如图,AB为⊙O的直径,BC⊥AB,CP切⊙O于点P,连OC,交⊙O于N,交BP于E,连BN,AP.(1)求证:BN平分∠PBC.(2)连AC交BP于M,若AB=BC=4,求tan∠PAC的值.24.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.25.已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD.(1)如图1,若AB=BC=AC,求证:AE=EF;(2)如图2,若AB=BC,(1)中的结论是否仍然成立?证明你的结论;(3)如图3,若AB=kBC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出AE与EF 之间的数量关系,并证明.四川省绵阳市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.下列四个数中,比0大的是()A.﹣B.﹣C.0 D.|﹣2|【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:因为|﹣2|=2,所以根据实数比较大小的方法,可得2,所以比0大的是|﹣2|.故选:D.【点评】此题主要考查了实数比较大小的方法,要熟练掌握.2.下列计算正确的是()A.2x+x=x3B.x3÷x=x2C.(﹣2x2y)3•4x﹣3=﹣32x2y3 D.(x﹣y)2=x2﹣y2【考点】整式的混合运算.【专题】计算题.【分析】A、利用合并同类项法则合并得到结果,即可做出判断;B、利用同底数幂的除法法则计算,即可做出判断;C、先利用积的乘方及幂的乘方运算法则计算,再利用单项式乘以单项式的法则计算,即可做出判断;D、利用差的完全平方公式展开,即可做出判断.【解答】解:A、2x+x=3x,本选项错误;B、x3÷x=x3﹣1=x2,本选项正确;C、(﹣2x2y)3•4x﹣3=﹣8x6y3•4x﹣3=﹣32x3y3,本选项错误;D、(x﹣y)2=x2﹣2xy+y2,本选项错误,故选B【点评】此题考查了整式的混合运算,涉及的知识有:完全平方公式,合并同类项法则,积的乘方及幂的乘方运算法则,以及同底数幂的除法法则,熟练掌握公式及法则是解本题的关键.3.与如图所示的三视图对应的几何体是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从正视图可以排除C,故C选项错误;从左视图可以排除A,故A选项错误;从左视图可以排除D,故D选项错误;符合条件的只有B.故选:B.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认知能力,可通过排除法进行解答.4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10 D.3.4×10﹣11【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0 B.﹣3 C.﹣2 D.﹣1【考点】在数轴上表示不等式的解集.【专题】计算题.【分析】首先根据不等式的性质,解出x≤,由数轴可知,x≤﹣1,所以,=﹣1,解出即可;【解答】解:不等式2x﹣a≤﹣1,解得,x≤,由数轴可知,x≤﹣1,所以,=﹣1,解得,a=﹣1;故选:D.【点评】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.下列说法中正确的是()A.四边相等的四边形是菱形B.一组对边相等,另一组对边平行的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相平分的四边形是菱形【考点】菱形的判定.【分析】根据菱形的判定:一组邻边相等的平行四边形是菱形;四条边都相等的四边形是菱形.对角线互相垂直的平行四边形是菱形分别进行分析即可.【解答】解:A、四边相等的四边形是菱形,说法正确;B、一组对边相等,另一组对边平行的四边形是菱形,说法错误;C、对角线互相垂直的四边形是菱形,说法错误;D、对角线互相平分的四边形是菱形,说法错误;故选:A.【点评】此题主要考查了菱形的判定,关键是掌握菱形的判定定理.7.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tanB的值为()A.B.C.D.【考点】解直角三角形.【专题】计算题.【分析】在直角三角形ACM中,利用锐角三角函数定义表示出sin∠CAM,由已知sin∠CAM的值,设CM=3x,得到AM=5x,根据勾股定理求出AC=4x,由M为BC的中点,得到BC=2CM,表示出BC,在直角三角形ABC中,利用锐角三角函数定义表示出tanB,将表示出的AC与BC代入即可求出值.【解答】解:在Rt△ACM中,sin∠CAM==,设CM=3x,则AM=5x,根据勾股定理得:AC==4x,又M为BC的中点,∴BC=2CM=6x,在Rt△ABC中,tanB===.故选B【点评】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握锐角三角函数定义是解本题的关键.8.清明小长假期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩,已知甲地到乙地有2条公路,乙地到丙地有3条公路,每一条公路的长度如图,梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】依据题意先分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:如图所示:由树状图可知共有2×3=6种可能,这条路线正好是最短路线的有1种,所以概率是.故选:A.【点评】此题主要考查了列表法求概率,正确列举出所有可能是解题关键.9.已知a、b为两个连续整数,且a<﹣<b,则a+b=()A.4 B.5 C.6 D.8【考点】估算无理数的大小.【分析】先估算出与的取值范围,再求出a,b的值,进而可得出结论.【解答】解:∵16<20<25,∴4<<5.∵4<5<9,∴2<<3,∴﹣3<﹣<﹣2,∴4﹣3<﹣<5﹣2,即1<﹣<3,∵a、b为两个整数,∴a=2,b=3,∴a+b=5.故选:B.【点评】本题考查的是估算无理数的大小,熟知用有理数逼近无理数,求无理数的近似值是解答此题的关键.10.如图,在正五边形ABCDE中,∠ACD=()A.30°B.36°C.40°D.72°【考点】全等三角形的判定与性质;等腰三角形的性质;多边形内角与外角.【分析】根据正多边形的性质求出AB=BC=AE=DE,∠EAB=∠B=∠ACD=∠CDE=∠E,根据多边形内角和定理求出∠B=∠BCD=108°,根据等腰三角形性质和三角形内角和定理求出∠BAC=∠BCA=36°,代入∠ACD=∠BCD﹣∠BCA求出即可.【解答】解:∵五边形ABCDE是正五边形,∴AB=BC=AE=DE,∠EAB=∠B=∠ACD=∠CDE=∠E,∴∠B=∠BCD==108°,∴∠BAC=∠BCA=(180°﹣∠B)=36°,∴∠ACD=∠BCD﹣∠BCA=108°﹣36°=72°,故选D.【点评】本题考查了等腰三角形的性质,多边形的内角和定理,正多边形的性质的应用,解此题的关键是求出∠BCD和∠ACB的度数,注意:正多边形的所有边都相等,所有角都相等.11.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使点C和点A重合,则折痕EF的长为()A.B.C.15 D.16【考点】翻折变换(折叠问题).【分析】先连接AF,由于矩形关于EF折叠,所以EF垂直平分AC,那么就有AF=CF,又ABCD是矩形,那么AB=CD,AD=BC,在Rt△ABF中,(设CF=x),利用勾股定理可求出CF=,在Rt△ABC中,利用勾股定理可求AC=5,在Rt△COF中再利用勾股定理可求出OF=,同理可求OE=,所以EF=OE+OF=.【解答】解:连接AF.∵点C与点A重合,折痕为EF,即EF垂直平分AC,∴AF=CF,AO=CO,∠FOC=90°.又∵四边形ABCD为矩形,∴∠B=90°,AB=CD=3,AD=BC=4.设CF=x,则AF=x,BF=4﹣x,在Rt△ABC中,由勾股定理得AC2=BC2+AB2=52,且O为AC中点,∴AC=5,OC=AC=.∵AB2+BF2=AF2∴32+(4﹣x)2=x2∴x=.∵∠FOC=90°,∴OF2=FC2﹣OC2=()2﹣()2=()2∴OF=.同理OE=.即EF=OE+OF=.故选:A.【点评】该题主要考查了翻折变换的性质及其应用问题;解题的关键是作辅助线,灵活运用翻折变换的性质、勾股定理等几何知识点来分析、判断、推理或解答.12.如图,已知在⊙O中,AB=4,AF=6,AC是直径,AC⊥BD于F,图中阴影部分的面积是()A.π﹣2B.π﹣2C.π﹣4D.π﹣4【考点】扇形面积的计算.【分析】利用勾股定理求得BD=2BF=4,连接OB、OD、BC,先求得∠ABC=90°,进而根据射影定理=S 求得FC=2,从而求得直径的长,根据余弦函数求得∠BAF=30°,进而得出∠BOD=120°,最后根据S阴影﹣S△BOD即可求得阴影的面积.扇形【解答】解:∵AC是直径,AC⊥BD于F,∴BF=DF,=,∴∠BAC=∠DAC,在RT△ABF中,BF==2,∴BD=2BF=4,连接OB、OD、BC,∵AC是直径,∴∠ABC=90°,∴BF2=AF•FC,即(2)2=6FC,∴FC=2,∴直径AC=AF+FC=6+2=8,∴⊙O 的半径为4,∵AB=4,AF=6,∴cos ∠BAF===, ∴∠BAF=30°,∴∠BAD=60°,∴∠BOD=120°,∵OC=4,FC=2,∴OF=2,∴S 阴影=S 扇形﹣S △BOD =﹣×4×2=π﹣4;故选D .【点评】本题考查了垂径定理,扇形的面积、及直角三角函数和勾股定理等知识,难度适中.二.填空题(本大题共6小题,每小题3分,共18分)13.因式分解:x 3﹣9x= x (x+3)(x ﹣3) .【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再利用平方差公式进行分解.【解答】解:x 3﹣9x,=x (x 2﹣9),=x (x+3)(x ﹣3).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.14.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=125°.【考点】作图—基本作图.【分析】根据角平分线的作法可得AD平分∠CAB,再根据三角形内角和定理可得∠ADB的度数.【解答】解:由题意可得:AD平分∠CAB,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°﹣20°﹣35°=125°.故答案为:125°.【点评】此题主要考查了角平分线的作法以及角平分线的性质,熟练根据角平分线的性质得出∠ADB 度数是解题关键.15.如图,直线a∥b,点B在直线b上,∠1=38°,∠ABC=90°,则∠2=52°.【考点】平行线的性质.【分析】由AB⊥BC,可得∠1+∠3=90°,求出∠3,又由a∥b推出∠2=∠3,从而求出∠2.【解答】解:∵∠ABC=90°,∠1+∠2+∠ABC=90°,∴∠1+∠3=90°,∴∠3=90°﹣∠1=90°﹣38°=52°,∵a∥b,∴∠2=∠3=52°.故答案为:52°.【点评】此题考查的知识点是平行线的性质及余角、补角,解题的关键是先由余角、补角求出∠3,再由平行线的性质求出∠2.16.绵阳市在改造剑南路西段工程中为治理污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽量减少施工对城市交通所造成的影响,后来每天的工作效率比原计划提高20%,结果共用30天完成这一任务.如果设原计划每天铺设x米管道,那么根据题意可列方程120+(1+20%)x•(30﹣)=300.【考点】由实际问题抽象出分式方程.【分析】设原计划每天铺设x米管道,提高工作效率之后每天铺设(1+20%)x米管道,根据共用30天完成这一任务,列方程.【解答】解:设原计划每天铺设x米管道,提高工作效率之后每天铺设(1+20%)x米管道,由题意得,120+(1+20%)x•(30﹣)=300.故答案为:120+(1+20%)x•(30﹣)=300.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.17.已知M,N两点关于y轴对称,且点M在双曲线y=上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a﹣b)x的顶点坐标为(﹣3,).【考点】二次函数的性质;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】首先根据函数图象上点的坐标特点可得ab=,a﹣b=﹣3,进而得到二次函数解析式y=﹣x2﹣3x,再利用顶点坐标公式求解即可.【解答】解:∵M,N两点关于y轴对称,点M坐标为(a,b),∴N(﹣a,b),∵点M在双曲线y=上,∴ab=,∵点N在直线y=﹣x+3上,∴b=a+3,∴a﹣b=﹣3,∴y=﹣abx2+(a﹣b)x变为y=﹣x2﹣3x,∴=﹣3,=即顶点坐标为(﹣3,),故答案为:(﹣3,).【点评】此题主要考查了函数图象上点的坐标性质,以及求二次函数顶点坐标,关键是掌握凡是函数图象经过的点必能满足解析式.18.如图,在△ABC中,AB=AC=3,高BD=,AE平分∠BAC,交BD于点E,则DE的长为.【考点】勾股定理;角平分线的性质;等腰三角形的性质.【分析】延长AE交BC于点F.在Rt△ADB中,根据勾股定理得到AD,进一步得到CD;在Rt△BDC 中,根据勾股定理得到BC;根据等腰三角形的性质和角平分线的性质得到CF,在Rt△AFC中,根据勾股定理得到AF,通过AA证明△DAE∽△FAC,根据相似三角形的性质即可求解.【解答】解:延长AE交BC于点F.∵在△ABC中,AB=AC=3,高BD=,∴在Rt△ADB中,AD==2,∴CD=AC﹣AD=1,∴在Rt△BDC中,BC==,∵AE平分∠BAC,∴CF=,∠AFC=90°,∴在Rt△AFC中,AF==,∵∠DAE=∠FAC,∠ADE=∠AFC=90°,∴△DAE∽△FAC,∴DE:AD=CF:AF,DE===.故答案为:.【点评】考查了勾股定理,等腰三角形的性质和角平分线的性质,相似三角形的判定和性质,关键是根据题意作出辅助线.三.解答题(本大题共7小题,共86分)19.(1)计算:(sin30°)﹣1﹣(2015)0+|1﹣|﹣.(2)解不等式组:,并判断x=是否为该不等式组的解.【考点】实数的运算;估算无理数的大小;零指数幂;负整数指数幂;解一元一次不等式组;特殊角的三角函数值.【专题】计算题.【分析】(1)原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项化为最简二次根式,计算即可得到结果;(2)分别求出不等式中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可做出判断.【解答】解:(1)原式=2﹣1+﹣1﹣2=﹣;(2),由①得:x>﹣3,由②得:x≤1,∴不等式组的解集为﹣3<x≤1,则x=不是不等式组的解.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.某中学在“五月份学习竞赛月”中举办了演讲、书法、作文、手抄报、小品、漫画六项比赛(2013•红河州模拟)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地1800元/台1600元/台B地1600元/台1200元/台(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.【考点】一次函数的应用;一元一次不等式的应用.【分析】(1)派往A地x台乙型联合收割机,那么派往B地(30﹣x)台,派往A地的(30﹣x)台甲型收割机,派往B地(20﹣30+x)台,可得y=(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200,10≤x≤30.(2)根据题意可列不等式(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200≥79600,解出x 看有几种方案.【解答】解:(1)y=(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200=200x+74000,10≤x≤30;(2)200x+74000≥79600,解得x≥28,三种方案,依次为x=28,29,30的情况①当x=28时,派往A地28台乙型联合收割机,那么派往B地2台乙,派往A地的2台甲型收割机,派往B地18台甲.②当x=29时,派往A地29台乙型联合收割机,那么派往B地1台乙,派往A地的1台甲型收割机,派往B地19台甲.③当x=30时,派往A地30台乙型联合收割机,那么派往B地0台乙,派往A地的0台甲型收割机,派往B地20台甲.【点评】本题考查的是用一次函数解决实际问题,根据题意列出函数式以及根据题意列出不等式结合自变量的取值范围确定方案.22.关于x的一元二次方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β.(1)求k的取值范围;(2)若α+β+αβ=6,求(α﹣β)2+3αβ﹣5的值.【考点】根与系数的关系;解一元二次方程-因式分解法;根的判别式.【分析】(1)由于关于x的一元二次方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β,那么其判别式应该是一个正数,由此即可求出k的取值范围;(2)根据根与系数的关系可以得到α+β=﹣(2k﹣3),αβ=k2,而α+β+αβ=6,由此可以求出k的值,再把(α﹣β)2+3αβ﹣5变为(α+β)2﹣αβ﹣5,代入前面的值就可以求出结果.【解答】解:(1)∵方程x2+(2k﹣3)x+k2=0有两个不相等的实数根,∴△>0即(2k﹣3)2﹣4×1×k2>0解得k<;(2)由根与系数的关系得:α+β=﹣(2k﹣3),αβ=k2.∵α+β+αβ=6,∴k2﹣2k+3﹣6=0解得k=3或k=﹣1,由(1)可知k=3不合题意,舍去.∴k=﹣1,∴α+β=5,αβ=1,故(α﹣β)2+3αβ﹣5=(α+β)2﹣αβ﹣5=19.【点评】此题首先利用一元二次方程的判别式求出k的取值范围,然后利用根与系数的关系求出k的值,接着把所求的代数式变形为两根之和与两根之积的形式,代入值就解决问题.23.如图,AB为⊙O的直径,BC⊥AB,CP切⊙O于点P,连OC,交⊙O于N,交BP于E,连BN,AP.(1)求证:BN平分∠PBC.(2)连AC交BP于M,若AB=BC=4,求tan∠PAC的值.【考点】切线的性质.【分析】(1)连接OP,证OC垂直平分PB,求出∠NBE+∠ENB=90°,∠CBN+∠NBO=90°,根据∠ONB=∠OBN求出∠NBP=∠NBC,即可得出答案;(2)证△OEB∽△BEC,求出BE=2OE,CE=2BE=4OE,设OE=x,则CE=4x,过C作CQ⊥AP交AP延长线于Q,得出四边形QPEC是矩形,推出QC=PE=BE=2x,QP=CE=4x,AQ=6x,代入tan∠PAC=求出即可.【解答】(1)证明:连接PO,∵CB⊥AB,∴CB是⊙O切线,∵CP是⊙O切线,∴PC=BC,即C在PB垂直平分线上,∵OP=OB,∴O在PB的垂直平分线上,∴OC⊥PB,PE=BE,∴∠BEC=∠CBO=90°,∴∠NBE+∠ENB=90°,∠CBN+∠NBO=90°, ∵ON=OB,∴∠ONB=∠OBN,∴∠NBP=∠NBC,∴BN平分∠PBC.(2)解:∵BE⊥OC,∴∠OEB=∠CEB=∠OBC=90°,∴∠OBE+∠EOB=90°,∠EBO+∠EBC=90°, ∴∠EOB=∠EBC,∴△OEB∽△BEC,∴==,∵OB=AB=2,BC=4,∴BE=2OE,CE=2BE=4OE,设OE=x,则CE=4x,∵PE=BE,AO=OB,∴AP=2OE=2x,过C作CQ⊥AP交AP延长线于Q,则∠Q=∠QPE=∠PEC=90°,∴四边形QPEC是矩形,∴QC=PE=BE=2x,QP=CE=4x,∴AQ=4x+2x=6x,在Rt△AQC中,tan∠PAC===.【点评】本题考查了切线的性质,矩形的性质和判定,解直角三角形,线段垂直平分线性质的应用,主要考查学生综合运用性质进行推理和计算的能力.24.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.【考点】二次函数综合题;二次函数的最值;待定系数法求二次函数解析式;等腰三角形的性质;勾股定理.【专题】代数几何综合题;压轴题;分类讨论.【分析】(1)设y=ax(x﹣4),把A点坐标代入即可求出答案;(2)根据点的坐标求出PC=﹣m2+3m,化成顶点式即可求出线段PC的最大值;(3)当0<m<3时,仅有OC=PC,列出方程,求出方程的解即可;当m≥3时,PC=CD﹣PD=m2﹣3m,OC=,分为三种情况:①当OC=PC时,,求出方程的解即可得到P的坐标;同理可求:②当OC=OP时,③当PC=OP时,点P的坐标.综合上述即可得到答案.【解答】解:(1)设y=ax(x﹣4),把A点坐标(3,3)代入得:a=﹣1,函数的解析式为y=﹣x2+4x,答:二次函数的解析式是y=﹣x2+4x.(2)解:0<m<3,PC=PD﹣CD,∵D(m,0),PD⊥x轴,P在y=﹣x2+4x上,C在OA上,A(3,3),∴P(m,﹣m2+4m),C(m,m)∴PC=PD﹣CD=﹣m2+4m﹣m=﹣m2+3m,=﹣+,∵﹣1<0,开口向下,∴有最大值,当D(,0)时,PC max=,答:当点P在直线OA的上方时,线段PC的最大值是.(3)当0<m<3时,仅有OC=PC,∴,解得,∴;当m≥3时,PC=CD﹣PD=m2﹣3m,OC=,由勾股定理得:OP2=OD2+DP2=m2+m2(m﹣4)2,①当OC=PC时,,解得:或m=0(舍去),∴;②当OC=OP时,,解得:m1=5,m2=3,∵m=3时,P和A重合,即P和C重合,不能组成三角形POC,∴m=3舍去,∴P(5,﹣5);③当PC=OP时,m2(m﹣3)2=m2+m2(m﹣4)2,解得:m=4,∴P(4,0),答:存在,P的坐标是(3﹣,1+2)或(3+,1﹣2)或(5,﹣5)或(4,0).【点评】本题主要考查对用待定系数法求二次函数的解析式,等腰三角形的性质,勾股定理,二次函数的最值等知识点的理解和掌握,用的数学思想是分类讨论思想,此题是一个综合性比较强的题目,(3)小题有一定的难度.25.已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD.(1)如图1,若AB=BC=AC,求证:AE=EF;(2)如图2,若AB=BC,(1)中的结论是否仍然成立?证明你的结论;(3)如图3,若AB=kBC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出AE与EF 之间的数量关系,并证明.【考点】四边形综合题.【分析】(1)中所给的是最特殊的一种情况,但对整个题来说,要从(1)中找到基本的解题思路,此题难的是构造全等三角形,从而证明线段相等.虽然(1)中没有要求步骤,但能正确的解出(1)可以给(2)和(3)定一个基调;(2)是将(1)中的等边三角形变为等腰三角形,但起关键作用的条件没变,任然可以仿照(1)中的方法去做;(3)中将三角形变为更一般的三角形,但和(1)比较起来还是有两个条件没变,而利用这两个条件能证明两个三角形相似,从而利用相似的对应边成比例得出结论.【解答】解:(1)证明:如图1,过点E作EH∥AB交AC于点H.则∠BAC+∠AHE=180°,∠BAC=∠CHE,∵AB=BC=AC,∴∠BAC=∠ACB=60°,∴∠CHE=∠ACB=∠B=60°,∴EH=EC.∵AD∥BC,∴∠FCE=180°﹣∠B=120°,又∵∠AHE=180°﹣∠BAC=120°,∴∠AHE=∠FCE,∵∠AOE=∠COF,∠AEF=∠ACF,∴∠EAC=∠EFC,∴△AEH≌△FEC,∴AE=EF;(2)(1)中的结论仍然成立.证明:如图2,过点E作EH∥AB交AC于点H,则∠BAC+∠AHE=180°,∠BAC=∠CHE,∵AB=BC,∴∠BAC=∠ACB∴∠CHE=∠ACB,∴EH=EC∵AD∥BC,∴∠D+∠DCB=180°.∵∠BAC=∠D,∴∠AHE=∠DCB=∠ECF∵∠AOE=∠COF,∠AEF=∠ACF,∴∠EAC=∠EFC,∴△AEH≌△FEC,∴AE=EF;(3)猜想:(1)中的结论仍然成立.证明:如图3,过点E作EH∥AB交AC于点H.由(2)可得∠EAC=∠EFC,∵AD∥BC,∠BAC=∠D,∴∠AHE=∠DCB=∠ECF,∴△AEH∽△FEC,∴AE:EF=EH:EC,∵EH∥AB,∴△ABC∽△HEC,∴EH:EC=AB:BC=k,∴AE:EF=k,∴AE=kEF.【点评】主要考查了四边形的综合知识.本题三问由特殊到一般,注意比较它们之间的异同,关键抓住不变量,从而得出结论.本题难度很大.。
2020年四川省绵阳市中考数学模拟试卷 (含答案解析)
2020年四川省绵阳市中考数学模拟试卷一、选择题(本大题共12小题,共36.0分)1.(−3)2的相反数是()A. −6B. 9C. −9D. −192.下列说法:①每一个图形都有对称轴;②等腰三角形都有对称轴;③△ABC和△A′B′C′关于直线l对称,则△ABC和△A′B′C′全等;④五角星不是轴对称图形.其中正确的有()A. 4个B. 3个C. 2个D. 1个3.截至2018年12月底,台州市人口总数已达到6054000人.将6054000用科学记数法表示为()A. 6.054×107B. 6.054×106C. 60.54×105D. 6054×1034.下列七个图形中是正方体的平面展开图的有()A. 1个B. 2个C. 3个D. 4个5.若√x−6在实数范围内有意义,则x的取值范围是()A. x>0B. x>6C. x≥6D. x≤66.《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数,羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元求人数和羊价各是多少?设买羊人数为x人,则根据题意可列方程为()A. 5x+45=7x+3B. 5x+45=7x−3C. 5x−45=7x+3D. 5x−45=7x−37.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=12,OP=15,则PE的长为()A. 9B. 10C. 11D. 128.从1,2,3这三个数字中随机抽取两个,抽取的这两个数的和是奇数的概率是()A. 13B. 12C. 23D. 569.如图,AB//CD,EF=EB,∠MEB=70°,则∠BFD的度数为A. 30°B. 35°C. 40°D. 45°10.A,B两地相距80千米,已知乙的速度是甲的1.5倍,甲先由A去B,1小时后,乙再从A地出发去追甲,追到B地时,甲已早到20分钟,则甲的速度为()A. 40km/ℎB. 45km/ℎC. 50km/ℎD. 60km/ℎ11.如图,一桥拱呈抛物线状,桥的最大高度是16m,跨度是40m,则在线段AB上离中心点M,5m处的地方,桥的高度是()A. 14mB. 15mC. 13mD. 12m12.如图,在Rt△ABC中,∠ACB=90°,AC=BC=√2,将△ABC绕点AAB的值为()逆时针旋转60°,得到△ADE,连接BE,则BE+12A. √6B. 2√2C. √3D. √2二、填空题(本大题共6小题,共24.0分)13.因式分解6xy2−9x2y−y3=______.14.把点P(−3,5)向上平移2个点得P1点,则P1点的坐标为______ .15.对于多项式(n−1)x m+2−3x2+2x(其中m是大于−2的整数).若n=2,且该多项式是关于x的三次三项式,则m的值为______.16.甲市火车货运站现有苹果1530吨,梨1150吨,安排一列货车将这批苹果和梨运往乙市.这列货车可以挂A、B两种不同规格的货箱共50节,已知用一节A型货箱的运费是0.5万元,用一节B型货箱的运费用是.0.8万元.(1)设运输这批苹果和梨的总运费为y(万元),用A型货箱的节数为x(节),试写出y与x的函数关系式.(2)已知35吨苹果和15吨梨可装满一节A型货箱,25吨苹果和35吨梨可装满一节B型车箱,请问运输所有苹果和梨的方案共有几种,请设计出来.(3)利用函数的性质说明,在第(2)问的方案中,哪种方案的运费最少,最少运费用是多少?17.如图,∠ABC=30°,AB=8,F是射线BC上一动点,D在线段AF上,以AD为腰作等腰直角三角形ADE(点A,D,E以逆时针方向排列),且AD=DE=1,连接EF,则EF的最小值为________.18.若不等式(2−m)x>2m−4的解集是x<−2,则m的取值范围是______.三、解答题(本大题共7小题,共90.0分)19.(1)计算:4+(−3)2+20180×|1−√3|+tan45°−2sin60°.(2)先化简,再求值:xx2−1÷(1+1x−1),其中x=√2−1.20.甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)新冠疫情期间如何选择这两家商场去购物更省钱?21.某射击队有甲、乙两名射手,他们各自射击7次,射中靶的环数记录如下:甲:8,8,8,9,6,8,9乙:10,7,8,8,5,10,8(1)分别求出甲、乙两名射手打靶环数的平均数、众数、中位数;(2)如果要选择一名成绩比较稳定的射手,代表射击队参加比赛,应如何选择?为什么?22.如图,△BCD内接于⊙O,直径AB经过弦CD的中点M,AE交BC的延长线于点E,连接AC,∠EAC=∠ABD=30°.(1)求证:△BCD是等边三角形;(2)求证:AE是⊙O的切线;(3)若CE=2,求⊙O的半径.23.如图,在平面直角坐标系中,直线BC与y轴交于点A(0,4),与x轴交于点D,B、C是反比例(x>0)上的点,OB⊥BC于点B,∠BOD=60∘.函数y=kx(1)求直线BC的解析式.(2)求反比例函数的解析.24.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(−3,2),B(0,−2),其对称轴为直线x=,C(0,)为y轴上一点,直线AC与抛物线交于另一点D.(1)求抛物线的函数表达式;(2)试在线段AD下方的抛物线上求一点E,使得△ADE的面积最大,并求出最大面积;25.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB延长线于点F.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若⊙O半径为5,CD=6,求DE的长;(3)求证:BC2=4CE⋅AB.-------- 答案与解析 --------1.答案:C解析:解:(−3)2的相反数是−9,故选:C.根据一个数的相反数就是在这个数前面添上“−”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.答案:C解析:【分析】本题主要考查了轴对称图形的概念和性质,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;由于只有轴对称图形才有对称轴,于是可知①说法错误.同理,分析其余说法的正误,进而确定正确说法的个数.【解答】解:对称轴只针对轴对称图形而言,只有轴对称图形才有对称轴,故①错误;等腰三角形是轴对称图形,其对称轴是等腰三角形底边上的高(中线、角平分线)所在的直线,故②正确;根据轴对称图形的性质可知,轴对称图形的对应线段相等、对应角相等,进而可得△ABC≌△A′B′C′,故③正确;五角星是轴对称图形,故④错误.故选C.3.答案:B解析:【分析】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6054000=6.054×106,故选B.4.答案:B解析:解:由题可得,是正方体的平面展开图的有:共2个,故选:B.由平面图形的折叠及正方体的表面展开图的特点进行判断即可.此题主要考查了正方体展开图,熟练掌握正方体的表面展开图是解题的关键.5.答案:C解析:解:√x−6在实数范围内有意义,则x−6≥0,故x的取值范围是:x≥6.故选:C.直接利用二次根式的定义分析得出答案.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.6.答案:A解析:解:设买羊人数为x人,则根据题意可列方程为5x+45=7x+3.故选:A.设买羊人数为x人,根据出资数不变列出方程.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.答案:A解析:【分析】本题考查的是角平分线的性质、勾股定理,掌握角的平分线上的点到角的两边的距离相等是解题的关键.根据勾股定理求出PD,根据角平分线的性质解答.【解答】解:在Rt△OPD中,PD=√OP2−OD2=√152−122=9,∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PE=PD=9,故选A.8.答案:C解析:解:画树状图得:∵共有6种等可能的结果,其和是奇数的4种情况,∴其和是奇数的概率是:46=23故选C.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其和是奇数的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.答案:B解析:【分析】本题主要考查了平行线的性质和三角形的外角性质及等腰三角形的性质.根据AB//CD先求得∠MFD 的度数,再根据EF=EB,∠MEB=70°求得∠EFB的度数,最后利用∠BFD=∠MFD−∠EFB即可得到答案.【解答】解:∵AB//CD,∠MEB=70°∴∠MFD=∠MEB=70°,∵EF=EB,∠MEB=70°,∴∠EFB=∠B=12∠MEB=35°,∴∠BFD=∠MFD−∠EFB=70°−35°=35°.故选B.10.答案:A解析:【分析】本题主要考查分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.求的是速度,路程明显,一定是根据时间来列等量关系,等量关系为:甲用的时间−乙用的时间=1−2060.【解答】解:设甲的速度为xkm/ℎ,那么乙的速度为1.5xkm/ℎ,根据题意得:80 x −801.5x=1−2060,解得:x=40,经检验:x=40是原方程的解,故甲的速度为40km/ℎ.故选A.11.答案:B解析:【分析】此题考查利用抛物线的特点建立平面直角坐标系,求出抛物线解析式,进一步利用解析式解决问题.以AB为x轴,点M为坐标原点作出平面直角坐标系,表示出A点坐标,C点坐标,设出抛物线的解析式,代入点求出解析式,再进一步代入数值解答即可.【解答】解:如图,建立平面直角坐标系,点A 的坐标是(−20,0),点C 的坐标是(0,16), 设抛物线的解析式为y =ax 2+k ,把点A 、C 代入函数解析式得{400a +k =0k =16, 解得{a =−125k =16,因此抛物线的解析式为y =−125x 2+16,令x =5,y =−125×52+16=15,则桥的高度是15m .故选B .12.答案:C解析:解:如图,连接BD ,延长BE 交AD 于点F ,∵∠ACB =90°,AC =BC =√2,∴AB =2, ∵将△ABC 绕点A 逆时针旋转60°,得到△ADE , ∴AD =AB =2,∠BAD =60°,AE =DE ∴△ABD 是等边三角形∴AB =BD ,且AE =DE∴BF 是AD 的垂直平分线∴AF =DF =1,∴BF =√AB 2−AF 2=√3∵AE =DE ,∠AED =90°,EF ⊥AD∴EF =12AD =12AB ∴BF =BE +EF =12AB +BE =√3 故选:C .连接BD ,延长BE 交AD 于点F ,由旋转的性质可得AD =AB =2,∠BAD =60°,AE =DE ,可得△ABD 是等边三角形,可证BF 是AD 的垂直平分线,由勾股定理可求BF 的值,即可求解. 本题考查了旋转的性质,等腰直角三角形的性质,证明BF 是AD 的垂直平分线是本题的关键. 13.答案:−y(3x −y)2解析:解:6xy 2−9x 2y −y 3,=−y(9x 2−6xy +y 2),=−y(3x −y)2.故答案为:−y(3x −y)2.先提取公因式−y ,再对余下的多项式利用完全平方公式继续分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.答案:(−3,7)解析:解:点P(−3,5)向上平移2个点得P 1点,则P 1点的坐标为(−3,7).故答案为(−3,7).利用点平移的坐标规律求解.本题考查了坐标与图形变化−平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度. 15.答案:1解析:解:∵n =2时,多项式是关于x 的三次三项式,∴m +2=3,解得,m =1,故答案为:1.根据多项式中次数最高的项的次数叫做多项式的次数解答.本题考查的是多项式的概念,掌握多项式中次数最高的项的次数叫做多项式的次数是解题的关键. 16.答案:(1)由题意得:y =0.5x +0.8(50−x)=−0.3x +40,故所求函数关系为y =−0.3x +40;(2)根据题意可列不等式组{35x +25(50−x )≥153015x +35(50−x )≥1150, 解得:28≤x ≤30,∴x =28,29,30,共有3种方案.①A28 B22②A29 B21③A30B20;(3)∵y=−0.3x+40,k=−0.3<0,∴x值越大,y值越小,因此方案③运费最少当x=30时,总运费最少,即y最少=−0.3×30+40=31(万元).解析:本题主要考查的是一次函数的应用,一次函数的性质和一元一次不等式组的应用等有关知识.(1)根据等量关系:总运费=货箱的节数×运费,可得出函数解析式;(2)根据苹果的总重量≥1530,梨的总重量≥1150,列出不等式组求解即可;(3)由一次函数的增减性求解即可.17.答案:√10解析:【分析】本题考查等腰直角三角形的性质,垂线段最短,勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.由题意EF=√DE2+DF2=√1+DF2,推出当DF的值最小时,EF的值最小,根据垂线段最短即可解决问题;【解答】解:∵△ADE是等腰直角三角形,∴∠ADE=∠EDF=90°,∵AD=DE=1,∴EF=√DE2+DF2=√1+DF2,∴当DF的值最小时,EF的值最小,∵AF⊥BC时,AF的值最小,∴DF的值最小,∵∠B=30°,AB=4,∴此时AF=12∴DF=3,EF=√10,故答案为√10.18.答案:m>2解析:【分析】本题考查了不等式的性质和解一元一次不等式,由不等号方向改变,得出未知数的系数小于0是解题的关键.根据不等式的性质3,可得答案.【解答】解:∵(2−m)x>2m−4,∴−(m−2)x>2(m−2),∵不等式的解集是x<−2,∴m−2>0,解得:m>2,故答案为m>2.19.答案:解:(1)原式=4+9+1×(√3−1)+1−2×√32=4+9+√3−1+1−√3=13;(2)原式=x(x+1)(x−1)÷(x−1x−1+1x−1)=x(x+1)(x−1)⋅x−1x=1x+1,当x=√2−1时,原式=√2−1+1=√22.解析:本题主要考查分式的化简求值,实数的运算,解题的关键是掌握分式的混合运算顺序和运算法则及实数的运算能力.(1)先计算乘方、零指数幂、取绝对值符号、代入三角函数值,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.20.答案:解:(1)由题意可得,y甲=0.9x,当0≤x≤100时,y乙=x,当x>100时,y乙=100+(x−100)×0.8=0.8x+20,由上可得,y乙={x(0≤x≤100)0.8x+20(x>100);(2)当0.9x<0.8x+20时,得x<200,即此时选择甲商场购物更省钱;当0.9x=0.8x+20时,得x=200,即此时两家商场购物一样;当0.9x>0.8x+200时,得x>200,即此时选择乙商场购物更省钱.解析:(1)根据题意,可以分别写出两家商场对应的y关于x的函数解析式;(2)根据(1)中函数关系式,可以得到相应的不等式,从而可以得到新冠疫情期间如何选择这两家商场去购物更省钱.本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.21.答案:解:(1)甲的平均数为:17(8+8+8+9+6+8+9)=8,乙的平均数为:17(10+7+8+8+5+10+8)=8,甲的众数为8,乙的众数为8;甲点中位数为8,乙的中位数为8.(2)S 甲2=17[4(8−8)2+2(9−8)2+(6−8)2]=67, S 乙2=17[3(8−8)2+2(10−8)2+(7−8)2+(5−8)2]=187,∵S 甲2<S 乙2, ∴甲的射击成绩更稳定,所以选择甲代表射击队参加比赛.解析:此题考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义.(1)根据平均数的计算公式、众数以及中位数的定义分别进行解答即可;(2)先求出甲和乙的方差,再根据方差的定义,方差越小数据越稳定,即可得出答案.22.答案:证明:(1)∵AB 是⊙O 的直径,M 是CD 的中点,∴AB ⊥CD ,∴BD =BC ,∴∠ABD =∠ABC =30°,即∠CBD =60°,∴△BCD 是等边三角形;(2)∵∠EAC =∠ABD ,∠ABD =∠ACD ,∴∠EAC =∠ACD ,∴AE//CD ,由(1)知AB ⊥CD ,∴AE ⊥AB ,∵点A 在⊙O 上,∴AE 是⊙O 的切线;(3)∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ACE =90°,∵∠EAC =30°,∴AE =2CE =4,在Rt △EAB 中,∠ABE =30°,∴BE =2AE =8,∴AB =√BE 2−AE 2=√82−42=4√3,∴⊙O 的半径为2√3. 解析:本题是圆的综合问题,解题的关键是掌握等边三角形的判定、圆心角定理、圆周角定理和勾股定理等知识. (1)由AB 是⊙O 的直径,M 是CD 的中点知AB ⊥CD ,BD =BC ,结合∠ABD =∠ABC =30°,即∠CBD =60°即可得证;(2)先证AE//CD ,由AB ⊥CD 知AE ⊥AB ,据此即可得证;(3)由AB 是直径知∠ACB =∠ACE =90°,由∠EAC =30°知AE =2CE =4,∠ABE =30°知BE =2AE =8,根据勾股定理可得直径AB 的长,从而得出答案.23.答案:解:于点B ,, .∵点A 的坐标为A(0,4),∴AO =4,∴在Rt △AOD 中,OD =√3AO =4√3,∴D(4√3,0).设直线BC 的解析式为y =ax +b ,∵直线BC 经过点A(0,4),D(4√3,0),∴{b =44√3a +b =0, 解得{a =−√33b =4,∴直线BC 的解析式为y =−√33x +4; (2)如图,过点B 作轴于点E .在Rt △BOD 中,OD =4√3,, ∴OB =12OD =2√3.在Rt △OBE 中,, ∴BE =√32OB =3,OE =12OB =√3,∴B(√3,3).∵反比例函数的图象经过点B(√3,3),∴3=√3,解得k =3√3, ∴反比例函数的解析式为y =3√3x . 解析:本题考查反比例函数的应用,待定系数法求反比例函数和一次函数,以及直角三角形的性质,正确掌握待定系数法是解题关键. (1)求出点A 和点D 的坐标,再根据直线BC 过点A 和点D ,利用待定系数法求解析式即可; (2)过点B 作轴于点E.根据直角三角形的性质求出OB ,BE ,OE ,进而求出点B 的坐标,然后根据反比例函数经过点B ,利用待定系数法求出解析式即可.24.答案:解:(1)根据题意得{9a −3b +c =2c =−2−b 2a =52,解得{a =16b =−56c =−2, 所以抛物线解析式为y =16x 2−56x −2;(2)作EP//y 轴交AD 于P ,如图1,设直线AD 的解析式为y =mx +n ,把A(−3,2),C(0,12)分别代入得{−3m +n =0n =12,解得{m =−12n =12, 所以直线AD 的解析式为y =−12x +12,解方程组{y =16x 2−56x −2y =−12x +12得{x =−3y =2或{x =5y =−2,则D(5,−2), 设E(x,16x 2−56x −2)(−3<x <5),则P(x,−12x +12),∴PE =−12x +12−(16x 2−56x −2)=−16x 2+13x +52, ∴S △AED =S △AEP +S △DEP=12⋅(5+3))⋅(−16x 2+13x +52) =−23(x −1)2+323,当x =1时,△ADE 的面积最大,最大面积为323,此时E 点坐标为(1,−83).解析:本题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和勾股定理的逆定理;会利用待定系数法求函数解析式;理解坐标与图形性质;会利用两点间的距离公式计算线段的长;注意分类讨论思想的应用.(1)利用待定系数法求抛物线解析式;(2)作EP//y 轴交AD 于P ,如图1,先利用待定系数法求出直线AD 的解析式为y =−12x +12,联立解析式求得D(5,−2),设E(x,16x 2−56x −2)(−3<x <5),则P(x,−12x +12),所以PE =−16x 2+13x +52,根据三角形面积公式和S △AED =S △AEP +S △DEP 可得S △AED =−23(x −1)2+323,然后根据二次函数的最值问题求出△ADE 的面积最大,且求出对应的E 点坐标.25.答案:解:(1)EF 与⊙O 相切,理由如下:连接AD ,OD ,如图所示:∵AB 为⊙O 的直径,∴∠ADB =90°.∴AD ⊥BC .∵AB =AC ,∴CD =BD =12BC .∵OA =OB ,∴OD 是△ABC 的中位线,∴OD//AC .∵EF ⊥AC ,∴EF ⊥OD .∴EF 与⊙O 相切.(2)解:由(1)知∠ADC =90°,AC =AB =10,在Rt △ADC 中,由勾股定理得:AD =√AC 2−CD 2=√102−62=8.∵S ACD =12AD ⋅CD =12AC ⋅DE ,∴12×8×6=12×10×DE .∴DE =245.(3)证明:由(1)得:CD =12BC ,AD ⊥BC ,∴∠ADC =90°,∵EF ⊥AC ,∴∠DEC =90°=∠ADC ,∵∠C =∠C ,∴△CDE∽△CAD ,∴CD AC =CECD ,∴CD2=CE⋅AB,∵AB=AC,∴14BC2=CE⋅AB,∴BC2=4CE⋅AB.解析:(1)连接AD,OD,证明OD是△ABC的中位线,得出OD//AC.由已知条件证得EF⊥OD,即可得出结论;(2)根据勾股定理求出AD,再由三角形面积计算即可;(3)由(1)得CD=12BC,AD⊥BC,证明△CDE∽△CAD,得出CDAC=CECD,则CD2=CE⋅AB,即可得出结论.本题是圆的综合题目,考查了圆周角定理、切线的判定、等腰三角形的性质、三角形中位线定理、勾股定理、相似三角形的判定与性质以及三角形面积等知识;熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.。
【新】2019-2020四川绵阳中学实验学校初升高自主招生数学【4套】模拟试卷【含解析】
第一套:满分120分2020-2021年四川绵阳中学实验学校初升高自主招生数学模拟卷一.选择题(共6小题,满分42分)1. (7分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是【 】A. B. C. D.2. (7分)在平面直角坐标系中,任意两点规定运算:①;②;③当x 1= x 2且y 1=y 2时,A =B.有下列四个命题:(1)若A (1,2),B (2,–1),则,; (2)若,则A =C ; (3)若,则A =C ;()()1122,,,A x y B x y ()1212,⊕=++A B x x y y 1212=⊗+A B x x y y (),31⊕= A B 0=⊗A B ⊕=⊕A B B C =⊗⊗A B B C(4)对任意点A 、B 、C ,均有成立. 其中正确命题的个数为( )A. 1个B. 2个C. 3个D. 4个 3.(7分)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE=OE ;③△ODE ∽△ADO ;④2CD 2=CE •AB .正确结论序号是( )A .①②B .③④C .①③D .①④ 4. (7分)如图,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①;②当点E 与点B 重合时,;③;④MG •MH =,其中正确结论为( )A. ①②③B. ①③④C. ①②④D. ①②③④ 5.(7分)在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,1 6. (7分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D()()⊕⊕=⊕⊕A B C A B C 2AB =12MH =AF BE EF +=12作⊙O 的切线交BC 于点M ,则DM 的长为( )A.B. C. D.二.填空题(每小题6分,满分30分)7.(6分)将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 . 8.(6分)如图,三个半圆依次相外切,它们的圆心都在x 轴上,并与直线3y x =相切.设三个半圆的半径依次为r 1、r 2、r 3,则当r 1=1时,r 3= .9.(6分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB=60°,点A 在第一象限,过点A 的双曲线为k y x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´.(1)当点O ´与点A 重合时,点P 的坐标是 ;(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是 .1339241332510.(6分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反 比例函数2(0)y x x=>的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数2(0)y x x=>的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为 .11.(6分)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N .若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=41,则BN= .三.解答题(每小题12分,满分48分)12.(12分)先化简,再求值:, 其中.13.(12分)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数的图象上.(1)求m ,k 的值;32221052422x x x x x x x x --÷++--+-2022(tan 45cos30)21x =-+︒-︒-xky =xO yAB (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式. (3)将线段AB 沿直线进行对折得到线段,且点始终在直线OA 上,当线段与轴有交点时,则b 的取值范围为 (直接写出答案)14.(12分)如图,在Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 于点D ,DE 是⊙O 的切线,连接DE .(1)连接OC 交DE 于点F ,若OF=CF ,证明:四边形OECD 是平行四边形; (2)若=n ,求tan ∠ACO 的值b kx y +=11B A 1A 11B A x OFCF15.(12分)如图1,抛物线y =ax 2+bx +c (a ≠0)的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0)。
四川省绵阳地区2020届九年级下学期第一次中考模拟数学试题(PDF版)
20. 解:(1)由题意可知该班的总人数=15÷30%=50(名)
故答案为:50;
(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形
统计图如图所示:
(3)“乒乓球”部分所对应的圆心角度数=360°× =115.2°,故答案为:115.2°; (4)画树状图如图.
(2)解
得或
,
∴C(﹣1,﹣3),由图象可知,不等式 x﹣2> 的解集是﹣1<x<0 或 x>3; (3)∵OD∥AB,∴直线 OD 的解析式为 y=x,
解
,解得
或
,
∴D( , ),由直线 y=x﹣2 可知 A(0,﹣2),
∴OA=2,∴S△AOD=
=.
22. (1)证明:连接 OC,∵OA=OC,∴∠OCA=∠OAC,
∵⊙O 的直径为 10,∴DF=OC=5,∴AF=5﹣x,
在 Rt△AOF 中,由勾股定理得 AF2+OF2=OA2.
即(5﹣x)2+(6﹣x)2=25,化简得 x2﹣11x+18=0,
解得 x1=2,x2=9.∵CD=6﹣x 大于 0,故 x=9 舍去, ∴x=2,从而 AD=2,AF=5﹣2=3,∵OF⊥AB,由垂径定理知,F 为 AB 的中点,
九年级数学监测题
第 6 页 (共 10 页)
数学试卷(一)参考答案
1-4 题 BCDD 13. 6
5-8 题 ACBB 14. 2025
9-12 题 BBCA 15. 30
16.
17.18. Leabharlann =x﹣1,y=﹣x+1 .
19. (1)化简=-(x+1),当 x=-2 时,原式=1
绵阳市2020届数学中考模拟试卷
绵阳市2020届数学中考模拟试卷一、选择题1.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF= 2.如图是二次函数y =ax 2+bx+c 的部分图象,由图象可知,满足不等式ax 2+bx+c >0的x 的取值范围是( )A.﹣1<x <5B.x >5C.x <﹣1且x >5D.x <﹣1或x >53.已知一元二次方程22410x x +-=的两个根为1x ,2x ,且12x x <,下列结论正确的是( )A .122x x +=B .121x x =-C .12x x <D .211122x x += 4.如图,在矩形ABCD 中,点E 、F 、G 、H 分别是边AD 、AB 、BC 、CD 的中点,连接EF 、FG 、GH 和HE .若2=AD AB ,用下列结论正确的是( )A .EF AB = B .2EF AB =C .EF =D .2EF AB = 5.如图,已知AB=A 1B ,A 1C=A 1A 2,A 2D=A 2A 3,A 3E=A 3A 4,若∠B=20°,则∠A=_____,4A ∠=______.( )A .80°,40°B .80°,30°C .80°,20°D .80°,10° 6.–(–3)等于( )A .–3B .3C .13D .±37.下列运算正确的是( )A .(y+1)(y ﹣1)=y 2﹣1B .x 3+x 5=x 8C .a 10÷a 2=a 5D .(﹣a 2b )3=a 6b 3 8.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有( )A.6B.5C.4D.7 9.下列说法正确的是( )A.了解“贵港市初中生每天课外阅读书籍时间的情况“最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,若22s s >甲乙则甲的成绩比乙的稳定C.平分弦的直径垂直于弦D.“任意画一个三角形,其内角和是360°”是不可能事件10.方程24222x x x x =-+-- 的解为( ) A .2B .2或4C .4D .无解11.已知m 2=|m|的估算正确的( )A .2<|m|<3B .3<|m|<4C .4<|m|<5D .5<|m|<612 )A .﹣13B .13C .﹣3D .3二、填空题13.若(x+3)0=1,则x 应满足条件_____.14. 15.一个三角形三个内角的度数之比为1:2:3,则三角形按角分它的形状是_____三角形.16.在一个袋子中装有大小相同的5个小球,其中2个蓝色,3个红色,从袋中随机摸出1个,则摸到的是蓝色小球的概率为_______.17.将一个四边形的纸片一刀剪去一个角后,所得的多边形的内角之和是_____.18.化简的结果为_____.三、解答题19.某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y (立方米)与x (时)的函数图象.(1)求每小时的进水量;(2)当8≤x≤12时,求y与x之间的函数关系式;(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x的取值范围.20.如图所示,P是⊙O外一点,PA是⊙的切线,A是切点,B是⊙O上一点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.(1)求证:PB是⊙O的切线;(2)求证:AQ•PQ=BQ•OQ;(3)设∠P=α,若tanɑ=34,AQ=3,求AB的长.21.如图,已知△ABC,且∠ACB=90°.(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明):①以点A为圆心,BC边的长为半径作⊙A;②以点B为顶点,在AB边的下方作∠ABD=∠BAC.(2)请判断直线BD与⊙A的位置关系,并说明理由.22.如图,一次函数y=﹣x+b与反比例函数y=kx(k≠0)的图象相交于A、B两点,其中A(﹣1,4),直线l⊥x轴于点E(﹣4,0),与反比例函数和一次函数的图象分别相交于点C、D,连接AC、BC.(1)求出b和k;(2)判定△ACD的形状,并说明理由;(3)在x轴上是否存在点P,使S△PBC=S△ABC?若存在,请求出P的坐标;若不存在,请说明理由.23.如图,已知一次函数y=kx+b(k,b为常数,k≠0)的图象与x轴、y轴分别交于A,B两点,且与反比例函数y=ax(a≠0)的图象在第二象限交于点C,CD⊥x轴垂足为D点,若OB=2OA=3OD=6.(1)求反比例函数y=ax和一次函数y=kx+b的表达式;(2)直接写出关于x的不等式ax>kx+b的解集.24.如图,在RI △ABC 中,∠C=90°,AC=BC=4cm ,点P 从点A 出发沿线段AB cm/s 的速度向点B 运动,设运动时间为ts .过点P 作PD ⊥AB ,PD 与△ABC 的腰相交于点D .(1)当t=()s 时,求证:△BCD ≌△BPD ;(2)当t 为何值时,S △APD =3S △BPD ,请说明理由.25.如图,已知在ABCD □中,点O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E .(1)求证:AOD EOC ∆∆≌.(2)连接AC ,DE ,当==∠∠B AEB ______时,四边形ACED 是正方形.请说明理由.【参考答案】***一、选择题13.x≠﹣314.015.直角16.2517.180°或360°或540°18.a-1三、解答题19.(1)每小时的进水量为5立方米;(2)当8≤x≤12时,y =3x+1;(3)3792x 剟. 【解析】【分析】 (1)由4点到8点只进水时,水量从5立方米上升到25立方米即能求每小时进水量;(2)由图象可得,8≤x≤12时,对应的函数图象是线段,两端点坐标为(8,25)和(12,37),用待定系数法即可求函数关系式;(3)由(2)的函数关系式即能求在8到12点时,哪个时间开始贮水量不小于28立方米,且能求出每小时的出水量;14点后贮水量为37立方米开始每小时减2立方米,即能求等于28立方米的时刻【详解】解:(1)∵凌晨4点到早8点只进水,水量从5立方米上升到25立方米∴(25﹣5)÷(8﹣4)=5(立方米/时)∴每小时的进水量为5立方米.(2)设函数y =kx+b 经过点(8,25),(12,37)8251237k b k b +=⎧⎨+=⎩解得:31k b =⎧⎨=⎩∴当8≤x≤12时,y =3x+1 (3)∵8点到12点既进水又出水时,每小时水量上升3立方米∴每小时出水量为:5﹣3=2(立方米)当8≤x≤12时,3x+1≥28,解得:x≥9当x >14时,37﹣2(x ﹣14)≥28,解得:x≤372∴当水塔中的贮水量不小于28立方米时,x 的取值范围是9≤x≤372 【点睛】本题考查了一次函数的应用,解题关键是理解图象中横纵坐标代表的意义并结合题意分析图象的每个分段函数.20.(1)证明见解析(2)证明见解析(3【解析】【分析】(1)易证△PAO ≌△PBO (SSS ),根据全等三角形的性质结合切线的性质,即可得出∠PBO =90°,进而即可证出PB 是⊙O 的切线;(2)根据同角的补角相等可得出∠AOQ =∠APB ,根据等腰三角形及全等三角形的性质可得出∠ABQ =∠OPQ ,结合∠AQB =∠OQP 即可证出△QAB ∽△QOP ,根据相似三角形的性质可得出AQ BQ OQ PQ=,即AQ•PQ=BQ•OQ;(3)设AB 与PO 交于点E ,则AE ⊥PO ,通过解直角三角形可求出OA 的长度,结合(2)的结论可得出PQ 的长度,利用勾股定理可得出PO 的长度,利用面积法即可得出AE 的长度,进而即可求出AB 的长度.【详解】(1)证明:在△PAO 和△PBO 中,PA PB AO BO PO PO =⎧⎪=⎨⎪=⎩,∴△PAO ≌△PBO (SSS ),∴∠PBO =∠PAO .∵PA 是⊙的切线,A 是切点,∴∠PAO =90°,∴∠PBO =90°,∴PB 是⊙O 的切线.(2)证明:∵∠APB+∠PAO+∠AOB+PBO =360°,∴∠APB+∠AOB =180°.又∵∠AOQ+∠AOB =180°,∴∠AOQ =∠APB .∵OA =OB ,∴∠ABQ =∠BAO =12∠AOQ . ∵△PAO ≌△PBO , ∴∠OPQ =∠OPB =12∠APB , ∴∠ABQ =∠OPQ .又∵∠AQB =∠OQP ,∴△QAB ∽△QOP , ∴AQ BQ OQ PQ=,即AQ•PQ=BQ•OQ. (3)解:设AB 与PO 交于点E ,则AE ⊥PO ,如图所示.∵∠AOQ =∠APB ,∴tan ∠AOQ =34. 在Rt △OAQ 中,∠OAQ =90°,tan ∠AOQ =34,AQ =3,∴AO =4,OQ =5= ,∴BQ =BO+OQ =9.∵AQ•PQ=BQ•OQ,∴PQ =15,∴PA =PQ ﹣AQ =12,∴PO = .由面积法可知:AE =5PA AD PQ ⋅=,∴AB =2AE =5.【点睛】本题考查了全等三角形的判定与性质、相似三角形的判定与性质、切线的判定与性质、三角形的面积以及解直角三角形,解题的关键是:(1)利用全等三角形的性质找出∠PBO =∠PAO =90°;(2)根据相似三角形的判定定理找出△QAB ∽△QOP ;(3)利用面积法求出AE 的长度.21.(1)详见解析;(2)直线BD 与⊙A 相切,理由详见解析.【解析】【分析】(1)①以点A 为圆心,以BC 的长度为半径画圆即可;②以点A 为圆心,以任意长为半径画弧,与边AB 、AC 相交于两点E 、F ,再以点B 为圆心,以同等长度为半径画弧,与AB 相交于一点M ,再以点M 为圆心,以EF 长度为半径画弧,与前弧相交于点N ,作射线BN 即可得到∠ABD ;(2)根据内错角相等,两直线平行可得AC ∥BD ,再根据平行线间的距离相等可得点A 到BD 的距离等于BC 的长度,然后根据直线与圆的位置关系判断直线BD 与⊙A 相切.【详解】解:(1)如图所示;(2)直线BD 与⊙A 相切.∵∠ABD =∠BAC ,∴AC ∥BD ,∵∠ACB =90°,⊙A 的半径等于BC ,∴点A 到直线BD 的距离等于BC ,∴直线BD 与⊙A 相切.【点睛】本题考查了复杂作图,主要利用了作一个角等于已知角,直线与圆的位置关系的判断,是基本作图,难度不大.22.(1)b=3,k=-4;(2)△ACD 是等腰直角三角形,理由详见解析;(3)存在, P 1(15,0),P 2(-15,0).【解析】【分析】(1)把A (-1,4)代入y=k x和y=﹣x+b ,即可得答案;(2)过点A 作AF ⊥直线l 于点F ,可得点F 坐标为(-4,4),由直线l ⊥x 轴于点E(﹣4,0)可得C 、D 两点的横坐标为-4,代入反比例函数和一次函数解析式即可得C 、D 两点的坐标,即可求出CD 、AD 、AC 的距离,进而可判断三角形ACD 的形状;(3)过点B 作BH ⊥x 轴于H ,联立一次函数和反比例函数解析式,可得B 点坐标,即可求出AB 的长,进而可得△ABC 的面积,由B 、C 坐标可得B 、C 两点关于原点对称,则原点O 在线段BC 上,根据S △PBC =S △ABC =12⋅OP ⋅CE+12⋅OP ⋅BH 即可求出OP 的值,即可得点P 坐标. 【详解】 (1)∵一次函数y=﹣x+b 与反比例函数y=k x (k≠0)的图象都经过A(﹣1,4), ∴4=-(-1)+b ,4=1k -, ∴b=3,k=-4.(2)过点A 作AF ⊥直线l 于点F ,∴F (-4,4),∴AF=3,∵直线l⊥x轴于点E(﹣4,0),与反比例函数和一次函数的图象分别相交于点C、D,∴C、D两点的横坐标为-4,∵k=-4,b=3,∴一次函数和反比例函数的解析式分别为:y=-x+3,y=4x -,∴-(-4)+3=7,44--=1,∴C(-4,1),D(-4,7),∴CD=6,FC=3,FD=3,∴,∵AC2+AD222=36,CD2=62=36,∴AC2+AD2=CD2,∴△ACD是直角三角形,∵AC=AD,∴△ACD是等腰直角三角形.(3)存在,过点B作BH⊥x轴于H,联立一次函数和反比例函数解析式得34y xyx=-+⎧⎪⎨=-⎪⎩,解得:14xy=-⎧⎨=⎩或41xy=⎧⎨=-⎩,∴B(4,-1),∴,∴S△ABC=12AB⋅AC=12=15,∵B(4,-1),C(1,-4),∴B、C两点关于原点对称,∴点O在线段BC上,∴S△PBC=S△ABC=12⋅OP⋅CE+12⋅OP⋅BH=15,∵CE=1,BH=1,∴OP=15,∴P1(15,0),P2(-15,0).【点睛】本题考查了用待定系数法求一次函数和反比例函数的解析式,三角形的面积,一次函数与反比例函数的交点问题等知识点的应用,用了数形结合思想.23.(1)y=﹣2x+6,20yx=-;(2)﹣2<x<0或x>5.【解析】【分析】(1)先求出A、B、C坐标,再利用待定系数法确定函数解析式.(2)两个函数的解析式作为方程组,解方程组即可求得另一个交点的坐标,然后根据图象一次函数的图象在反比例函数图象的下方,即可解决问题.【详解】(1)∵OB=2OA=3OD=6,∴OB=6,OA=3,OD=2,∴A(3,0),B(0,6),∵CD⊥OA,∴DC∥OB,∴OB AOCB AD=,即635CD=,∴CD=10,∴点C坐标(﹣2,10),把A(3,0),B(0,6)代入y=kx+b得630 bk b=⎧⎨+=⎩解得26kb=-⎧⎨=⎩,∴一次函数为y=﹣2x+6.∵反比例函数y=ax(a≠0)的图象经过点C(﹣2,10),∴a=﹣2×10=﹣20,∴反比例函数解析式为y=﹣20x.(2)由2620y xyx=-+⎧⎪⎨=⎪⎩解得210xy=-⎧⎨=⎩或5-4xy=⎧⎨=⎩,故另一个交点坐标为(5,﹣4).由图象可知不等式ax>kx+b的解集:﹣2<x<0或x>5.【点睛】本题考查一次函数与反比例函数的交点问题,解题的关键是学会利用待定系数法确定函数解析式,知道两个函数图象的交点坐标可以利用解方程组解决,学会利用图象确定自变量取值范围,属于中考常考题型.24.(1)见解析;(2)当t 为3s 时,S △APD =3S △BPD .理由见解析.【解析】【分析】(1)由勾股定理得出cm ,当t=()s 时,,得出BP=AB-AP=4cm=BC ,由HL 证明Rt △BCD ≌Rt △BPD 即可;(2)当S △APD =3S △BPD 时,AP=3BP ,由题意得出方程,解方程即可.【详解】(1)证明:如图1所示:∵在RI △ABC 中,∠C=90°,AC=BC=4cm ,∴,当t=()s 时,,∴BP=AB-AP=4cm ,∴BP=BC ,∵PD ⊥AB ,∴∠BFD=∠C=90°,在Rt △BCD 和Rt △BPD 中,{BD BDBC BP ==,∴Rt △BCD ≌Rt △BPD (HL );(2)解:如图2所示:∵PD ⊥AB ,当S △APD =3S △BPD 时,AP=3BP ,t=3(t ),解得:t=3,∴当t 为3s 时,S △APD =3S △BPD .【点睛】本题考查了全等三角形的判定、等腰直角三角形的性质、勾股定理等知识;熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键.25.(1)见解析(2)45°【解析】【分析】(1)根据平行线的性质可得∠D=∠OCE ,∠DAO=∠E ,再根据中点定义可得DO=CO ,然后可利用AAS 证明△AOD ≌△EOC ;(2)当∠B=∠AEB=45°时,四边形ACED 是正方形,首先证明四边形ACED 是平行四边形,再证对角线互相垂直且相等可得四边形ACED 是正方形.【详解】(1)∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠D=∠OCE ,∠DAO=∠E .∵O 是CD 的中点,∴OC=OD ,在△ADO 和△ECO 中,,,,D OCE DAO CEO DO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△EOC (AAS );(2)当∠B=∠AEB=45°时,四边形ACED 是正方形.如图;∵△AOD ≌△EOC ,∴OA=OE .又∵OC=OD ,∴四边形ACED 是平行四边形.∵∠B=∠AEB=45°,∴AB=AE ,∠BAE=90°.∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD .∴∠COE=∠BAE=90°.∴▱ACED 是菱形.∵AB=AE ,AB=CD ,∴AE=CD .∴菱形ACED 是正方形.故答案为:45.【点睛】此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握对角线互相垂直且相等的平行四边形是正方形.。
四川省绵阳中学(实验学校)2020-2021年自主招生数学试卷
HGCB DEA四川省绵阳中学(实验学校)2020-2021年自主招生数学试卷(时间:70分钟 满分:100分)姓名:_____ 分数:______一.选做题(共10小题,每题3分,共30分)1.已知三条抛物线y 1=x 2-x+m ,y 2=x 2+2mx+4,y 3=mx 2+mx+m-1中至少有一条与x 轴相交,则实数m 的取值范围是( )(A)4/3<m<2 (B)m ≤3/4且m ≠0 (C)m ≥2 (D)m ≤3/4且m ≠0或m ≥22.若等腰△ABC 的三边长都是方程x 2-6x+8=0的根,则△ABC 的周长是( ) (A)10或8 (B)1O (C)12或6 (D)6或10或123.已知A 、B 两地相距4千米。
上午8:00,甲从A 地出发步行到B 的,8:20乙从B 地出发骑自行车到A 地,甲乙两人离A 地的距离(千米)与甲所用的时间(分)之间的关系如图所示。
由图中的信息可知,乙到达A 地的时间为A 、8:30B 、8:35C 、8:40D 、8:454.如图,在正方形ABCD 的外侧,以AD 为斜边作等腰直角△ADE ,BE 、CE 分别交AD 于点G 、H ,若△GHE 的面积为2,则△CDH 的面积为( )A 、2;B 、22;C 、32;D 、4;5.已知关于x 的一次函数y=mx+2m-7在15x -≤≤上的函数值总是正的,则m 的取值范围( )A 、7m >B 、1m >C 、17m ≤≤D 、以上都不对6.如图,正方形ABCD 的边1=AB ,和都是以1为半径的圆弧,第3题图时间/分 2060 24 距离/千米则无阴影两部分的面积之差是( )A .12-πB .41π- C .13-πD .61π-7.如图,已知点A 是一次函数y =x 的图象与反比例函数xy 2=的图象在第一象限内的交点,点B 在x 轴的负半轴上,且OA =OB ,那么△AOB 的面积为A 、2B 、22C 、2D 、228.如图,在矩形ABCD 中,对角线AC 、BD 相交于点G ,E 为AD 的中点,连接BE 交AC 于点F ,连接FD ,若∠BFA =90°,则下列四对三角形:①△BEA 与△ACD ;②△FED 与△DEB ;③△CFD 与△ABC ;④△ADF 与△CFB 。
2020-2021学年四川省绵阳市中考数学仿真模拟试卷及答案解析
四川省绵阳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分,每小题只有一个选项最符合题目要求1.﹣4的绝对值是()A.4 B.﹣4 C.D.2.下列计算正确的是()A.x2+x5=x7B.x5﹣x2=3x C.x2•x5=x10D.x5÷x2=x33.下列图案,既是轴对称又是中心对称的是()A.B.C.D.4.如图是一个由7个相同正方体组合而成的几何体,它的主视图为()A.B.C.D.5.若关于x的方程x2﹣2x+c=0有一根为﹣1,则方程的另一根为()A.﹣1 B.﹣3 C.1 D.36.如图,沿AC方向开山修建一条公路,为了加快施工进度,要在小山的另一边寻找点E同时施工,从AC上的一点B取∠ABD=150°,沿BD的方向前进,取∠BDE=60°,测得BD=520m,BC=80m,并且AC,BD和DE在同一平面内,那么公路CE段的长度为()A.180m B.260m C.(260﹣80)m D.(260﹣80)m7.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm8.在关于x、y的方程组中,未知数满足x≥0,y>0,那么m的取值范围在数轴上应表示为()A. B.C.D.9.如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为()A.B.C.D.10.有5张看上去无差别的卡片,上面分别写着1,2,3,4,5,随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是()A.B.C.D.11.如图,点E,点F分别在菱形ABCD的边AB,AD上,且AE=DF,BF交DE于点G,延长BF 交CD的延长线于H,若=2,则的值为()A.B.C.D.12.二次函数y=ax2+bx+c的图象如图所示,下列结论:①b<2a;②a+2c﹣b>0;③b>a>c;④b2+2ac <3ab.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上. 13.因式分解:2mx2﹣4mxy+2my2= .14.如图,AC∥BD,AB与CD相交于点O,若AO=AC,∠A=48°,∠D= .15.根据绵阳市统计年鉴,2014年末绵阳市户籍总人口数已超过548万人,548万人用科学记数法表示为人.16.△OAB三个顶点的坐标分别为O(0,0),A(4,6),B(3,0),以O为位似中心,将△OAB缩小为原来的,得到△OA′B′,则点A的对应点A′的坐标为.17.如图,点O是边长为4的等边△ABC的内心,将△OBC绕点O逆时针旋转30°得到△OB1C1,B1C1交BC于点D,B1C1交AC于点E,则DE= .18.如图所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形.现用A i表示第三行开始,从左往右,从上往下,依次出现的第i个数,例如:A1=1,A2=2,A3=1,A4=1,A5=3,A6=3,A7=1,则A2016= .三、解答题:本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤19.计算:(π﹣3.14)0﹣|sin60°﹣4|+()﹣1.20.先化简,再求值:(﹣)÷,其中a=.21.绵阳七一中学开通了空中教育互联网在线学习平台,为了解学生使用情况,该校学生会把该平台使用情况分为A(经常使用)、B(偶尔使用)、C(不使用)三种类型,并设计了调查问卷、先后对该校初一(1)班和初一(2)班全体同学进行了问卷调查,并根据调查结果绘制成如下两幅不完整的统计图,请根据图中信息解答下列问题:(1)求此次被调查的学生总人数;(2)求扇形统计图中代表类型C的扇形的圆心角,并补全折线统计图;(3)若该校初一年级学生共有1000人,试根据此次调查结果估计该校初一年级中C类型学生约有多少人.22.如图,直线y=k1x+7(k1<0)与x轴交于点A,与y轴交于点B,与反比例函数y=(k2>0)的图象在第一象限交于C、D两点,点O为坐标原点,△AOB的面积为,点C横坐标为1.(1)求反比例函数的解析式;(2)如果一个点的横、纵坐标都是整数,那么我们就称这个点为“整点”,请求出图中阴影部分(不含边界)所包含的所有整点的坐标.23.如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC于E,DF⊥AB于F.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度.24.绵阳人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?25.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C(0,3),且此抛物线的顶点坐标为M(﹣1,4).(1)求此抛物线的解析式;(2)设点D为已知抛物线对称轴上的任意一点,当△ACD与△ACB面积相等时,求点D的坐标;(3)点P在线段AM上,当PC与y轴垂直时,过点P作x轴的垂线,垂足为E,将△PCE沿直线CE翻折,使点P的对应点P′与P、E、C处在同一平面内,请求出点P′坐标,并判断点P′是否在该抛物线上.26.如图,以菱形ABCD对角线交点为坐标原点,建立平面直角坐标系,A、B两点的坐标分别为(﹣2,0)、(0,﹣),直线DE⊥DC交AC于E,动点P从点A出发,以每秒2个单位的速度沿着A→D→C的路线向终点C匀速运动,设△PDE的面积为S(S≠0),点P的运动时间为t秒.(1)求直线DE的解析式;(2)求S与t之间的函数关系式,并写出自变量t的取值范围;(3)当t为何值时,∠EPD+∠DCB=90°?并求出此时直线BP与直线AC所夹锐角的正切值.四川省绵阳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分,每小题只有一个选项最符合题目要求1.﹣4的绝对值是()A.4 B.﹣4 C.D.【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣4|=4,∴﹣4的绝对值是4.故选:A.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.下列计算正确的是()A.x2+x5=x7B.x5﹣x2=3x C.x2•x5=x10D.x5÷x2=x3【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据合并同类项法则、同底数幂的乘法法则和除法法则进行判断.【解答】解:x2与x5不是同类项,不能合并,A错误;x2与x5不是同类项,不能合并,B错误;x2•x5=x7,C错误;x5÷x2=x3,D正确,故选:D.【点评】本题考查的是合并同类项、同底数幂的乘除法,掌握合并同类项法则、同底数幂的乘法法则和除法法则是解题的关键.3.下列图案,既是轴对称又是中心对称的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选C.【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.如图是一个由7个相同正方体组合而成的几何体,它的主视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是A中的图形,故选:A.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.5.若关于x的方程x2﹣2x+c=0有一根为﹣1,则方程的另一根为()A.﹣1 B.﹣3 C.1 D.3【考点】根与系数的关系.【分析】设方程的另一根为m,由一个根为﹣1,利用根与系数的关系求出两根之和,列出关于m的方程,求出方程的解即可得到m的值.【解答】解:关于x的方程x2﹣2x+c=0有一根为﹣1,设另一根为m,可得﹣1+m=2,解得:m=3,则方程的另一根为3.故选D.【点评】此题考查了一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时,方程有解,设为x1,x2,则有x1+x2=﹣,x1x2=.6.如图,沿AC方向开山修建一条公路,为了加快施工进度,要在小山的另一边寻找点E同时施工,从AC上的一点B取∠ABD=150°,沿BD的方向前进,取∠BDE=60°,测得BD=520m,BC=80m,并且AC,BD和DE在同一平面内,那么公路CE段的长度为()A.180m B.260m C.(260﹣80)m D.(260﹣80)m【考点】勾股定理的应用.【分析】先根据三角形外角的性质求出∠E的度数,再根据锐角三角函数的定义可求BE,再根据线段的和差故选即可得出结论.【解答】解:在△BDE中,∵∠ABD是△BDE的外角,∠ABD=150°,∠D=60°,∴∠E=150°﹣60°=90°,∵BD=520m,∵sin60°==,∴DE=520•sin60°=260(m),公路CE段的长度为260﹣80(m).答:公路CE段的长度为(260﹣80)m.故选:C.【点评】本题考查的是解直角三角形的应用,熟知三角形外角的性质及锐角三角函数的定义是解答此题的关键.7.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm【考点】平行四边形的性质.【分析】由▱ABCD的周长为26cm,对角线AC、BD相交于点0,若△AOD的周长比△AOB的周长多3cm,可得AB+AD=13cm,AD﹣AB=3cm,求出AB和AD的长,得出BC的长,再由直角三角形斜边上的中线性质即可求得答案.【解答】解:∵▱ABCD的周长为26cm,∴AB+AD=13cm,OB=OD,∵△AOD的周长比△AOB的周长多3cm,∴(OA+OB+AD)﹣(OA+OD+AB)=AD﹣AB=3cm,∴AB=5cm,AD=8cm.∴BC=AD=8cm.∵AC⊥AB,E是BC中点,∴AE=BC=4cm;故选:B.【点评】此题考查了平行四边形的性质、直角三角形斜边上的中线性质.熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.8.在关于x、y的方程组中,未知数满足x≥0,y>0,那么m的取值范围在数轴上应表示为()A. B.C.D.【考点】解一元一次不等式组;二元一次方程组的解;在数轴上表示不等式的解集.【专题】计算题;一元一次不等式(组)及应用.【分析】把m看做已知数表示出方程组的解,根据x≥0,y>0求出m的范围,表示在数轴上即可.【解答】解:,①×2﹣②得:3x=3m+6,即x=m+2,把x=m+2代入②得:y=3﹣m,由x≥0,y>0,得到,解得:﹣2≤m<3,表示在数轴上,如图所示:,故选C【点评】此题考查了解一元一次不等式组,二元一次方程组的解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.9.如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为()A.B.C.D.【考点】解直角三角形.【分析】先根据等腰三角形的性质与判定以及三角形内角和定理得出∠EBC=36°,∠BEC=72°,AE=BE=BC.再证明△BCE∽△ABC,根据相似三角形的性质列出比例式=,求出AE,然后在△ADE中利用余弦函数定义求出cosA的值.【解答】解:∵△ABC中,AB=AC=4,∠C=72°,∴∠ABC=∠C=72°,∠A=36°,∵D是AB中点,DE⊥AB,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°,∠BEC=180°﹣∠EBC﹣∠C=72°,∴∠BEC=∠C=72°,∴BE=BC,∴AE=BE=BC.设AE=x,则BE=BC=x,EC=4﹣x.在△BCE与△ABC中,,∴△BCE∽△ABC,∴=,即=,解得x=﹣2±2(负值舍去),∴AE=﹣2+2.在△ADE中,∵∠ADE=90°,∴cosA===.故选C.【点评】本题考查了解直角三角形,等腰三角形的性质与判定,三角形内角和定理,线段垂直平分线的性质,相似三角形的判定与性质,难度适中.证明△BCE∽△ABC是解题的关键.10.有5张看上去无差别的卡片,上面分别写着1,2,3,4,5,随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是()A.B.C.D.【考点】列表法与树状图法;三角形三边关系.【分析】确定剩下的三边长包含的基本事件,剩下的三张卡片上的数字作为边长能构成三角形的基本事件,即可求出能构成三角形的概率.【解答】解:剩下的三边长包含的基本事件为:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个;设事件B=“剩下的三张卡片上的数字作为边长能构成三角形“则事件B包含的基本事件有:(2,3,4),(2,4,5),(3,4,5)共3个,故p(A)=故选A.【点评】本题主要考查了用列举法来求古典概率的问题,关键是列举要不重不漏,难度不大.11.如图,点E,点F分别在菱形ABCD的边AB,AD上,且AE=DF,BF交DE于点G,延长BF 交CD的延长线于H,若=2,则的值为()A.B.C.D.【考点】相似三角形的判定与性质;菱形的性质.【分析】设DF=a,则DF=AE=a,AF=EB=2a,由△HFD∽△BFA,得===,求出FH,再由HD∥EB,得△DGH∽△EGB,得===,求出BG即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵AF=2DF,设DF=a,则DF=AE=a,AF=EB=2a,∵HD∥AB,∴△HFD∽△BFA,∴===,∴HD=1.5a,=,∴FH=BH,∵HD∥EB,∴△DGH∽△EGB,∴===,∴=,∴BG=HB,∴==.故选B.【点评】本题考查相似三角形的性质和判定、菱形的性质、比例的选择等知识,解题的关键是利用相似三角形的性质解决问题,学会设参数,属于中考常考题型.12.二次函数y=ax2+bx+c的图象如图所示,下列结论:①b<2a;②a+2c﹣b>0;③b>a>c;④b2+2ac <3ab.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【专题】计算题;二次函数图象及其性质.【分析】根据抛物线的图象,对称轴的位置,利用二次函数的性质一一判断即可.【解答】解:由图象可知,a>0,b>0,c>0,∵﹣>﹣1,∴b<2a,故①正确,∵|a﹣b+c|<c,且a﹣b+c<0,∴﹣a+b﹣c<c,∴a﹣b+2c>0,故②正确,∵﹣<﹣,∴b>a,∵x1<﹣1,x2>﹣,∴x1•x2<1,∴<1,∴a>c,∴b>a>c,故③正确,∵b2﹣4ac>0,∴2ac<b2,∵b<2a,∴<3ab,∴b2=b2+b2>b2+2ac,b2+2ac<b2<3ab,∴b2+2ac<3ab.故④正确.故选D.【点评】本题考查二次函数的性质、解题的关键是灵活运用所学知识解决问题,学会利用图象信息解决问题,题目比较难,属于中考选择题中的压轴题.二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上. 13.因式分解:2mx2﹣4mxy+2my2= 2m(x﹣y)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2m,再对余下的多项式利用完全平方公式继续分解.【解答】解:2mx2﹣4mxy+2my2,=2m(x2﹣2xy+y2),=2m(x﹣y)2.故答案为:2m(x﹣y)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.如图,AC∥BD,AB与CD相交于点O,若AO=AC,∠A=48°,∠D= 66°.【考点】等腰三角形的性质;平行线的性质.【分析】先依据等腰三角形的性质得到∠ACO=∠AOC,然后依据三角形的内角和定理可求得∠C 的度数,然后依据平行线的性质可求得∠D的度数.【解答】解:∵OA=AC,∴∠ACO=∠AOC=×(180°﹣∠A)=×(180°﹣48°)=66°.∵AC∥BD,∴∠D=∠C=66°.故答案为:66°.【点评】本题主要考查的是等腰三角形的性质、平行线的性质的应用,求得∠C的度数是解题的关键.15.根据绵阳市统计年鉴,2014年末绵阳市户籍总人口数已超过548万人,548万人用科学记数法表示为 5.48×106人.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将548万用科学记数法表示为:5.48×106.故答案为5.48×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.△OAB三个顶点的坐标分别为O(0,0),A(4,6),B(3,0),以O为位似中心,将△OAB缩小为原来的,得到△OA′B′,则点A的对应点A′的坐标为(﹣2,﹣3)或(2,3).【考点】位似变换;坐标与图形性质.【分析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k进行解答.【解答】解:∵以原点O为位似中心,将△OAB缩小为原来的,A(4,6),则点A的对应点A′的坐标为(﹣2,﹣3)或(2,3),故答案为:(﹣2,﹣3)或(2,3).【点评】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.17.如图,点O是边长为4的等边△ABC的内心,将△OBC绕点O逆时针旋转30°得到△OB1C1,B1C1交BC于点D,B1C1交AC于点E,则DE= 6﹣2.【考点】三角形的内切圆与内心;等边三角形的性质;旋转的性质.【分析】令OB1与BC的交点为F,B1C1与AC的交点为M,过点F作FN⊥OB于点N,根据等边三角形的性质以及内心的性质找出△FOB为等腰三角形,并且△BFO∽△B1FD,根据相似三角形的性质找出B1D的长度,再通过找全等三角形以及解直角三角形求出C1E的长度,由此即可得出DE的长度.【解答】解:令OB1与BC的交点为F,B1C1与AC的交点为M,过点F作FN⊥OB于点N,如图所示.∵将△OBC绕点O逆时针旋转30°得到△OB1C1,∴∠BOF=30°,∵点O是边长为4的等边△ABC的内心,∴∠OBF=30°,OB=AB=4,∴△FOB为等腰三角形,BN=OB=2,∴BF===OF.∵∠OBF=∠OB1D,∠BFO=∠B1FD,∴△BFO∽△B1FD,∴.∵B1F=OB1﹣OF=4﹣,∴B1D=4﹣4.在△BFO和△CMO中,有,∴△BFO≌△CMO(ASA),∴OM=BF=,C1M=4﹣,在△C1ME中,∠C1ME=∠MOC+∠MCO=60°,∠C1=30°,∴∠C1EM=90°,∴C1E=C1M•sin∠C1ME=(4﹣)×=2﹣2.∴DE=B1C1﹣B1D﹣C1E=4﹣(4﹣4)﹣(2﹣2)=6﹣2.故答案为:6﹣2.【点评】本题考查了等边三角形的性质、三角形内心的性质、相似三角形的判定及性质、全等三角形的判定及性质以及解直角三角形,解题的关键是求出线段B1D、C1E的长度.本题属于中档题,难度不小,解决该题型题目时,用到了相似三角形和全等三角形的判定及性质,因此找出相等的边角关系是关键.18.如图所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形.现用A i表示第三行开始,从左往右,从上往下,依次出现的第i个数,例如:A1=1,A2=2,A3=1,A4=1,A5=3,A6=3,A7=1,则A2016= 1953 .【考点】规律型:数字的变化类.【专题】规律型.【分析】根据杨辉三角中的已知数据,可以发现其中规律,每行的数的个数正好是这一行的行数,由题意可以判断A2016在哪一行第几个数,从而可以解答本题.【解答】解:由题意可得,第n行有n个数,故除去前两行的总的个数为:,当n=63时,=2013,∵2013<2016,∴A2016是第64行第三个数,∴A2016==1953,故答案为:1953.【点评】此题考查数字排列的规律,解题的关键是明确题意,发现其中的规律,计算出所求问题的答案.三、解答题:本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤19.计算:(π﹣3.14)0﹣|sin60°﹣4|+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、二次根式化简、绝对值、特殊角的三角函数值四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解::(π﹣3.14)0﹣|sin60°﹣4|+()﹣1=1﹣|2×﹣4|+2=1﹣|﹣1|+2=2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式化简、绝对值等考点的运算.20.先化简,再求值:(﹣)÷,其中a=.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把a的值代入进行计算即可.【解答】解:原式=[﹣]•=[﹣]•=•=,当a=+1时,原式==.【点评】本题考查的是分式的化简求值,式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.21.绵阳七一中学开通了空中教育互联网在线学习平台,为了解学生使用情况,该校学生会把该平台使用情况分为A(经常使用)、B(偶尔使用)、C(不使用)三种类型,并设计了调查问卷、先后对该校初一(1)班和初一(2)班全体同学进行了问卷调查,并根据调查结果绘制成如下两幅不完整的统计图,请根据图中信息解答下列问题:(1)求此次被调查的学生总人数;(2)求扇形统计图中代表类型C的扇形的圆心角,并补全折线统计图;(3)若该校初一年级学生共有1000人,试根据此次调查结果估计该校初一年级中C类型学生约有多少人.【考点】折线统计图;用样本估计总体;扇形统计图.【分析】(1)先由折线统计图得到偶尔使用的学生有58人,再由扇形统计图得到了解很少的学生所占的百分比,然后用58除以这个百分比即可得到接受问卷调查的学生人数;(2)先用总数分别减去其它三组的人数得到C的学生数,再补全折线统计图;用c部分所占的百分比乘以360°即可得到c部分所对应扇形的圆心角的大小;(3)利用样本中c程度的百分比表示该校这两项所占的百分比,然后用1000乘以这个百分比即可得到c程度的总人数的估计值.【解答】解:(1)由扇形统计图知B类型人数所占比例为58%,从折线图知B类型总人数=26+32=58人,所以此次被调查的学生总人数=58÷58%=100人;(2)由折线图知A人数=18+14=32人,故A的比例为32÷100=32%,所以C类比例=1﹣58%﹣32%=10%,所以类型C的扇形的圆心角=360°×10%=36°,C类人数=10%×100﹣2=8人,折线图如下:(3)根据此次可得C的比例为10%,估计该校初一年级中C类型学生约1000×10%=100人.【点评】本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了扇形统计图和用样本估计总体.22.如图,直线y=k1x+7(k1<0)与x轴交于点A,与y轴交于点B,与反比例函数y=(k2>0)的图象在第一象限交于C、D两点,点O为坐标原点,△AOB的面积为,点C横坐标为1.(1)求反比例函数的解析式;(2)如果一个点的横、纵坐标都是整数,那么我们就称这个点为“整点”,请求出图中阴影部分(不含边界)所包含的所有整点的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)分别令x=0、y=0,求得对应y和x的值,从而的得到点A、B的坐标,然后依据三角形的面积公式可求得k1的值,然后由直线的解析式可求得点C的坐标,由点C的坐标可求得反比例函数的解析式;(2)由函数的对称性可求得D(6,1),从而可求得x的值范围,然后求得当x=2、3、4、5时,一次函数和反比例函数对应的函数值,从而可得到整点的坐标.【解答】解:(1)∵当x=0时,y=7,当y=0时,x=﹣,∴A(﹣,0)、B(0、7).∴S△AOB=|OA|•|OB|=×(﹣)×7=,解得k1=﹣1.∴直线的解析式为y=﹣x+7.∵当x=1时,y=﹣1+7=6,∴C(1,6).∴k2=1×6=6.∴反比例函数的解析式为y=.(2)∵点C与点D关于y=x对称,∴D(6,1).当x=2时,反比例函数图象上的点为(2,3),直线上的点为(2,5),此时可得整点为(2,4);当x=3时,反比例函数图象上的点为(3,2),直线上的点为(3,4),此时可得整点为(3,3);当x=4时,反比例函数图象上的点为(4,),直线上的点为(4,3),此时可得整点为(4,2);当x=5时,反比例函数图象上的点为(5,),直线上的点为(5,2),此时,不存在整点.综上所述,符合条件的整点有(2,4)、(3,3)、(4,2).【点评】本题主要考查的是反比例函数与一次函数的交点问题,依据三角形的面积求得k1的值是解题的关键.23.如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC于E,DF⊥AB于F.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度.【考点】直线与圆的位置关系;三角形中位线定理;垂径定理;切线的判定.【分析】(1)先连接OD、AD,根据点D是的中点,得出∠DAO=∠DAC,进而根据内错角相等,判定OD∥AE,最后根据DE⊥OD,得出DE与⊙O相切;(2)先连接BC交OD于H,延长DF交⊙O于G,根据垂径定理推导可得OH=OF=4,再根据AB 是直径,推出OH是△ABC的中位线,进而得到AC的长是OH长的2倍.【解答】解:(1)DE与⊙O相切.证明:连接OD、AD,∵点D是的中点,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切.(2)连接BC交OD于H,延长DF交⊙O于G,由垂径定理可得:OH⊥BC,==,∴=,∴DG=BC,∴弦心距OH=OF=4,∵AB是直径,∴BC⊥AC,∴OH∥AC,∴OH是△ABC的中位线,∴AC=2OH=8.【点评】本题主要考查了直线与圆的位置关系,在判定一条直线为圆的切线时,当已知条件中明确指出直线与圆有公共点时,通常连接过该公共点的半径,证明该半径垂直于这条直线.本题也可以根据△ODF与△ABC相似,求得AC的长.24.绵阳人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?【考点】分式方程的应用;一元一次不等式组的应用.【分析】(1)设乙种牛奶的进价为每件x元,则甲种牛奶的进价为每件(x﹣5)元,由题意列出关于x的方程,求出x的值即可;(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,根据题意列出关于y的不等式组,求出y的整数解即可得出结论.【解答】解:(1)设乙种牛奶的进价为每件x元,则甲种牛奶的进价为每件(x﹣5)元,由题意得,=,解得x=50.经检验,x=50是原分式方程的解,且符合实际意义.(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,由题意得,解得23<y≤25.∵y为整数,∴y=24或25,∴共有两种方案:方案一:购进甲种牛奶67件,乙种牛奶24件;方案二:购进甲种牛奶70件,乙种牛奶25件.【点评】本题考查的是分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.25.(12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C(0,3),且此抛物线的顶点坐标为M(﹣1,4).(1)求此抛物线的解析式;(2)设点D为已知抛物线对称轴上的任意一点,当△ACD与△ACB面积相等时,求点D的坐标;(3)点P在线段AM上,当PC与y轴垂直时,过点P作x轴的垂线,垂足为E,将△PCE沿直线CE翻折,使点P的对应点P′与P、E、C处在同一平面内,请求出点P′坐标,并判断点P′是否在该抛物线上.【考点】二次函数综合题.【分析】(1)由抛物线经过的C点坐标以及顶点M的坐标,利用待定系数法即可求出抛物线解析式;。
2020年四川省绵阳市中考数学模拟试题
( )
A������ ①②
B������ ①②③
C������ ①②④
D������ ①③④
第 7 题图
姓名
中考数学仿真模拟测试卷(五) 第 1 页 (共 8 页)
279
8������ (2020 独家原创) 如图,正方形 ABCD 中,AB = 3,点 E 是对角线 AC 上的一点,连接 DE,过点 E 作 EF⊥DE,交
AB 于点 F,连接 DF 交 AC 于点 G,下列结论:①DE = EF;②∠ADF = ∠AEF;③DG2 = GE·GC;④若 AF = 1,则
EG =
5 4
2 .其中结论正确的个数是
( )
第 8 题图
A������ 1
B������ 2
C������ 3
D������ 4
二、填空题( 共 8 小题,每小题 3 分,计 24 分)
C������ 图②中,勒洛三角形上任意一点到等边△DEF 的中心 O1 的距离都相等
D������ 图②中,勒洛三角形的周长与圆的周长相等
7������ (2020 独家原创) 如图是二次函数 y = ax2 +bx+c 的图象,有下面四个结论:①abc
>0;②a-b+c>0;③2a+3b>0;④c-4b>0,其中,正确的结论是
A������ -6
B������ 6
C������ -3
D������ 3
( )
6������ (2020 独家原创) 中国科学技术馆有“ 圆与非圆” 展品,涉及了“ 等宽曲线” 的知识.因为圆的任何一对平行切
线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“ 等宽曲线”,如勒洛三角
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴ AB?CD = x?4x,
∴ AB= CD= 2x,
∴ AB: BC= 2x:5x= 2: 5.
故答案为 2: 5.
8.【解答】解: ( 1)∵△ AOD 和△ DOC 中 AO 和 CO 边上的高相等, S△AOD: S△ACD=1: 3,
∴
,
∵ AD ∥ BC,
.
9.如图, E 为边长为 1 的正方形 ABCD 的对角线 BD 上一点, 且 BE= BC,P 为 CE 上任意一点, PQ⊥ BC,
试卷第 1 页,总 177 页
PR⊥ BE,则 PQ+PR 的值为
.
2
4
8
2048
10.( 2+1 )(2 +1)( 2 +1)( 2 +1)…( 2 +1) +1 的末位数字为
∴△ ADO ∽△ CBO,
∴
,
∴ S△AOD: S△BOC= 1:4,
( 2)∵ S△AOD: S△ACD= 1: 3, ∴ AO: OC=1: 2, ∴ S△AOD: S△BOC= 1:4;若 S△AOD= 1, 则 S△ACD= 3, S△BOC= 4, ∵ AD ∥ BC, ∴ S△ABC= S△ BDC, ∵ S△AOB= S△ABC﹣ S△BOC, S△DOC= S△BDC﹣ S△BOC, ∴ S△AOB= S△DOC= 2, ∴梯形 ABCD 的面积= 1+4+2+2 =9. 故答案为: 1: 4; 9.
.
二、解答题( 2 小题,共 40 分)解答应写出文字说明、推理过程或演算步骤 13.有一个底面周长为 4πcm 的圆柱体,斜着截去一段后,剩下的几何体如图所示,求该剩下几何体的体积
(结果保留 π)
14.计算:
+
+
+… +
.
试卷第 2 页,总 177 页
参考答案
一、填空题(每小题 5 分,共 60 分) 1.【解答】解:设儿子现在的年龄是 x 岁,则爸爸的年龄是 7x 岁,由题意得:
∴=,
∴ EF= ,即 PQ+PR= .
∴ PQ+PR 的值为 .
故答案为:
.
2
4
8
2048
10.【解答】解: ( 2+1)( 2 +1)(2 +1)( 2 +1)…( 2 +1) +1
=(
2﹣ 1)( 2+1)( 22+1)(
4
2 +1)(
8
2 +1)…(
2048
2 +1) +1,
=(
22﹣1)(
2.若
与
互为相反数,则
2
a+
b2=
.
4 倍,则儿子现在的年龄是
3.若不等式组
无解,则 m 的取值范围是
.
4.如图,函数 y= ax2﹣ bx+c 的图象过点(﹣ 1, 0),则
的值为
.
岁.
5.在半径为 1 的 ⊙O 中,弦 AB、 AC 分别是 、 ,则∠ BAC 的度数为
.
6.在 Rt△ ABC 中,∠ A= 90°, tanB= 3tanC,则 sinB=
4( x+5)= 7x+5, 解得: x= 5,. 故答案为: 5.
2.【解答】解:根据题意得:
,
解得:
.
Байду номын сангаас
则 a2+b2= 16+1= 17. 故答案是: 17.
3.【解答】解:∵不等式组
无解,
∴ m+1≤ 2m﹣ 1,
∴ m≥ 2.
故答案为 m≥2. 4.【解答】解:∵函数
y= ax2﹣bx+c 的图象过点(﹣ 1, 0),即 x=﹣ 1 时, y= 0,
.
11.一行数从左到右一共 2000 个,任意相邻三个数的和都是 96,第一个数是 25,第 9 个数是 2x,第 2000
个数是 x+5,那么 x 的值是
.
12.如图所示,点 A 是半圆上的一个三等分点, B 是劣弧 的中点,点 P 是直径 MN 上的一个动点, ⊙ O
的半径为 1,则 AP+PB 的最小值
,
∵ tanB= 3tanC,
∴ tanB= 3
,
解得 tanB= , ∴∠ B= 60, ∴ sinB= sin60°= .
故答案为:
.
7.【解答】解:∵∠ B=∠ C= 90°, ∴∠ BAE+∠ AEB= 90°, ∵ AE⊥ DE, ∴∠ AEB+∠ CED = 90°, ∴∠ BAE=∠ CED , ∴△ ABE∽△ ECD , ∴=, 设 BE= x, ∵ BE: EC= 1:4, ∴ EC= 4x,
.
7.如图,矩形 ABCD 中, E 是 BC 上一点,且 BE:EC =1: 4, AE⊥ DE ,则 AB: BC=
.
8.如图,在梯形 ABCD 中, AD∥ BC,对角线 AC、 BD 相交于点 O,若 S△AOD: S△ACD= 1: 3,则 S△AOD:
S△ BOC=
;若 S△AOD= 1,则梯形 ABCD 的面积为
∵ = ∴∠ OAM = 45°;同理,∵
= ,∴∠ OAN= 30°;
∴∠ BAC=∠ OAM +∠ OAN 或∠ OAM ﹣∠ OAN ∴∠ BAC= 75°或 15°.
试卷第 3 页,总 177 页
6.【解答】解:∵ Rt△ ABC 中,∠ A= 90°, ∴∠ B+∠ C= 90°,
∴ tanC=
∴ a+b+c= 0,
∴ b+c=﹣ a, c+a=﹣ b, a+ b=﹣ c,
∴原式= + +
=﹣ 1﹣ 1﹣ 1 =﹣ 3. 故答案为﹣ 3.
5.【解答】解:作 OM ⊥ AB, ON⊥AC ;由垂径定理,可得 AM =
, AN=
,
∵弦 AB、 AC 分别是 、 ,∴ AM = ,AN= ;
∵半径为 1∴ OA=1;
重点高中提前招生模拟考试数学试卷
学校 :___________姓名: ___________班级: ___________考号: ___________ 注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、填空题(每小题 5 分,共 60 分)
1.现在爸爸的年龄是儿子的 7 倍, 5 年后爸爸的年龄将是儿子的
9.【解答】解:根据题意,连接 BP,过 E 作 EF⊥ BC 于 F ,
∵ S△BPC+S△BPE= S△BEC
∴
= BC ?EF ,
∵ BE= BC= 1,
试卷第 5 页,总 177 页
∴ PQ+PR= EF, ∵四边形 ABCD 是正方形, ∴∠ DBC= 45°, ∵在 Rt△ BEF 中,∠ EBF = 45°, BE= 1, sin45°= ,
22+1)(
4
8
2 +1)( 2 +1)…(
2048
2 +1 ) +1,