函数关系的表示法-课件

合集下载

人教A版必修第一册3.1.2函数的表示法PPT课件

人教A版必修第一册3.1.2函数的表示法PPT课件

课本P72,习题3.1 3 , 7 P101 7
例如,当x=2时, M(2)=max{f(2),g(2)}=max{3,9}=9,请分别用图 像法和解析法表示M(x)
P73页13.函数f (x) [x]的函数值表示不超过x的最大整数, 例如,[3.5] 4,[2.1] 2.当x (2.5,3]时, 写出函数f (x)的解析式,并画出函数的图像。
2.求抽象函数的定义域的方法:
已知f(x)的定义域,求f(g(x))的定义域:
已知f(g(x))的定义域,求f(x)的定义域:
(1)定义域是指x的取值范围; (2)f(x)与f(g(x))这两个括号的范围是一致的
探索点二 求函数的值域 (金版 P49)
【例 2】 (1)函数 y= 的值域为 (-∞,2)∪(2,+∞) .
4
x, x 0
3
y x, x 0
2
1
-3 -2 -1 O 1 2 3 x
在定义域内不同部分上,有不同的 解析表达式的函数通常叫做分段函数
分段函数:对于一个函数,在定义域的不同部 分,有不同的表达式,图象由不同的几段构成.
(1)分段函数是一个函数, 不要把它误认为是几个函数;
(2)分段函数的定义域是各段定义域的 并集,值域是各段值域的并集.
测 试
成绩 序 第1次
号 姓名
第2次
第3次 第4次
第5次 第6次
王伟
98
87
91
92
88
95
张城
90
76
88
75
86
80
赵磊
68
65
73
72
75
82
班级平均分 88.2 78.3 85.4 80.3 75.7 82.6

函数的表示法(公开课)省公开课获奖课件说课比赛一等奖课件

函数的表示法(公开课)省公开课获奖课件说课比赛一等奖课件

y
y
2
A
2
B
0
2
y
x
2
C
0
2x
0y 2
x
2
D
0
x
2
思索交流
x+2, (x≤-1)
5. 已知函数f (x)= x2, (-1<x<2)
2x, ( x≥2 )
若f(x)=3, 则x旳值是( D )
A. 1
B.
1或
3 2
C. 1,
3,
3 2
D. 3
怎样求函数解析式
一、【配凑法(整体代换法)】
若已知 f (g(x)) 旳体现式,欲求 f (x) 旳体现式, 可把 g(x)看成一种整体,把右边变为由 g(x) 构成 旳式子,再换元求出 f (x) 旳式子。
x
例3 、国内跨省市之间邮寄信函,每封信函旳质量和相应旳邮资如表.
信函质量 (m)/g
0<m≤20
邮资(M)/元 1.20
20<m≤40 2.40
40<m≤60 3.60
60<m≤80 4.80
80<m≤100 6.00
画出图像,并写出函数旳解析式.
解:邮资是信函质量旳函数,函数图像如图。
函数旳解析式为
7.0
9.4
10.0
11.0
y 9 x 32 5
解析法
(6)某气象站测得本地某一天旳气温变化情况如图所示:
温度
8
T (℃)
6
4

0

时间
2 4 6 81
1
1
1
1
2
2
t2
( 时

函数的表示法课件ppt

函数的表示法课件ppt

王伟
张城
赵磊
班平均分
1 2 3 4 5 6 x
y
0
一、函数的三种表示法
0
赵磊同学的数学学习成绩低于班级平均水平,但他的成 绩曲线呈上升趋势,表明他的数学成绩稳步提高.
二、分段函数
设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
三、映射的概念
你认为映射定义中的关键词是什么? 如何理解这些关键词? (2) 映射定义与函数定义的区别是什么?
5
4
3
2
1
y
y=
0<x ≤ 5
5 < x ≤ 10
10 < x ≤ 15
15 < x≤20
2,
3,
4,
5,
0 5 10 15 20 x
5
4
3
2
1
y
解:设票价为y,里程为x,则根据题意, 自变量x的取值范围是(0,20]
由“招手即停”公共汽车的票价的规定规则, 可得到以下函数解析式:
三、映射的概念
思考:对于例7中的(3),(4)作如下改编. (3) 对应关系f:每一个三角形都对应它的内切圆; (4) 对应关系f:每一个班级都对应班里的学生;
每一个圆都对应它的内接三角形;
集合B={x|x是圆},
集合A={x|x是三角形},
每一个学生都对应他的班级;
解析法: 图象法: 列表法:
就是用数学表达式表示两个变量之间的对应关系.
就是用图象表示两个两个变量之间的对应关系.
就是列出表格来表示两个变量之间的对应关系.

人教版必修一1.2.2函数的表示法课件

人教版必修一1.2.2函数的表示法课件
提示:不能.并不是所有的函数都有解析式.
[导入新知]
[化解疑难]
三种表示方法的优、缺点比较
优点
缺点
解 析 法
一是简明、全面地概括了变量 间的关系;二是可以通过解析 式求出任意一个自变量所对应 的函数值
不够形象、直观,而且并 不是所有的函数都可以用 解析式表示
列 表 法
不通过计算就可以直接看出与 自变量的值相对应的函数值
例:求下列函数的解析式: (1)已知f1+x x=1+x2x2+1x,求f(x); (2)已知f( x+1)=x+2 x,求f(x).
解:(1)法一:(换元法) 令t=1+x x=1x+1,得x=t-1 1,则t≠1. 把x=t-1 1代入f1+x x=1+x2x2+1x,得
f(t)=1+ 1t-112 2+
y 0 -1 0 3
8
画图象,图象是抛物线y=x2+2x在-2≤x≤2之间的部分.
由图可得函数的值域是[-1,8].
[类题通法] 1.作函数图象的三个步骤 (1)列表.先找出一些有代表性的自变量x的值,并计算出与 这些自变量相对应的函数值f(x),用表格的形式表示出来. (2)描点.把第(1)步表格中的点(x,f(x))一一在坐标平面上描 出来. (3)连线.用平滑的曲线把这些点按自变量由小到大的顺序连 接起来. [注意] 所选的点越多画出的图象越精确,同时所选的点应 该是关键处的点.
s_t函数图象与故事情节相吻合的是
()
解析:由于兔子中间睡了一觉,所以有一段路程不变,而乌龟的 路程始终在增加且比兔子早到终点,故选B. 答案:B
2.函数y=f(x)的图象如图,则f(x)的定义
域是
()
A.R
B.(-∞,1)∪(1,+∞)

函数的概念及表示法ppt课件

函数的概念及表示法ppt课件

(1)对于x的每一个值,y都满足有唯一的值与之对应吗?
不满足
(2)y是x的函数吗?为什么?
不是,因为y的值不是唯一的.
26
26
随堂练习
演练
1. 下面四个关系式:① y = ;② = x ;
③2 x2- y =0;④ y = ( x >0).
其中 y 是 x 的函数的是(
D )
27
随堂练习
报酬按16元/时计算. 设小明的哥哥这个月工作的时间为t
小时,应得报酬为m元,填写下表:
怎样用关于t的代数式表示m? m = 16t
对于这个函数,当t=5时,把它代入函数表达式,得
m = 16t=16×5=80(元).
m = 80是当自变量t=5时的函数值.
代入法
19
19
探究新知
函数与函数值
对于自变量在可取值范围内的一个确定的值a,函
判断一个关系是否是函数关系,根据函数定义,主
要从以下3个方面分析:
(1) 是否在一个变化过程中;
(2) 在该过程中是否有两个变量;
(3) 对于一个变量每取一个确定的值,另一个变量
是否有唯一确定的值与其对应.
13
13
探究新知
知识点
函数的三种表示法
合作探究
m = 16t
这几个函数用等式来表示,
这种表示函数关系的等式,
16
80
160
240
320

t

16t
怎样用关于t的代数式表示m? m = 16t
5
5
探究新知
合作探究
2.跳远运动员按一定的起跳姿势,其跳远的距离s
(米)与助跑的速度v(米/秒)有关. 根据经验,跳

必修1课件1.2.2函数的表示法

必修1课件1.2.2函数的表示法

笔记本数x 钱数y
1 5
2 10
3 15
4 20
5 25
例2.下表是某校高一(1)班三名同学在高一学年 度六次数学测试的成绩及班级平均分表。
第一次 第二次 第三次 第四次 第五次 第六次
王 伟 张 城 赵 磊
班平分
98 90 68 88.2
87 76 65 78.3
91 88 73 85.4
92 75 72 80.3
观察得出映射(1)有两个特点: ①集合A中不同的元素在B中有不同的象; ②集合B中的元素都有原象;
一一映射:
设A、B是两个集合, f : A B 是集合A到集合B 的映射,如果在这个映射下,对于集合A中不同的元 素在B中有不同的象,而且集合B中的每一个元素都 有原象,这个映射叫做A到B上的 一一映射。
解:这个函数的定义域是数集{1,2,3,4,5}
用解析法可将函数y=f(x)表示为
y 5 x, x 1, 2, 3,4,5
用列表法可将函数表示为
笔记本数x 钱数y
1 5
2 10
3 15
4 20
5 25
用图象法可将函数表示为下图
y 25
20 . .
1 2 3 4

5
x
上例中(1)是A到B上的一一映射,(2)是A到B的 映射,但不是一一映射。
一一映射: 设A、B是两个集合, f : A B 是集合A到集合B 的映射,如果在这个映射下,对于集合A中不同的元 素在B中有不同的象,而且集合B中的每一个元素都 有原象,这个映射叫做A到B上的 一一映射。 注意:
①一一映射中集合A中不同的元素在B中有不同的象, 集合B中的元素都有原象;
例6 .判断下列对应是否映射?有没有对应法则?

4.函数的表示法PPT课件16张

4.函数的表示法PPT课件16张

课后活动
每位同学寻找发现两个生 活中的函数关系的实例。
课堂练习 P35 2 、4题
用函数的三种表示法来 表示y 与 n 的函数关系
某礼堂共有25排座位,第一排 有20个座位,后面每一排都比前一 排多一个座位,写出每排的座位数
m与这排的排数n 的函数解析式, 并写出自变量nA
t
s
S1
S2
O
t
C
s
O
B s
S1 S2 t
S1
S2
O
D
t
握握手,好朋友
• 你想过吗?开学的时候,同学们 • 初次见面,如果每两人握一次手且只 • 握一次手,那么全班同学共握几次手? • 全年级同学又共握多少次手?全校同 • 学又总共握多少次手?有规律吗?
用y表示握手的次数,用x表示 握手的人数,用列表法和公式法 表示y与x的函数关系。
这节课 我学会了--我印象最深的是---
列表法: x 1 y2
公式法:
y=2x
2 3 4 --4 6 8 ---
(x取正整数)
图象法:
如上图:用边长为1的等边三 角形拼成图形,用 y表示拼成的 图形的周长,用 n表示其中等边 三角形的个数。
y 是 n 的函数吗?
想 一 想 ?
用y表示拼成的图形的周长, 用 n表示其中等边三角形的个数。
函数的表示法
数青蛙
如果变量Y随着变量X而变化,并 且对于X取的每一个值,Y都有唯一 的一个值与它对应,那么称Y是X的 函数。
想 一 想 ?
儿歌中包含了哪些函数关系?
青蛙的嘴的张数是青蛙的只数 青蛙的眼睛只数与青蛙的只数 青蛙的腿数与青蛙的只数 青蛙跳入水中的次数与青蛙的只数
青蛙的眼睛只数y是青蛙只数x的函数

部编版八年级上册数学教学课件-函数的表示法——列表法和解析法

部编版八年级上册数学教学课件-函数的表示法——列表法和解析法
示函数关系的方法叫做列表法.
知1-讲
例1 一个小球在一个斜坡上由静止开始向下运动,
通过仪器观察 得到小球滚动的距离s(米)与时间
t(秒)的数据如下表:
t
1 234…
s
2 8 18 32 …
请写出s与t的函数表达式.
知1-讲
解:因为t=1时,s=2;t=2时,s=8=2×4=2×22; t=3时,s=18=2×9=2×32; t=4时,s=32=2×16=2×42, 所以s与t的函数表达式为s=2t2.
(4)零指数幂、负整数指数幂中,底数不为0; (5)实际问题中,自变量除了满足解析式有意义外,
还要考虑使实际问题有意义. 3.自变量的值与函数值.
(来自《点拨》)
总结
知1-讲
本题以表格的形式给出了时间与距离之间的 关系,我们应观察分析各数值之间的关系,从而列 出函数表达式.
(来自《点拨》)
1 一列火车以80 km/h的速度匀速行驶.
知1-练
(1) 写出它行驶的路程s km与时间t h之间的 函数表达式;
(2)当t =10时,s是多少?
解:(1)s=80t. (2)s=80×10=800.
第12章 一次函数
第1节 函数
第2课时 函数的表示法——列表法和解析法
1 课堂讲解 列表法 解析法
2 课时流程 自变量的取值范围
逐点 导讲练
课堂 小结
课后 作业
表示函数关系主要有下列三种方法:列表法、解 析法、图象法.
知识点 1 列表法
知1-讲
列表法 通过列出自变量的值与对应函数值的表格来表
(来自《点拨》)
知3-练
1 (中考·黔南州)函数 y 3 x 1 的自变量x

新教材北师大版必修第一册 第二章2.2函数的表示法1函数的表示法 课件(49张)

新教材北师大版必修第一册   第二章2.2函数的表示法1函数的表示法   课件(49张)
x
所以f(x)=- 1.
x
=-
x
,
3
xx
【补偿训练】
已知f(x)满足f(x)=2f ( 1 )+x,则f(x)的解析式为________.
x
【解析】因为f(x)=2f ( 1+) x,用
x
替1 换x得f
x
=( 12)f(x)+
x
,1
x
代入上式得f(x)= 2[2f x 1 ] x,
x
解得f(x)= 2 . x
【补偿训练】 某公共汽车,行进的站数与票价关系如表:
行进的 站数
票价
123456789 111222333
此函数的关系除了列表之外,能否用其他方法表示?
类型二 函数的图象及其应用(直观想象) 【典例】1.(2020·徐州高一检测)函数y= x2 的图象的大致形状是( )
x
2.已知函数f(x)=x2-2x(-1≤x≤2). (1)画出f(x)图象的简图. (2)根据图象写出f(x)的值域. 【思路导引】1.分x>0,x<0两种情况作出判断. 2.先作出图象,再根据图象写值域.
【跟踪训练】 作出下列函数的图象并写出其值域. (1)y=-x,x∈{0,1,-2,3}. (2)y= 2 ,x∈[2,+∞).
x
【拓展延伸】关于图象变换的常见结论有哪些? 提示:(1)y=f(x)与y=f(-x)的图象关于y轴对称. (2)y=f(x)与y=-f(x)的图象关于x轴对称. (3)y=f(x)与y=-f(-x)的图象关于点(0,0)对称. (4)y=f(|x|)是保留y=f(x)的y轴右边的图象,去掉y轴左边的图象,且将右边图象 沿y轴对折而成. (5)y=|f(x)|是保留y=f(x)的x轴上方的图象,将x轴下方的图象沿x轴对折且去掉 x轴下方的图象而成.

函数的表示法名校公开课获奖课件公开课一等奖课件省赛课获奖课件

函数的表示法名校公开课获奖课件公开课一等奖课件省赛课获奖课件
由条件得:
点M( 0,1 )在抛物线上 因此:a(0+1)(0-1)=1
x o
得: a=-1
故所求的抛物线解析式为 y=- (x+1)(x-1)
即:y=-x2+1
求函数解析式的办法
练习: (1)已知二次函数满足f(1)=1,
f(-1)=5 ,图象过原点,求f(x);
(2)已知二次函数f(x),其图象过点是 (-1,2)和(1,-4),且通过原点,求f(x).
3.函数 f (x) x的图| x像| 是( ) x
(4) 根据下列函数的图象写出函数解析式
y 1
O1x
y
y
1
1
O
x
-1
-1
O
-1
2
x
问题探究
3. 某质点在30s内运动速度vcm/s是
时间t的函数,它的 v
30
图像以下图.用解
析式表达出这个 函数, 并求出9s时 10
质点的速度.
t O 10 20 30
函数的三种表达法的缺点:
1、解析法的缺点:有些问题有时很难用体现式来表 达。 2、图象法的缺点:图像及相对应的点的坐标往往不 精确。
3、列表法的缺点:有时应用有一定的局限性。
二、新课
【例1 】某种笔记本的单价是5元,买x x 1,2,3,4,5
个笔记本需要y元。试用函数的三种表示法表示函数 解:这个函数的定义域是数集{1,2,3,4,5}
【例3 】画出函数 y | x |的图象.
解:y
x
x
x0 x0
有些函数在它的定义域 中,对于自变量的不同取值 范围,对应关系不同,这种 函数通常称为分段函数。
图象以下:
y

函数的表示法 课件

函数的表示法 课件
x 1 x2
【解题指导】
【规范解答】令 1 1, t…………………………………2分
x
则x 1 , t, …1①…………………………………………4分
t 1
1

f
t
1
t (
1 1
)2……t2t…12…t .………………………8分
t 1
又t2-2t≠0,∴t≠0且t≠2,
∴t≠0,且t≠1,t≠2②, …………………………………10分 ∴f(x)= x (x1≠0,且x≠1,x≠2).……………………12分
缺 只能近似求出自变量的

值所对应的函数值,而 且有时误差较大
2.函数三种表示方法的内在联系 (1)解析法、图象法和列表法分别从三个不同的角度刻画了自 变量和函数值的对应关系.
(2)在已知函数的解析式研究函数的性质时,可以先由解析式确 定函数的定义域,然后通过取一些有代表性的自变量的值与对 应的函数值列表,描点连线作出函数的图象,利用函数图象形 象直观的优点,能够帮助我们理解概念和有关性质.数形结合是 研究数学的一种重要的数学思想,是解题的一种有效途径.
【规范训练】(12分)用长为l的铁丝弯成下部为矩形,上部为
半圆形的框架,若矩形底边长为2x,求此框架围成的面积y
与x的函数关系式,并指出其定义域.
【解题设问】(1)矩形的另一边怎样表示? l 2x . x
2
(2)矩形的边长应满足什么关系?_两__边__均__大__于__0.
【规范答题】由条件知,矩形的底边长为2x,即半圆的半径
【想一想】(1)解答题2的关键点是什么? (2)用换元法求函数解析式应注意什么问题? 提示:(1)解答题2的关键点是设出所求函数解析式利用恒等式 求解. (2)用换元法求函数解析式时,要注意新元的取值范围,即换 元后的函数的定义域.

函数表示法(课件)

函数表示法(课件)
解析式表示法的形式
解析式表示法有多种形式,包括代数式、分式、根式、三角函数式 等。
解析式表示法的特点
解析式表示法具有明确、简洁、易于理解和计算的特点,能够准确 地描述函数的性质和变化规律。
解析式表示法的特点
精确性
01
解析式表示法能够精确地描述函数的数学关系,不受近似或实
验数据的影响。
通用性
02
解析式表示法适用于各种类型的函数,包括线性函数、多项式
| --- | --- |
| -1 | 3 |
表格表示法的应用实例
|0|0|
| 1 | -1 |
|2|0|
05 语言描述表示法
语言描述表示法的定义
语言描述表示法
使用自然语言或编程语言对函数进行描述的一种表示方法。
定义解释
语言描述表示法使用人类可读的文本语言来描述函数的行为 和功能,可以是自然语言(如中文、英文等)或编程语言( 如Python、Java等)。
语言描述表示法的应用实例
数学函数
使用自然语言描述数学函数,如二次函数、三角函数等。
算法描述
使用编程语言描述算法,如排序算法、搜索算法等。
系统功能
使用自然语言描述系统功能,如操作系统、数据库管理系 统等。
THANKS FOR WATCHING
感谢您的观看
表格表示法的特点
直观明了
表格表示法能够直观地展示自变量和因变量的对应关系,便于理 解和记忆。
适用范围广
表格表示法适用于各种类型的函数,包括线性函数、多项式函数、 三角函数等。
可视化效果好
通过表格的绘制,可以清晰地看出函数的取值变化趋势和规律。
表格表示法的应用实例
• 线性函数:例如函数 f(x) = 3x + 2,可以用表格表示法展示 x 和 f(x) 的对应关系,如下表所示

【最新】课件-3.1.2函数的表示PPT

【最新】课件-3.1.2函数的表示PPT
一、函数的表示法: 解析法 列表法 图象法
1. 解析法:
把两个变量的关系, 用一个等式表示, 这 个等式就叫做函数的解析式.
如 : S 60t 2 , A r 2 , S 2 rl ,
y ax2 bx c(a 0)
优点:函数关系清楚, 便于研究函数性质.
2. 列表法:
列出表格来表示两个变量的关系. 如:平方表,平方根表,汽车、火车站的里 程价目表、银行里的“利率表”等等. 优点: 易知自变量与函数的对应性.
法四:构造法 例 4(1)已知函数 f(x)满足条件:f(x)+2f(1x)=x,求 f(x)的表达式; (2)若函数 g(x)满足条件:g(x)+2g(-x)=x,求 g(x)表达式.
解:这个函数的定义域是数集{1,2,3,4,5}
用解析法表示为 y 5x,x 1,2,3,4,5
列表法表示如下:
x 1 2 3 45 y 5 10 15 20 25
用图象法可将函数表示为右图:
函数的图象既可以是连续的曲线,也可以是
直线、折线、孤立的点等。4Fra bibliotek提升总结
作函数图象时应注意的事项:
(1)画函数图象时首先关注函数的定义域,即在定 义域内作图;(定义域优先)
3. 图象法:
用函数图象来表示两个变量之间的关系.
如:
一次函数的图象是一条直线;
如函数 y=kx+b (k<0、b>0)
优点:直观形象.
y
O
x
例1.某种笔记本每个5元,买 x (x∈{1, 2, 3, 4})个笔记本的钱数记为y(元),试写出以x为自变 量的函数y的解析式,并画出这个函数的图象.
(2)图象是实线或实点,定义域外的部分有时可用 虚线来衬托整个图象;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.小明给玉米地锄草用了多少时间?
从横坐标看:小明给玉米地锄草用了18分钟(即55-37)
距离y/千米
2
1.1
0 15 25 37 55
80
时间x/分钟
5.玉米地离小明家多远?小明从玉米地走回家的平 均速度是多少?
从纵坐标看:玉米地离小明家2千米.
从横坐标看:小明从玉米地走回家用了25分钟.
平均速度是0.08千米/分钟.
是多少?
0 4 8 12 16 20 24 时间
h
③ 出发后8分钟到10分钟
90 速度 km/h
之间可能发生了什么情况? 60
④ 用自己的语言大致描述 30
这辆汽车的行驶情况。
0 4 8 12 16 20 24 时间
3、下图表示的是,小明放学回家途中骑车速度与h时
间的关系。你能想像出他回家路上的情景吗?
从横坐标看:小明走到菜地用了15分钟.
距离y/千米
2
1.1
0 15 25 37 55
80
2.小明给菜地浇水用了多少时间?
时间x/分钟
从横坐标看:小明给菜地浇水用了10分钟(即25-15)
3.菜地离玉米地多远玉米地0.9千米.
从横坐标看:小明从菜地用到玉米地用了12分钟.
21.2.函数关系的表示法
问题:1.你能写出正方形的边长x与面积S的函 数关系式,并确定自变量x的取值范围吗?
S=x2 自变量x的取值范围是x>0
2.能利用坐标系中画图的方法来表示S与 x的关系吗?
提示:自变量x的一个确定值与它对应的函 数值S,就确定一个点(x,S)
如何在坐标系中表示S=x2?

17、一个人即使已登上顶峰,也仍要 自强不 息。2021/2/272021/2/272021/2/272021/2/27
谢谢观赏
You made my day!
我们,还在路上……
练习:
1.柿子熟了,从树上落下来,下面的哪一幅图可以
大致刻画出柿子下落过程中的速度变化情况?








0①
时间
0
时间

0
时间

0
时间

2.下图表示一辆汽车的速度随时间变化的情况:
① 汽车行驶了多长时间? 90 速度
它的最高时速是多少?
km/h
60
② 汽车在哪些时间段保
持匀速行驶?时速分别 30
活动一
观察:下图是自动测温仪记录的图象,它
反映了北京春季某天气温T如何随时间t的变 化而变化,你从图中得到哪些信息?
4
3
14
24
4
3
14
24
(1)因为时间t对应气温T是唯一值,所以气 温T是时间t的函数.
(2)这一天什么时间气温最底?什么时间气温最高? 4时气温最底-3℃ 14时最高气温8℃
(3)哪个时间段气温呈下降状态,哪个时间段气温呈 上升状态? 下降:0时至4时,14时至24时. 上升:4时至14时 (4)你能看出任一时刻的气温大约是多少?
(5)如果长期观察这样的气温图象,我们就能掌握更 多的气温变化规律?
下面的图象反映的过程是:小明从家里出发去菜 地浇水,又去玉米地锄草,然后回家.其中x表示时 间,y表示小明离他家的距离.
距离y/千米
2
1.1
0 15 25 37 55
80
根据图象回答下列问题:
时间x/分钟
1.菜地离小明家多远?小明走到菜地用了多少时间? 从纵坐标看:菜地离小明家1.1千米.


这些函数图象是
以什么根据来画
的?如何画的?
0
时间

9、有时候读书是一种巧妙地避开思考 的方法 。2021/2/272021/2/27Saturday, February 27, 2021

10、阅读一切好书如同和过去最杰出 的人谈 话。2021/2/272021/2/272021/2/272/27/2021 7:43:20 PM
(1) 列表:
x 0 0.5 1 1.5 2 2.5 3 3.5 4 S 0 0.25 1 2.25 4 6.25 9 12.25 16
(2)描点:表示与函数对应的点有无数个,但 是实际上我们只能描出其中有限个点,同时 想象出其它点的位置.
(3)连线:用平滑的曲线去连接画出的点.
函数图象 的定义
一般地,对 于一个函数,如 果把自变量与函 数的每对对应值 分别作为点的横、 纵坐标,那么坐 标平面内由这些 点组成的图形, 就叫做这个函数 的图象。

11、越是没有本领的就越加自命不凡 。2021/2/272021/2/272021/2/27Feb-2127-Feb-21

12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/2/272021/2/272021/2/27Satur day, February 27, 2021

13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/2/272021/2/272021/2/272021/2/272/27/2021

14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年2月27日星期 六2021/2/272021/2/272021/2/27

15、最具挑战性的挑战莫过于提升自 我。。2021年2月2021/2/272021/2/272021/2/272/27/2021

16、业余生活要有意义,不要越轨。2021/2/272021/2/27Februar y 27, 2021
相关文档
最新文档