椭圆中有关的取值范围问题大全(附详解)新高考
2025届高考数学二轮复习解析几何常考问题第5讲椭圆与圆含解析
第5讲椭圆与圆典型例题【例1】已知椭圆22221(0)x y a b a b +=>>的离心率e 的取值范围为,直线1y x =-+交椭圆于,M N 两点,O 是坐标原点且OM ON ⊥,则椭圆长轴长的取值范围是A.B.C.D.【答案】C【解析】解法1 :设点()()1122,,,M x y N x y . 由OM ON ⊥得12120x x y y +=, 即()()(12121211102x x x x x x x +--=⇒=+)21,x -()*又 222222,1,b x a y a b y x ⎧+=⎨=-⎩得 ()()222222210a b x a x a b +-+-=,所以()2221212222212,a b ax x x x a b a b-+==++. 代人()* 得 222121b a a =-,所以221111,2132e a ⎡⎤=-∈⎢⎥-⎣⎦,所以 2a ∈.解法 2 :椭圆的中心 O 到直线 1y x =-+ 的距离 为 d , 则22222111112.||||d OA OB a b =+=+=. 222121b a a =-, 所以221111,2132e a ⎡⎤=-∈⎢⎥-⎣⎦,所以2a ∈.【例2】若,,A B C 是椭圆22221(0)x y a b a b +=>>上的三点,求ABC 面积的最大值.设P 为椭圆2212516x y +=上一点,12,F F 为椭圆的左、右焦点,I 为12PF F 的内心.若内切圆半径为1,求IP 的长度.【答案】【解析】解法 1 :由等面积法可得()121222P F Sa c r =+8=.记12F PF ∠θ=. 122tan82F PF Sb θ==, 因此 1tan22θ=由此可 得sin25θ=,因此sin2r IP θ==解法 2: 如图, 记 ,D E , 由 1210PF PF +=210x y z ⇒++=,1226F F c y z ===+. 所以 2x =,所以 2DP =,而内切圆半径为 1DI =,所以IP =【例3】已知点()()121,0,1,0,F F M -是第一象限的点,且满意124MF MF +=.若I 是12MF F 的内心,G 是12MF F 的重心,记12IF F 与1GF M 的面积分别为12,S S ,则A.12S S >B.12S S =C.12S S <D.1S 与2S 大小不确定【答案】 B【解析】 由題意得点M 的轨迹方程为22143x y +=,其中 2,1,3a c b ===如图,设 12MF F 的面积为 S .因为 G 为重心, 所以 213S S =. 设 12MF F 的内切圆半径为 r , 则 222S Sr a c a c==++, 所以 111223c S c r S S a c =⋅⋅==+,所以 12S S =. 【例4】已知椭圆(22211x y a a+=>)的左、右焦点分别是12,,F F A是椭圆在第一象限的一个动点,圆C 与1F A 延长线以及线段2AF 相切,且()3,0M 为其中一个切点,则椭圆的离心率为A.32B.223C.22D.63【答案】 B【解析】 解法1: 如图,设另外两个切点分别为 ,N R .连 结 1,,CF CR CN , CM , 则易知AR AN =∣28,F N F M =∣.在 1FCM 中, 22211||FC CM F M =+,即 2221||(3)FC CM c =++.在 1FCR 中, ()22222111||||.FC CR F R CR F A AR =+=++ 因为 ()1122222323F A AR F A AN a F N a F M a c a c +=+=-=-=--=+-,所以 323c a c +=+-, 所以3,a c ==所以3e =. 解法 2: 由切线长定理得 11F R FM =.因为 ()()1111222223,2223232323F M c F R F A AR F A AF NF a NF a F M a c a c F M a c a c =+=+=+-=-=-=--=+-=--=+- .所以323c a c +=+-, 得3,a c ==所以3e =【例5】已知椭圆221164x y +=的下顶点为A ,若直线4x ty =+与椭圆交于不同的两点,M N ,则当t =时,AMN 外心的横坐标最大.【答案】2-【解析】 由已知可得点 ()0,2A -. 设点 ()4,0M , 则 AMN 外心在 AM 的垂直平分线上,即直线 23y x =-+上.224,01,164x ty y x y =+⎧⎪⇒=⎨+=⎪⎩ 或 284t y t =-+.所以MN 的中点坐标为 22164,44t t t ⎛⎫- ⎪++⎝⎭.则 MN 的垂直平分线方程为244t y t +=+2164t x t ⎛⎫-- ⎪+⎝⎭, 把23y x =-+ 代人上式,得2364t x t -+=+. 当 AMN 的外心的横坐标2364t t -++ 取得最大值 时,必有 0t <,故 ()23633384442242t x t t t -++==--=+--++- ,当 2t =- 时,函数()y g t = 取得极大值, 亦为最大值.【例6】已知椭圆2222:1(0)x y Ca b a b +=>>若以点()0,2N 为圆心,且与椭圆C此时椭圆C 的方程是.【答案】221189x y += 【解析】 由 c e a ==得 22212a b a -=, 即 222a b =.则椭圆 C 的方程为 222212x y b b +=.设 (),P x y 是椭圆上任一点, 依题意, PN 的最 大值为,则 ()22222||(2)22(PN x y b y y =+-=-+-()2222)(2)28y b b yb =-+++-.若2b ,则2y =- 时,max ||PN ==所以3b =,此时椭圆方程为221189x y +=;若 02b <<, 则 y b =- 时,max ||2PN b =+所以2622b =>, 不成立.综上可得, 椭圆方程为 221189x y +=.【例7】过点()2,1P 、斜率为正的直线交椭圆221245x y +=于,A B 两点.,C D 是椭圆上相异的两点,满意,CP DP 分别平分,ACB ADB ∠∠.则PCD 外接圆半径的最小值为A.2155B.655C.2413D.1913【答案】D【解析】解法 1 先固定直线AB ,则BC BD CADA==BP PA为定值.故点,,P C D 在一个阿波罗尼斯圆上,且PCD 的外接 圆就是这个阿波罗尼斯圆,设其半径为r ,先考虑BP AP >的阿波罗尼斯圆的状况,BA 的延长线与圆交于点,Q PQ 即为该圆的直径.2,2BP BQ BP rAPAQr AP+==-所以111r AP BP =-.同理, 当BP AP <时, 有111r BP AP=-. 综上, 111r AP BP=-.当直线AB 无斜率时, 与椭圆的交点纵坐标为1,1666AP BP ==+ 则 19;12r =当直线AB 斜率存在时,设直线AB 的方程为y ()12k x -=-, 即21y kx k =-+.2221,1,245y kx k x y =-+⎧⎪⎨+=⎪⎩ 得 ()()()8222454812961k x k k x k k ++-+--0=,设点 ()()1122,A x y B x y ++()()212229614821,245245k k k k x x k k ---=++.所以 111rAP BP=- 2212111212k x k x =+⋅-+⋅-21211221x x k =---+. ()()12212221221x x r x x k ---=--+()1222121212541241911k x x x x x x k k++-==-++++设 125t k =+, 则2121112191910169t r t t ==-+212261319241911169101t t ⨯=⎛⎫-⋅+ ⎪⎝⎭. 当 15169t =即 1695t = 时, 125k =, 故 1913r , 又 19191213>, 可得外接圆半径的 最小值为1913. 解法 2 如图, 设ACB ∠,ADB ∠的外角平分线交于点Q ,则 ,CP CQ DP DQ ⊥⊥, 所以,,,C P D Q 四点共圆,线段为直径 PQ .设半径为 r .由角平分线定理得PA CA PBCB=.由外角平分线定理得QA CA QA QBCBQB=⇒=PA PB,即 ,P Q 调和分割 ,A B .记点 (),Q x y .故点Q 在点 P 对应的极线224x +1512600.5yx y =⇒+-= 则 5212160381313PQ d ⨯+⨯-==,所以 1913r . 解法3: 设 QA PA QBPBλ==,则 0λ> 且 1λ≠.因为 ,,,A P B Q 四点共线, 所以 AP PB λ=-, AQ QB λ=设点 (),Q x y , 于是12122,111x x y y λλλλ--==--, 1212,11x x y y x y λλλλ++==++. 从而, 22212221x x x λλ-=- (1)2221221y y y λλ-=- (2)又点 ,A B 在梛圆 C 上, 即2211524120x y += (3)2222524120x y += (4)(1)5⨯+ (2)24⨯, 结合 (3) (4) 两式得 1024x y +=120 ,即点Q 总在直线512600x y +-=上,所以523813PQ d ⨯==,即1913r .【例8】已知椭圆222:1(1)x C y a a+=>.(1)若过点2,2P ⎛ ⎝⎭的直线l 与椭圆C 恒有公共点,求实数a 的取值范围; (2)若存在以点()0,2B 为圆心的圆与椭圆C 有四个公共点,求实数a 的取值范围.【答案】 (1) 22;a(2) a >【解析】 (1) 要使得直线l 与椭圆C 恒有公共点,则点2,2P ⎛⎫ ⎪ ⎪⎝⎭要在椭圆上或者椭圆内, 所以222212a ⎛⎫+ ⎪ ⎪⎝⎭, 所以 22a .(2)方法 1 要使得圆和椭圆有四个公共点,利用 对称性, 可知在椭圆的左半边 (或右半边) 存在不同 的两点到点 B 的距离相等.设动点 ()00,Q x y 在椭圆上.BQ ===()()()222000022222222221144,1,1),11,12::(2)(2),,f y a y y a f y a a B x y r x y r x a y a =--++-<<>-+-=⎧+-=⎨+=⎩令使得上不单调所以所以方法设圆整理得 ()22221440a y y a r --++-=,所以存在 r ,使得方程()22221440a yy a r --++-= 在 ()1,1- 上有两个解.令 ()()2222144f y a y y a r =--++-, 对称轴y 221a =-, 只需 22111a-<<-, 所以a >【例9】如图,已知,,A B C 是焦距为4的椭圆2222:1(0)x y G a b a b+=>>上的三点,A 是长轴的一个端点,BC 过椭圆的中心,且0,2BC BA BC BA ⋅==. (1)求椭圆G 的方程;(2)过椭圆G 上异于顶点的随意一点P 作圆22:2O x y +=的两条切线,切点分别为M ,N ,若直线MN 分别与x 轴、y 轴交于点,E F ,当EOF 的面积最小时,求PMN 与EOF 的面积之比.【答案】 (1) (221;262x y +=. 【解析】 (1) 由题意, 当点 (),0A a 时, 点 B 的坐标 可以取 ,22a a ⎛⎫⎪⎝⎭, 代人 22221x y a b+=; 又 224a b =+, 所以 222,6b a ==. 故椭圆 G 的方程为 32162x y +=. (2) 设点 ()()()001122,,,,,P x y M x y N x y ,则 2200162x y += (1)切线 MP 的方程为 112x x y y +=;切线 NP 的方程为 222x x y y +=.11因为切线 MP 与切线 NP 都过点 P ,故 101020202;2x x y y x x y y +=+=, 即点 ,M N 都在直线 002x x y y += 上,故直线 MN 的方程为 002x x y y +=. 令 0y =, 得点 02,0E x ⎛⎫ ⎪⎝⎭;令 0x = 得点 020,F y ⎛⎫ ⎪⎝⎭.故000012222DOP S x y x y =⋅=. 由(1式得22001262x y ⋅=所以003x y , 当且仅当 001x y = 时取得等号. 故0000122222233BBF S x y x y =⋅==即EOF.此时原点O 到直线MN 的距离1d=1=, 点P 到直线MN 的距离21d ==.故 2,MN PMN ==的面积PMN S 2112MN d =⋅=PMN 与EOF 2=.12。
高三数学椭圆常考题型
高三数学椭圆常考题型一、椭圆的基本性质椭圆是一种常见的二次曲线,具有以下基本性质:1. 椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。
2. 椭圆的焦点距离为:c = sqrt(a^2 - b^2)。
3. 椭圆的离心率e = c/a,离心率的取值范围是[0,1]。
4. 椭圆的准线方程为:x = ±a^2/c。
二、常考题型及解析1. 椭圆的定义与标准方程【例1】已知椭圆C的中心在原点,焦点在x轴上,离心率为1/2,且椭圆C上一点到两焦点的距离之和为4。
(1) 求椭圆C的标准方程;(2) 若AB是过椭圆C中心的弦,M是AB的中点,且|AB| = 4√5,求线段AB 的长。
【解析】(1) 根据题意,设椭圆C的标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。
由离心率的定义,我们有e = c/a = 1/2。
再根据椭圆的定义,到两焦点的距离之和为4,所以2a = 4,即a = 2。
由离心率的定义和已知条件,我们可以得到b = sqrt(a^2 - c^2) = sqrt(4 - 1) = sqrt3。
所以椭圆C的标准方程为:x^2/4 + y^2/3 = 1。
(2) 设AB的方程为y = kx + t。
代入椭圆方程得到二次方程(3 + 4k^2)x^2 +8ktx + 4t^2 - 12 = 0。
设A(x1,y1),B(x2,y2),则有x1 + x2 = -8kt/(3 + 4k^2),x1x2 = (4t^2 - 12)/(3 + 4k^2)。
由弦长公式得|AB| = sqrt((x1 - x2)^2 + (y1 - y2)^2) = sqrt((1 + k^2)(x1 - x2)^2) = sqrt((1 + k^2)[(x1 + x2)^2 - 4x1x2])。
将已知条件代入得到k 和t 的关系,进一步求出线段AB的长为8sqrt(3-k^2)。
椭圆中6种常考基础题型(解析版)--2024高考数学常考题型精华版
第19讲椭圆中6种常考基础题型【考点分析】考点一:椭圆的通径过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为22b a.考点二:椭圆中有关三角形的周长问题图一图二如图一所示:21F PF ∆的周长为c a 22+如图一所示:ABC ∆的周长为a 4考点三:椭圆上一点的有关最值①椭圆上到中心距离最小的点是短轴的两个端点,到中心距离最大的点是长轴的两个端点.②椭圆上到焦点距离最大和最小的点是长轴的两个端点.距离的最大值为a c +,距离的最小值为a c -.考点四:椭圆的离心率椭圆的离心率()10<<=e a c e ,222222221ab a b a ac e -=-==考点五:椭圆焦点三角形的面积为2tan2S b θ=⋅(θ为焦距对应的张角)考点六:中点弦问题(点差法)中点弦问题:若椭圆与直线l 交于AB 两点,M 为AB 中点,且AB k 与OM k 斜率存在时,则22ab K k OM AB -=⋅;(焦点在x 轴上时),当焦点在y 轴上时,22ba K k OMAB -=⋅若AB 过椭圆的中心,P 为椭圆上异于AB 任意一点,22ab K k PB P A -=⋅(焦点在x 轴上时),当焦点在y 轴上时,22ba K k PBP A -=⋅【题型目录】题型一:椭圆的定义有关题型题型二:椭圆的标准方程题型三:椭圆的离心率题型四:椭圆中焦点三角形面积题型五:椭圆中中点弦问题题型六:椭圆中的最值问题【典型例题】题型一:椭圆的定义有关题型【例1】已知△ABC 的周长为10,且顶点()2,0B -,()2,0C ,则顶点A 的轨迹方程是()A .221(0)95x y y +=≠B .221(0)59x y y +=≠C .221(0)64x y y +=≠D .221(0)46x y y +=≠【答案】A【解析】∵△ABC 的周长为10,顶点()2,0B -,()2,0C ,∴=4BC ,+=10464AB AC -=>,∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵3,2a c ==,∴2945b =-=,又因为,,A B C 三点构成三角形,∴椭圆的方程是()221095x y y +=≠.故选:A .【例2】如果点(),M x y =M 的轨迹是().A .不存在B .椭圆C .线段D .双曲线【答案】B=(),M x y 到点(0,3),(0,3)-的距离之和为3(3)6--=<M 的轨迹是椭圆,故选:B【例3】设1F ,2F 分别为椭圆2214x y +=的左、右焦点,点P 在椭圆上,且1223PF PF += ,则12F PF ∠=()A .6πB .4πC .3πD .2π【答案】D【解析】因32221==+PO PF PF ,所以213OF OF PO ===,所以︒=∠9021PF F 【例4】1F 、2F 是椭圆22:1259x yC +=的左、右焦点,点P 在椭圆C 上,1||6PF =,过1F 作12F PF ∠的角平分线的垂线,垂足为M ,则||OM 的长为()A .1B .2C .3D .4【答案】C【详解】如图,直线1F M 与直线2PF 相交于点N ,由于PM 是12F PF ∠的平分线,且PM ⊥1F N ,所以三角形1F PN 是等腰三角形,所以1PF PN =,点M 为1F N 中点,因为O 为12F F 的中点,所以OM 是三角形12F F N 的中位线,所以212OM F N =,其中212112226F N PF PF PF a PF =-=-=-,因61=PF ,所以62=N F ,所以3=OM ,所以选C【例5】已知椭圆22:12516x y C +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=()A .10B .15C .20D .25【答案】C【解析】设MN 的中点为G ,椭圆的左右焦点分别为21,F F ,则G 为MN 的中点,1F 为MA 的中点,所以12GF AN =,同理22GF BN =,所以()204221==+=+a GF GF BN AN【例6】方程x 2+ky 2=2表示焦点在x 轴上的椭圆的一个充分但不必要条件是()A .0k >B .12k <<C .1k >D .01k <<【答案】B【解析】方程x 2+ky 2=2可变形为:22122x y k+=,表示焦点在x 轴上的椭圆,则有:202k<<,解得k 1>.易知当12k <<时,k 1>,当k 1>时未必有12k <<,所以12k <<是k 1>的充分但不必要条件.故选B.【例7】点1F ,2F 为椭圆C :22143x y+=的两个焦点,点P 为椭圆C 内部的动点,则12PF F △周长的取值范围为()A .()2,6B .[)4,6C .()4,6D .[)4,8【答案】C【解析】由椭圆C :22143x y +=,得:2,1a c ==,当点P 在椭圆上时,12PF F △周长最大,为226a c +=,当点P 在x 轴上时,去最小值,为44c =,又因点P 为椭圆C 内部的动点,所以12PF F △周长的取值范围为()4,6.故选:C.【例8】椭圆22193x y +=的左、右焦点分别为1F ,2F ,点P 在椭圆上,如果1PF 的中点在y 轴上,那么1||PF 是2||PF 的()A .7倍B .6倍C .5倍D .4倍【答案】C【解析】由题意知:212F F PF ⊥,所以13322===a b PF ,因6221==+a PF PF ,所以51=PF ,所以521=PF PF【题型专练】1.已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是()A .2213620x y +=(x≠0)B .2212036x y +=(x≠0)C .221620x y +=(x≠0)D .221206x y +=(x≠0)【答案】B【解析】∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),∴BC =8,AB +AC =20﹣8=12,∵12>8∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵a =6,c =4∴b 2=20,∴椭圆的方程是()22102036x y x +=≠故选B .2.焦点在x 轴上的椭圆222125x y a +=焦距为8,两个焦点为12,F F ,弦AB 过点1F ,则2ABF ∆的周长为()A .20B .28C .D .【答案】D【解析】由题意知252=b ,因为222c b a +=,所以16252+=a ,解得41=a ,所以2ABF ∆的周长为4144=a ,故选:D3.(2021新高考1卷)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A.13B.12C.9D.6【答案】C【解析】因2121262MF MF a MF MF ⋅≥==+,所以921≤⋅MF MF 4.已知椭圆22192x y +=的左、右焦点分别为12,F F ,点M 在椭圆上,若1||4MF =,则12F MF ∠=()A .30°B .60︒C .120︒D .150︒【答案】C 【解析】【分析】根据椭圆方程求得12F F =1226MF MF a +==,求得1||4MF =,所以22MF =,在12F MF △中,再由余弦定理列出方程,求得121cos 2F MF ∠=-,即可求解.【详解】解:由题意,椭圆方程22192x y +=,可得3,a b c ===所以焦点12(F F ,又由椭圆的定义,可得1226MF MF a +==,因为1||4MF =,所以22MF =,在12F MF △中,由余弦定理可得222121212122cos F F MF MF MF MF F MF =+-∠,所以2221242242cos F MF =+-⨯⨯∠,解得121cos 2F MF ∠=-,又由12(0,180)F MF ∠∈,所以12120F MF ∠= .故选:C .5.设1F ,2F 为椭圆22194x y +=的两个焦点,点P 在椭圆上,若线段1PF 的中点在y 轴上,则21PF PF 的值为()A .513B .45C .27D .49【答案】C 【解析】【分析】由中位线定理以及椭圆方程得出243PF =,再由椭圆的定义得出1PF ,再求21PF PF 的值.【详解】由椭圆的定义可知,1226PF PF a +==,由中位线定理可知,212PF F F ⊥,将x =22194x y+=中,解得43y =±,即243PF =,1414633PF =-=,故214323147PF PF =⨯=故选:C6.已知曲线22:1C mx ny +=A .若0m n >>,则C 是椭圆,其焦点在y 轴上B .若0m n >>,则C 是椭圆,其焦点在x 轴上C .若0m n =>,则CD .若0m =,0n >,则C 是两条直线【答案】AD【解析】由题意得:11122=+ny m x ,所以当0>>n m ,则nm 110<<,所以表示焦点在y 轴上的椭圆,所以A 对,B 错,当0>=n m 时,曲线C 为ny x 122=+,所以表示圆,半径为n 1,当0,0>=n m 时,曲线C 为ny 12=,所以n y 1±=,所以表示两条直线,故选:AD7.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是()AB.CD.【答案】C 【解析】【分析】设线段2PF 的中点为M ,连接1PF 、1MF ,利用圆的几何性质可得出12F M PF ⊥,求得11222PF F F c ===,利用椭圆的定义可求得2PF ,可判断出12PF F △的形状,即可得解.【详解】在椭圆22143x y +=中,2a =,b =,1c =,设线段2PF 的中点为M ,连接1PF 、1MF ,则12F F 为圆O 的一条直径,则12F M PF ⊥,因为M 为2PF 的中点,则11222PF F F c ===,则2122PF a PF =-=,所以,12PF F △为等边三角形,由图可知,直线2PF 的倾斜角为3π.故选:C.8.在平面直角坐标系xOy 中,若△ABC 的顶点(0,2)A -和(0,2)C ,顶点B 在椭圆181222=+xy 上,则sin sin sin A C B +的值是()AB .2C .D .4【答案】A 【解析】【分析】由题设易知,A C 为椭圆的两个焦点,结合椭圆定义及焦点三角形性质有||||2AB CB a +=,||2AC c =,最后应用正弦定理的边角关系即可求目标式的值.【详解】由题设知:,A C 为椭圆的两个焦点,而B 在椭圆上,所以||||2AB CB a +==||24AC c ==,由正弦定理边角关系知:|||||sin sin sin |A A CB CB A BC +=+故选:A9.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .6【答案】C【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .10.已知椭圆22143x y +=的左、右焦点分别为1F 、2F ,点P 在椭圆上且在x 轴的下方,若线段2PF 的中点在以原点O 为圆心,2OF 为半径的圆上,则直线2PF 的倾斜角为()A .6πB .4πC .3πD .23π【答案】C 【解析】【分析】设线段2PF 的中点为M ,连接1PF 、1MF ,利用圆的几何性质可得出12F M PF ⊥,求得11222PF F F c ===,利用椭圆的定义可求得2PF ,可判断出12PF F △的形状,即可得解.【详解】在椭圆22143x y +=中,2a =,b =,1c =,设线段2PF 的中点为M ,连接1PF 、1MF ,则12F F 为圆O 的一条直径,则12F M PF ⊥,因为M 为2PF 的中点,则11222PF F F c ===,则2122PF a PF =-=,所以,12PF F △为等边三角形,由图可知,直线2PF 的倾斜角为3π.故选:C.11.已知A 为椭圆2212516x y +=上一点,F 为椭圆一焦点,AF 的中点为P ,O 为坐标原点,若2OP =则AF =()A .8B .6C .4D .2【答案】B【解析】不妨设椭圆2212516x y +=左焦点为F ,右焦点为E ,因为AE 的中点为P ,EF 的中点为O ,所以24AE OP ==,又由210AE AF a +==,可得1046AF =-=.故选:B .12.已知椭圆C :22194x y +=的左右焦点分别是12,F F ,过2F 的直线与椭圆C 交于A ,B 两点,且118AF BF +=,则AB =()A .4B .6C .8D .10【答案】A【解析】由椭圆22:194x y C +=知:a =3,由椭圆的定义得:121226,26AF AF a BF BF a +==+==,所以11412AF BF AB a ++==,又因为118AF BF +=,所以AB 4=,故选:A题型二:椭圆的标准方程【例1】已知椭圆E :()222210x y a b a b+=>>右焦点为),其上下顶点分别为1C ,2C ,点()1,0A ,12AC AC ⊥,则该椭圆的标准方程为()A .22134x y +=B .22143x y +=C .2213y x +=D .2213x y +=【例2】已知椭圆C :()222210x y a b a b+=>>,椭圆C 的一顶点为A ,两个焦点为1F ,2F ,12AF F △焦距为2,过1F ,且垂直于2AF 的直线与椭圆C 交于D ,E 两点,则ADE ∆的周长是()A .B .8C .D .16【例3】如图,已知椭圆C 的中心为原点O ,(F -为椭圆C 的左焦点,P 为椭圆C 上一点,满足||||OP OF =,且||4PF =,则椭圆C 的方程为()A .221255x y +=B .2214525x y +=C .2213010x y +=D .2213616x y +=故选:D【例4】阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.若椭圆C 的对称轴为坐标轴,焦点在y 轴上,且椭圆C 的离心率为53,面积为12π,则椭圆C 的方程为()A .221188x y +=B .22198y x +=C .221188y x +=D .22184y x +=【例5】过椭圆C :()222210x y a b a b +=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=【例6】已知12,F F 分别是椭圆221(0)x y a b a b +=>>的左、右焦点,A ,B 分别为椭圆的上,下顶点,过椭圆的右焦点2F 的直线交椭圆于C ,D 两点,1FCD 的周长为8,且直线AC ,BC 的斜率之积为14-,则椭圆的方程为()A .2212x y +=B .22132x y +=C .2214x y +=D .22143x y +=【例7】已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过F 2的直线与C 交于A ,B 两点.若22||3||AF F B =,15||4||AB BF =,则C 的方程为()A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【题型专练】1.已知1F 、2F 是椭圆C :22221x ya b+=()0a b >>的左、右焦点,A 为椭圆的上顶点,B 在x 轴上,20AB AF ⋅= 且122AF AB AF =+.若坐标原点O 到直线AB 的距离为3,则椭圆C 的方程为()A .2214x y +=B .22143x y +=C .221169x y +=D .2211612x y +=1612故选:D2.已知椭圆()2222:10x y C a b a b +=>>,其左、右焦点分别为1F ,2F ,离心率为12,点P 为该椭圆上一点,且满足12π3F PF ∠=,若12F PF △的内切圆的面积为π,则该椭圆的方程为()A .221129x y +=B .2211612x y +=C .2212418x y +=D .2213224x y +=3.已知椭圆的两个焦点为1(F ,2F ,M 是椭圆上一点,若12MF MF ⊥,128MF MF ⋅=,则该椭圆的方程是()A .22172x y +=B .22127x y +=C .22194x y +=D .22149x y +=4.已知1(1,0)F -,2(1,0)F 是椭圆C 的两个焦点,过2F 且垂直于x 轴的直线交椭圆C 于A ,B 两点,3AB =,则椭圆C 的标准方程为()A .2213y x +=B .2213x y +=C .22143x y +=D .22132x y +=方法二:由题意,设椭圆C 的标准方程为所以a =2或12a =-(舍去),所以2a 故椭圆C 的标准方程为22143x y +=.故选:C.5.已知椭圆C :()222210x y a b a b+=>>的右焦点为),右顶点为A ,O 为坐标原点,过OA 的中点且与坐标轴垂直的直线交椭圆C 于M ,N 两点,若四边形OMAN 是正方形,则C 的方程为()A .2213x y +=B .22153x y +=C .22175x y +=D.22197x y +=6.已知椭圆22:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -=与椭圆C 相交于不同的两点,A B ,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为()A .2213x y +=B .22142x y +=C .22153x y +=D .22163x y +=7.阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近”的方法得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积.若椭圆C :()222210x y a b a b+=>>的左,右焦点分别是1F ,2F ,P 是C 上一点,213PF PF =,123F PF π∠=,C 的面积为12π,则C 的标准方程为()A .221364x y +=B .22112x y +=C .221169x y +=D .22143x y +=8.已知椭圆C :22=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为M ,N ,过F 2的直线l 交C 于A ,B 两点(异于M 、N ),△AF 1B 的周长为AM 与AN 的斜率之积为-23,则椭圆C的标准方程为()A .22=134y x +B .22=134x y +C .22=13x y +D .22=132x y +9.已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线交于C 与A ,B ,若222AF F B =,1AB BF =,则C 的方程为()A .2212x y +=B .22132x y +=C .22143x y +=D .22198x y +=1F 题型三:椭圆的离心率【例1】已知1F ,2F 为椭圆22221x ya b+=(a >b >0)的左、右焦点,以原点O 为圆心,半焦距为半径的圆与椭圆相交于四个点,设位于y 轴右侧的两个交点为A ,B ,若1ABF 为等边三角形,则椭圆的离心率为()A1B 1C .12D 又1290F AF ∠=,∴21,3AF c AF c ==,∴32c c a +=,可得2331c a ==+故选:B .【例2】已知椭圆C :()21024b b+=<<的左焦点为1F ,直线()0y kx k =≠与C 交于点M ,N .若1120MF N ︒∠=,1183MF NF ⋅=,则椭圆C 的离心率为()A .12B .22C D 因为O 为12,MN F F 的中点,所以四边形所以12MF NF =,12NF MF =,由椭圆的定义可得:又因为1183MF NF ⋅=,所以1MF 【例3】已知椭圆()22:10x y C a b a b+=>>上存在两点,M N 关于直线3310--=x y 对称,且线段MN 中点的纵坐标为53,则椭圆C 的离心率是()A B C .23D【例4】已知椭圆C :221a b+=()0a b >>的左右焦点分别为1F ,2F ,过点2F 做倾斜角为6π的直线与椭圆相交于A ,B 两点,若222,AF F B =,则椭圆C 的离心率e 为()AB .34C .35D【例5】设B 是椭圆()22:10C a b a b+=>>的上顶点,若C 上的任意一点P 都满足2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎝⎦【例6】12,F F 是椭圆C 的两个焦点,P 是椭圆C 上异于顶点的一点,I 是12PF F △的内切圆圆心,若12PF F △的面积等于12IF F △的面积的3倍,则椭圆C 的离心率为()A .13B .12C .2D .2a b如图,设()()()12,,,0,,0,P m n F c F c ∴-三角形由椭圆的定义可得22l a c=+122222PF F S cn cnr l a c a c∴===++ ,又2121113,2322P I F F F F cn S S c n a =∴⨯⨯=⨯⨯ 故选:B【例7】用平面截圆柱面,当圆柱的轴与α所成角为锐角时,圆柱面的截线是一个椭圆.著名数学家Dandelin 创立的双球实验证明了上述结论.如图所示,将两个大小相同的球嵌入圆柱内,使它们分别位于α的上方和下方,并且与圆柱面和α均相切.给出下列三个结论:①两个球与α的切点是所得椭圆的两个焦点;②椭圆的短轴长与嵌入圆柱的球的直径相等;③当圆柱的轴与α所成的角由小变大时,所得椭圆的离心率也由小变大.其中,所有正确结论的序号是()A .①B .②③C .①②D .①③【答案】C【分析】根据切线长定理可以证明椭圆上任意一点到12,F F 的距离之和为定值,即12,F F 是焦点再运用勾股定理证明短轴长,最后构造三角形,运用三角函数表示离心率即可.【详解】如图:在椭圆上任意一点P 作平行于12O O 的直线,与球1O 交于F 点,与球2O 交于E 点,则PE ,2PF 是过点P 作球2O 的两条公切线,2PE PF =,同理1PF PF =,是椭圆的焦点;①正确;【例8】国家体育场“鸟巢”的钢结构鸟瞰图如图1所示,内外两圈的钢骨架是离心率相同的椭圆;某校体育馆的钢结构与“鸟巢”相同,其平面图如图2所示,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD ,且两切线斜率之积等于34-,则椭圆的离心率为()A .34B .58C .12D .4【题型专练】1.直线:l y =与椭圆2222:1x y C a b+=交于,P Q 两点,F 是椭圆C 的右焦点,且0PF QF ⋅= ,则椭圆的离心率为()A .4-B .3C 1D .2【详解】的左焦点为F ',由对称性可知:四边形PF QF '为平行四边形,PF QF '∴=2PF PF QF a '=+=;2.设12,F F 分别是椭圆221x ya b+=的左、右焦点,若椭圆上存在点A ,使12120F AF ∠=︒且123AF AF =,则椭圆的离心率为()AB C D3.设椭圆22:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,点M ,N 在C 上(M 位于第-象限),且点M ,N 关于原点O 对称,若1222||,F F MN MF ==,则C 的离心率为()A .4B .37C .12D .377122a +故选:B4.如图,直径为4的球放地面上,球上方有一点光源P ,则球在地面上的投影为以球与地面切点F 为一个焦点的椭圆,已知是12A A 椭圆的长轴,1PA 垂直于地面且与球相切,16PA =,则椭圆的离心率为()A .12B .23C .13D .2【答案】A【分析】根据给定条件,结合球的性质作出截面12PA A ,再结合三角形内切圆性质求出12A A 长即可作答.【详解】依题意,平面12PA A 截球O 得球面大圆,如图,12Rt PA A 是球O 大圆的外切三角形,其中112,PA A A 切圆O 于点E ,F ,=5.如图圆柱12O O 的底面半径为1,母线长为6,以上下底面为大圆的半球在圆柱12O O 内部,现用一垂直于轴截面ABB A ''的平面α去截圆柱12O O ,且与上下两半球相切,求截得的圆锥曲线的离心率为()A .3B .3C D .3半径为1,12O O 平面α与底面夹角余弦值为圆柱的底面半径为1,∴又 椭圆所在平面与圆柱底面所成角余弦值为以G 为原点建立上图所示平面直角坐标系,12,332FH a EF a ∴===,则椭圆标准方程为2222c a b =-=,故离心率故选:A.6.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 为坐标平面上一点,且满足120PF PF ⋅=的点P 均在椭圆C 的内部,则椭圆C 的离心率的取值范围为()A .2⎛ ⎝⎭B .10,2⎛⎫⎪⎝⎭C .,12⎛⎫ ⎪ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭7.已知点A ,P ,Q 为椭圆C :()222210x y a b a b +=>>上不重合的三点,且点P ,Q 关于原点对称,若12AP AQ k k ⋅=-,则椭圆C 的离心率为()A .2B C D8.已知椭圆22:1(0)x yC a ba b+=>>的一个焦点为F,椭圆C上存在点P,使得PF OP⊥,则椭圆C的离心率取值范围是()A.2⎛⎝⎦B.,12⎫⎪⎪⎣⎭C.10,2⎛⎤⎥⎝⎦D.1,12⎡⎫⎪⎢⎣⎭故选:B题型四:椭圆中焦点三角形面积【例1】已知椭圆()222210+=>>x y C a b a b:的左、右焦点分别为1F ,2F ,P 为C 上一点,12π3F PF ∠=,若12F PF △的面积为C 的短袖长为()A .3B .4C .5D .6【例2】(2021年全国高考甲卷数学(理)试题)已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.【题型专练】1.设P 为椭圆221259x y +=上一点,1,F 2F 为左右焦点,若1260F PF ︒∠=,则P 点的纵坐标为()A.4B.4±C.4D.4±【答案】B 【分析】根据椭圆中焦点三角形的面积公式2tan 2S b θ=求解即可.【详解】由题知12609tan2F PF S ︒=⨯= 设P 点的纵坐标为h则12421F F h h ⋅⋅=±⇒=.故选:B2.已知()()1200F c F c -,,,是椭圆E 的两个焦点,P 是E 上的一点,若120PF PF ⋅=,且122=△PF F S c ,则E 的离心率为()ABC .2D 3.已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅ 12,则12F PF △的面积为()A.B.CD .9题型五:椭圆中中点弦问题【例1】已知椭圆C :22221x y a b+=(0a b >>)的长轴为4,直线230x y +-=与椭圆C 相交于A 、B 两点,若线段AB 的中点为(1,1)M ,则椭圆C 的方程为()A .221168x y +=B .22142x y +=C .2211612x y +=D .22143x y +=【例2】平行四边形ABCD 内接于椭圆221x y a b +=()0a b >>,椭圆的离心率为2,直线AB 的斜率为1,则直线AD 的斜率为()A .1-4B .1-2C .2D .-1设E 为AD 中点,由于O 为BD 中点,所以因为1133(,),(,)A x y D x y 在椭圆上,【例3】椭圆2294144x y +=内有一点(2,3)P ,过点P 的弦恰好以P 为中点,那么这条弦所在的直线方程为()A .23120x y +-=B .32120x y +-=C .941440x y +-=D .491440x y +-=【例4】已知椭圆E :143+=上有三点A ,B ,C ,线段AB ,BC ,AC 的中点分别为D ,E ,F ,O为坐标原点,直线OD ,OE ,OF 的斜率都存在,分别记为1k ,2k ,3k ,且123k k k ++=直线AB ,BC ,AC 的斜率都存在,分别记为AB k ,BC k ,AC k ,则111AB BC ACk k k ++=()AB .C .-D .1-【例5】离心率为2的椭圆()222210x y a b a b +=>>与直线y kx =的两个交点分别为A ,B ,P 是椭圆不同于A 、B 、P 的一点,且PA 、PB 的倾斜角分别为α,β,若120αβ+=︒,则()cos αβ-=()A .16-B .13-C .13D .16【例6】(2022·全国·高考真题)已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且||||,||MA NB MN ==l 的方程为___________.【例7】(2022·全国甲(理)T10)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A.32B.22C.12D.13【答案】A 【解析】【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.【详解】解:(),0A a -,设()11,P x y ,则()11,Q x y -,则1111,AP AQ y y k k x a x a==+-+,故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+,又2211221x y a b +=,则()2221212b a x y a -=,所以()2221222114b a x a x a -=-+,即2214b a =,所以椭圆C的离心率2c e a ===.故选:A.【例8】椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为椭圆的右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的最大值为__________.【答案】63【解析】因为,B A 关于原点对称,所以B 也在椭圆上,设左焦点为F ',根据椭圆的定义:||2AF AF a '+=,因为||BF AF'=,所以||||2AF BF a +=,O 是直角三角形ABF 斜边的中点,所以||2,||2sin ,||2cos AB c AF c BF c αα===,所以2(sin cos )2c a αα+=,所以11sin cos 4c a πααα==+⎛⎫+ ⎪⎝⎭,由于,124ππα⎡⎤∈⎢⎥⎣⎦,所以当12πα=时,离心率的最大值为63,故答案为63.【题型专练】1.已知椭圆()222210x y a b a b+=>>,()0,2P ,()0,2Q -过点P 的直线1l 与椭圆交于A ,B ,过点Q 的直线2l 与椭圆交于C ,D ,且满足12l l ∕∕,设AB 和CD 的中点分别为M ,N ,若四边形PMQN 为矩形,且面积为则该椭圆的离心率为()A .13B .23C.3D .32.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是()A .1324⎡⎤⎢⎥⎣⎦,B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦D .314⎡⎤⎢⎥⎣⎦,【答案】B【详解】由题意,椭圆C :22143x y +=的左、右顶点分别为12(2,0),(2,0)A A -,设00(,)P x y ,则()2200344y x =-,又由1220002200034PA PA y y y k k x a x a x a ⋅=⨯=-+--,可得1234PA PA k k -=,因为[]12,1PA k ∈--,即23421PA k --≤≤-,可得23384PA k ≤≤,所以直线2PA 斜率的取值范围33,84⎡⎤⎢⎥⎣⎦.故选:B3.已知椭圆22:184x y C +=,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M ,则OM 的斜率与直线l 的斜率的乘积()A .1-B .1C .12D .12-【答案】D,进而联立方程求解中点4.点A ,B 在椭圆2212x y +=上,点11,2M ⎛⎫ ⎪⎝⎭,2OA OB OM +=,则直线AB 的方程是()A .12y x =-B .522y x =-+C .32y x =-+D .322y x =-5.已知椭圆143x y +=上有三个点A 、B 、C ,AB ,BC ,AC 的中点分别为D 、E 、F ,AB ,BC ,AC 的斜率都存在且不为0,若34OD OE OF k k k ++=-(O 为坐标原点),则111AB BC ACk k k ++=()A .1B .-1C .34-D .34【答案】A的斜率转化为6.直线:20l x y-=经过椭圆22+1(0)x y a ba b=>>的左焦点F,且与椭圆交于,A B两点,若M为线段AB中点,||||MF OM=,则椭圆的标准方程为()A.22+163x y=B.22+185x y=C.2214x y+=D.22+1129x y=7.已知三角形ABC 的三个顶点都在椭圆:143x y +=上,设它的三条边AB ,BC ,AC 的中点分别为D ,E ,M ,且三条边所在线的斜率分别为1k ,2k ,3k ,且1k ,2k ,3k 均不为0.O 为坐标原点,若直线OD ,OE ,OM 的斜率之和为1.则123111k k k ++=()A .43-B .3-C .1813-D .32-8.已知过点()1,1M 的直线l 与椭圆22184x y +=交于,A B 两点,且满足,AM BM =则直线l 的方程为()A .30x y -+=B .230x y +-=C .2230x y -+=D .230x y +-=题型六:椭圆中的最值问题【例1】已知椭圆()2222:10y x C a b a b+=>>的上、下焦点分别是1F ,2F ,点P 在椭圆C 上则下列结论正确的是()A .12PF PF ⋅有最大值无最小值B .12PF PF ⋅无最大值有最小值C .12PF PF ⋅既有最大值也有最小值D .12PF PF ⋅既无最大值也无最小值【例2】若点O 和点F 分别为椭圆()222210x y a b a b+=>>的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为()A .()a a c +B .()b a c +C .()a a c -D .()b ac -【例3】已知点P 是椭圆4x +2y =1上的动点(点P 不在坐标轴上),12F F 、为椭圆的左,右焦点,O 为坐标原点;若M 是12F PF ∠的角平分线上的一点,且1F M 丄MP ,则丨OM 丨的取值范围为()A .(0B .(0,2)C .(l ,2)D .2)【答案】A=因为1F M MP ⊥,因为PM 为12F PF ∠的角平分线,所以,PN 因为O 为12F F 的中点,所以,212OM F N =设点00(,)P x y ,由已知可得2a =,1b =,c 则022x -<<且00x ≠,且有220114y x =-,()2221000032331PF x y x x =++=+++-【例4】已知点P 在椭圆193x y +=上运动,点Q 在圆22(1)8x y -+=上运动,则PQ 的最小值为()A .2B .2C .24-D .4【答案】D【分析】先求出点P 到圆心(1,0)A 的距离的最小值,然后减去圆的半径可得答案。
椭圆中的最值和取值范围问题课件
(三)合作探究,强化运用意识
(1)解:由题意,可设直线 AB 的方程为 x=﹣ky+n,代入椭圆方程
,
可得(k2+2)y2﹣2kny+n2﹣2=0, 设 A(x1,y1),B(x2,y2). 由题意,△=4k2n2﹣4(k2+2)(n2﹣2)=8(k2﹣n2+2)>0,
由韦达定理得
设线段 AB 的中点 P(x0,y0),
解:︱MP︱+︱MF2︱=︱MP︱+2a-︱MF1︱ 连接 PF1 延长 PF1 交椭圆于点 M1,延长 F1P 交椭圆于点 M2 由三角形三边关系知–︱PF1︱ ︱MP︱-︱MF1︱ ︱PF1︱ 当且仅当 M 与 M1 重合时取右等号、M 与 M2 重合时取左等号。 因为 2a=10, ︱PF1︱=2 所以(︱MP︱+︱MF2︱)max=12, (︱MP︱+︱MF2︱)min=8
(一)知识回顾,聚焦核心考点
2.椭圆的标准方程 和简单几何性质
|x|≤a,|y|≤b (±a,0),(0,±b)
|y|≤a,|x|≤b (0,±a),(±b,0)
x=0,y=0 (0,0)
(一)知识回顾,聚焦核心考点
3.弦长公式
设斜率为 k(k≠0)的直线 l 与圆锥曲线 C 的两个交点为 A(x1,y1),B(x2,y2),则
1、 椭圆中的最值问题类型较多, 距离、离心率、弦长、面积,斜率等等, 解法灵活多变, 有函数法、不等式法、定义法、几何法、三角代换 法,设而不求法,等,但总体上主要有两种角度: 一是几何角度,即利用曲线的定义、几何性质以及平面几何中的定 理、性质等进行求解; 二是代数角度,即把几何条件转化为代数表达,然后利用方程法,函
丰富学生思维活动,提升数学核心素养
椭圆中的定点、定值-2024年新高考数学(解析版)
椭圆中的定点、定值1(2023春·河北石家庄·高二校考开学考试)已知椭圆C:x28+y24=1,直线l:y=kx+n(k>0)与椭圆C交于M,N两点,且点M位于第一象限.(1)若点A是椭圆C的右顶点,当n=0时,证明:直线AM和AN的斜率之积为定值;(2)当直线l过椭圆C的右焦点F时,x轴上是否存在定点P,使点F到直线NP的距离与点F到直线MP的距离相等?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)见解析;(2)存在,P(4,0).【分析】(1)联立直线方程和椭圆方程得(1+2k2)x2-8=0,由韦达定理可得x1,x2的关系,再由k AM⋅k AN=y1x1-22⋅y2x2-22计算即可得证;(2)由题意可得直线l的方程为y=k(x-2),联立直线方程与椭圆方程得(1+2k2)x2-8k2x+8(k2-1)= 0,由韦达定理x3,x4之间的关系,假设存在满足题意的点P,设P(m,0),由题意可得k PM+k PN=0.代入计算,如果m有解,则存在,否则不存在.【详解】(1)证明:因为n=0,所以直线l:y=kx,联立直线方程和椭圆方程:y=kxx2+2y2-8=0,得(1+2k2)x2-8=0,设M(x1,y1),N(x2,y2),则有x1+x2=0,x1x2=-81+2k2,所以y1y2=k2x1x2=-8k21+2k2,又因为A(22,0),所以k AM=y1x1-22,k AN=y2x2-22,所以k AM⋅k AN=y1x1-22⋅y2x2-22=y1y2x1x2-22(x1+x2)+8=y1y2x1x2+8=-8k21+2k2-81+2k2+8=-8k21+2k216k21+2k2=-8k2 16k2=-12所以直线AM和AN的斜率之积为定值-1 2;(2)解:假设存在满足题意的点P,设P(m,0),因为椭圆C的右焦点F(2,0),所以2k+n=0,即有n=-2k,所以直线l的方程为y=k(x-2).由y=k(x-2)x2+2y2-8=0,可得(1+2k2)x2-8k2x+8(k2-1)=0,设M(x3,y3),N(x4,y4),则有x3+x4=8k21+2k2,x3x4=8(k2-1)1+2k2;因为点F到直线NP的距离与点F到直线MP的距离相等,所以PF平分∠MPN,所以k PM+k PN=0.即y 3x 3-m +y 4x 4-m =k (x 3-2)x 3-m +k (x 4-2)x 4-m =k (x 3-2)(x 4-m )+k (x 3-m )(x 4-2)(x 3-m )(x 4-m )=k [2x 3x 4-(m +2)(x 3+x 4)+4m ](x 3-m )(x 4-m )=0,又因为k >0,所以2x 3x 4-(m +2)(x 3+x 4)+4m =0,代入x 3+x 4=8k 21+2k 2,x 3x 4=8(k 2-1)1+2k 2,即有4m -161+2k 2=0,解得m =4.故x 轴上存在定点P (4,0),使得点F 到直线NP 的距离与点F 到直线MP 的距离相等.2(2023·全国·模拟预测)在平面直角坐标系xOy 中,A -2,0 ,B 2,0 ,M -1,0 ,N 1,0 ,点P 是平面内的动点,且以AB 为直径的圆O 与以PM 为直径的圆O 1内切.(1)证明PM +PN 为定值,并求点P 的轨迹Ω的方程.(2)过点A 的直线与轨迹Ω交于另一点Q (异于点B ),与直线x =2交于一点G ,∠QNB 的角平分线与直线x =2交于点H ,是否存在常数λ,使得BH =λBG恒成立?若存在,求出λ的值;若不存在,请说明理由.【答案】(1)证明见解析,x 24+y 23=1(2)存在,λ=12【分析】(1)依题意可得OO 1 =2-PM 2,连接PN ,可得OO 1 =PN2,即可得到PM +PN 为定值,根据椭圆的定义得到点P 的轨迹是以M ,N 为焦点的椭圆,且2a =4,c =1,即可求出椭圆方程;(2)设Q x 0,y 0 ,G 2,y 1 ,H 2,y 2 ,直线AQ 的方程为x =my -2m ≠0 ,即可得到m =4y 1,再联立直线与椭圆方程,解出y 0,从而得到k QN ,k NH ,设∠BNH =θ,再根据二倍角的正切公式得到方程,即可得到y 2=12y 1,从而得解;【详解】(1)解:如图,以AB 为直径的圆O 与以PM 为直径的圆O 1内切,则OO 1 =AB 2-PM 2=2-PM2.连接PN ,因为点O 和O 1分别是MN 和PM 的中点,所以OO 1 =PN2.故有PN 2=2-PM2,即PN +PM =4,又4>2=MN,所以点P的轨迹是以M,N为焦点的椭圆.因为2a=4,c=1,所以b2=a2-c2=3,故Ω的方程为x24+y23=1.(2)解:存在λ=12满足题意.理由如下:设Q x0,y0,G2,y1,H2,y2.显然y1y2>0.依题意,直线AQ不与坐标轴垂直,设直线AQ的方程为x=my-2m≠0,因为点G在这条直线上,所以my1=4,m=4 y1 .联立x=my-2,3x2+4y2=12,得3m2+4y2-12my=0的两根分别为y0和0,则y0=12m3m2+4,x0=my0-2=6m2-83m2+4,所以k QN=y0x0-1=12m3m2+46m2-83m2+4-1=4mm2-4=4y14-y21,k NH=y2.设∠BNH=θ,则∠BNQ=2θ,则k QN=tan2θ,k NH=tanθ,所以tan2θ=2tanθ1-tan2θ=2y21-y22=4y14-y21,整理得y1-2y2y1y2+2=0,因为y1y2>0,所以y1-2y2=0,即y2=12y1.故存在常数λ=12,使得BH=λBG.3(2023·全国·高三专题练习)仿射变换是处理圆锥曲线综合问题中求点轨迹的一类特殊而又及其巧妙的方法,它充分利用了圆锥曲线与圆之间的关系,具体解题方法为将C:x2a2+y2b2=1(a>b>0)由仿射变换得:x =xa,y=yb,则椭圆x2a2+y2b2=1变为x 2+y 2=1,直线的斜率与原斜率的关系为k =abk,然后联立圆的方程与直线方程通过计算韦达定理算出圆与直线的关系,最后转换回椭圆即可.已知椭圆C:x2 a2+y2b2=1(a>b>0)的离心率为55,过右焦点F2且垂直于x轴的直线与C相交于A,B两点且AB=855,过椭圆外一点P作椭圆C的两条切线l1,l2且l1⊥l2,切点分别为M,N.(1)求证:点P的轨迹方程为x2+y2=9;(2)若原点O到l1,l2的距离分别为d1,d2,延长表示距离d1,d2的两条直线,与椭圆C交于Y,W两点,过O作OZ⊥YW交YW于Z,试求:点Z所形成的轨迹与P所形成的轨迹的面积之差是否为定值,若是,求出此定值;若不是,请求出变化函数.【答案】(1)证明见解析(2)是定值,定值为619π【分析】(1)利用仿射变换将椭圆方程变为圆的方程,设原斜率分别为k1,k2,k1k2=-1,则变换后斜率k 1⋅k 2=a2b2k1k2,设变换后坐标系动点Q x0,y0,过点Q x0,y0的直线为l:y-y0=k x-x0,将圆的方程和直线方程联立,利用直线和圆相切结合韦达定理求解即可;(2)由图中的垂直关系,利用等面积法S△OYW=12OYOW=12YWOZ和1|OY|2+1|OW|2=OY|2+OW|2 OY|2OW|2=|YW|2OW|2OY|2,结合椭圆的性质求解即可.【详解】(1)由仿射变换得:x =xa,y=yb,则椭圆x2a2+y2b2=1变为x 2+y 2=1设原斜率存在分别为k1,k2,k1k2=-1,变换后为k 1=abk1,k 2=abk2,所以k 1⋅k 2=a2b2k1k2=-a2b2=e2-1,设变换后的坐标系动点Q x0,y0,过点Q x0,y0的直线为l:y-y0=k x-x0l:kx-y-kx0-y0=0到原点距离为d=kx0-y0k2+1=1,即kx0-y02=k2+1⇒x20-1k2-2x0y0k+y20-1=0,由韦达定理得:k 1k 2=y20-1x20-1=-a2b2,化简得:a2x20+b2y20=a2+b2由于原坐标系中x0=xa,y0=yb⇒x=ax0,y=by0所以在原坐标系中轨迹方程为:x2+y2=a2+b2,由e=ca=55b2a=455解得a2=5b2=4,所以点P的轨迹方程为x2+y2=9,当切线斜率不存在时,由椭圆方程x25+y24=1易得P点在x2+y2=9上.(2)如图所示延长OY交l1于N,延长OW交l2于M,由题意可知∠GPM=∠OGP=∠OHP=π2,所以四边形OGPH为矩形,∠YOW=π2,所以S△OYW=12OYOW=12YWOZ,且1|OY|2+1|OW|2=OY|2+OW|2OY|2OW|2=|YW|2OW|2OY|2,|YW |2OW |2OY |2分子分母同乘|OZ |2得4S 24OZ 2S 2=1OZ 2=1OY 2+1OW 2,因为OY ⊥OW ,当直线OY ,OW 斜率存在时,设l OY :y =k 3x ,l OW :y =-1k 3x ,由x 2a 2+y 2b 2=1y =k 3x解得x 2Y=a 2b 2b 2+a 2k 23,y 2Y =a 2b 2k 23b 2+a 2k 23,所以OY 2=a 2b 21+k 23 b 2+a 2k 23,由x 2a 2+y 2b 2=1y =-1k 3x解得x 2W=a 2b 2k 23b 2k 23+a 2,y 2W =a 2b 2b 2k 23+a 2,所以OW 2=a 2b 21+k 23 b 2k 23+a2,所以1OY 2+1OW 2=b 2+a 2k 23a 2b 2(1+k 23)+b 2k 23+a 2a 2b 2(1+k 23)=a 2+b 2a 2b 2,当斜率不存在时仍成立,所以1|OZ |2=a 2+b 2a 2b 2,OZ 2=x 2+y 2=a 2b 2a 2+b 2=209,所以Z 所形成的轨迹与P 所形成的轨迹的面积之差=9-209 π=619π是定值.4(2023·湖南·湖南师大附中校联考模拟预测)在平面直角坐标系xOy 中,已知椭圆W :x 2a 2+y 2b2=1(a >b >0)的离心率为22,椭圆W 上的点与点P 0,2 的距离的最大值为4.(1)求椭圆W 的标准方程;(2)点B 在直线x =4上,点B 关于x 轴的对称点为B 1,直线PB ,PB 1分别交椭圆W 于C ,D 两点(不同于P 点).求证:直线CD 过定点.【答案】(1)x 28+y 24=1(2)证明见解析【分析】(1)根据离心率可得a =2b =2c ,设点T m ,n 结合椭圆方程整理得TP =-(n +2)2+8+2b 2,根据题意分类讨论求得b =2,即可得结果;(2)设直线CD 及C ,D 的坐标,根据题意结合韦达定理分析运算,注意讨论直线CD 的斜率是否存在.【详解】(1)设椭圆的半焦距为c ,由椭圆W 的离心率为22,得a =2b =2c ,设点T m ,n 为椭圆上一点,则m 22b 2+n 2b2=1,-b ≤n ≤b ,则m 2=2b 2-2n 2,因为P 0,2 ,所以TP =m 2+(n -2)2=2b 2-2n 2+n 2-4n +4=-(n +2)2+8+2b 2,①当0<b <2时,|TP |max =-(-b +2)2+8+2b 2=4,解得b =2(舍去);②当b ≥2时,|TP |max =8+2b 2=4,解得b =2;综上所述:b =2,则a =22,c =2,故椭圆W 的标准方程为x 28+y 24=1.(2)①当CD 斜率不存在时,设C x 0,y 0 ,-22<x 0<22且x 0≠0,则D x 0,-y 0 ,则直线CP 为y =y 0-2x 0x +2,令x =4,得y =4y 0-8x 0+2,即B 4,4y 0-8x 0+2,同理可得B 14,-4y 0-8x 0+2.∵B 与B 1关于x 轴对称,则4y 0-8x 0+2+-4y 0-8x 0+2=0,解得x 0=4>22,矛盾;②当直线CD 的斜率存在时,设直线CD 的方程为y =kx +m ,m ≠2,设C x 1,y 1 ,D x 2,y 2 ,其中x 1≠0且x 2≠0,联立方程组y =kx +mx 28+y 24=1,消去y 化简可得2k 2+1 x 2+4kmx +2m 2-8=0,Δ=16k 2m 2-42k 2+1 2m 2-8 =88k 2+4-m 2 >0,则m 2<8k 2+4,所以x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-81+2k 2,由P 0,2 ,可得k PC =y 1-2x 1,k PD =y 2-2x 2,所以直线PC 的方程为y =y 1-2x 1x +2,令x =4,得y =4y 1-8x 1+2,即4,4y 1-8x 1+2,直线PD 的方程为y =y 2-2x 2x +2,令x =4,得y =4y 2-8x 2+2,即4,4y 2-8x 2+2,因为B 1和B 关于x 轴对称,则4y 1-8x 1+2+4y 2-8x 2+2=0,把y 1=kx 1+m ,y 2=kx 2+m 代入上式,则4kx 1+m -8x 1+2+4kx 2+m -8x 2+2=0,整理可得1+2k x 1x 2+m -2 x 1+x 2 =0,则1+2k ×2m 2-81+2k 2+m -2 ×-4km1+2k2=0,∵m ≠2,则m -2≠0,可得1+2k ×m +2 -2km =0,化简可得m =-4k -2,则直线CD 的方程为y =kx -4k -2,即y +2=k x -4 ,所以直线CD 过定点4,-2 ;综上所述:直线CD 过定点4,-2 .【点睛】方法定睛:过定点问题的两大类型及解法(1)动直线l 过定点问题.解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题.解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.5(2023春·四川眉山·高二校考阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)点D (4,0),斜率为k 的直线l 不过点D ,且与椭圆C 交于A ,B 两点,∠ADO =∠BDO (O 为坐标原点).直线l 是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.【答案】(1)x 24+y 2=1;(2)过定点,1,0 .【分析】(1)根据已知条件列方程即可解得a ,b 值,方程可求解;(2)设直线l 的方程为y =kx +m ,联立椭圆方程结合韦达定理得x 1,x 2关系,又∠ADO =∠BDO 得k AD +k BD =0,代入坐标化简即可求解.【详解】(1)由题意可得2b =2ca =32c 2=a 2-b 2,解得a 2=4,b 2=1所以椭圆C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 联立y =kx +mx 24+y 2=1整理得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=8km 2-44k 2+1 (4m 2-4)>0,即4k 2-m 2+1>0又x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1因为∠ADO =∠BDO ,所以k AD +k BD =0,所以y 1x 1-4+y 2x 2-4=kx 1+m x 2-4 +kx 2+m x 1-4x 1-4 x 2-4 =0所以2kx 1x 2+(m -4k )x 1+x 2 -8m =0,即2k ⋅4m 2-44k 2+1+(m -4k )⋅-8km 4k 2+1-8m =0整理得8k +8m =0,即m =-k ,此时Δ=3k 2+1>0则直线l 的方程为y =kx -k ,故直线l 过定点1,0 .6(2023·内蒙古赤峰·校联考模拟预测)已知椭圆C :y 2a 2+x 2b2=1a >b >0 的离心率为12,且经过点6,2 ,椭圆C 的右顶点到抛物线E :y 2=2px p >0 的准线的距离为4.(1)求椭圆C 和抛物线E 的方程;(2)设与两坐标轴都不垂直的直线l 与抛物线E 相交于A ,B 两点,与椭圆C 相交于M ,N 两点,O 为坐标原点,若OA ⋅OB=-4,则在x 轴上是否存在点H ,使得x 轴平分∠MHN ?若存在,求出点H 的坐标;若不存在,请说明理由.【答案】(1)y 212+x 29=1;y 2=4x(2)存在;H 92,0 【分析】(1)依题意得到方程组,即可求出a 2,b 2,从而得到椭圆方程,再求出椭圆的右顶点,即可求出p ,从而求出抛物线方程;(2)设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 ,联立直线与抛物线方程,消元、列出韦达定理,根据OA ⋅OB=-4得到m =-2k ,再假设在x 轴上存在点H x 0,0 ,使得x 轴平分∠MHN ,则直线HM 的斜率与直线HN 的斜率之和为0,设M x 3,y 3 ,N x 4,y 4 ,联立直线与椭圆方程,消元、列出韦达定理,由y 3x 3-x 0+y 4x 4-x 0=0,即可求出x 0,从而求出H 的坐标;【详解】(1)解:由已知得c a =124a 2+6b 2=1a 2=b 2+c 2,∴a 2=12,b 2=9.∴椭圆C 的方程为y 212+x 29=1.∴椭圆C 的右顶点为3,0 .∴3+p2=4,解得p =2.∴抛物线E 的方程为y 2=4x .(2)解:由题意知直线l 的斜率存在且不为0.设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 .由y =kx +my 2=4x消去y ,得k 2x 2+2km -4 x +m 2=0.∴Δ1=2km -4 2-4k 2m 2=-16km +16>0,∴km <1.∴x 1+x 2=4-2km k 2,x 1x 2=m 2k2.∴y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2=km 4-2km k2+2m 2=4m k .∴OA ⋅OB =x 1x 2+y 1y 2=m 2k2+4m k =-4.∴m k +2 2=0,∴mk=-2.∴m =-2k ,此时km =-2k 2<1.∴直线l 的方程为y =k x -2 .假设在x 轴上存在点H x 0,0 ,使得x 轴平分∠MHN ,则直线HM 的斜率与直线HN 的斜率之和为0,设M x 3,y 3 ,N x 4,y 4 ,由y =k x -2y 212+x 29=1消去y ,得3k 2+4 x 2-12k 2x +12k 2-36=0.∴Δ2=12k 2 2-43k 2+4 12k 2-36 >0,即5k 2+12>0恒成立.∴x 3+x 4=12k 23k 2+4,x 3x 4=12k 2-363k 2+4.∵y 3x 3-x 0+y 4x 4-x 0=0,∴k x 3-2 x 4-x 0 +k x 4-2 x 3-x 0 =0.∴2x 3x 4-x 0+2 x 3+x 4 +4x 0=0.∴24k 2-723k 2+4-x 0+2 12k 23k 2+4+4x 0=0.∴16x 0-723k 2+4=0.解得x 0=92.∴在x 轴上存在点H 92,0 ,使得x 轴平分∠MHN .【点睛】本题考查直线与圆锥曲线的综合问题,考查椭圆的方程以及韦达定理法在圆锥曲线综合中的应用,属于难题;在解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.7(2023·宁夏·六盘山高级中学校考一模)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为B 1,若△F 1B 1F 2为等边三角形,且点P 1,32在椭圆E 上.(1)求椭圆E 的方程;(2)设椭圆E 的左、右顶点分别为A 1,A 2,不过坐标原点的直线l 与椭圆E 相交于A 、B 两点(异于椭圆E 的顶点),直线AA 1、BA 2与y 轴的交点分别为M 、N ,若|ON |=3|OM |,证明:直线过定点,并求该定点的坐标.【答案】(1)x 24+y 23=1(2)点1,0 或4,0【分析】(1)由已知条件,椭圆的定义及a ,b ,c 的关系可知a 2=4c 2和b 2=3c 2,再设出椭圆的方程,最后将点代入椭圆的方程即可求解;(2)设点A x 1,y 1 ,B x 2,y 2 ,由直线AA 1的方程即可求出点M 的坐标,由BA 2的方程即可求出点N 的坐标,由已知条件可知5x 1+x 2 -2x 1x 2-8=0,分直线AB 的斜率存在和直线AB 的斜率不存在两种情况分别求解,得出直线AB 的方程,即可判断出直线恒过定点的坐标.【详解】(1)∵△F 1B 1F 2为等边三角形,且B 1F 1 +B 1F 2 =2a ,∴a =2c ,又∵a 2=b 2+c 2,∴b 2=3c 2,设椭圆的方程为x 24c 2+y 23c 2=1,将点P 1,32 代入椭圆方程得14c 2+912c2=1,解得c 2=1,所以椭圆E 的方程为x 24+y 23=1.(2)由已知得A 1-2,0 ,A 22,0 ,设A x 1,y 1 ,B x 2,y 2 ,则直线AA 1的斜率为y 1x 1+2,直线AA 1的方程为y =y 1x 1+2x +2 ,即点M 坐标为0,2y 1x 1+2,直线BA 2的斜率为y 2x 2-2,直线AA 1的方程为y =y 2x 2-2x -2 ,即点N 坐标为0,-2y 2x 2-2,∵|ON |=3|OM |,∴|ON |2=9|OM |2,∴4y 22x 2-2 2=36y 21x 1+2 2,又∵y 21=3-3x 214=12-3x 214,y 22=3-3x 224=12-3x 224,∴4-x 22x 2-2 2=9×4-x 21x 1+22,即2+x 22-x 2=92-x 1 2+x 1,整理得5x 1+x 2 -2x 1x 2-8=0,①若直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,将直线方程与椭圆方程联立y =kx +bx 24+y 23=1得3+4k 2 x 2+8kbx +4b 2-12=0,其中Δ=64k 2b 2-43+4k 2 4b 2-12 =1612k 2-3b 2+9 >0,x 1+x 2=-8kb 3+4k 2,x 1x 2=4b 2-123+4k 2,即-5×8kb 3+4k 2-2×4b 2-123+4k2-8=0,4k 2+5kb +b 2=0,4k +b k +b =0,所以b =-4k 或b =-k ,当b =-4k 时,直线AB 的方程为y =kx -4k =k x -4 ,此时直线AB 恒过点4,0 ,当b =-k 时,直线AB 的方程为y =kx -k =k x -1 ,此时直线AB 恒过点1,0 ,②若直线AB 的斜率不存在时x 1=x 2,由2+x 22-x 2=92-x 1 2+x 1得2+x 22-x 2=92-x 2 2+x 2,即x 22-5x 2+4=0,解得x 2=1或x 2=4,此时直线AB 的方程为x =1或x =4,所以此时直线AB 恒过点1,0 或4,0 ,综上所述,直线AB 恒过点1,0 或4,0 .8(2023·江苏扬州·仪征中学校考模拟预测)已知F 1(-2,0),F 2(2,0)为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,且A 2,53为椭圆上的一点.(1)求椭圆E 的方程;(2)设直线y =-2x +t 与抛物线y 2=2px (p >0)相交于P ,Q 两点,射线F 1P ,F 1Q 与椭圆E 分别相交于M 、N .试探究:是否存在数集D ,对于任意p ∈D 时,总存在实数t ,使得点F 1在以线段MN 为直径的圆内?若存在,求出数集D 并证明你的结论;若不存在,请说明理由.【答案】(1)x 29+y 25=1(2)存在,D =(5,+∞),证明见解析【分析】(1)求出点A 2,53到两焦点的距离,再用椭圆的定义可得a =3,结合b 2=a 2-c 2可得b 2,从而可得椭圆的方程;(2)直线l 与抛物线联立,结合判别式有p +4t >0,要使得点F 1在以线段MN 为直径的圆内,根据题意,有F 1P ⋅F 1Q<0,结合韦达定理可得p >5,从而可证明问题.【详解】(1)由题意知c =2,A 2,53为椭圆上的一点,且AF 2垂直于x 轴,则AF 2 =53,AF 1 =(2+2)2+53 2=133,所以2a =AF 1 +AF 2 =133+53=6,即a =3,所以b 2=32-22=5,故椭圆的方程为x 29+y 25=1;(2)l 方程为y =-2x +t ,联立抛物线方程,得y 2=2px y =-2x +t ,整理得y 2+py -pt =0,则Δ=p 2+4tp >0,则p +4t >0①,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=-p ,y 1y 2=-pt ,则x 1+x 2=t +p 2,x 1x 2=(y 1y 2)24p 2=t 24,由F 1的坐标为(-2,0),则F 1P =(x 1+2,y 1),F 1Q=(x 2+2,y 2),由F 1M 与F 1P 同向,F 1N 与F 1Q 同向,则点F 1在以线段MN 为直径的圆内,则F 1M ⋅F 1N <0,则F 1P ⋅F 1Q<0,则(x 1+2)(x 2+2)+y 1y 2<0,即x 1x 2+2(x 1+x 2)+4+y 1y 1<0,则t 24+2t +p 2 +4-pt <0,即t 24+(2-p )t +p +4<0②,当且仅当Δ=(2-p )2-4×14(p +4)>0,即p >5,总存在t >-p4使得②成立,且当p >5时,由韦达定理可知t 24+(2-p )t +p +4=0的两个根为正数,故使②成立的t >0,从而满足①,故存在数集D =(5,+∞),对任意p ∈D 时,总存在t ,使点F 1在线段MN 为直径的圆内.9(2023·四川绵阳·四川省绵阳南山中学校考模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右顶点分别为M 1、M 2,短轴长为23,点C 上的点P 满足直线PM 1、PM 2的斜率之积为-34.(1)求C 的方程;(2)若过点1,0 且不与y 轴垂直的直线l 与C 交于A 、B 两点,记直线M 1A 、M 2B 交于点Q .探究:点Q是否在定直线上,若是,求出该定直线的方程;若不是,请说明理由.【答案】(1)x 24+y 23=1(2)点Q 在定直线x =4上【分析】(1)设点P x 0,y 0 ,则x 0≠±a ,可得出y 20=b 21-x 20a2,利用斜率公式结合已知条件可得出b 2=34a 2,再利用椭圆的短轴长可得出b 2、a 2的值,即可得出椭圆C 的方程;(2)设l 的方程为x =my +1,设点A x 1,y 1 、B x 2,y 2 ,设点Q x ,y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,写出直线M 1A 、M 2B 的方程,联立这两条直线方程,可得出点Q 的横坐标,即可得出结论.【详解】(1)解:设P x 0,y 0 ,则x 0≠±a ,且x 20a 2+y 20b 2=1,所以,y 20=b 21-x 20a2,则k PM 1⋅k PM 2=y 0x 0+a ⋅y 0x 0-a =y20x 20-a 2=b 21-x 20a 2x 20-a2=-b 2a2=-34,故b 2=34a 2①,又2b =23②,联立①②,解得a 2=4,b 2=3,故椭圆C 的方程为x 24+y 23=1.(2)解:结论:点Q 在定直线上x =4.由(1)得,M 1-2,0 、M 22,0 ,设Q x ,y ,设直线l 的方程为x =my +1,设点A x 1,y 1 、B x 2,y 2 ,联立x 24+y 23=1x =my +1,整理得3m 2+4 y 2+6my -9=0,Δ=36m 2+363m 2+4 =144m 2+1 >0,∴y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, 直线M 1A 的方程为y =y 1x 1+2x +2 ,直线M 2B 的方程为y =y 2x 2-2x -2 ,所以,y 1x 1+2x +2 =y 2x 2-2x-2 ,可得x +2x -2=y 2x 1+2 y 1x 2-2 =y 2my 1+3 y 1my 2-1 =my 1y 2+3y 2my 1y 2-y 1=-9m 3m 2+4+3-6m 3m 2+4-y 1 -9m 3m 2+4-y 1=-27m 3m 2+4-3y 1-9m 3m 2+4-y 1=3,解得x =4,因此,点Q 在直线x =4上.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 、x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.10(2023·全国·高三专题练习)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)内切于矩形ABCD ,其中AB ,CD 与x 轴平行,直线AC ,BD 的斜率之积为-12,椭圆的焦距为2.(1)求椭圆E 的标准方程;(2)椭圆上的点P ,Q 满足直线OP ,OQ 的斜率之积为-12,其中O 为坐标原点.若M 为线段PQ 的中点,则MO 2+MQ 2是否为定值?如果是,求出该定值;如果不是,说明理由.【答案】(1)x 22+y 2=1(2)是定值,定值为32【分析】(1)由题意求出直线AC ,BD 的斜率,即可求出-b 2a2=-12,又因为焦距为2,即可就出椭圆的标准方程.(2)方法一:联立直线PQ 与椭圆的方程由k OP ⋅k OQ =-12可求出2t 2=1+2k 2,又因为:MO 2+MQ 2=x 21+x 222+y 21+y 222,又点P ,Q 在椭圆上,代入即可求出答案.方法二:由P ,Q 是椭圆C 上的点,可得x 21+2y 21=2x 22+2y 22=2,联立直线PQ 与椭圆的方程由k OP ⋅k OQ =-12可求出y 1=-x 1x 22y 2,代入化简得x 21=2y 22,即可求出答案.【详解】(1)由题意,c =1,则A -a ,-b ,B a ,-b ,C a ,b ,D -a ,b ,所以k AC =2b 2a =b a ,k BD =2b-2a=b -a ,所以k AC ⋅k BD =-b 2a2=-12,解得:a =2,=1,∴椭圆的标准方程为x 22+y 2=1.(2)(方法一)设P x 1,y 1 ,Q x 2,y 2 ,则M x 1+x 22,y 1+y 22.设直线PQ :y =kx +t ,由y =kx +t x 22+y 2=1,得:1+2k 2 x 2+4ktx +2t 2-2=0,x 1+x 2=-4kt1+2k2x 1x 2=2t 2-21+2k2,由k OP ⋅k OQ =-12,得x 1x 2+2y 1y 2=1+2k 2 x 1x 2+2kt x 1+x 2 +2t 2=0,代入化简得:2t 2=1+2k 2.∵MO 2+MQ 2=x 1+x 22 2+y 1+y 22 2+x 1-x 1+x 22 2+y 1-y 1+y 222=x 21+x 222+y 21+y 222,又点P ,Q 在椭圆上,∴x 212+y 21=1,x 222+y 22=1,即x 21+x 224+y 21+y 222=1,∵x 21+x 22=x 1+x 2 2-2x 1x 2=-4kt 2t 22-2⋅2t 2-22t 2=2,∴x 21+x 224=12.∴MO 2+MQ 2=x 21+x 224+y 21+y 222+x 21+x 224=32.即MO 2+MQ 2=32为定值.(方法二)由P ,Q 是椭圆C 上的点,可得x 21+2y 21=2x 22+2y 22=2 ,把y 1=-x 1x 22y 2代入上式,化简x 21=2y 22,得y 21+y 22=1,x 21+x 22=2,MO 2+MQ 2=12x 21+x 22+y 21+y 22 =32.11(2023春·湖北襄阳·高三襄阳五中校考阶段练习)已知离心率为22的椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F ,左、右顶点分别为A 1、A 2,上顶点为B ,且△A 1BF 的外接圆半径大小为3.(1)求椭圆C 方程;(2)设斜率存在的直线l 交椭圆C 于P ,Q 两点(P ,Q 位于x 轴的两侧),记直线A 1P 、A 2P 、A 2Q 、A 1Q 的斜率分别为k 1、k 2、k 3、k 4,若k 1+k 4=53k 2+k 3 ,求△A 2PQ 面积的取值范围.【答案】(1)x 24+y 22=1(2)0,5830 【分析】(1)根据椭圆离心率确定椭圆中a ,b ,c 的关系,再结合正弦定理的推论确定外接圆半径与边角关系即可得c 的值,从而求得椭圆方程;(2)由题可设直线l :x =ty +m t ≠0 ,P x 1,y 1 ,Q x 2,y 2 ,联立直线与椭圆即可得交点坐标关系,根据斜率的计算式可得k 1k 2=-12,k 3k 4=-12,再由已知等式k 1+k 4=53k 2+k 3 确定k 2k 3=-310,由坐标关系进行转化可求得m 的值,求解△A 2PQ 面积的表达式,结合函数性质即可得△A 2PQ 面积的取值范围.【详解】(1)根据椭圆C 的离心率为22知a =2c ,所以b =a 2-c 2=c ,如图,则OF =OB =c则在△A 1BF 中,可得∠BFA 1=3π4,A 1B =OA 1 2+OB 2=3c ,由正弦定理得A 1Bsin ∠BFA 1=3c22=6c =2×3,解得c =2,所以a =2,b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由条件知直线l 的斜率不为0,设直线l :x =ty +m t ≠0 ,P x 1,y 1 ,Q x 2,y 2 ,联立x =ty +mx 24+y 22=1,得t 2+2 y 2+2mty +m 2-4=0,Δ>0得2t 2+4>m 2于是y 1+y 2=-2mt t 2+2,y 1y 2=m 2-4t 2+2,因为A 1-2,0 ,A 22,0 ,P x 1,y 1 代入椭圆方程得x 214+y 212=1,所以k 1k 2=y 1x 1+2⋅y 1x 1-2=y 21x 21-4=21-x 214 x 21-4=-12,同理k 3k 4=-12,于是k 1=-12k 2,k 4=-12k 3,因为k 1+k 4=53k 2+k 3 ,所以-12k 2-12k 3=53k 2+k 3 ,即-k 2+k 32k 2k 3=53k 2+k 3 .又直线l 的斜率存在,所以k 2+k 3≠0,于是k 2k 3=-310,所以y 1x 1-2⋅y 2x 2-2=-310,即10y 1y 2+3x 1-2 x 2-2 =0,又x 1=ty 1+m ,x 2=ty 2+m ,所以10y 1y 2+3ty 1+m -2 ty 2+m -2 =0,整理得3t 2+10 y 1y 2+3t m -2 y 1+y 2 +3m -2 2=0,所以3t 2+10 m 2-4t 2+2 +3t m -2 -2mt t 2+2+3m -2 2=0,化简整理得m -2 2m +1 =0,又P 、Q 位于x 轴的两侧,所以y 1y 2=m 2-4t 2+2<0,解得-2<m <2,所以m =-12,此时直线l 与椭圆C 有两个不同的交点,于是直线l 恒过定点D -12,0 .当m =-12时,y 1+y 2=t t 2+2,y 1y 2=-154t 2+2,△A 2PQ 的面积S △A 2PQ =12A 2D ⋅y 1-y 2 =12×52×y 1+y 2 2-4y 1y 2=54t t 2+22-4-154t 2+2 =54⋅16t 2+30t 2+2,令16t 2+30=λ,因为直线l 的斜率存在,则λ>30,t 2=λ2-3016,于是S △A 2PQ =54⋅16λλ2+2=20λ+2λ,又函数y =20λ+2λ在30,+∞ 上单调递减,所以△A 2PQ 面积的取值范围为0,5830 .【点睛】关键点点睛:本题考查了直线与椭圆相交的坐标关系,利用坐标运算解决直线斜率关系及面积关系.解决本题的关键是确定直线直线A 1P 、A 2P 、A 2Q 、A 1Q 之间的斜率关系,结合椭圆上的任意一点与左右顶点之间的斜率关系,可将四个斜率值简化为两个斜率关系,即可减少位置数,从而利用坐标运算及坐标关系确定所设直线过定点,于是简化所求面积表达式中的变量个数从而可结合函数关系确定取值范围,得以解决问题.12(2023·江西南昌·统考模拟预测)已知A 2,0 ,B 0,1 是椭圆E :x 2a 2+y 2b2=1a >b >0 的两个顶点.(1)求椭圆E 的标准方程;(2)过点P 2,1 的直线l 与椭圆E 交于C ,D ,与直线AB 交于点M ,求PM PC +PMPD的值.【答案】(1)x 24+y 2=1(2)PM PC +PM PD =2【分析】(1)根据椭圆顶点坐标直接可得椭圆方程;(2)设直线方程,可得点M ,联立直线与椭圆结合韦达定理,再根据两点间距离化简可得解.【详解】(1)由A 2,0 ,B 0,1 是椭圆E :x 2a 2+y 2b2=1a >b >0 的两个顶点,得a =2,b =1,即E :x 24+y 2=1;(2)当直线l 的斜率不存在时,直线l 与椭圆有且只有一个公共点,不成立,所以设C x 1,y 1 ,D x 2,y 2 ,M x 3,y 3 ,直线l 的斜率为k ,则PC =x P -x 1 1+k 2=2-x 1 1+k 2,同理PD =2-x 2 1+k 2,PM =2-x 3 1+k 2,则PM PC+PM PD=2-x 32-x 1+2-x 32-x 2.设l :y -1=k x -2 ,而AB :x 2+y =1,联立解得x 3=4k2k +1,所以2-x 3=2-4k 2k +1=22k +1;联立直线l 与椭圆E 方程,消去y 得:4k 2+1 x 2-8k 2k -1 x +16k 2-16k =0,所以x 1+x 2=8k 2k -1 4k 2+1,x 1x 2=16k 2-16k 4k 2+1,所以12-x 1+12-x 2=-x 1+x 2-4x 1-2 x 2-2=-x 1+x 2-4x 1x 2-2x 1+x 2 +4=-8k 2k -14k 2+1-416k 2-16k4k 2+1-2×8k 2k -1 4k 2+1+4=2k +1,所以2-x 32-x 1+2-x 32-x 2=22k +1×2k +1 =2,即PM PC +PMPD =2.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.13(2023·江苏盐城·校考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点A 在C 上,当AF 1⊥x 轴时,AF 1 =12;当AF 1 =2时,∠F 1AF 2=2π3.(1)求C 的方程;(2)已知斜率为-1的直线l 与椭圆C 交于M ,N 两点,与直线x =1交于点Q ,且点M ,N 在直线x =1的两侧,点P (1,t )(t >0).若|MP |⋅|NQ |=|MQ |⋅|NP |,是否存在到直线l 的距离d =2的P 点?若存在,求t 的值;若不存在,请说明理由.【答案】.(1)x 24+y 2=1(2)存在,t =52【分析】(1)利用通径公式和椭圆定义,结合余弦定理即可建立方程,从而可求解椭圆方程;(2)由点M ,N 在直线x =1的两侧可得1-32<m <1+32,设直线l :x +y =m ,点M x 1,y 1 ,N x 2,y 2 ,联立椭圆方程,消元,利用韦达定理可得y 1+y 2=2m 5,y 1y 2=m 2-45.根据MP ⋅NQ =MQ ⋅NP ,得到k MP +k NP =0.代入斜率公式,得到4m -5 t =4-m ,再由d =1+t -m2=12-4m 2+8m -14m -5=2,求出m 的取值范围即可.【详解】(1)当AF 1⊥x 轴时,AF 1 =b 2a =12,即b 2=12a ①,当AF 1 =2时,AF 2 =2a -2,在△AF 1F 2中,F 1F 2 =2c ,由余弦定理可知,AF 12+AF 2 2-F 1F 2 2=2AF 1 AF 2 cos ∠F 1AF 2,即22+2a -2 2-2c 2=2×2×2a -2 ×-12,整理,可得a 2-c 2-a +1=0,即b 2=a -1②,由①②,解得a =2,b =1.所以C 的方程为x 24+y 2=1.(2)设直线l :x +y =m ,点M x 1,y 1 ,N x 2,y 2 ,令x =1,则14+y 2=1,y =±32,由点M ,N 在直线x =1的两侧,可得1-32<m <1+32,联立x +y =m x 24+y 2=1,消去x ,可得5y 2-2my +m 2-4=0,则Δ=4m 2-20m 2-4 =165-m 2 >0恒成立,所以y 1+y 2=2m 5,y 1y 2=m 2-45.因为MP ⋅NQ =MQ ⋅NP ,所以MP MQ=NP NQ,由正弦定理,得sin ∠MQP sin ∠MPQ =sin ∠NQPsin ∠NPQ,而∠MQP +∠NQP =π,即sin ∠MQP =sin ∠NQP ,所以sin ∠MPQ =sin ∠NPQ ,而∠MPQ +∠NPQ =∠MPN <π,则∠MPQ =∠NPQ ,所以k MP +k NP =0,则y 1-t x 1-1+y 2-t x 2-1=0,即y 1-t -y 1+m -1+y 2-t-y 2+m -1=0,即-2y 1y 2+m +t -1 y 1+y 2 -2m -1 t =0,整理,得4-m -4mt +5t =0,所以4m -5 t =4-m ,因为1-32<m <1+32,所以4-m >0,又t =4-m 4m -5>0,所以54<m <1+32,所以d =1+t -m 2=121+4-m 4m -5-m =12-4m 2+8m -14m -5 .令d =12-4m 2+8m -14m -5=2,结合54<m <1+32,解得m =32,则t =4-324×32-5=52.所以t =52时,点P 到直线l 的距离d =2.【点睛】关键点睛:第二问中的关键是能把MP ⋅NQ =MQ ⋅NP 转化为MP MQ=NP NQ,由正弦定理,得sin ∠MQP sin ∠MPQ =sin ∠NQPsin ∠NPQ,从而得到∠MPQ =∠NPQ ,即k MP +k NP =0,从而利用斜率公式和韦达定理求解.14(2023·全国·高三专题练习)已知椭圆C :x 2b 2+y 2a2=1a >b >0 与椭圆x 28+y 24=1的离心率相同,P 22,1为椭圆C 上一点.(1)求椭圆C 的方程.(2)若过点Q 13,0 的直线l 与椭圆C 相交于A ,B 两点,试问以AB 为直径的圆是否经过定点T ?若存在,求出T 的坐标;若不存在,请说明理由.【答案】(1)x 2+y 22=1(2)存在T 的坐标为(-1,0),理由见解析【分析】(1)先求出椭圆x 28+y 24=1的离心率为22,由此得到a 2=2b 2,将点P 的坐标代入椭圆C ,得到12b 2+1a2=1,再代入a 2=2b 2,解得b 2=1,a 2=2,则可得结果;(2)先用两个特殊圆求出交点(-1,0),再猜想以AB 为直径的圆经过定点T (-1,0),再证明猜想,设直线l :x =my +13,并与x 2+y 22=1联立,利用韦达定理得到y 1+y 2,y 1y 2,进一步得到x 1+x 2,x 1x 2,利用y 1+y 2,y 1y 2,x 1+x 2,x 1x 2证明TA ⋅TB=0即可.【详解】(1)在椭圆x 28+y 24=1中,a 1=22,b 1=2,c 1=8-4=2,离心率e =c 1a 1=222=22,在椭圆C :x 2b 2+y 2a2=1a >b >0 中,e =c a =a 2-b 2a =1-b 2a 2,所以1-b 2a2=22,化简得a 2=2b 2,因为P 22,1 在椭圆C :x 2b 2+y 2a 2=1a >b >0 上,所以12b 2+1a 2=1,所以12b 2+12b2=1,所以b 2=1,a 2=2,所以椭圆C :x 2+y22=1.(2)当直线l 的斜率为0时,线段AB 是椭圆的短轴,以AB 为直径的圆的方程为x 2+y 2=1,当直线l 的斜率不存在时,直线l 的方程为x =13,代入x 2+y 22=1,得y =±43,以AB 为直径的圆的方程为x -13 2+y 2=169,联立x 2+y 2=1x -13 2+y 2=169,解得x =-1y =0 ,由此猜想存在T (-1,0),使得以AB 为直径的圆是经过定点T (-1,0),证明如下:当直线l 的斜率不为0且斜率存在时,设直线l :x =my +13,联立x =my +13x 2+y 22=1,消去x 并整理得m 2+12 y 2+23my -89=0,Δ=49m 2+4m 2+12 ⋅89>0,设A (x 1,y 1)、B (x 2,y 2),则y 1+y 2=-2m 3m 2+12 ,y 1y 2=-89m 2+12,则x 1+x 2=my 1+13+my 2+13=m (y 1+y 2)+23=-2m 23m 2+12 +23,x 1x 2=my 1+13 my 2+13 =m 2y 1y 2+13m (y 1+y 2)+19=-8m 29m 2+12 -2m 29m 2+12 +19=-10m 29m 2+12 +19,因为TA ⋅TB=(x 1+1,y 1)⋅(x 2+1,y 2)=(x 1+1)(x 2+1)+y 1y 2=x 1x 2+x 1+x 2+1+y 1y 2=-10m 29m 2+12 +19-2m 23m 2+12 +23+1-89m 2+12 =-16m 2+89m 2+12+169=0,所以TA⊥TB,所以点T(-1,0)在以AB为直径的圆上,综上所述:以AB为直径的圆是经过定点T(-1,0).【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x1,y1,x2,y2;(2)联立直线与圆锥曲线的方程,得到关于x(或y)的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x1+x2、x1x2(或y1+y2、y1y2)的形式;(5)代入韦达定理求解.15(2023·广东广州·广州市从化区从化中学校考模拟预测)已知双曲线C:x2a2-y23a2=1(a>0)的左、右焦点分别为F1,F2,且F2到C的一条渐近线的距离为3.(1)求C的方程;(2)过C的左顶点且不与x轴重合的直线交C的右支于点B,交直线x=12于点P,过F1作PF2的平行线,交直线BF2于点Q,证明:Q在定圆上.【答案】(1)x2-y23=1(2)证明见解析【分析】(1)根据焦点到渐近线的距离求出c=2即可得解;(2)由题意可设PA,PF2的斜率分别为k,-k,设直线AP的方程为y=k x+1,联立双曲线方程,求出B3+k23-k2,6k 3-k2,由三角函数可得∠F2F1Q=∠PF2A=∠BF2P=∠F1QF1,即化为QF2= F1F2=4得证.【详解】(1)根据题意可知C的一条渐近线方程为y=3aax=3x,设F2c,0(c>0),F2到渐近线y=3x的距离为d=3c3+1=3,所以c=2,c2=4=a2+3a2,a2=1,所以C的方程为x2-y23=1.(2)设C的左顶点为A,则A(-1,0),故直线x=12为线段AF2的垂直平分线.所以可设PA,PF2的斜率分别为k,-k,故直线AP的方程为y=k x+1.与C 的方程联立有3-k 2 x 2-2k 2x -k 2-3=0,设B (x 1,y 1),则-1+x 1=2k 23-k 2,即x 1=3+k 23-k 2,所以B 3+k 23-k 2,6k3-k 2当BF 2⊥x 轴时,BF 2= AF 2 =3,△AF 2B 是等腰直角三角形,且易知∠PF 2A =∠BF 2P =π4当BF 2不垂直于x 轴时,直线BF 2的斜率为2k k 2-1,故tan ∠BF 2A =2kk 2-1因为tan ∠PFA =-1,所以tan2∠PF 2A =2kk 2-1=tan ∠BF 2A ,所以∠BF 2A =2∠PF 2A ,∠PF 2A =∠BF 2P因为QF 1∥PF 2所以∠F 2F 1Q =∠PF 2A =∠BF 2P =∠F 1QF 1所以QF 2= F 1F 2 =4为定值,所以点Q 在以F 2为圆心且半径为4的定圆上.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.16(2023春·湖南常德·高二临澧县第一中学校考开学考试)如图,椭圆M :y 2a 2+x 2b2=1a >b >0 的两顶点A -2,0 ,B 2,0 ,离心率e =32,过y 轴上的点F 0,t t <4,t ≠0 的直线l 与椭圆交于C ,D两点,并与x 轴交于点P ,直线AC 与直线BD 交于点Q .(1)当t =23且CD =4时,求直线l 的方程;(2)当点P 异于A ,B 两点时,设点P 与点Q 横坐标分别为x P ,x Q ,是否存在常数λ使x P ⋅x Q =λ成立,若存在,求出λ的值;若不存在,请说明理由.【答案】(1)2x -y +23=0或2x +y -23=0(2)存在,λ=4【分析】(1)先求得椭圆M 的方程,再以设而不求的方法即可求得直线l 的方程;(2)先以设而不求的方法得到x P 、x Q 的解析式,再去计算x P ⋅x Q 是否为定值即可解决.【详解】(1)椭圆的方程y 2a 2+x 2b2=1a >b >0 ,由题可得b =2;由e =c a =32,结合a 2=b 2+c 2,得a =4,椭圆的标准方程:y 216+x 24=1;当直线l 的斜率不存在时,CD =8,与题意不符,故设直线l 的方程为y =kx +23,代入椭圆方程y 2+4x 2=16整理得k 2+4 x 2+43kx -4=0,设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-43k k 2+4,x 1⋅x 2=-4k 2+4;∴CD =1+k 2x 1+x 2 2-4x 1x 2=1+k 2-43k k 2+42-4-44+k 2=8k 2+1 k 2+4=4,解得k =± 2.则直线l 的方程为2x -y +23=0或2x +y -23=0.(2)当直线l 的斜率不存在时,直线l 与y 轴重合,由椭圆的对称性可知直线AC 与直线BD 平行,不符合题意;∴由题意可设直线的方程:x =my +n m ≠0,n ≠0 代入椭圆方程,得1+4m 2 y 2+8mny +4n 2-16=0;设C x 1,y 1 ,D x 2,y 2 ,∴y 1+y 2=-8mn 1+4m 2,y 1⋅y 2=4n 2-161+4m 2;∴my 1⋅y 2=4-n 22ny 1+y 2 ①直线AC 的方程为y =y 1x 1+2x +2 ②则直线BD 的方程为y =y 2x 2-2x -2 ③由②③得x -2x +2=y 1x 2-2 y 2x 1+2 =y 1my 2+n -2 y 2my 1+n +2 =my 1y 2+y 1n -2 my 1y 2+y 2n +2由①代入,得x -2x +2=2-n n +2 y 2+2-n y 1 2+n n +2 y 2+2-n y 1 =2-n 2+n ,解得x =4n ,即x Q =4n ;且知x P =n ;∴x P ⋅x Q =n ×4n=4(常数)即点P 与点Q 横坐标之积为定值4.故存在常数λ=417(2023春·四川遂宁·高三射洪中学校考阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点1,62 ,且离心率为22.(1)求椭圆C 的方程;(2)已知直线l :y =mx +2与椭圆交于不同的两点P ,Q ,那么在x 轴上是否存在点M ,使MP =MQ 且MP ⊥MQ ,若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1)x 24+y 22=1(2)详见解析【分析】(1)根据条件得到关于a ,b ,c 的方程组,即可求得椭圆方程;。
求解椭圆范围问题+专题课件
y0
kx0
m
m 4k 2
1
.∴
kAP
y0 1 m 1 4k2
x0
4km
,
又 AM AN ,∴ AP MN ,则 m 1 4k 2 1 ,即3m 4k2 1,②
4km
k
把②代入①得 m2<3m ,解得 0<m<3 ,由②得 k 2 3m 1 0 ,解得 m 1 .
4
3
综上可知
m
2k2 1 m2 ,化简,得 2m2k4 7m2k2 3m2 2k4 3k2 1 ,
2k2 1
整理得
m2
k2 k2
1 3
,而 g k
k2 k2
1 3
1
2 k2 3
1
2 3
1 3
(当且仅当 k
0 时等号成立)
所以 m2 1 ,由 m 0 ,得 0 m 3 ,综上, m 的取值范围是 0 m 3 .
1 PF2
8 mn
1 2
.
2 3
.
故选:A.
【例 4】已知椭圆 C:x2 y2 1 ,设经过其右焦点 F 的直线交椭圆 C 于 M ,N 两点,线段 MN
43
的垂直平分线交 y 轴于点 P0, y0 ,求 y0 的取值范围.
【例 4】解:当 MN x 轴时,显然 y0 0 .
当 MN 与 x 轴不垂直时,可设直线 MN 的方程为 y k(x 1)(k 0) .
0
,或 0
y0
3 12
.
综上:
y0
的取值范围是
3 12
,
3 12
.
【训练
2】如图,椭圆
x2 a2
y2 b2
1(a>b>0)的左焦点为
2020高考数学专项训练《24椭圆中与面积有关的取值范围问题》(有答案)
专题24 椭圆中与面积有关的取值范围问题例题:如图,已知椭圆C :x 2a 2+y2b 2=1(a >b >0)的左焦点为F (-1,0),左准线方程为x=-2.(1)求椭圆C 的标准方程;(2)若A ,B 两点满足OA ⊥OB (O 为坐标原点),求△AOB 面积的取值范围.变式1在平面直角坐标系xOy 中,已知椭圆E :x22+y 2=1,点A 是椭圆上异于长轴端点的任一点,F 为椭圆的右焦点,直线AF 与椭圆交于B 点,直线AO 与椭圆交于C 点,求△ABC 面积的最大值.变式2设椭圆E:x216+y24=1,P为椭圆C:x24+y2=1上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.(1)求OQOP的值;(2)求△ABQ面积的最大值.串讲1如图,已知椭圆C :x22+y 2=1,设A 1,A 2分别为椭圆C 的左、右顶点,S 为直线x =22上一动点(不在x 轴上),直线A 1S 交椭圆C 于点M ,直线A 2S 交椭圆于点N ,设S 1,S 2分别为△A 1SA 2,△MSN 的面积,求S 1S 2的最大值.串讲2已知点A(0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.(2018·广西初赛改编)已知椭圆C :x24+y 2=1,设不过原点O 的直线l 与椭圆C 交于两点P ,Q ,且直线OP ,PQ ,OQ 的斜率成等比数列,求△OPQ 面积的取值范围.(2018·南通泰州一模)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y2b 2=1(a >b >0)的离心率为22,两条准线之间的距离为4 2.(1)求椭圆的标准方程;(2)已知椭圆的左顶点为A ,点M 在圆x 2+y 2=89上,直线AM 与椭圆相交于另一点B ,且△AOB 的面积是△AOM 的面积的2倍,求直线AB 的方程.答案:(1)x 24+y 22=1;(2)y =x +2y +2=0,x -2y +2=0.解析:(1)设椭圆的焦距为2c ,由题意得,c a =22,2a 2c =42,2分解得a =2,c =2,所以b =2,所以椭圆的标准方程为x 24+y 22=1.4分(2)解法1:因为S △AOB =2S △AOM ,所以AB =2AM ,所以点M 为AB 的中点.6分 因为椭圆的方程为x 24+y 22=1,所以A(-2,0).设M(x 0,y 0),则B(2x 0+2,2y 0),所以x 02+y 02=89,①(2x 0+2)24+(2y 0)22=1,②10分由①②,得9x 02-18x 0-16=0,解得x 0=-23或x 0=83(舍去).把x 0=-23代入①,得y 0=±23,12分所以k AB =±12,因此,直线AB 的方程为y =±12(x +2),即x +2y +2=0,x -2y +2=0.14分解法2:因为S △AOB =2S △AOM ,所以AB =2AM ,所以点M 为AB 的中点.6分设直线AB 的方程为y =k(x +2),由⎩⎪⎨⎪⎧x 24+y 22=1,y =k (x +2),得(1+2k 2)x 2+8k 2x +8k 2-4=0,所以(x +2)[(1+2k 2)x +4k 2-2]=0,解得x B =2-4k 21+2k 2,8分所以x M =x B +(-2)2=-4k 21+2k 2,10分y M =k(x M +2)=2k 1+2k 2,代入x 2+y 2=89,得⎝ ⎛⎭⎪⎫-4k 21+2k 22+⎝⎛⎭⎫2k 1+2k 22=89, 化简得28k 4+k 2-2=0,12分 即(7k 2+2)(4k 2-1)=0,解得k =±12,因此,直线AB 的方程为y =±12(x +2),即x +2y +2=0,x -2y +2=0.14分专题24例题答案:(1)x 22+y 2=1;(2)S ∈⎣⎡⎦⎤23,22.解析:(1)由题设知e =22,a 2=2c 2=b 2+c 2,即a 2=2b 2,将⎝⎛⎭⎫1,-22代入椭圆C 的方程得到12b 2+12b 2=1,则b 2=1,a 2=2,所以椭圆C :x 22+y 2=1.(2)当直线OA ,OB 分别与坐标轴重合时,易知△AOB 的面积S =22.当直线OA ,OB 的斜率均存在且不为零时,设OA :y =kx ,OB :y =-1k x.设A(x 1,y 1),B(x 2,y 2),将y =kx 代入椭圆C 得到x 2+2k 2x 2=2,所以x 12=22k 2+1,y 12=2k 22k 2+1,同理x 22=2k 22+k 2,y 22=22+k 2,△AOB 的面积S =OA·OB 2=(k 2+1)2(2k 2+1)(k 2+2).令t =k 2+1∈[1,+∞), S =t 2(2t -1)(t +1)=12+1t -1t2,令u =1t ∈(0,1),则S =1-u 2+u +2=1-⎝⎛⎭⎫u -122+94∈⎣⎡⎭⎫23,22.综上所述,S ∈⎣⎡⎦⎤23,22.变式联想变式1 答案: 2.解析:①当直线AB 的斜率不存在时,不妨取A ⎝⎛⎭⎫1,22, B ⎝⎛⎭⎫1,-22, 则C ⎝⎛⎭⎫-1,-22. 此时S △ABC =12×2×2=2;②当直线AB 的斜率存在时,设直线AB 方程为y =k(x -1),联立⎩⎪⎨⎪⎧y =k (x -1),x 2+2y 2=2. 化简得(2k 2+1)x 2-4k 2x +2k 2-2=0,设A(x 1,y 1),B(x 2,y 2),则有Δ=16k 4-4(2k 2+1)(2k 2-2)=8(1+k 2),x 1,2=4k 2±Δ2(1+2k 2), 所以AB =(1+k 2)·|x 1-x 2|=1+k 2·Δ(1+2k 2)=221+k 21+2k 2.(弦长公式)另一方面点O 到直线y =k(x -1)的距离d =|k|k 2+1, 因为O 是线段AC 的中点,所以点C 到直线AB 的距离为2d =2|k|k 2+1, ∴S △ABC =12AB·2d =12·⎝ ⎛⎭⎪⎫22·1+k 21+2k 2· 2|k|k 2+1=22k 2(k 2+1)(2k 2+1)2=2214-14(2k 2+1)2< 2. 综上,△ABC 面积的最大值为 2.说明:O 为AC 中点,所以△ABC 的面积是△OAB 面积的两倍,而△OAB 的面积可以用公式S △OAB =12OF·|y 1-y 2|得出,所以S △ABC =2S △OAB =|y 1-y 2|=|k|·|x 1-x 2|=22k 2(k 2+1)(2k 2+1)2.这样计算可以简洁一些.变式2答案:(1)2;(2)6 3.解析:(1)设P(x 0,y 0),OQ OP =λ,由题意知Q(-λx 0,-λy 0),因为x 024+y 02=1,又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 024+20=1,所以λ=2,即OQ OP=2. (2)设A(x 1,y 1),B(x 2,y 2).将y =kx +m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx +4m 2-16=0.由Δ>0,可得m 2<4+16k 2①则有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m 21+4k 2.因为直线y =kx +m 与y 轴交点的坐标为(0,m),所以△OAB的面积S =12|m|·|x 1-x 2|=216k 2+4-m 2|m|1+4k 2=2(16k 2+4-m 2)·m 21+4k 2=2⎝⎛⎭⎫4-m 21+4k 2·m 21+4k 2.令m 21+4k 2=t ,将y =kx +m 代入椭圆C 的方程可得(1+4k 2)x 2+8kmx +4m 2-4=0.由Δ≥0,可得m 2≤1+4k 2.②由①②可知0<t ≤1. 因此S =2(4-t )t =2-t 2+2t ,故S ≤2 3.当且仅当t =1,即m 2=1+4k 2时取得最大值2 3.由①知,△ABQ 的面积为3S ,所以△ABQ 面积的最大值为6 3.串讲激活串讲1 答案:43.解析:设S(22,t),则t ≠0,直线SA 1:y =t32(x +2),直线SA 2:y =t2(x -2). 由⎩⎨⎧x 22+y 2=1,y =t32(x +2),得x 2+t 29(x +2)2=2,解得x 1=-2,x 2=-2t 2+92t 2+9,即x M =-2t 2+92t 2+9.同理,由⎩⎨⎧x 22+y 2=1,y =t2(x -2),可得x N =2t 2-2t 2+1.所以S 1S 2=12SA 1·SA 2·sin ∠S12SM ·SN ·sin ∠S =SA 1·SA 2SM ·SN= |22+2|·|22-2|⎪⎪⎪⎪⎪⎪22+2t 2-92t 2+9·⎪⎪⎪⎪⎪⎪22-2t 2-2t 2+1=(t 2+9)(t 2+1)(t 2+3)2=1+4t 2t 4+6t 2+9=1+4t 2+9t2+6≤1+412=43,等号当且仅当t 2=3,即t =±3时成立. 所以,当S(22,±3)时,S 1S 2的最大值为43.说明:本题用三角形面积公式S 1=12SA 1·SA 2·sin ∠S ,最后得到S 1S 2=|x S -xA 1||x S -xA 2||x S -x M ||x S -x N |,这样运算就简单了.还有,用直线SA 1的方程求点M 坐标时,要注意方程组一定有一个解x A1,所以,也可以用韦达定理求出x M .串讲2答案:(1)x 24+y2=1;(2)y =72x -2或y =-72x -2.解析:(1)设F(c ,0),由条件知2c =233,得c =3,又c a =32,所以a =2,b 2=a 2-c 2=1,故E 的方程为x 24+y 2=1.(2)解法1:依题意,当l ⊥x 轴不合题意,故设直线l :y =kx -2,设P(x 1,y 1),Q(x 2,y 2),将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0,当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2= 8k±24k 2-31+4k 2,从而PQ =k 2+1|x 1-x 2|=4k 2+1·4k 2-31+4k 2,又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积S △OPQ =12d·PQ =44k 2-31+4k 2,设4k 2-3=t ,则t >0,S △OPQ=4t t 2+4=4t +4t≤1,当且仅当t =2,k =±72时等号成立,且满足Δ>0,所以当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 解法2由题意知直线l 的斜率必存在.则S △OPQ = 12OP 2·OQ 2-(OP →·OQ →)2,设P(2cos α,sin α),Q(2cos β,sin β).所以S △OPQ =12·2·|sin (α-β)|≤1,当sin (α-β)=±1时,等号成立.此时α-β=2k π+π2或α-β=2k π-π2(k ∈Z ).又P (2cos α,sin α),Q (2cos β,sin β)与A (0,-2)共线,则sin β+22cos β=sin α+22cos αsin(α-β)=2(cos α-cosβ)=±1cos α-cos β=±12.又k PQ =sin α-sin β2(cos α-cos β)=±(sin α-sin β).①若α-β=2kπ+π2(k ∈Z ),则sin α=sin ⎝⎛⎭⎫2k π+π2+β=cos β,同理cos α=-sin β.所以sin α-sin β=sin α+cos α.因为cos α-cos β=12得到cos α-sin α=12.且(sin α+cos α)2+(sin α-cosα)2=2,所以sin α-sin β=sin α+cos α=±72.②同理,当α-β=2k π-π2(k ∈Z )时,sin α-sin β=±72,所以k PQ =±72.(以下同解法1)新题在线答案:(0,1).解析:由题意,直线l 的斜率存在且不为0,故设l :y =kx +m (m ≠0). 设P (x 1,y 1),Q (x 2,y 2),则x 1≠x 2,且x 1·x 2≠0.联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4.消去y 得(1+4k 2)x 2+8kmx +4(m 2-1)=0. 则Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,且x 1+x 2=-8km1+4k 2,x 1x 2=4(m 2-1)1+4k 2.因为直线OP ,PQ ,OQ 的斜率成等比数列,所以y 1x 1·y 2x 2=(kx 1+m )(kx 2+m )x 1x 2=k 2,得-8k 2m 21+4k 2+m 2=0. 因为m ≠0,所以k 2=14,所以k =±12.因为Δ>0,且x 1·x 2≠0,所以0<m 2<2且m 2≠1.设点O 到直线l 的距离为d ,则d =|m |1+k2, 所以S △OPQ =12·d ·PQ =12d ·1+k 2|x 1-x 2|=m 2(2-m 2)=-(m 2-1)2+1.所以△OPQ 面积的取值范围是(0,1).1说明:命题人用直线OP,PQ,OQ的斜率成等比数列,是为了告知直线PQ斜率为±2.。
押题第37道 椭圆中与面积有关的取值范围问题(解析版)
【押题背景】取值范围类似于函数的值域,解析几何中几何量的取值范围问题,需要选择合适的变量构建出可解出范围的函数,是高中数学的传统难点.解决椭圆中的面积取值范围问题,关键在于找到构建面积的合理路径,设法简化表达式,将问题转化为常见的函数模型,从而求出取值范围.【押题典例】典例1 已知椭圆C:2222x ya b+=1(a>b>0)的左右焦点分别为F1,F2,点P是椭圆C上一点,以PF1为直径的圆E:x2292y⎛+=⎝⎭过点F2.(1)求椭圆C的方程;(2)过点P且斜率大于0的直线l1与C的另一个交点为A,与直线x=4的交点为B,过点(3)且与l1垂直的直线l2与直线x=4交于点D,求△ABD面积的最小值.【答案】(1)22184x y+=;(2).【解析】(1)在圆E的方程中,令y=0,得到:x2=4,所以F1(﹣2,0),F2(2,0),又因为212OE F P=,所以P点坐标为(2,所以122a PF PF=+=则a=b=2,因此椭圆的方程为22184x y+=;(2)设直线l1:y=k(x﹣2)(k>0),所以点B的坐标为()42k,设A(x A,y A),D(x D,y D),将直线l1代入椭圆方程得(1+2k2)x2+(﹣8k2)x+8k2﹣k﹣4=0,所以x P x A228412kk--=+,所以x A224212kk--=+,直线l2的方程为y1k=-(x﹣3),所以点D坐标为14k⎛⎫⎪⎝⎭,押题第37道椭圆中与面积有关的取值范围问题所以S △ABD 12=(4﹣x A )|y B ﹣y D |12=•12k k +=2k 3k ++≥,当且仅当2k 3k =,即k =时取等号,综上,△ABD 面积的最小值. 典例2如图所示,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-1,0),左准线方程为x =-2.(1)求椭圆C 的标准方程;(2)若A ,B 两点满足OA ⊥OB (O 为坐标原点),求△AOB 面积的取值范围. 【答案】 (1)x 22+y 2=1;(2)S ∈⎣⎡⎦⎤23,22.【解析】 (1)由题设知,c =1,a 2c =2,又∵a 2=b 2+c 2,∴b 2=a 2-c 2=1, 所以椭圆的标准方程为x 22+y 2=1.(2)解法一:当直线OA ,OB 分别与坐标轴重合时,易知△AOB 的面积S =22; 当直线OA ,OB 的斜率均存在且不为零时,设OA :y =kx ,OB :y =-1k x .设A (x 1,y 1),B (x 2,y 2),将y =kx 代入椭圆C 得到x 2+2k 2x 2=2,所以x 21=22k 2+1,y 21=2k 22k 2+1, 同理x 22=2k 22+k 2,y 22=22+k 2,△AOB 的面积S =OA ·OB 2=(k 2+1)2(2k 2+1)(k 2+2).令t =k 2+1∈(1,+∞),S =t 2(2t -1)(t +1)=12+1t -1t2, 令u =1t∈(0,1),则S =1-u 2+u +2=1-⎝⎛⎭⎫u -122+94∈⎣⎡⎭⎫23,22.综上所述,S ∈⎣⎡⎦⎤23,22. 解法二:设A (x 1,y 1),B (x 2,y 2),因为OAOB ,所以x 1x 2+y 1y 2=0.①当直线AB 的斜率不存在时,△AOB 是等腰直角三角形.所以, 可设A (t ,t ),B (t ,-t ),则t 22+t 2=1,得t 2=23.此时△AOB 面积S =t 2=23;②当直线AB 的斜率存在时,设AB 方程为y =kx +m .由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1.得1+2k 2x 2+4kmx +2m 2-2=0.所以Δ=8(1+2k 2-m 2)>0,且⎩⎪⎨⎪⎧x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-21+2k2,所以x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=3m 2-2-2k 21+2k2,所以m 2=23(1+k 2). 又AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|,O 到AB 的距离h =|m |1+k 2,所以△AOB 面积S =12AB ·h =12|m ||x 1-x 2|=2|m |·1+2k 2-m 21+2k 2= 2 3· 1+5k 2+4k 4 1+2k 2= 23· 1+k 21+4k 2 +4k 4,当k =0时,S = 2 3,当k≠0时,S =231+ 14k 2+1 k2+4,∵4k 2+1k 2≥4,当且仅当k 2=12取“=”,∴0< 1 4k 2+1k 2+4≤18∴S ∈(23,22],综上,△AOB 面积的取值范围是⎣⎡⎦⎤23,22.【押题匹配】(2020·无锡模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点(3,12),点P 在第四象限,A 为左顶点,B 为上顶点,P A 交y 轴于点C ,PB 交x 轴于点D .如图所示.(1)求椭圆C 的标准方程;(2)求△PCD 面积的最大值. 【答案】 (1)x 24+y 2=1;(2)2-1.【解析】(1)设c 2=a 2-b 2,则c a = 32,所以a 2=4b 2.又点⎝ ⎛⎭⎪⎫ 3,12在椭圆上,所以3a 2+14b 2=1.解得a 2=4,b 2=1,所以椭圆方程为x 24+y 2=1. (2)由题意,AP 直线斜率存在,所以设直线AP :y =k(x +2),P 在第四象限,所以-12<k <0.令x =0得y C =2k ,所以C (0,2k ).由⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1,消去y ,得(1+4k 2)x 2+16k 2x +16k 2-4=0.所以x A x P =16k 2-41+4k 2.又x A =-2,所以x P =-8k 2-21+4k 2,y P =k (x P+2)=4k 1+4k 2.即P ⎝ ⎛⎭⎪⎫-8k 2-21+4k 2,4k 1+4k 2. 设D(m,0),因为B(0,1),P ,B ,D 三点共线,所以m -00-1=-8k 2-21+4k 24k 1+4k 2-1,解得m =2(1+2k )1-2k .即D ⎝ ⎛⎭⎪⎫2(1+2k )1-2k ,0.所以S △PCD =S △P AD -S △CAD =12·AD ·||y P -y C =12·⎝ ⎛⎭⎪⎫2(1+2k )1-2k +2⎪⎪⎪⎪4k 1+4k 2-2k =4||k (1+2k )1+4k 2. 因为-12<k <0,所以S △PCD =-8k 2-4k 1+4k 2=-2+2(1-2k )1+4k 2.令t =1-2k ,则1<t <2,所以2k =1-t ,所以S △PCD =-2+2t t 2-2t +2=-2+2t +2t-2≤-2+22 2-2=2-1.当且仅当t =2时取等号,此时k =1-22,所以△PCD 面积的最大值为2-1.【押题变式】1、(2020江苏无锡高三)若椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,B 是短轴的一个端点,则△F 1BF 2的面积的最大值是________. 【答案】 2【解析】根据题意可得a =2,c =4-b 2,S △F1BF 2=12×2 4-b 2·b = 4-b 2·b ≤4-b 2+b 22=2,当且仅当4-b 2=b ,即b =2时等号成立.2、(2020江苏盐城高三)椭圆x 2a 2+y 2b 2=1()a >b >0的长轴端点为A ,B ,短轴端点为C ,D ,动点P 满足P APB =2,△P AB 面积的最大值为163,△PCD 面积的最小值为23,则此椭圆的离心率为_________.【答案】32【解析】设P (x ,y ),A (-a,0),B (a,0),∵P APB =2,∴(x +a )2+y 2=4[(x -a )2+y 2],化简得⎝⎛⎭⎫x -53a 2+y 2=⎝⎛⎭⎫43a 2,∴点P 的轨迹是圆心为⎝⎛⎭⎫53a ,0,半径R =43a 的圆. 当S △P AB 最大时,有S △P AB =12·2a ·R =43a 2=163,∴a =2.当S △PCD 最小时,有S △PCD =12·2b ·⎝⎛⎭⎫53a -R =ab 3=23,∴b =1.∴椭圆离心率e = 1-⎝⎛⎭⎫b a 2=32. 3、(2020江苏镇江高三)已知A ,B 分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点和上顶点,直线y =kx (k >0)与椭圆交于C ,D 两点,若四边形ACBD 的面积最大值为3b 2,则椭圆的离心率为________. 【答案】73【解析】如图所示,不妨设点C 在第一象限,设C (x 0,y 0),则x 0=a cos θ,y 0=b sin θ,θ∈(0,π2).那么△ACD 的面积为ay 0,△BCD 的面积为bx 0,所以四边形面积S ACBD =ay 0+bx 0=ab (cos θ+sin θ)= 2ab sin ⎝⎛⎭⎫θ+π4≤2ab =3b 2.当且仅当θ=π4时取“=”, 所以b a =23,所以e =c a=1-b 2a 2=73.4、(2020江苏连云港高三)过椭圆x 216+y 24=1上一点P 作圆x 2+y 2=2的两条切线,切点分别为M ,N ,若直线MN 与x 轴、y 轴分别交于点A ,B ,则△OAB 面积的最小值为________. 【答案】 12【解析】设M (x 1,y 1),N (x 2,y 2),P (x 0,y 0),则切线PM ,PN 方程分别为x 1x +y 1y =2,x 2x +y 2y =2,两直线均过点P ,则有⎩⎪⎨⎪⎧x 1x 0+y 1y 0=2,x 2x 0+y 2y 0=2.所以MN 坐标满足方程xx 0+yy 0=2,所以MN 直线方程为x 0x +y 0y =2.所以A ⎝⎛⎭⎫2x 0,0,B ⎝⎛⎭⎫0,2y 0,所以S △OAB =12·⎪⎪⎪⎪2x 0·2y 0=2|x 0y 0|.又因为x 2016+y 204=1≥2x 20y 264=|x 0y 0|4, 所以|x 0y 0|≤4,即S △OAB ≥12.当且当仅x 04=y 02时,等号成立.所以△OAB 面积的最小值为12.5、(2020江苏泰州高三)椭圆两焦点分别为F 1(-4,0),F 2(4,0),P 为椭圆上的动点,直线PF 2与椭圆的交点为Q ,若△PF 1Q 面积的最大值为15,则该椭圆的标准方程为________.【答案】 x 225+y 29=1【解析】设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),且c =4,设直线PF 2:x =my +c ,则由方程组⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,x =my +c得(my +c )2a 2+y 2b 2=1,即⎝⎛⎭⎫m 2a 2+1b 2y 2+2cmy a 2-b 2a2=0.所以Δ=4c 2m 2a 4+4·b 2a 2⎝⎛⎭⎫m 2a 2+1b 2=4m 2a 2a 4+4a 2=4(1+m 2)a 2.面积S =12·2c ·|y 1-y 2|=c |y 1-y 2| =c ·Δm 2a 2+1b 2=2acb 21+m 2b 2m 2+a 2.令1+m 2=t ,则t ≥1,则S =2acb 2t b 2t 2+c2=2acb 2b 2t +c 2t≤2acb 22bc =ab , 当且仅当t =c b 时“=”成立.因为t ≥1,所以当c ≥b ,即b ≤4时,当t =cb 时,S 有最大值ab ;当b >4时,当t =1时,S 有最大值8b 2a ;当b ≤4时,令ab =15,即a a 2-16=15,得a 4-16a 2-225=0,解得a 2=25(a 2=-9舍去),b 2=9(符合题意);当b >4时,令8b 2a=15,即8a 2-15a -128=0,解得a =116(15+ 4 321),b 2=158a ≈9.46不合题意.综上所述,此时椭圆的方程为x 225+y 29=1.6、(2020江苏通州高三)如图所示,点A (1,3)为椭圆x 22+y 2n =1上一定点,过点A 引两直线与椭圆分别交于B ,C 两点. (1)求椭圆的标准方程;(2)若直线AB ,AC 与x 轴围成的是以点A 为顶点的等腰三角形. ①求直线BC 的斜率;②求△ABC 的面积的最大值,并求出此时直线BC 的方程.【答案】 (1)x 22+y 26=1;(2)①k BC =3,②△ABC 面积取得最大值 3.此时,直线BC 的方程为y =3x ± 6.【解析】(1)把点A (1,3)代入x 22+y 2n =1得n =6,故椭圆的标准方程为x 22+y 26=1.(2)①显然题中等腰三角形腰所在的直线不可能与x 轴垂直.因此其斜率必存在,且斜率不为0,设两腰的斜率分别为k 1,k 2,由⎩⎪⎨⎪⎧y -3=k 1(x -1),x 22+y 26=1,消去y ,得(3+k 21)x 2+2k 1(3-k 1)x +(3-k 1)2-6=0,∴点B 的横坐标为x =1-6+23k 1k 21+3(x =1为点A 的横坐标),∴点B 的纵坐标为y =3-23k 21+6k 1k 21+3,即B ⎝ ⎛⎭⎪⎫1-6+23k 1k 21+3,3-23k 21+6k 1k 21+3. 同理可得点C 的坐标为⎝⎛⎭⎪⎫1-6+23k 2k 22+3,3-23k 22+6k 2k 22+3.∵k 1+k 2=0, ∴C ⎝ ⎛⎭⎪⎫1-6-23k 1k 21+3,3-23k 21-6k 1k 21+3,∴k BC =12k 143k 1=3,∴直线BC 的斜率为k BC = 3. ②设B (x 1,y 1),C (x 2,y 2),直线BC 的方程为y =3x +m ,代入方程x 22+y 26=1得6x 2+23mx +m 2-6=0,其中Δ=(23m )2-24(m 2-6)>0,所以m 2<12∴x 1+x 2=-33m ,x 1x 2=m 2-66,∴|BC |=1+(3)2·|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=23312-m 2,又点A 到直线BC 的距离为d =|m |2,∴S △ABC =12|BC |·d =36m 2(12-m 2)=36-(m 2-6)2+36,∴当m 2=6,满足Δ>0即m =6或m =-6时,△ABC 面积取得最大值 3. 此时,直线BC 的方程为y =3x± 6.7、(2020江苏扬州高三)如图所示,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,与x 轴平行的直线与椭圆E 交于B ,C 两点,过B ,C 两点且分别与直线AB ,AC 垂直的直线相交于点D .已知椭圆E 的离心率为53,右焦点到右准线的距离为455. (1)求椭圆E 的标准方程;(2)证明点D 在一条定直线上运动,并求出该直线的方程; (3)求△BCD 面积的最大值.【答案】(1)x 29+y 24=1;(2)证明略;直线方程为x =3;(3)△BCD 面积的最大值为274.【解析】(1)由题意得c a =53,a 2c -c =455,解得a =3,c =5,所以b =a 2-c 2=2,所以椭圆E 的标准方程为x 29+y 24=1.(2)证明:设B (x 0,y 0),C (-x 0,y 0),显然直线AB ,AC ,BD ,CD 的斜率都存在,设为k 1,k 2,k 3,k 4,则k 1=y 0x 0+3,k 2=y 0-x 0+3,k 3=-x 0+3y 0,k 4=x 0-3y 0.所以直线BD ,CD 的方程为y =-x 0+3y 0(x -x 0)+y 0,y =x 0-3y 0(x +x 0)+y 0.消去y 得-x 0+3y 0(x -x 0)+y 0=x 0-3y 0(x +x 0)+y 0,化简得x =3,故点D 在定直线x =3上运动.(3)由(2)得点D 的纵坐标为y D =x 0-3y 0(3+x 0)+y 0=x 20-9y 0+y 0,又x 209+y 204=1,所以x 20-9=-9y 204,则y D =-94y 20y 0+y 0=-54y 0,所以点D 到直线BC 的距离h 为|y D -y 0|=⎪⎪⎪⎪-54y 0-y 0=94|y 0|, 将y =y 0代入x 29+y 24=1得x =±31-y 204,所以BC =|x C -x B |=61-y 204,所以△BCD 面积S △BCD =12|BC |·h =12×61-y 204·94|y 0|=2721-y 204·12|y 0|≤272·1-y 204+y 2042=274,当且仅当1-y 204=y 204,即y 0=±2时等号成立,故y 0=±2时,△BCD 面积的最大值为274.8、(2020江苏徐州高三)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.如图376所示.(1)求E 的方程;(2)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时, 求l 的方程.【答案】 (1)x 24+y 2=1;(2)y =72x -2或y =-72x -2.【解析】(1) 设F(c,0),由条件知2c =233,得c =3,又c a =32,所以a =2,b 2=a 2-c 2=1,故E 的方程为x 24+y 2=1.(2) 依题意,当l ⊥x 轴不合题意,故设直线l :y =kx -2,设P (x 1,y 1),Q (x 2,y 2),将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0,当Δ=16(4k 2-3)>0,即k 2>34时,x 1+x 2=16k 1+4k 2,x 1x 2=121+4k 2从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-31+4k 2,又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-31+4k 2,设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t ≤1,当且仅当t =2即k =±72时等号成立,且满足Δ>0,所以当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 9、(2020江苏南京高三)如图所示,已知椭圆C :x 22+y 2=1,设A 1,A 2分别为椭圆C 的左、右顶点,S 为直线x =22上一动点(不在x 轴上),直线A 1S 交椭圆C 于点M ,直线A 2S 交椭圆于点N ,设S 1,S 2分别为△A 1SA 2,△MSN 的面积,求S 1S 2的最大值.【答案】 43.【解析】 设S (22,t ),则t ≠0,直线SA 1:y =t 32(x +2),直线SA 2:y =t2(x -2).由⎩⎨⎧x 22+y 2=1,y =t32(x +2),得x 2+t 29(x +2)2=2,解得x 1=-2,x 2=-2t 2+92t 2+9, 即x M =-2t 2+92t 2+9.同理,由⎩⎨⎧x 22+y 2=1,y =t2(x -2),可得x N =2t 2-2t 2+1.所以S 1S 2=12SA 1·SA 2·sin ∠A 1SN12SM ·SN ·sin ∠A 1SN =SA 1·SA 2SM ·SN =|22+2|·|22-2|⎪⎪⎪⎪⎪⎪22+2t 2-92t 2+9·⎪⎪⎪⎪⎪⎪22-2t 2-2t 2+1=(t 2+9)(t 2+1)(t 2+3)2=1+4t 2t 4+6t 2+9=1+4t 2+9t 2+6≤1+412=43,等号当且仅当t 2=3,即t =±3时成立. 所以,当S (22,±3)时,S 1S 2的最大值为43.10、(2020江苏苏州高三)设椭圆E :x 216+y 24=1,P 为椭圆C :x 24+y 2=1上任意一点,过点P 的直线y =kx+m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .如图所示.(1)求OQOP的值;(2)求△ABQ 面积的最大值. 【答案】(1)2;(2)6 3.【解析】 (1)设P (x 0,y 0),OQ OP =λ,由题意知Q (-λx 0,-λy 0),因为x 204+y 20=1, 又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1,所以λ=2,即OQ OP=2. (2)设A (x 1,y 1),B (x 2,y 2).将y =kx +m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx +4m 2-16=0. 由Δ>0,可得m 2<4+16k 2①,则有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m 21+4k 2.因为直线y =kx +m 与y 轴交点的坐标为(0,m),所以△OAB 的面积S =12|m |·|x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)·m 21+4k 2=2⎝⎛⎭⎫4-m 21+4k 2·m 21+4k 2.令m 21+4k2=t ,将y =kx +m 代入椭圆C 的方程可得(1+4k 2)x 2+8kmx +4m 2-4=0. 由Δ≥0,可得m 2≤1+4k 2.②由①②可知0<t ≤1.因此S =2(4-t )t =2-t 2+4t ,∴当t =1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 的面积为3S ,所以△ABQ 面积的最大值为6 3.。
新高考数学试卷椭圆
一、椭圆的定义与性质椭圆是平面上到两个固定点(焦点)的距离之和为常数的点的轨迹。
椭圆的两个焦点到椭圆中心的距离称为半焦距,记为c;椭圆中心到椭圆上任意一点的距离称为半长轴,记为a;椭圆中心到椭圆上任意一点的距离与半焦距之差称为半短轴,记为b。
二、新高考数学试卷椭圆题目分析1. 椭圆的定义与性质(1)题目:已知椭圆的方程为x^2/a^2 + y^2/b^2 = 1,若a=2,b=1,求椭圆的焦点坐标。
解析:根据椭圆的定义,有c^2 = a^2 - b^2,代入a=2,b=1,得c^2 = 3,所以c=√3。
椭圆的焦点坐标为(±√3,0)。
(2)题目:已知椭圆的方程为x^2/4 + y^2/3 = 1,求椭圆的离心率。
解析:根据椭圆的定义,有c^2 = a^2 - b^2,代入a=2,b=√3,得c^2 = 1,所以c=1。
椭圆的离心率为e = c/a = 1/2。
2. 椭圆的几何性质(1)题目:已知椭圆的方程为x^2/4 + y^2/3 = 1,求椭圆的长轴、短轴、焦距和离心率。
解析:根据椭圆的定义,有a=2,b=√3,c=1。
椭圆的长轴为2a=4,短轴为2b=2√3,焦距为2c=2,离心率为e = c/a = 1/2。
(2)题目:已知椭圆的方程为x^2/4 + y^2/3 = 1,求椭圆的通径。
解析:椭圆的通径是指通过椭圆中心且垂直于长轴的直线段。
根据椭圆的几何性质,通径长度为2b^2/a=2√3。
3. 椭圆的参数方程(1)题目:已知椭圆的方程为x^2/4 + y^2/3 = 1,求椭圆的参数方程。
解析:设椭圆的参数方程为x = 2cosθ,y = √3sinθ,其中θ为参数。
(2)题目:已知椭圆的参数方程为x = 2cosθ,y = √3sinθ,求椭圆的方程。
解析:将参数方程代入椭圆的标准方程,得(2cosθ)^2/4 + (√3sinθ)^2/3 = 1,化简得x^2/4 + y^2/3 = 1。
椭圆中的范围最值问题高二上学期数学人教A版(2019)选择性必修第一册
椭圆中的范围问题
椭圆的标准方程和几何性质
x2 y2
标准方程
+ =1(a>b>0)
a2 b2
y2 x2
+ =1(a>b>0)
a2 b2
图形
范围
性
质
对称性
顶点
离心率
a,b,c 的关系
x∈[-a,a] ,
x∈ [-b,b] ,
y∈ [-b,b]
y∈ [-a,a]
对称轴: 坐标轴 ;对称中心:原点
A1(-a,0),A2(a,0)
直线 y 4 x m 对称的两个点,
M ( x, y ) 是它们的中点,则有
3 x12 4 y12 12
2
2
3
x
4
y
2 12
2
3x1 x2 x1 x2 4 y1 y2 y1 y2 0
x1 x2 2 x, y1 y2 2 y, x1 x2 ,
x2 y2
解:不妨设椭圆方程 2 2 1a b 0 ,
a
b
P
长轴端点 Aa,0 , P ( x0 , y0 )
由题意知 PO PA ,
y0
y0
1 ,
x0 x0 a
即 y0 ax0 x0
2
O
x
y
2
2
2
3
2 2
,又 02 02 1 a b x0 a x0 a b 0 ,
的点 M 总在椭圆内部,则椭圆离心率的取值范围是(
1
A. (0,1) B. 0,
2
椭圆大题定值定点、取值范围、最值问题总结
椭圆大题定值定点、取值范围、最值问题等总结一、直线与椭圆问题的常规解题方法:1.设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y kx b =+与x my n =+的区别) 2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 3.联立方程组;4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 5.根据条件重转化;常有以下类型:①“以弦AB 为直径的圆过点0”(提醒:需讨论k 是否存在) 121212100OA OB k k OA OB x x y y ⇔⊥⇔=⇔⋅-⋅=⇔+= ②“点在圆内、圆上、圆外问题”⇔“直角、锐角、钝角问题” ⇔ “向量的数量积大于、等于、小于0问题”12120x x y y ⇔+>; ③“等角、角平分、角互补问题”令斜率关系(120k k +=或12k k =); ④“共线问题”(如:AQ QB λ=⇔数的角度:坐标表示法;形的角度:距离转化法); (如:A O B ,,三点共线⇔直线OA 与OB 斜率相等); ⑤“点、线对称问题”⇔坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与玄长公式问题(提醒:注意两个面积公式的合理选择); 6.化简与计算; 7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想:1.“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3.证明定值问题的方法:(1)常把变动的元素用参数表示出来,然后证明计算结果与参数无关; (2)也可先在特殊条件下求出定值,再给出一般的证明. 4.处理定点问题的方法:(1)常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点; (2)也可先取参数的特殊值探求定点,然后给出证明,5.求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;6.转化思想:有些题思路易成,但难以实施.这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;椭圆中的定值、定点问题.一、常见基本题型:在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的. (1)直线恒过定点问题1.已知点00()P x y ,是椭圆E :2212x y +=上任意一点,直线l 的方程为0012x xy y +=,直线0l 过P 点与直线l 垂直,点(10)M -,关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标. 解:直线0l 的方程为()()00002x y y y x x -=-,即000020y x x y x y --=设(10)M -,关于直线0l 的对称点N 的坐标为()N m n ,,则0000001212022x n m y x n m y x y ⎧=-⎪+⎪⎨⎪-⋅--=⎪⎩,,解得()3200020432000020023444244824x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩所以直线PN 的斜率为()432000003200004288234n y x x x x k m x y x x -++--==---+, 从而直线PN 的方程为:()()43200000032004288234x x x x y y x x y x x ++---=---+即()32000432000023414288y x x x y x x x x --+=+++--从而直线PN 恒过定点(10)G ,.2.已知椭圆两焦点12F F ,在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点.(1)求P 点坐标;(2)求证直线AB 的斜率为定值;解:(1)设椭圆方程为22221y x a b+=,由题意可得2222a b c ===,,, 所以椭圆的方程为22142y x +=, 则12(02)(02)F F -,,,,设()()000000P x y x y >>,, 则()()10020022PF x y PF x y =--=---,,,,所以()22120021PF PF x y ⋅=--=,因为点()00P x y ,在曲线上,则2200124x y +=,所以220042y x -=,从而()22004212y y ---=,得0y =,则点P的坐标为(1.(2)由(1)知1PF //x 轴,直线PA PB ,斜率互为相反数,设PB 斜率为0)k k >(,则PB的直线方程为:(1)y k x =-,由22(1)124y k x y x ⎧-⎪⎨+=⎪⎩,,得()22222))40k x k k x k +++-=,设()B B B x y ,,则1B x ==同理可得A xA Bx x -, ()()28112A B A B k y y k x k x k-=----=+,所以直线AB的斜率A BAB A By y k x x -=-3.已知动直线(1)y k x =+与椭圆C :221553y x +=相交于A B ,两点,已知点()703M -,, 求证:MA MB ⋅为定值.解:将(1)y k x =+代入221553y x +=中得()2222136350k x k x k +++-=, 所以()()4222364313548200k k k k ∆=-+-=+>,221212226353131k k x x x x k k -+=-=++,所以()()()()1122121277773333MA MB x y x y x x y y ⋅=+⋅+=+++,, ()()()()21212771133x x k x x =+++++()()()2221212749139k x x k x x k =++++++()()()22222223576491393131k k k k k k k -=+++-++++422231654949931k k k k ---=++=+. 4.在平面直角坐标系xOy 中,已知椭圆C :2213x y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A B ,两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3)D m -,. (1)求22m k +的最小值;(2)若2OG OD OE =⋅,求证:直线l 过定点. 解:(1)由题意:设直线l :(0)y kc n n =+≠,由2213y kx n x y =+⎧⎪⎨+=⎪⎩,,消y 得:()222136330k x knx n +++-=, ()()()222222364133112310k n k n k n ∆=-+⨯-=+->,设()()1122A x y B x y ,,,,AB 的中点()00E x y ,, 则由韦达定理得:0122613t nx x k-+=+, 即00022233131313kn kn n x y kx n k n k k k--==+=⨯+=+++,, 所以中点E 的坐标为()2231313km n k k -++,,因为O E D ,,三点在同一直线上,所以O OE D k k =,即133m k -=-,解得1m k=,所以222212m k k k +=+,当且仅当1k =时取等号,即22m k +的最小值为2. (2)证明:由题意知:0n >,因为直线OD 的方程为3m y x =-,所以由22313m y xx y ⎧=-⎪⎨⎪+=⎩得交点G 的纵坐标为223G m y m =+, 又因为213E Dn y y m k ==+,,且2OG OD OE =⋅,所以222313m n m m k =⋅++, 又由(1)知:1m k =,,所以解得k n =,所以直线l 的方程为y kx k =+,即(1)y k x =+, 令1x =-得,0y =,与实数k 无关.椭圆中的取值范围问题一、常见基本题型:对于求曲线方程中参数范围问题,应根据题设条件及曲线的几何性质构造参数满足的不等式,通过解不等式求得参数的范围;或建立关于参数的目标函数,转化为函敞的值域来解. (1)从直线和二次曲线的位置关系出发,利用判别式的符号,确定参数的取值范围.5.已知直线l 与y 轴交于点(0)P m ,,与椭圆C :2221x y +=交于相异两点A B ,,且3AP PB =, 求m 的取值范围.解:(1)当直线斜率不存在时:12m =±;(2)当直线斜率存在时:设l 与椭圆C 交点为()()1122A x y B x y ,,,, 所以2221y kx m x y =+⎧⎨+=⎩,,得()2222210k x knx m +++-= 所以()()()22222(2)4214220()kn k m k m ∆=-+-=-+>*21212222122km m x x x x k k --+==++, 1233AP PB x x =∴-=,,所以122212223x x x x x x +=-⎧⎨=-⎩,,消去2x 得()21212340x x x x ++=, 所以()22222134022km m k k --+=++, 整理得22224220k m m k +--=,214m =时,上式不成立;214m ≠时,2222241m k m -=-, 所以22222041m k m -=-,所以112m -<-或112m <, 把2222241m k m -=-代入(*)得112m -<<-或112m <<, 所以112m -<<-或112m <<,综上m 的取值范围为112m -<-或112m <.(2)利用题中其他变量的范围,借助于方程产生参变量的函数表达式,确定参数的取值范围. 6.已知点(40)(10)M N ,,,,若动点P 满足6||MN MP PN ⋅=. (1)求动点P 的轨迹C 的方程;(2)设过点N 的直线l 交轨迹C 于A B ,两点,若181275NA NB -⋅-,求直线l 的斜率的取值范围.解:(1)设动点()P x y ,,则(4)(30)(1)MP x y MN PN x y =-=-=--,,,,,. 由已知得3(4)x --=223412x y +=,得22143y x +=.所以点P 的轨迹C 是椭圆,C 的方程为22143y x +=.(2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为(1)y k x =-, 设A B ,两点的坐标分别为()()1122A x y B x y ,,,. 由22(1)143y k x y x =-⎧⎪⎨+=⎪⎩,,消去y 得()22224384120k x k x k +-+-=,因为N 在椭圆内,所以0∆>. 所以2122212283441234k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,, 因为()()()()()212121211111NA NB x x y y k x x⋅=--+=+--()()2121211k x x x x =+-++⎡⎤⎣⎦()()22222229141283413434k k k k k k k -+--++=+=++,所以()229118127534k k-+--+,解得213k . (3)利用基本不等式求参数的取值范围7.已知点Q 为椭圆E :221182y x +=上的一动点,点A 的坐标为(31),,求AP AQ ⋅的取值范围. 解:(13)AP =,,设()(31)Q x y AQ x y =--,,,, (3)3(1)36AP AQ x y x y ⋅=-+-=+-因为221182y x +=,即22(3)18x y +=,而22(3)2|||3|x y x y +⋅,所以18618xy -.而222(3)(3)6186x y x y xy xy +=++=+的取值范围是[036],, 3x y +的取值范围是[66]-,, 所以36AP AQ x y ⋅=+-取值范围是[120]-,.8.已知椭圆的一个顶点为(01)A -,,焦点在x 轴上.若右焦点到直线0x y -+的距离为3. (1)求椭圆的方程.(2)设直线(0)y kx m k =+≠与椭圆相交于不同的两点M N ,.当AM AN =时,求m的取值范围. 解:(1)依题意可设椭圆方程为2221x y a+=,则右焦点)0F,3=,解得23a =,故所求椭圆的方程为2213x y +=. (2)设()()(),,,p p M M N N P x y M x y N x y ,,,P 为弦MN 的中点,由2213y kx m x y =+⎧⎪⎨+=⎪⎩,,得()()222316310k x mkx m +++-= 因为直线与椭圆相交,所以()()22222(6)43131031mk k m m k ∆=-+⨯->⇒<+,① 所以23231M NP x x mk x k +==-+,从而231p p m y kx m k =+=+,所以21313P AP P y m k k x mk+++==-,又AM AN =,所以AP MN ⊥, 则23113m k mk k++-=-,即2231m k =+,②把②代入①得22m m <,解02m <<, 由②得22103m k -=>,解得12m >.综上求得m 的取值范围是122m <<.9.如图所示,已知圆C :22(1)8x y ++=,定点(10)A ,,M 为圆上一动点,点P 在AM 上,点N 在CM 上,且满足20AM AP NP AM =⋅=,,点N 的轨迹为曲线E . (1)求曲线E 的方程;(2)若过定点(02)F ,的直线交曲线E 于不同的两点G H ,(点G 在点F H ,之间),且满足FG FH λ=,求λ的取值范围.解:(1)因为20AM AP NP AM =⋅=,. 所以NP 为AM 的垂直平分线,所以NA NM =, 又因为22CN NM +=,所以222CN AN +=>. 所以动点N 的轨迹是以点(10)(10)C A -,,,为焦点的椭圆 且椭圆长轴长为222a =,焦距21c =. 所以2211a c b ===,,. 所以曲线E 的方程为2212x y += (2)当直线GH 斜率存在时,设直线GH 方程为2y kx =+.代入椭圆方程2212x y +=, 得()2214302k x kx +++=,由0∆>得232k >,设()()1122G x y H x y ,,,,则121222431122k x x x x k k -+==++,, 又因为FG FH λ=,所以()()112222x y x y λ-=-,,, 所以12x x λ=,所以2122122(1)x x x x x x λλ+=+=,,所以()22121221x xx x x λλ+==+,所以2222431122(1)k k k λλ-⎛⎫ ⎪+ ⎪+⎝⎭=+,整理得22(1)161312k λλ+=⎛⎫+ ⎪⎝⎭,因为232k >,所以2161643332k <<+,所以116423λλ<++<,解得133λ<<.又因为01λ<<,所以113λ<<.又当直线GH 斜率不存在,方程为11033x FG FH λ===,,, 所以113λ<,即所求λ的取值范围是)113⎡⎢⎣,. 10.已知椭圆C :22221(0)y x a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切. (1)求椭圆C 的方程;(2)若过点(20)M ,的直线与椭圆C 相交于两点A B ,,设P 为椭圆上一点,且满足OA OB tOP +=(O 为坐标原点),当25||3PA PB -<t 取值范围.解:(1)由题意知c e a =,所以22222212c a b e a a -===, 即222a b =,所以2221a b ==,. 故椭圆C 的方程为2212x y +=. (2)由题意知直线AB 的斜率存在.设AB :()2y k x =-,()()1122()x y B x A y P x y ,,,,,, 由22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,,得()2222128820k x k x k +-+-=, ()()42221644218202k k k k ∆=-+-><,,221212228821212k k x x x x k k -+=⋅=++,. 因为OA OB tOP +=,所以()()212121228()12x x k x x y y t x y x t t k +++===+,,,,()()1212214412y y k y k x x k t t t k +-==+-=⎡⎤⎣⎦+, 因为点P 在椭圆上,所以()()()2222222228(4)221212k k tk t k-+=++,所以()2221612k t k =+.因为25||3PA PB-<12x -<,所以()()22121220149k x x x x ⎡⎤++-⋅<⎣⎦,所以()()4222226482201491212k k k k k ⎡⎤-⎢⎥+-⋅<⎢⎥++⎣⎦, 所以()()224114130k k -+>,所以214k >,所以21142k <<,因为()2221612k t k=+,所以222216881212k t k k==-++,所以2t -<<2t <<,所以实数t取值范围为(()26223-,,.椭圆中的最值问题一、常见基本题型: (1)利用基本不等式求最值,11.已知椭圆两焦点12F F ,在y轴上,短轴长为,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点,求PAB ∆面积的最大值.解:设椭圆方程为22221y x ab+=,由题意可得2a b c ===,故椭圆方程为22142y x += 设AB 的直线方程:y m =+.由22124y m y x ⎧=+⎪⎨+=⎪⎩,,得22440xm ++-=,由()22)1640m ∆=-->,得m -<< P 到AB 的距离为d =则1||2PAB S AB d ∆=⋅=,)(2188m -=当且仅当2(m =±∈-取等号,所以三角形P AB . (2)利用函数求最值,12.如图,DP ⊥x 轴,点M 在DP 的延长线上,且2DM DP =.当点P 在圆221x y +=上运动时. (1)求点M 的轨迹C 的方程;(2)过点(0)T t ,作圆221x y +=的切线l 交曲线C 于A B ,两点,求AOB ∆面积S 的最大值和相应的点T 的坐标.解:(1)设点M 的坐标为()x y ,,点P 的坐标为00()x y ,,则002x x y y ==,,所以002yx x y ==,,① 因为00()P x y ,在圆221x y +=上,所以22001x y +=② 将①代入②,得点M 的轨方程C 的方程2214y x +=. (2)由题意知,||1t .当1t =时,切线l 的方程为1y =,点A B ,的坐标分别为()()331122-,,,,此时3AB =;当1t =-时,同理可得3AB =;当||1t >时,设切线l 的方程为y kx m k =+∈R ,, 由2214y kx t y x =+⎧⎪⎨+=⎪⎩,,得()2224240k x ktx t +++-=③设A B ,两点的坐标分别为()()1122x y x y ,,,,则由③得: 21212222444kt t x x x x k k -+=-=++,.又由l 与圆221x y +=相切,得2||11t k =+,即221t k =+.所以()()()()()222222212122224443||4||1434t t k t AB x x y y k k t k ⎡⎤-⎢⎥=-+-=+-=⎢⎥+++⎣⎦. 因为243||43||233||||t AB t t t ==++,且当3t =±时, 2AB =,所以AB 的最大值为2,依题意,圆心O 到直线AB 的距离为圆221x y +=的半径,所以AOB ∆面积1112S AB =⨯,当且仅当3t =±时,AOB ∆面积S 的最大值为1,相应的T 的坐标为(03)-,或(03),.13.已知椭圆G :2214x y +=.过点(0)m ,作圆221x y +=的切线l 交椭圆G 于A B ,两点.将AB 表示为m的函数,并求AB 的最大值. 解:由题意知,||1m .当1m =时,切线l 的方程为1x =,点A B ,的坐标分别为((11,,,此时AB =; 当1m =-时,同理可得AB =;当||1m >时,设切线l 的方程为()y k x m =-. 由22()14y k x m x y =-⎧⎪⎨+=⎪⎩,,得()22222148440k x k mx k m +-+-=. 设A B ,两点的坐标分别为()()1122x y x y ,,,, 又由l 与圆221x y +=1=,即2221m k k =+. 所以AB ===由于当1m =±时,AB23||||AB m m==+, 当且当m =时,2AB =.所以AB 的最大值为2.【练习题】1.已知A B C ,,是椭圆m :22221(0)y x a ba b+=>>上的三点,其中点A 的坐标为0),BC 过椭圆m 的中心,且0||2||AC BC BC AC ⋅==,. (1)求椭圆m 的方程;(2)过点(0 )M t ,的直线l (斜率存在时)与椭圆m 交于两点P Q ,,设D 为椭圆m 与y 轴负半轴的交点,且||||DP DQ =,求实数t 的取值范围.2.已知圆M :222()()x m y n r -+-=及定点(10)N ,,点P 是圆M 上的动点,点Q 在NP 上,点G 在MP上,且满足20NP NQ GQ NP =⋅=,. (1)若104m n r =-==,,,求点G 的轨迹C 的方程;(2)若动圆M 和(1)中所求轨迹C 相交于不同两点A B ,,是否存在一组正实数m n r ,,,使得直线MN 垂直平分线段AB ,若存在,求出这组正实数;若不存在,说明理由.3.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线:y kx m,不是左右顶点),且以AB为直径的圆过椭圆C的,两点(A B=+与椭圆C相交于A B右顶点,求证:直线l过定点,并求出该定点的坐标.4.如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点1M,,平行于OM(2)的直线l在y轴上的截距为(0),两个不同点.m m≠,l交椭圆于A B(1)求椭圆的方程;(2)求m的取值范围;(3)求证直线MA MB,与x轴始终围成一个等腰三角形.。
2025年新高考数学题型解密:椭圆 解析版
椭圆命题解读考向考查统计1.高考对椭圆的考查,重点是(1)椭圆的定义、几何图形、标准方程。
(2)椭圆的简单几何性质(范围、对称性、顶点、离心率)。
(3)直线和椭圆的位置关系及综合应用。
椭圆的定义和弦长2022·新高考Ⅰ卷,16椭圆的离心率2023·新高考Ⅰ卷,5直线与椭圆的应用2022·新高考Ⅱ卷,162023·新高考Ⅱ卷,5椭圆的轨迹方程2024·新高考Ⅱ卷,5命题分析2024年高考新高考Ⅰ卷椭圆的考查体现在大题中,后续专题会解读。
Ⅱ卷考查了椭圆的轨迹方程求法,难度较易。
椭圆是圆雉曲线的重要内容,高考主要考查椭圆定义的运用、椭圆方程的求法以及椭圆的简单几何性质,尤其是对离心率的求解,更是高考的热点问题,因方法多,试题灵活,在各种题型中均有体现。
预计2025年高考还是主要考查椭圆的定义和离心率。
试题精讲一、单选题1(2024新高考Ⅱ卷·5)已知曲线C:x2+y2=16(y>0),从C上任意一点P向x轴作垂线段PP ,P 为垂足,则线段PP 的中点M的轨迹方程为()A.x216+y24=1(y>0) B.x216+y28=1(y>0) C.y216+x24=1(y>0) D.y216+x28=1(y>0)【答案】A【分析】设点M(x,y),由题意,根据中点的坐标表示可得P(x,2y),代入圆的方程即可求解.【详解】设点M(x,y),则P(x,y0),P (x,0),因为M为PP 的中点,所以y0=2y,即P(x,2y),又P在圆x2+y2=16(y>0)上,所以x2+4y2=16(y>0),即x216+y24=1(y>0),即点M的轨迹方程为x216+y24=1(y>0).故选:A一、单选题1(2023新高考Ⅰ卷·5)设椭圆C 1:x 2a2+y 2=1(a >1),C 2:x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =()A.233B.2C.3D.6【答案】A【分析】根据给定的椭圆方程,结合离心率的意义列式计算作答.【详解】由e 2=3e 1,得e 22=3e 21,因此4-14=3×a 2-1a2,而a >1,所以a =233.故选:A2(2023新高考Ⅱ卷·5)已知椭圆C :x 23+y 2=1的左、右焦点分别为F 1,F 2,直线y =x +m 与C 交于A ,B 两点,若△F 1AB 面积是△F 2AB 面积的2倍,则m =( ).A.23B.23C.-23D.-23【答案】C【分析】首先联立直线方程与椭圆方程,利用Δ>0,求出m 范围,再根据三角形面积比得到关于m 的方程,解出即可.【详解】将直线y =x +m 与椭圆联立y =x +mx 23+y 2=1,消去y 可得4x 2+6mx +3m 2-3=0,因为直线与椭圆相交于A ,B 点,则Δ=36m 2-4×43m 2-3 >0,解得-2<m <2,设F 1到AB 的距离d 1,F 2到AB 距离d 2,易知F 1-2,0 ,F 22,0 ,则d 1=|-2+m |2,d 2=|2+m |2,S △F 1AB S △F 2AB =|-2+m |2|2+m |2=|-2+m ||2+m |=2,解得m =-23或-32(舍去),故选:C .二、填空题3(2022新高考Ⅰ卷·16)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE |=6,则△ADE 的周长是.【答案】13【分析】利用离心率得到椭圆的方程为x 24c 2+y 23c2=1,即3x 2+4y 2-12c 2=0,根据离心率得到直线AF 2的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x =3y -c ,代入椭圆方程3x 2+4y 2-12c 2=0,整理化简得到:13y 2-63cy -9c 2=0,利用弦长公式求得c =138,得a =2c =134,根据对称性将△ADE 的周长转化为△F 2DE 的周长,利用椭圆的定义得到周长为4a =13.【详解】∵椭圆的离心率为e =c a =12,∴a =2c ,∴b 2=a 2-c 2=3c 2,∴椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2-12c 2=0,不妨设左焦点为F 1,右焦点为F 2,如图所示,∵AF 2=a ,OF 2=c ,a =2c ,∴∠AF 2O =π3,∴△AF 1F 2为正三角形,∵过F 1且垂直于AF 2的直线与C 交于D ,E 两点,DE 为线段AF 2的垂直平分线,∴直线DE 的斜率为33,斜率倒数为3,直线DE 的方程:x =3y -c ,代入椭圆方程3x 2+4y 2-12c 2=0,整理化简得到:13y 2-63cy -9c 2=0,判别式Δ=63c 2+4×13×9c 2=62×16×c 2,∴DE =1+3 2y 1-y 2 =2×Δ13=2×6×4×c13=6,∴c =138,得a =2c =134,∵DE 为线段AF 2的垂直平分线,根据对称性,AD =DF 2,AE =EF 2,∴△ADE 的周长等于△F 2DE 的周长,利用椭圆的定义得到△F 2DE 周长为DF 2 +EF 2+DE = DF 2+ EF 2+ DF 1+ EF 1= DF 1+ DF 2+ EF 1+ EF 2 =2a +2a =4a =13.故答案为:13.4(2022新高考Ⅱ卷·16)已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且|MA |=|NB |,|MN |=23,则l 的方程为.【答案】x +2y -22=0【分析】令AB 的中点为E ,设A x 1,y 1 ,B x 2,y 2 ,利用点差法得到k OE ⋅k AB =-12,设直线AB :y =kx +m ,k <0,m >0,求出M 、N 的坐标,再根据MN 求出k 、m ,即可得解;【详解】[方法一]:弦中点问题:点差法令AB 的中点为E ,设A x 1,y 1 ,B x 2,y 2 ,利用点差法得到k OE ⋅k AB =-12,设直线AB :y =kx +m ,k <0,m >0,求出M 、N 的坐标,再根据MN 求出k 、m ,即可得解;解:令AB 的中点为E ,因为MA =NB ,所以ME =NE ,设A x 1,y 1 ,B x 2,y 2 ,则x 126+y 123=1,x 226+y 223=1,所以x 126-x 226+y 123-y 223=0,即x 1-x 2 x 1+x 2 6+y 1+y 2 y 1-y 23=0所以y 1+y 2 y 1-y 2 x 1-x 2 x 1+x 2=-12,即k OE ⋅k AB =-12,设直线AB :y =kx +m ,k <0,m >0,令x =0得y =m ,令y =0得x =-m k ,即M -mk,0 ,N 0,m ,所以E -m 2k ,m2 ,即k ×m 2-m 2k=-12,解得k =-22或k =22(舍去),又MN =23,即MN =m 2+2m 2=23,解得m =2或m =-2(舍去),所以直线AB :y =-22x +2,即x +2y -22=0;故答案为:x +2y -22=0[方法二]:直线与圆锥曲线相交的常规方法解:由题意知,点E 既为线段AB 的中点又是线段MN 的中点,设A x 1,y 1 ,B x 2,y 2 ,设直线AB :y =kx +m ,k <0,m >0,则M -m k ,0 ,N 0,m ,E -m 2k ,m2,因为MN =23,所以OE =3联立直线AB与椭圆方程得y=kx+mx26+y23=1消掉y得(1+2k2)x2+4mkx+2m2-6=0其中Δ=(4mk)2-4(1+2k2)(2m2-6)>0,x1+x2=-4mk1+2k2,∴AB中点E的横坐标x E=-2mk1+2k2,又E-m2k,m2,∴x E=-2mk1+2k2=-m2k∵k<0,m>0,∴k=-22,又OE=-m2k2+m2 2=3,解得m=2所以直线AB:y=-22x+2,即x+2y-22=0一、椭圆的定义平面内与两个定点F1,F2的距离之和等于常数2a(2a>|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距,记作2c,定义用集合语言表示为:P||PF1|+|PF2|=2a(2a>|F1F2|=2c>0)注意:当2a=2c时,点的轨迹是线段;当2a<2c时,点的轨迹不存在.二、椭圆的方程、图形与性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1a>b>0y2a2+x2b2=1a>b>0统一方程mx2+ny2=1(m>0,n>0,m≠n)参数方程x=a cosθy=b sinθ,θ为参数(θ∈[0,2π])x=a cosθy=b sinθ,θ为参数(θ∈[0,2π])第一定义到两定点F1 、 F2的距离之和等于常数2a,即|MF1|+|MF2|=2a(2a>|F1F2|)范围-a≤x≤a且-b≤y≤b-b≤x≤b且-a≤y≤a顶点Α1-a,0、Α2a,0Β10,-b、Β20,bΑ10,-a、Α20,aΒ1-b,0、Β2b,0轴长长轴长=2a,短轴长=2b长轴长=2a,短轴长=2b对称性关于x轴、y轴对称,关于原点中心对称焦点F1-c,0、F2c,0F10,-c、F20,c焦距F1F2=2c(c2=a2-b2)离心率e=ca=c2a2=a2-b2a2=1-b2a2(0<e<1)准线方程x=±a2 c点和椭圆的关系x20a2+y20b2>1=1<1⇔点(x0,y0)在椭圆外上内y20a2+x20b2>1=1<1⇔点(x0,y0)在椭圆外上内切线方程x0xa2+y0yb2=1((x0,y0)为切点)y0ya2+x0xb2=1((x0,y0)为切点)对于过椭圆上一点(x0,y0)的切线方程,只需将椭圆方程中x2换为x0x,y2换为y0y可得切点弦所在的直线方程x0xa2+y0yb2=1(点(x0,y0)在椭圆外)y0ya2+x0xb2=1(点(x0,y0)在椭圆外)焦点三角形面积①cosθ=2b2r1r2-1,θmax=∠F1BF2,(B为短轴的端点)②SΔPF1F2=12r1r2sinθ=b2tanθ2=c|y0|,焦点在x轴上c|x0|,焦点在y轴上(θ=∠F1PF2)③当P点在长轴端点时,(r1r2)min=b2当P点在短轴端点时,(r1r2)max=a2焦点三角形中一般要用到的关系是|MF1|+|MF2|=2a(2a>2c)SΔPF1F2=12|PF1||PF2|sin∠F1PF2|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos∠F1PF2焦半径左焦半径:MF1=a+ex0又焦半径:MF1=a-ex0上焦半径:MF1=a-ey0下焦半径:MF1=a+ey0焦半径最大值a+c,最小值a-c通径过焦点且垂直于长轴的弦叫通径:通径长=2b2a(最短的过焦点的弦)弦长公式设直线与椭圆的两个交点为A(x1,y1),B(x2,y2),k AB=k,则弦长AB =1+k 2x 1-x 2 =1+k 2(x 1+x 2)2-4x 1x 2=1+1k2(y 1+y 2)2-4y 1y 2=1+k 2Δ|a |(其中a 是消y 后关于x 的一元二次方程的x 2的系数,Δ是判别式)【椭圆常用结论】1、过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为2b 2a.①椭圆上到中心距离最小的点是短轴的两个端点,到中心距离最大的点是长轴的两个端点.②椭圆上到焦点距离最大和最小的点是长轴的两个端点.距离的最大值为a +c ,距离的最小值为a -c .2、椭圆的切线①椭圆x 2a 2+y 2b 2=1 (a >b >0)上一点P (x 0 , y 0)处的切线方程是x 0x a 2+y 0y b2=1;②过椭圆x 2a 2+y 2b 2=1 (a >b >0)外一点P (x 0 , y 0),所引两条切线的切点弦方程是x 0x a 2+y 0y b 2=1;③椭圆x 2a 2+y 2b2=1 (a >b >0)与直线Ax +By +C =0相切的条件是A 2a 2+B 2b 2=c 2.一、单选题1(2024·湖北荆州·三模)已知椭圆C :x 28+y 2k =1的一个焦点为0,2 ,则k 的值为()A.4B.8C.10D.12【答案】D【分析】利用椭圆的标准方程与焦点位置即可得解.【详解】由题意得,c 2=4,a 2=k ,b 2=8,所以k =4+8=12.故选:D .2(2024·山东烟台·三模)若椭圆x 24+y 23=1与椭圆x 2+y 2b2=1(b >1)的离心率相同,则实数b 的值为()A.233B.43C.52D.54【答案】A【分析】由离心率相等列出关于b 的方程求解即可.【详解】若椭圆x 24+y 23=1与椭圆x 2+y 2b 2=1(b >1)的离心率相同,则4-34=b 2-1b 2,解得b =233>1满足题意.故选:A .3(2024·江西九江·三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,过F 1且倾斜角为π6的直线交C 于第一象限内一点A .若线段AF 1的中点在y 轴上,△AF 1F 2的面积为23,则C 的方程为()A.x 23+y 2=1B.x 23+y 22=1C.x 29+y 23=1D.x 29+y 26=1【答案】D【分析】根据题意得到Rt △AF 1F 2,∠AF 1F 2=π6, ,设AF 2 =t ,其它边全部用t 表示,运用面积为23构造方程求出t .再用椭圆定义求出a ,进而求出c ,b 即可.【详解】如图,∵O 为线段F 1F 2的中点,B 为线段AF 1的中点,∴OB ∥AF 2,又OB ⊥x 轴,∴AF 2⊥x 轴.在Rt △AF 1F 2中,∠AF 1F 2=π6,设AF 2 =t ,则AF 1 =2t ,F 1F 2 =3t .∵△AF 1F 2的面积为23,∴12×3t ×t =23,t =2.∴2a =AF 1 +AF 2 =3t =6,a =3,2c =F 1F 2 =3t =23,c =3,b 2=a 2-c 2=6,则C 的方程为x 29+y 26=1.故选:D .4(2024·河南·三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴长为23,点M 在椭圆上,若|MF |的最大值是最小值的3倍,则椭圆的焦距为()A.3 B.4 C.1 D.2【答案】D【分析】利用椭圆的几何性质得到关于a ,c 的方程组,解之即可得解.【详解】依题意,椭圆短轴长为23,得b =3,则a 2-c 2=b 2=3,又|MF |的最大值是最小值的3倍,即a +c =3(a -c ),所以a =2c ,所以a =2,c =1,则其焦距为2c =2.故选:D5(2024·浙江绍兴·三模)已知直线y =kx k ≠0 与椭圆C :x 2a 2+y 2b2=1a >b >0 交于A ,B 两点,以线段AB 为直径的圆过椭圆的左焦点F 1,若F 1A =2F 1B ,则椭圆C 的离心率是()A.52B.54C.53D.59【答案】C【分析】由题意可得四边形AF 1BF 2为矩形,结合椭圆定义与勾股定理可将F 1A +F 1B 分别用a 和c 表示,即可得离心率.【详解】取右焦点F 2,连接AF 2、BF 2,由F 1在以线段AB 为直径的圆上,故AF 1⊥BF 1,结合对称性可知四边形AF 1BF 2为矩形,有AF 2 =BF 1 ,有OA =OB =OF 1=c ,又F 1A =2F 1B ,由F 1A 2+F 1B 2=2c 2,则F 1A =455c ,F 1B =255c ,由椭圆定义可得F 1A +AF 2 =2a ,故F 1A +F 1B =455c +255c =655c =2a ,则e =c a =2655=53.故选:C .6(2024·江西鹰潭·三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,倾斜角为45°且过原点的直线l 交椭圆于M ,N 两点.若MN =F 1F 2 ,设椭圆的离心率为e ,则e 2=()A.2-1B.2-2C.3-1D.3-3【答案】B【分析】根据题意MN =F 1F 2 =2c ,得到四边形NF 1MF 2为矩形,由直线l 过原点且倾斜角为45°,在△MOF 2和△MOF 1中,利用余弦定理计算得MF 1 ,MF 2 ,结合椭圆的定义2a =MF 1 +MF 2 ,求得离心率,进而计算出e 2.【详解】如图所示,因为MN =F 1F 2 =2c ,且O 分别为MN 和F 1F 2的中点,OM =OF 2 =ON =OF 1 =c ,所以四边形NF 1MF 2为矩形,又直线l 过原点且倾斜角为45°,即∠MOF 2=45°,∠MOF 1=135°,且△MOF 2为等腰三角形,所以,在△MOF 2中,根据余弦定理可得MF 2 2=c 2+c 2-2×c ×c ×cos45°=(2-2)c 2,即MF 2 =2-2c ,同时,在△MOF 1中,根据余弦定理可得MF 1 2=c 2+c 2-2×c ×c ×cos135°=(2+2)c 2,即MF 1 =2+2c ,所以2a =MF 1 +MF 2 =2-2c +2+2c ,可得e =ca=22-2+2+2,e 2=22-2+2+22=42-2+22+2+2=22+2=2- 2.故选:B .7(2024·天津河西·三模)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,若椭圆的离心率为e 1,双曲线的离心率为e 2,则e 21+e 22的最小值为()A.3+3 B.5+32C.2+32D.4【答案】C【分析】设椭圆和双曲线的方程分别为:x 2a 21+y 2b 21=1,x 2a 22-y 2b 22=1,易得a 21-b 21=a 22+b 22=c 2,设PF 1 =m ,PF 2 =n ,利用椭圆和双曲线的定义得到m =a 1-a 2,n =a 1+a 2,然后在△PF 1F 2中,利用余弦定理得到1e 21+3e 22=4,然后利用基本不等式求解.【详解】解:如图所示:设椭圆和双曲线的方程分别为:x 2a 21+y 2b 21=1,x 2a 22-y 2b 22=1,由题意得a 21-b 21=a 22+b 22=c 2,设PF 1 =m ,PF 2 =n ,则m +n =2a 1,n -m =2a 2,解得m =a 1-a 2,n =a 1+a 2,在△PF 1F 2中,由余弦定理得:F 1F 2 2=PF 1 2+PF 2 2-2PF 1 ⋅PF 2 ⋅cos ∠F 1PF 2,即2c 2=a 1-a 2 2+a 1+a 2 2-a 1-a 2 a 1+a 2 ,化简得4c 2=a 21+3a 22,则1e 21+3e 22=4,所以e 21+e 22=14e 21+e 22 1e 21+3e 22=14e 22e 21+3e 21e 22+4,≥142e 22e 21⋅3e 21e 22+4=2+32,当且仅当e 22e 21=3e 21e 22,即e 22=3e 21时,等号成立;故选:C8(2024·四川·三模)已知椭圆C :x 24+y 2b2=1(b >0) 的左、右焦点分别为F 1,F 2,点P 是椭圆上一点,若△PF 1F 2的内心为M ,连接PM 并延长交x 轴于点Q ,且PM =3QM ,则椭圆的短轴长为()A.2 B.22C.23D.463【答案】D【分析】合理构建图形,利用角平分线定理和等比定理得到PF 2QF 2=2a2c ,再求短轴长度即可.【详解】如图,连接MF 1,MF 2,在△PF 1Q 和△PF 2Q 中,利用角平分线定理可得PMQM =PF 1QF 1=PF 2QF 2=3,由等比定理可得PF 2QF 2=PF 1+PF 2QF 1+QF 2=2a 2c ,从而c =233,b =263.故椭圆的短轴长为2b =463,故B 正确.故选:B【点睛】关键点点睛:本题考查解析几何,解题关键是合理构建图形,然后利用角平分线定理和等比定理得到PF 2QF 2=2a2c ,再求解短轴长度即可.9(2024·广东汕头·三模)已知椭圆C :x 216+y 212=1的两个焦点分别为F 1,F 2,P 是C 上任意一点,则下列不正确的是()A.C 的离心率为12B.PF 1 的最小值为2C.PF 1 ⋅PF 2 的最大值为16D.可能存在点P ,使得∠F 1PF 2=65°【答案】D【分析】求出椭圆C 的长短半轴长及半焦距,再结合椭圆的性质逐项分析计算即可.【详解】椭圆C :x 216+y 212=1的长半轴长a =4,短半轴长b =23,半焦距c =a 2-b 2=2,对于A ,C 的离心率e =c a =12,A 正确;对于B ,由PF 1+ PF 2 =2aPF 1- PF 2 ≤2c,得a -c ≤|PF 1|≤a +c ,因此|PF 1|min =a -c =2,B 正确;对于C ,|PF 1|⋅|PF 2|≤|PF 1|+|PF 2|22=a 2=16,当且仅当|PF 1|=|PF 2|=4时取等号,C 正确;对于D ,当P 不在x 轴上时,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=(2a )2-(2c )22|PF 1||PF 2|-1,=24|PF 1||PF 2|-1≥2416-1=12,当且仅当|PF 1|=|PF 2|=4取等号,当P 在x 轴上时,cos ∠F 1PF 2=1,上述不等式成立,因此∠F 1PF 2最大为60°,D 错误.故选:D10(2024·河北衡水·模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2向圆x 2+y 2=14b 2引切线交椭圆于点P ,O 为坐标原点,若OP =OF 2 ,则椭圆的离心率为()A.12B.32C.53D.23【答案】C【分析】先画出图形,由OP =OF 2 =OF 1 得PF 1⊥PF 2,进而得OM ⎳PF 1,PF 1 =2OM =b ,然后由椭圆的定义可得PF 2 =2a -b ,由勾股定理b a =23,从而即可得到离心率.【详解】由题意画出图形,如下图:设切点为M ,连接PF 1,由已知OP =OF 2 =OF 1 ,∴PF 1⊥PF 2,∵OM ⊥PF 2,∴OM ⎳PF 1,又O 是F 1F 2的中点,圆x 2+y 2=14b 2的半径为12b ,PF 1 =2OM =b ,PF 2 =2a -b ,∴b 2+2a -b 2=4c 2=4a 2-b 2 ,即2a =3b ,得b a =23,e =c a=a 2-b 2a 2=1-b a 2=53.故选:C .11(2024·浙江·三模)已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,过F 2的直线l 与椭圆Γ相交于A 、B 两点,与y 轴相交于点C .连接F 1C ,F 1A .若O 为坐标原点,F 1C ⊥F 1A ,,则椭圆Γ的离心率为()A.105B.55C.1010D.510【答案】A【分析】由三角形面积关系得出F 2C =4t =F 1C ,再由勾股定理及椭圆定义求出t ,利用余弦定理及cos ∠AF 2F 1+cos ∠CF 2O =0求解即可.【详解】设F2A =t ,由可得,由于△F 1CF 2与△AF 1F 2等高,所以F 2C =4t =F 1C ,又F1C⊥F1A,AC=5t,∴F1A=3t,又AF1+AF2=2a=4t,∴t=a 2,在中,cos∠CF2O=c2a,∵cos∠AF2F1+cos∠CF2O=0,∴cos∠AF2F1=-c2a在中,cos∠AF2F1=AF22+F1F22-AF122F2A⋅F1F2=2c2-a2ac=-c2a,化简可得2a2=5c2,解得e=c2a2=105,故选:A.【点睛】关键点点睛:本题关键点之一根据三角形面积关系得出F2C=F1C=4t,其次需要根据cos∠AF2F1 +cos∠CF2O=0建立a,c关系.二、多选题12(2024·河南开封·三模)椭圆C:x2m2+1+y2m2=1m>0的焦点为F1,F2,上顶点为A,直线AF1与C的另一个交点为B,若∠F1AF2=π3,则()A.C的焦距为2B.C的短轴长为23C.C的离心率为32D.△ABF2的周长为8【答案】ABD【分析】根据∠F1AF2=π3以及椭圆的对称性可得b2a2=322=m2m2+1,进而可求解a=2,b=3,c=1,即可根据选项逐一求解.【详解】由于∠F1AF2=π3,所以∠F1AO=∠OAF2=π6,故cos∠F1AO=cos π6=AOAF1=bc2+b2=ba=32,因此b2a2=322=m2m2+1,故m2=3,所以椭圆C :x 24+y 23=1,a =2,b =3,c =1对于A ,焦距为2c =2,故A 正确,对于B ,短轴长为2b =23,B 正确,对于C ,离心率为e =c a =12,C 错误,对于D ,△ABF 2的周长为4a =8,D 正确,故选:ABD13(2024·全国·模拟预测)已知长轴长、短轴长和焦距分别为2a 、2b 和2c 的椭圆Ω,点A 是椭圆Ω与其长轴的一个交点,点B 是椭圆Ω与其短轴的一个交点,点F 1和F 2为其焦点,AB ⊥BF 1.点P 在椭圆Ω上,若∠F 2PF 1=π3,则()A.a ,b ,c 成等差数列B.a ,b ,c 成等比数列C.椭圆Ω的离心率e =5+1D.△ABF 1的面积不小于△PF 1F 2的面积【答案】BD【分析】AB 选项,根据垂直关系得到k BF 1k AB =-1,求出b 2=ac ,得到A 错误,B 正确;C 选项,根据b 2=ac 得到c 2+ac -a 2=0,进而求出离心率;D 选项,计算出△ABF 1和△PF 1F 2的面积,作差法结合基本不等式求出答案.【详解】AB 选项,椭圆方程为x 2a 2+y 2b 2=1,不妨设A a ,0 ,B 0,b ,故F 1-c ,0 ,因为AB ⊥BF 1,且直线AB ,BF 1的斜率存在,所以k BF 1k AB =-1,即b c ⋅-ba=-1,故b 2=ac ,a ,b ,c 成等比数列,A 错误,B 正确;C 选项,因为b 2=a 2-c 2,b 2=ac ,所以c 2+ac -a 2=0,方程两边同除以a 2得,e 2+e -1=0,解得e =-1±52,负值舍去,故离心率为e =5-12,C 错误;D 选项,由椭圆定义得PF 1 +PF 2 =2a ,F 1F 2 =2c ,因为 F 2PF 1=π3,所以PF 1 2+PF 2 2-PF 1 PF 2 =4c 2,PF 1 +PF 2 =2a 两边平方得PF 12+PF 2 2+2PF 1 ⋅PF 2 =4a 2,故3PF 1 ⋅PF 2 =4b 2,S △PF 1F 2=12PF 1 ⋅PF 2 ⋅32=3b 23,S △ABF 1=12AF 1 ⋅OB =12a +c ⋅b =ab +bc2,又b 2=ac ,且a >c ,由基本不等式得ab +bc 2-b 2=b 2a +c -2b =b2a +c -2ac >0,所以S △ABF 1=ab +bc2>b 2> S △PF 1F 2即△ABF 1的面积不小于△PF 1F 2的面积,D 正确.故选:BD14(2024·河南·三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点P (2,1),且离心率为22.记C 在P 处的切线为l ,平行于OP 的直线l 与C 交于A ,B 两点,则()A.C 的方程x 24+y 22=1B.直线OP 与l 的斜率之积为-1C.直线OP ,l 与坐标轴围成的三角形是等腰三角形D.直线P A ,PB 与坐标轴围成的三角形是等腰三角形【答案】ACD【分析】根据题干列出方程组,解方程组可判断A ;根据直线与椭圆相切的可求出直线l 的方程即可判断B ,C ;通过计算k P A +k PB =0可判断D .【详解】c a =222a 2+1b 2=1ab 2=b 2+c 2 , ∴a =2b =2c =2∴ 椭圆方程为:x 24+y 22=1,故A 正确;如图,因为点P 在第一象限,取椭圆方程的右半部分得:y =2-x 22,则y=122-x 22 -12·2-x 22=-x8-2x 2,所以k PM =yx =2 =-22,所以k OP ⋅k PM =-b 2a2=-12,故B 错误;k PM +k OP =0,则△POM 为等腰三角形,故C 正确;AB :y =22x +m ,y =22x +m x 24+y 22=1,消y 可得x 2+2mx +m 2-2=0,x 1+x 2=-2m , x 1x 2=m 2-2, k P A +k PB =y 1-1x 1-2+y 2-1x 2-2=22x 1+m -1x 1-2+22x 2+m -1x 2-2=2x 1x 2+(m -2)x 1+x 2 -22m +22x 1-2 x 2-2=0P A ,PB 与坐标轴围成的三角形是等腰三角形,故D 正确.故选:ACD15(2024·全国·二模)已知圆O :x 2+y 2=3经过椭圆C :y 2a 2+x 2b2=1(a >b >0)的两个焦点F 1,F 2,且P 为圆O 与椭圆C 在第一象限内的公共点,且△PF 1F 2的面积为1,则下列结论正确的是()A.椭圆C 的长轴长为2B.椭圆C 的短轴长为2C.椭圆C 的离心率为12 D.点P 的坐标为33,263【答案】BD【分析】根据圆的方程确定c 的值,再由△PF 1F 2的面积可得点P 的坐标,从而可得a ,b 的值,再逐项判断即可得答案.【详解】因为圆O :x 2+y 2=3经过椭圆C :y 2a 2+x 2b2=1(a >b >0)的两个焦点F 1,F 2,所以c =3,又P 为圆O 与椭圆C 在第一象限内的公共点,则S △PF 1F 2=12F 1F 2 ⋅x P =12×23⋅x P =1,故x P =33,代入圆方程可得x 2P +y 2P =3,所以y P =263,故点P 的坐标为33,263,故D 正确;将点P 的坐标33,263代入椭圆方程可得83a 2+13b2=1,又a 2=b 2+c 2=b 2+3,解得a =2,b =1,故椭圆C 的长轴长为4,短轴长为2,故A 不正确,B 正确;则椭圆C 的离心率为e =c a =32,故C 不正确.故选:BD .16(2024·江西南昌·三模)将椭圆C 1:x 2a 2+y 2b2=1(a >b >0)上所有的点绕原点旋转θ0<θ<π2 角,得到椭圆C 2的方程:x 2+y 2-xy =6,则下列说法中正确的是()A.a =23B.椭圆C 2的离心率为33C.(2,2)是椭圆C 2的一个焦点D.θ=π4【答案】ACD【分析】根据题意,由椭圆的对称性,求解顶点坐标,从而可得a ,b ,c ,再由椭圆的性质对选项逐一判断,即可得到结果.【详解】椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)上所有的点绕原点旋转θ0<θ<π2 角,得到椭圆C 2的方程:x 2+y 2-xy =6,设点P x ,y 在该椭圆上,则其关于y =x 的对称点P y ,x 代入椭圆方程有y 2+x 2-yx =6,即x 2+y 2-xy =6,则该对称点位于椭圆方程上,同理其关于y =-x 的对称点P -y ,-x 代入椭圆方程有-y2+-x 2--y -x =6,即x 2+y 2-xy =6,则该对称点位于椭圆方程上,则x 2+y 2-xy =6关于y =±x 对称,所以θ=π4,故D 正确;将y =x 代入x 2+y 2-xy =6可得x 2=6,可得椭圆长轴的顶点为6,6 ,-6,-6 ,所以a =6+6=23,故A 正确;将y =-x 代入x 2+y 2-xy =6可得x 2=2,可得椭圆长轴的顶点为2,2 ,-2,-2 ,所以b =2+2=2,则c =12-4=22,则e =c a =2223=63,故B 错误;所以焦点坐标为2,2 或-2,-2 ,所以C 正确;故选:ACD【点睛】关键点点睛:本题的关键通过证明该非标准椭圆的对称性,从而得到θ的值,再按照普通椭圆a ,b ,c 的定义计算即可,也可将该过程想象成坐标系的旋转.17(2024·江西宜春·三模)设椭圆C :x 28+y 24=1的左、右焦点分别为F 1,F 2,坐标原点为O .若椭圆C 上存在一点P ,使得|OP |=7,则下列说法正确的有()A.cos ∠F 1PF 2=35B.PF 1 ⋅PF 2 =5C.△F 1PF 2的面积为2D.△F 1PF 2的内切圆半径为2-1【答案】ACD【分析】根据已知求出P 点坐标,根据两点间距离公式分布求出PF 1 ,PF 2 ,在△F 1PF 2中利用余弦定理可判定A ,利用向量数量积公式可判定B ,三角形面积公式可判定C ,根据等面积法可判定D .【详解】法1:由题意得a =22,|F 1F 2|=2c =28-4=4,则F 1(-2,0),F 2(2,0).由对称性可设P (x 0,y 0)(x 0>0,y 0>0),|PF 1|=m ,|PF 2|=n ,∠F 1PF 2=θ,由x 208+y 204=1x 20+y 20=7,解得x 0=6y 0=1,又F 1(-2,0),F 2(2,0),所以m =(6+2)2+12=11+46,n =(6-2)2+12=11-46,所以mn =11+46⋅11-46=112-(46)2=5.由椭圆的定义得m +n =2a =42,在△F 1PF 2中,由余弦定理,得|F 1F 2|2=m 2+n 2-2mn cos θ,即42=(m +n )2-2mn -2mn cos θ=(42)2-2×5-2×5cos θ,解得cos θ=35,故A 正确;PF 1 ⋅PF 2 =mn cos θ=5×35=3,故B 错误;△F 1PF 2的面积为S △F 1PF 2=12mn sin θ=12×5×1-352=2,故C 正确;设△F 1PF 2的内切圆半径为r ,由△F 1PF 2的面积相等,得S △F 1PF 2=12(m +n +|F 1F 2|)r ,即2=12(42+4)r ,解得r =2-1,故D 正确.故选:ACD .法2:设|PF 1|=m ,|PF 2|=n ,∠F 1PF 2=θ.易知a =22,c =8-4=2,由极化恒等式,得PF 1 ⋅PF 2=|OP |2-|OF 1|2=7-4=3,故B 错误;由中线长定理得m 2+n 2=2(|OP |2+|OF 1|2)=22,由椭圆定义得m +n =2a =42,所以(m +n )2=m 2+n 2+2mn =22+2mn =32,所以mn =5,所以cos θ=PF 1 ⋅PF 2 mn =35,故A 正确;由cos θ=35,得sin θ=1-cos 2θ=45,所以S △F 1PF 2=12mn sin θ=12×5×45=2,故C 正确;设△F 1PF 2的内切圆半径为r ,由△F 1PF 2的面积相等,得S △F 1PF 2=12(m +n +|F 1F 2|)r ,即2=12(42+4)r ,解得r =2-1,故D 正确.故选:ACD .三、填空题18(2024·上海·三模)已知椭圆C 的焦点F 1、F 2都在x 轴上,P 为椭圆C 上一点,△PF 1F 2的周长为6,且PF 1 ,F 1F 2 ,PF 2 成等差数列,则椭圆C 的标准方程为.【答案】x 24+y 23=1【分析】根据给定条件,结合等差中项的意义及椭圆的定义列式求出a ,c 即可得解.【详解】令椭圆长半轴长为a ,半焦距为c ,依题意,PF 1+ PF 2+ F 1F 2 =6PF 1+ PF 2=2 F 1F 2,即2a +2c =62a =4c,解得a =2,c =1,则椭圆短半轴长b =a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.故答案为:x 24+y 23=119(2024·四川攀枝花·三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,点M ,N 在C 上,且F 1F 2 =3MN ,F 1M ⊥F 2N ,则椭圆C 的离心率为.【答案】5-2/-2+5【分析】延长F 1M ,F 2N 交于点B ,由题意可求出M -c 3,2c 3,因为点M 在C 上,代入椭圆的方程,化简即可得出答案.【详解】延长F 1M ,F 2N 交于点B ,因为F 1F 2 =3MN ,所以NM =2c3,所以点B 在y 轴上,因为F 1M ⊥F 2N,所以△BF 1F 2为等腰直角三角形,所以∠MF 1P =π4,过点M 作MP ⊥F 1F 2交F 1F 2于点P ,所以MP =F 1P =2c 3,所以M -c 3,2c 3,因为点M 在C 上,所以c 29a 2+4c 29b 2=1,即c 2a 2+4c 2a 2-c 2=9,则c 2a 2-c 2 +4a 2c 2=9a 2a 2-c 2 ,即14a 2c 2-c 4-9a 4=0,即e 4-14e 2+9=0,所以e 2=14±4102=7±210,因为0<e <1,所以e 2=7-210,所以e =5- 2.故答案为:5- 2.20(2024·山西·三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,若C 上存在一点P ,使线段PF 1的中垂线过点F 2,则C 的离心率的最小值是.【答案】13【分析】由题意可知:PF 2 =F 1F 2 =2c ,可得a -c ≤2c ≤a +c ,运算求解即可.【详解】设椭圆C 的半焦距为c ∈0,a ,由题意可知:PF 2 =F 1F 2 =2c ,根据存在性结合椭圆性质可知:a -c ≤2c ≤a +c ,解得13a ≤c <a ,可得C 的离心率e =c a ∈13,1 ,所以C 的离心率的最小值是13.故答案为:13.21(2024·陕西咸阳·三模)已知椭圆C :x 25+y 24=1的左、右焦点分别为F 1、F 2,M 为椭圆C 上任意一点,P 为曲线E :x 2+y 2-6x -4y +12=0上任意一点,则MP +MF 2 的最小值为.【答案】22-1【分析】求出点F 2的坐标,求出圆E 的圆心和半径,再利用圆的性质求出最小值.【详解】椭圆C :x 25+y 24=1中,右焦点F 2(1,0),圆E :(x -3)2+(y -2)2=1的圆心E (3,2),半径r =1,显然椭圆C 与圆E 相离,由点P 在圆E 上,得|MP |min =|ME |-1,于是|MP |+|MF 2|≥|ME |-1+|MF 2|≥|EF 2|-1=(3-1)2+22-1=22-1,当且仅当M ,P 分别是线段EF 2与椭圆C 、圆E 的交点时取等号,所以MP +MF 2 的最小值为22-1.故答案为:22-122(2024·湖南长沙·三模)已知椭圆y 29+x 2=1,P 为椭圆上任意一点,过点P 分别作与直线l 1:y =3x 和l2:y =-3x 平行的直线,分别交l 2,l 1交于M ,N 两点,则MN 的最大值为.【答案】3【分析】根据题意画出示意图,可得四边形PMON 为平行四边形,设M (x 1,y 1),N (x 2,y 2),P (x 0,y 0),根据MN与OP 的中点相同,换算出关系式x 2-x 1=y 03y 2-y 1=3x 0,再由两点间的距离公式,结合椭圆的性质即可求解.【详解】设过点P 分别作直线l 3,l 4,由题意,画示意图如下:设M (x 1,y 1),N (x 2,y 2),P (x 0,y 0).则y 1=-3x 1,y 2=3x 2,由题意可知四边形PMON 为平行四边形,所以x 1+x 2=x 0+0=13y 2-y 1 y 1+y 2=y 0+0=3x 2-x 1 ,即x 2-x 1=y 03y 2-y 1=3x 0,又因P 为椭圆上任意一点,所以y 209+x 20=1,即y 209=1-x 20,所以MN =x 1-x 2 2+y 1-y 2 2=y 209+9x 20=9x 20+1-x 20 =8x 20+1,因为-1≤x 0≤1,所以0≤x 20≤1,所以由函数性质知:当x 20=1时,有|MN |max =8×1+1=3.故答案为:3【点睛】关键点点睛:本题结合两点间的距离公式考查椭圆的几何性质的应用,考查理解辨析能力与运算求解能力,解题的关键是利用平行四边形的性质找到点的坐标之间的关系.23(2024·重庆·三模)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点为F 1,F 2,若椭圆上存在不在x 轴上的两点A ,B 满足F 1A +F 1B =F 1F 2 ,且sin ∠F 1AB =2sin ∠F 2AB ,则椭圆离心率e 的取值范围为.【答案】13,1 【分析】由F 1A +F 1B =F 1F 2 =2F 1O 判断出四边形AF 1BF 2为平行四边形,由正弦定理BF 1 =2AF 1 ,利用AF 2 -AF 1 <F 1F 2 可得答案.【详解】由F 1A +F 1B =F 1F 2 =2F 1O 知,O 为AB 中点,四边形AF 1BF 2为平行四边形,由∠F 2AB =∠F 1BA 与sin ∠F 1AB =2sin ∠F 2AB 可知,在△ABF 1中由正弦定理知,BF 1 =2AF 1 ,在△AF 1F 2中,有AF 2 =BF 1 =2AF 1 ,又因为AF 1 +AF 2 =2a ,可得AF 1 =23a ,AF 2 =43a ,由AF 2 -AF 1 <F 1F 2 ,得e >13,故离心率的取值范围为13,1.故答案为:13,1.式),进而求解离心率或范围.。
2022年高考数学圆锥曲线重难点专题突破(全国通用)专题03 椭圆中的参数问题含解析
2022年高考数学圆锥曲线重难点专题突破(全国通用)专题03椭圆中的参数问题一、单选题1.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k 的最大值与最小值之和是()A .16B .9C .7D .252.已知椭圆22:143x y C +=的左、右焦点分别为1F ,2F ,椭圆C 上点A 满足212AF F F ⊥.若点P 是椭圆C 上的动点,则12F P F A ⋅的最小值为()A .B .2-C .94-D .154-3.已知椭圆2221(04)16x y m m+=<<的左,右焦点分别为12,F F ,过1F 的直线l 交椭圆于A B 、两点,若22BF AF +的最大值为12,则m 的值是()A .2B .C .3D .4.已知椭圆E 的中心在坐标原点O ,两个焦点分别为(1,0),(1,0)A B -,一个顶点为(2,0)H .对于x 轴上的点(,0)P t ,椭圆E 上存在点M ,使得MP MH ⊥,则实数t 的取值范围()A .(3,2)--B .(2,1)--C .(1,0)-D .(0,1)5.已知点P 是椭圆2216448x y +=上异于顶点的动点,1F 、2F 为椭圆的左、右焦点,O 为坐标原点,若M 是12F PF ∠平分线上的一点,且10F M MP ⋅=,则OM 的取值范围是()A .()0,2B .(C .()0,4D .( 2,6.设椭圆()222:11x C y a a+=>,已知点()0,1A ,点P 为曲线C 上的点,若AP 的最大值为2,则a 的取值范围为()A .(B .(]1,2C .)2D .2⎤⎦7.设A ,B 是椭圆22:13x y C m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是()A .(0,1]B .(0,1]∪[3,+∞)C .(0,1]∪[9,+∞)D .[9,+∞)8.已知A ,B 是椭圆()222210x y a b a b +=>>长轴的两个端点,P 、Q 是椭圆上关于x 轴对称的两点,直线AP ,BQ 的斜率分别为()1212,0k k k k ≠.若椭圆的离心率为22,则12k k +的最小值为()A .1BC .2D 二、多选题9.已知曲线222:1()2x y C m R m m+=∈+,则下列结论正确的是()A .若曲线C 是椭圆,则其长轴长为B .若0m <,则曲线C 表示双曲线C .曲线C 可能表示一个圆D .若1m =,则曲线C 10.已知点M 在椭圆22:14y C x +=上,过点M 分别作斜率为-2,2的直线MP ,MQ 与直线2y x =,2y x=-分别交于P ,Q 两点.若PQ λ≤,则实数λ的取值可能为()A .12B .1C .2D .311.已知1F ,2F 是椭圆22:14x C y +=的左,右焦点,动点()1111,2P x y y ⎛⎫> ⎪⎝⎭在椭圆上,12F PF ∠的平分线与x轴交于点(),0M m ,则m 的可能取值为()A .1B .2C .0D .1-12.(多选)已知12,F F 分别是椭圆22:14x y C m +=的两个焦点,若椭圆上存在使12PF F △P 的个数为4,则实数m 的值可以是A .2B .3C .92D .5三、填空题13.已知椭圆222:1(1)x y a aΓ+=>,直线1y x =+与x 轴交于P 点,与椭圆交于A ,B 两点,若20PA PB +=uu r uu r r ,则a =________.14.已知椭圆()2222:10x y C a b a b+=>>的右焦点为F ,左顶点为A ,上顶点为B ,若点D 在直线AB 上,且DF x ⊥轴,O 为坐标原点,且AB OD k k λ=,若离心率11,32e ⎛⎫∈ ⎪⎝⎭,则λ的取值范围为____________15.设点()11,P x y 在椭圆22182x y+=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值为_____________.16.点A 、B 分别为椭圆2214x y +=的左、右顶点,直线65x my =+与椭圆相交于P 、Q 两点,记直线AP 、BQ 的斜率分别为1k 、2k ,则21221k k +的最小值为___________四、解答题17.已知椭圆Γ:2221(2)4x y a a +=>,点A 为椭圆短轴的上端点,P 为椭圆上异于A 点的任一点,若P 点到A点距离的最大值仅在P 点为短轴的另一端点时取到,则称此椭圆为“圆椭圆”.(1)若a =,判断椭圆Γ是否为“圆椭圆”;(2)若椭圆Γ是“圆椭圆”,求a 的取值范围.18.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为在C 上.(1)求C 的方程;(2)设C 的上顶点为A ,右顶点为B ,直线l 与AB 平行,且与C 交于M ,N 两点,MD DN →→=,点F 为C 的右焦点,求DF 的最小值.19.已知椭圆2222:1(0)x y E a b a b+=>>过点(0,2)A -,以四个顶点围成的四边形面积为(1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M 、N ,直线AC 交y =-3于点N ,若|PM |+|PN |≤15,求k 的取值范围.20.已知A 为椭圆22221x y a b+=(0)a b >>与抛物线22y px =的交点,设椭圆的左右焦点为12,F F ,抛物线的焦点为F ,直线AF 将12AF F △的面积分为9:7两部分.(1)求椭圆及抛物线的方程;(2)若直线l :y kx m =+与椭圆22221x ya b+=相交于P Q 、两点,且OPQ △的重心恰好在圆22:1O x y +=上,求m 的取值范围.21.设椭圆22:195x y C +=长轴的左,右顶点分别为A ,B .(1)若P 、Q 是椭圆上关于x 轴对称的两点,直线,AP BQ 的斜率分别为()1212,0k k k k ≠,求12k k +的最小值;(2)已知过点()0,3D -的直线l 交椭圆C 于M 、N 两个不同的点,直线,AM AN 分别交y 轴于点S 、T ,记,DS DO DT DO λμ==(O 为坐标原点),当直线1的倾斜角θ为锐角时,求λμ+的取值范围.22.已知椭圆C :22221(0)x y a b a b +=>>的离心率为3,过右焦点F 且斜率为1的直线交椭圆C 于A 、B 两点,N 为弦AB 的中点..(1)求直线ON (O 为坐标原点)的斜率ON K ;(2)设M 椭圆C 上任意一点,且OM OA OB λμ=+,求λμ+的最大值和最小值.专题03椭圆中的参数问题一、单选题1.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k 的最大值与最小值之和是()A .16B .9C .7D .25【解析】因为椭圆方程为椭圆221169x y +=,所以4,a c ==设(),P x y ,则2127·1616k PF PF x ===-,又2016x ≤≤.∴max min 16,9k k ==.故max min +16+925k k ==.所以k 的最大值与最小值的和为25.故选:D.2.已知椭圆22:143x y C +=的左、右焦点分别为1F ,2F ,椭圆C 上点A 满足212AF F F ⊥.若点P 是椭圆C 上的动点,则12F P F A ⋅的最小值为()A.B .C .94-D .154-【解析】由椭圆C :22143x y +=可得:24a =,23b=,()11.1,0c F ==∴-,()21,0F .212AF F F ⊥ ,31,2A ⎛⎫∴ ⎪⎝⎭.设(),P x y ,则221.43x y +=又y ≤()12331,0,22F P F A x y y ⎛⎫∴⋅=+⋅= ⎪⎝⎭,又3222y -≤≤.12F P F A ∴⋅的最小值为B .3.已知椭圆2221(04)16x y m m+=<<的左,右焦点分别为12,F F ,过1F 的直线l 交椭圆于A B 、两点,若22BF AF +的最大值为12,则m 的值是()A .2B .C .3D .【解析】因为04m <<,所以椭圆的焦点在x 轴上,由2221(04)16x y m m+=<<可知4,a b m==,c =因为过1F 的直线l 交椭圆于AB 、两点,所以2211416BF AF AF BF a +++==,所以2216BF AF AB +=-,所以当AB 垂直于x 轴时,AB 最短,此时22BF AF +最大,当x c =-时,222116c y m +=,得24m y ==,所以AB 的最小值为22m ,因为22BF AF +的最大值为12,所以216122m-=,解得m =或m =-,故选:B4.已知椭圆E 的中心在坐标原点O ,两个焦点分别为(1,0),(1,0)A B -,一个顶点为(2,0)H .对于x 轴上的点(,0)P t ,椭圆E 上存在点M ,使得MP MH ⊥,则实数t 的取值范围()A .(3,2)--B .(2,1)--C .(1,0)-D .(0,1)【解析】由题意得,1c =,2a =,则b =22143x y +=;设0(M x ,00)(2)y x ≠±,则2200143x y +=①,又由(,0)P t ,(2,0)H .则00(,)MP t x y →=--,00(2,)MH x y →=--,由MP MH ⊥可得0MP MH →→= ,即0(t x -,00)(2y x -- ,20000)()(2)0y t x x y -=--+= ②,由①②消去0y ,整理得20001(2)234t x x x -=-+-,02x ≠ ,∴01342t x =-,022x -<< ,21t ∴-<<-,故实数t 的取值范围为(2,1)--.故选:B5.已知点P 是椭圆2216448x y +=上异于顶点的动点,1F 、2F 为椭圆的左、右焦点,O 为坐标原点,若M 是12F PF ∠平分线上的一点,且10F M MP ⋅=,则OM 的取值范围是()A .()0,2B .(C .()0,4D .( 2,【解析】如下图,延长2PF 、1F M 相交于点N ,连接OM ,因为10F M MP ⋅=,则1F M MP ⊥,因为PM 为12F PF ∠的角平分线,所以,1PN PF =,则点M 为1F N 的中点,因为O 为12F F 的中点,所以,2212111222OM F N PN PF PF PF ==-=-,设点()00,P x y ,由已知可得8a =,b =4c ==,则088x -<<且00x ≠,且有22003484y x =-,100118822PF x x =+=+,故21011682PF PF x =-=-,所以,()120110,422OM PF PF x =-=∈.故选:C.6.设椭圆()222:11x C y a a+=>,已知点()0,1A ,点P 为曲线C 上的点,若AP 的最大值为2,则a 的取值范围为()A .(B .(]1,2C .)2D .2⎤⎦【解析】设点(),P x y ,则2221x y a +=,可得()2221x a y =-,AP ===因为AP 的最大值为2,则关于y 的二次函数()()222121f y a y y a =--++在[]1,1-上的最大值为4.因为1a >,则二次函数()f y 的图象开口向下.①当2111a≤--时,即当1a <≤()f y 在[]1,1-上单调递减,则()()max 14f y f =-=,合乎题意;②当21101a-<<-时,即当a >()()22222222max112111141111f y f a a a a a aa ⎛⎫⎛⎫==-⋅-++=++= ⎪ ⎪----⎝⎭⎝⎭,解得a =.综上所述,1a <≤故选:A.7.设A ,B 是椭圆22:13x y C m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是()A .(0,1]B .(0,1]∪[3,+∞)C .(0,1]∪[9,+∞)D .[9,+∞)【解析】若椭圆焦点在x 轴上,即03m <<时,则当M 位于短轴的端点时,AMB ∠取最大值,要使椭圆上存在点M 满足120AMB ∠= ,则此时120AMB ∠≥ ,则60AMO ∠≥ ,则tan tan 60AMO ∠== ,解得01m <≤;若椭圆焦点在y 轴上,即3m >时,则当M 位于短轴的端点时,AMB ∠取最大值,要使椭圆上存在点M 满足120AMB ∠= ,则此时120AMB ∠≥ ,则60AMO ∠≥ ,则tan tan 60AMO ∠== ,解得9m ≥;综上,m 的取值范围是(0,1][9,)+∞ ,故选:C.8.已知A ,B 是椭圆()222210x y a b a b +=>>长轴的两个端点,P 、Q 是椭圆上关于x 轴对称的两点,直线AP ,BQ 的斜率分别为()1212,0k k k k ≠.若椭圆的离心率为2,则12k k +的最小值为()A .1BC .32D【解析】设点00(,)P x y ,则椭圆的对称性知00(,)Q x y -,不妨令00y >,而点A (-a ,0),B (a ,0),则001200,y y k k x a x a -==+-,显然有0a x a -<<,则00012220002||||y y ayk k a x a x a x +=+=+--,因椭圆的离心率为22,即22222222112c a b b e a a a a -===-=⇒=,222220000221222x y x b y b b +=⇒=-,则012222002||||2(22)ay a k k b b y y +==--,因00y b <≤,所以120||||a ak k y b+=≥0y b =时取“=”,即12k k +故选:B.二、多选题9.已知曲线222:1()2x y C m R m m+=∈+,则下列结论正确的是()A .若曲线C是椭圆,则其长轴长为B .若0m <,则曲线C 表示双曲线C .曲线C 可能表示一个圆D .若1m =,则曲线C【解析】由题意,若曲线C 是椭圆,则0m >,因为220m m +->恒成立,所以椭圆222:12x y C m m+=+的焦点在x轴上,所以其长轴长为A 错误;若0m <,根据双曲线的定义可知曲线C 表示双曲线,故B 正确;因为220m m -+>对任意的m 恒成立,所以曲线C 不可能表示一个圆,故C 错误;若1m =,则曲线C 为椭圆,方程为2213x y +=,焦点坐标为(,若过焦点的直线斜率为0时,此时该直线截椭圆C的弦长为若过焦点的直线斜率不为0时,不妨设该直线过椭圆C的右焦点,方程为x ny =C 的两个交点分别为()()1122,,,A x y B x y,由2213x y x ny ⎧+=⎪⎨⎪=⎩,可得22(3)10n y ++-=,则有22212212284(3)12(1)0312n n n y y n y y n ⎧=++=+>⎪⎪⎪+=-⎨+⎪⎪=-⎪+⎩,12|||AB y y =-==222122)333n n n +==-≥++,当0n =时,上式不等式可取等号,即min 23||3AB =,综上,可知椭圆22:13x C y +=中过焦点的最短弦长为3,故D 正确;故选:BD10.已知点M 在椭圆22:14y C x +=上,过点M 分别作斜率为-2,2的直线MP ,MQ 与直线2y x =,2y x=-分别交于P ,Q 两点.若PQ λ≤,则实数λ的取值可能为()A .12B .1C .2D .3【解析】设()11,P x y ,()22,Q x y ,()00,M x y ,则112y x =,222y x =-,由题得四边形PMQO 为平行四边形,所以()()120121201210,202,x x x y y y y y x x ⎧+=+=-⎪⎨⎪+=+=-⎩,故012120,22,y x x y y x⎧-=⎪⎨⎪-=⎩故PQ =因为011x -≤≤,所以max 2PQ =,故实数λ的取值范围为[)2,+∞,故选:CD.11.已知1F ,2F 是椭圆22:14xC y +=的左,右焦点,动点()1111,2P x y y ⎛⎫> ⎪⎝⎭在椭圆上,12FPF ∠的平分线与x轴交于点(),0M m ,则m 的可能取值为()A .1B .2C .0D .1-【解析】由椭圆方程可得12(F F ,由112y >可得1x <<则直线1PF的方程为0y x -=+,即(1110y x x -++=,直线2PF的方程为0y x -=-,即(1110y x x y ---=,(),0M m 在12F PF ∠的平分线上,∴=①,(22221111134242y x x x ⎛⎫+=++=+ ⎪ ⎪⎝⎭,(2222111113424y x x x ⎫+=-+=-⎪⎪⎝⎭,=134mx =,又1x <<333344m ∴-<<,结合选项可得m 的可能取值为1,0,1-.故选:ACD.12.已知12,F F 分别是椭圆22:14x y C m +=的两个焦点,若椭圆上存在使12PFF △P 的个数为4,则实数m 的值可以是()A .2B .3C .92D .5【解析】当椭圆的焦点在y 轴上时,04m <<,此时2,a b c ===,设椭圆的右顶点为A ,由于12PF F △面积的最大值为12AF F△的面积,所以12⋅>,解得13m <<;当椭圆的焦点在x 轴上时,4m >,此时2,a b c ===B ,则(0,2)B ,由于12PF F △面积的最大值为12BF F△的面积,所以122⋅>,解得194m >.结合选项知实数m 的值可以是2,5.故选:AD 三、填空题13.已知椭圆222:1(1)x y a aΓ+=>,直线1y x =+与x 轴交于P 点,与椭圆交于A ,B 两点,若20PA PB +=uu r uu r r ,则a =________.【解析】由22211y x x y a =+⎧⎪⎨+=⎪⎩解得01x y =⎧⎨=⎩或22222111a x a a y a ⎧=-⎪⎪+⎨-⎪=⎪+⎩,而||||PA PB > ,则点A (0,1),222221(,)11a a B a a --++,而P (-1,0),222211(1,1),(,)11a a PA PB a a --==++ ,又20PA PB +=uu r uu r r ,则有2211201a a-+⋅=+,解得23a =,即a =14.已知椭圆()2222:10x y C a b a b+=>>的右焦点为F ,左顶点为A ,上顶点为B ,若点D 在直线AB 上,且DF x ⊥轴,O 为坐标原点,且AB OD k k λ=,若离心率11,32e ⎛⎫∈ ⎪⎝⎭,则λ的取值范围为____________【解析】点(),0A a -、()0,B b ,直线AB 的方程为1x y a b +=-,即b y x b a=+,直线DF 的方程为x c =,将x c =代入直线AB 的方程得bc y b a =+,即点,bc D c b a ⎛⎫+ ⎪⎝⎭,故()OD bc b b a c a k c ac++==,因为AB OD k k λ=,即()b a c b a ac λ+=⋅,可得1111,1143c e a c e e λ⎛⎫===-∈ ⎪+++⎝⎭.15.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值为_____________.【解析】设11,x y θθ==且[0,2)θπ∈,∴212122221(22)2x x y y x y x y θθθθ-+-=-+=-+221(2)2x y θθ≥-+221|2|2x y θθ≥+--11|8sin )||84sin(|2224πθθθ=-+=-+≥,当且仅当sin(14πθ+=且20x θ-=时等号成立.故答案为:216.点A 、B 分别为椭圆2214x y +=的左、右顶点,直线65x my =+与椭圆相交于P 、Q 两点,记直线AP 、BQ 的斜率分别为1k 、2k ,则21221k k +的最小值为___________【解析】设()11,P x y 、()22,Q x y ,联立226544x my x y ⎧=+⎪⎨⎪+=⎩,消去x 并整理得()22126440525m y my ++-=,由韦达定理可得()1221254y y m +=-+,()12264254y y m =-+,设直线AQ 的斜率为k ,则222y k x =+,2222y k x =-,所以,()222222222222212244444y y y y k k x x x y ⋅=⋅===-+----,214k k ∴=-,而()12121212121212121625616162252555y y y y y y k k m x x m y y y y my my ⋅=⋅==++⎛⎫⎛⎫+++++ ⎪⎪⎝⎭⎝⎭()()()22222642541641922561625254254m m m m m -+==---+++,因此,222112211162k k k k +=+≥,当且仅当18k =±时,等号成立,因此,21221k k +的最小值为12.四、解答题17.已知椭圆Γ:2221(2)4x y a a +=>,点A 为椭圆短轴的上端点,P 为椭圆上异于A 点的任一点,若P 点到A 点距离的最大值仅在P 点为短轴的另一端点时取到,则称此椭圆为“圆椭圆”.(1)若a =,判断椭圆Γ是否为“圆椭圆”;(2)若椭圆Γ是“圆椭圆”,求a 的取值范围.【解析】(1)由题意:22154x y +=,则()0,2A ,设(),P x y ,则()2222PA x y =+-2251(2)4y y ⎛⎫=⨯-+- ⎪⎝⎭21494y y =--+,[]2,2y ∈-,二次函数开口向下,对称轴8y =-,在[]2,2y ∈-上单调递减,∴2y =-时函数值最大,此时P 为椭圆的短轴的另一个端点,∴椭圆是“圆椭圆”;(2)由(1):椭圆方程:22214x y a +=,()0,2A ,设(),P x y ,则()2222PA x y =+-2221(2)4y a y ⎛⎫=⋅-+- ⎪⎝⎭2224444a y y a ⎛⎫-=-++ ⎪⎝⎭,2a >,[]2,2y ∈-,∴二次项系数2404a -<,函数开口向下,由题意得,当且仅当2y =-时函数值达到最大,∴2242424a a >⎧⎪-⎪-≤-⎨⎛⎫-⎪ ⎪⎪⎝⎭⎩,解得:2a <≤a的范围为(2,.18.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为在C 上.(1)求C 的方程;(2)设C 的上顶点为A ,右顶点为B ,直线l 与AB 平行,且与C 交于M ,N 两点,MD DN →→=,点F 为C 的右焦点,求DF 的最小值.【解析】(1)因为C的长轴长为2a =,即a =又点在C 上,所以22361a b +=,代入a =,解得28b =,故C 的方程为221128x y +=.(2)由(1)可知,A ,B的坐标分别为(0,,(),直线AB0-=,设(0l m m +=≠-,联立2211280x y m ⎧+=⎪+=得224240x m ++-=,由()2228162438480m m m ∆=--=->,得248m <,设()11,M x y ,()22,N x y ,()00,D x y ,因为MD DN →→=,所以D 为MN 的中点,则120224x x x +==000m +=,所以036y =,又F 的坐标为(2,0),所以||DF ====,因为2485⎛-< ⎝⎭,所以当1225m =-时,DF 取得最小值,且最小值为2105.19.已知椭圆2222:1(0)x y E a b a b+=>>过点(0,2)A -,以四个顶点围成的四边形面积为(1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M 、N ,直线AC 交y =-3于点N ,若|PM |+|PN |≤15,求k 的取值范围.【解析】(1)因为椭圆过()0,2A -,故2b =,因为四个顶点围成的四边形的面积为1222a b ⨯⨯=a =,故椭圆的标准方程为:22154x y +=.(2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠,故直线112:2y AB y x x +=-,令3y =-,则112M x x y =-+,同理222N x x y =-+.直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=,故()22900100450k k ∆=-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k+==++,故120x x >,所以0M N x x >又1212=22M N x x PM PN x x y y +=++++()()2212121222212121222503024545=5253011114545k k kx x x x x x k k k k k kx kx k x x k x x k k --++++===---++-+++,故515k ≤即3k ≤,综上,31k -≤<-或13k <≤.20.已知A 为椭圆22221x y a b+=(0)a b >>与抛物线22y px =的交点,设椭圆的左右焦点为12,F F ,抛物线的焦点为F ,直线AF 将12AF F △的面积分为9:7两部分.(1)求椭圆及抛物线的方程;(2)若直线l :y kx m =+与椭圆22221x y a b+=相交于P Q 、两点,且OPQ △的重心恰好在圆22:1O x y +=上,求m 的取值范围.【解析】(1)A 为椭圆与抛物线的交点22421a b ⇒+=,24p =;212p y x ⇒=⇒=;又直线AF 将12AF F △的面积分为9:7两部分191()2474c c c ⇒+=-⇒=;224a b ⇒-=,解之可得:2,b a ==抛物线的方程为:2y x =;椭圆的方程为:22184x y +=(2)设11(,)P x y ,22(,)Q x y ,由22184x y y kx m ⎧+=⎪⎨⎪=+⎩得222(12)4280k x kmx m +++-=由0∆>,得224(21)k m +>…(※),且122412kmx x k +=-+由POQ △重心恰好在圆221x y +=上,得221212()()9x x y y +++=即221212()[()2]9x x k x x m ++++=,即2221212(1)()4()49k x x km x x m +++++=∴22222222216(1)1649(12)12k k m k m m k k+-+=++化简得22229(12)4(41)k m k +=+,代入(※)得k ∈R ,又设22141(1)4t k t k t -+=⇒=≥,22229(12)4(41)k m k +==+29(21)16t t t ++919(2)164t t =++≥,当且仅当1t =时,取等号∴294m ≥,则实数m 的取值范围为32m ≤-或32m ≥21.设椭圆22:195x y C +=长轴的左,右顶点分别为A ,B .(1)若P 、Q 是椭圆上关于x 轴对称的两点,直线,AP BQ 的斜率分别为()1212,0k k k k ≠,求12k k +的最小值;(2)已知过点()0,3D -的直线l 交椭圆C 于M 、N 两个不同的点,直线,AM AN 分别交y 轴于点S 、T ,记,DS DO DT DO λμ== (O 为坐标原点),当直线1的倾斜角θ为锐角时,求λμ+的取值范围.【解析】(1)设点()00,P x y ,由椭圆的对称性知()00,Q x y -,不妨令00y >,由已知()(),3,03,0A B -,则001200,33y y k k x x -==+-,显然有033x <<-,则0001220006339y y y k k x x x +=+=+--,22220000919955x y y x +=⇒-=,则120103k k y +=,因为00y <≤1201033k k y +=≥,当且仅当0y =12k k +(2)当直线l 的倾斜角θ为锐角时,设()()1122,,M x y N x y ,,设直线():3,0l y kx k =->,由223195y kx x y =-⎧⎪⎨+=⎪⎩得22(59)54360k x kx +-+=,从而22(54)436(59)0k k ∆=-⨯⨯+>,又0k >,得23k >,所以1212225436,9595k x x x x k k +==++,又直线AM 的方程是:()1133y y x x =++,令0x =,解得1133y y x =+,所以点S 为1130,3y x ⎛⎫ ⎪+⎝⎭;直线AN 的方程是:()22333y y x x =++,同理点T 为2230,3y x ⎛⎫ ⎪+⎝⎭·所以()1212330,3,0,3,0,333y y DS DT DO x x ⎛⎫⎛⎫=+=+= ⎪ ⎪++⎝⎭⎝⎭,因为,DS DO DT DO λμ== ,所以12123333,3333y y x x λμ+=+=++,所以()()()12121212121212122311833222333339kx x k x x y y kx kx x x x x x x x x λμ+-+---+=++=++=++++++++()222223654231181019595223654921399595k k k k k k k k k k k ⎛⎫⋅+-- ⎪+++⎝⎭=+=-⨯+++⎛⎫+⨯+ ⎪++⎝⎭()()2110101229911k k k +=-⨯+=-⨯+++∵23k >,∴4,23λμ⎛⎫+∈ ⎪⎝⎭,综上,所以λμ+的范围是4,23⎛⎫ ⎪⎝⎭.22.已知椭圆C :22221(0)x y a b a b +=>>的离心率为3,过右焦点F 且斜率为1的直线交椭圆C 于A 、B 两点,N 为弦AB 的中点..(1)求直线ON (O 为坐标原点)的斜率ON K ;(2)设M 椭圆C 上任意一点,且OM OA OB λμ=+ ,求λμ+的最大值和最小值.【解析】(1)设椭圆的焦距为2c,因为c a 22223a b a -=,故得223a b =,所以c =,所以椭圆方程为222213x y b b+=,椭圆的方程可化为22233x y b +=,右焦点F的坐标为,0),所以直线AB的方程为y x =,设1122(,),(,)A x y B x y,由22233y x x y b⎧=⎪⎨+=⎪⎩,得22430x b -+=,所以21212323,24b x x x x +==,设00(,)N x y,则1202x x x +==00y x b ==,所以00143324ON y x K -==-,(2)显然,OA OB 可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量OM ,有且只有一对实数,λμ,使得等式OM OA OB λμ=+ 成立,设(,)M x y ,则1122(,)(,)(,)x y x y x y λμ=+,所以1212,x x x y y y μλμλ+=+=,因为点M 椭圆C 上任意一点,所以()()222121233x x y y b λμλμ+++=,整理得,222222*********(3)(3)2(3)3x y x y x x y y b λμλμ+++++=,因为2121234b x x x x +==,所以1212121233()()x x y y x x x x +=+212124()6x x x x b =-++2223960b b b =-+=,因为A 、B 两点在椭圆上,所以222222112233,33x y b x y b +=+=,所以222222222221122(3)(3)333x y x y b b b λμλμ+++=⋅+⋅=,所以221λμ+=,所以2221222λμλμ++⎛⎫≤= ⎪⎝⎭,当且仅当22λμ==-或22λμ==时取等号所以λμ≤+≤2λμ==-时左边等号成,当且仅当2λμ==时,右边等号成立,所以λμ+,最小值为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆中有关的取值范围问题
【目标导航】
求解最值,可直接求导. 但是解析几何中的最值,直接求导,暴力求解最值的较少,更多的是化简函数表达式,根据结构采用基本不等式(无法取等的时候就求导来解决)来求解最终的最值(或者值域),必然要有定义域,所以寻找函数的定义域是非常重要的,而解析几何中直线和曲线联立(曲直联立)以后的关于x(或者y)的一元二次方程有解,判别式就是很重要的一个点,也就是定义域的一个重要来源,有些题目甚至是唯一来源.
与线段有关的最值问题关键是建立关于线段的目标函数,然后运用基本不等式或者函数有关的问题,运用基本不等式或者函数求解。
线段的长度可以通过两点间的距离或者利用相交弦长公式进行求解。
与向量有关的最值问题关键就是表示出点坐标,通过数量积转化为函数问题,然后运用基本不等式或者求导研究最值。
与面积有关的最值问题通常建立起面积的目标函数,可以通过公式
B ac
C ab sh s sin 2
1sin 2121===求解。
然后通过基本不等式或者求导研究函数的最值问题。
【例题导读】
例1、在平面直角坐标系 xOy 中,已知椭圆 C :x 2a 2+y 2b 2=1(a>b>0)的离心率为32
,且过点⎝⎛⎭⎫3,12,点P 在第四象限, A 为左顶点, B 为上顶点, PA 交y 轴于点C ,PB 交x 轴于点D.
(1) 求椭圆 C 的标准方程;
(2) 求 △PCD 面积的最大值.
例2、如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22
,且右焦点F 到左准线的距离为6 2.
(1) 求椭圆C 的标准方程;
(2) 设A 为椭圆C 的左顶点,P 为椭圆C 上位于x 轴上方的点,直线P A 交y 轴于点M ,过点F 作MF 的垂线,交y 轴于点N .
①当直线P A 的斜率为12时,求△FMN 的外接圆的方程; ②设直线AN 交椭圆C 于另一点Q ,求△APQ 的面积的最大值.
例3、如图所示,椭圆M :x 2a 2+y 2b 2=1(a>b>0)的离心率为22
,右准线方程为x =4,过点P(0,4)作关于y 轴对称的两条直线l 1,l 2,且l 1与椭圆交于不同两点A ,B ,l 2与椭圆交于不同两点D ,C.
(1) 求椭圆M 的方程;
(2) 证明:直线AC 与直线BD 交于点Q(0,1);
(3) 求线段AC 长的取值范围.
例4、在平面直角坐标系 xOy 中,已知椭圆 C :x 2a 2+y 2b 2=1(a>b>0)的离心率为32
,且过点⎝⎛⎭⎫3,12,点P 在第四象限, A 为左顶点, B 为上顶点, PA 交y 轴于点C ,PB 交x 轴于点D.
(1) 求椭圆 C 的标准方程;
(2) 求 △PCD 面积的最大值.。