大一高等数学期末考试试题参考
高数大一期末考试试卷
高数大一期末考试试卷一、选择题(每题3分,共30分)1. 函数f(x)=x^2+2x+1的导数是:A. 2x+2B. 2x+1C. x^2+2D. x^2+2x2. 极限lim(x→0) (sin(x)/x)的值是:A. 1B. 0C. -1D. 23. 若函数f(x)在x=a处连续,则下列说法正确的是:A. f(a)存在B. f(a)不存在C. f(a)=0D. f(a)=14. 曲线y=x^3-3x^2+2在x=1处的切线斜率是:A. 0B. 1C. -2D. 25. 函数y=ln(x)的不定积分是:A. x+CC. x^2+CD. e^x+C6. 以下哪个级数是发散的:A. 1+1/2+1/3+...B. 1-1/2+1/3-1/4+...C. 1/2+1/4+1/8+...D. 1/2^2+1/3^2+1/4^2+...7. 以下哪个函数是奇函数:A. f(x)=x^2B. f(x)=x^3C. f(x)=x+1D. f(x)=x-18. 函数f(x)=x^2在区间[-1,1]上的定积分是:A. 0B. 1/3C. 2/3D. 19. 以下哪个选项是洛必达法则的应用:A. lim(x→0) (x/sin(x))B. lim(x→0) (sin(x)/x)C. lim(x→0) (1/x)D. lim(x→0) (x^2/x)10. 以下哪个函数的导数是其本身:A. e^xB. ln(x)D. sin(x)二、填空题(每题2分,共20分)1. 函数f(x)=x^3的二阶导数是________。
2. 函数f(x)=e^x的不定积分是________。
3. 函数f(x)=cos(x)的导数是________。
4. 极限lim(x→∞) (1/x)的值是________。
5. 函数f(x)=ln(x)的定义域是________。
6. 函数f(x)=x^2+3x+2的根是________。
7. 函数f(x)=x^3-6x^2+11x-6的极值点是________。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷(一)一、选择题(共12分) 1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ).(A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. (3分) 1241(sin )x x x dx -+=⎰ . 3. (3分) 201lim sin x x x→= . 4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分) 1. (6分)求20ln(15)lim.sin 3x x x x →+2. (6分)设2,1y x =+求.y '3. (6分)求不定积分2ln(1).x x dx +⎰4. (6分)求3(1),f x dx -⎰其中,1,()1cos 1, 1.x xx f x xe x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程0cos 0y xt e dt tdt +=⎰⎰所确定,求.dy6. (6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4. (7分)求函数y x =+[5,1]-上的最小值和最大值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bbaab a f x dx f a f b x a x b f x dx -''=++--⎰⎰(二)一、 填空题(每小题3分,共18分) 1.设函数()23122+--=x x x x f ,则1=x 是()x f 的第 类间断点.2.函数()21ln x y +=,则='y.3. =⎪⎭⎫ ⎝⎛+∞→xx x x 21lim.4.曲线xy 1=在点⎪⎭⎫ ⎝⎛2,21处的切线方程为 . 5.函数2332x x y -=在[]4,1-上的最大值 ,最小值 . 6.=+⎰dx x x 21arctan . 二、 单项选择题(每小题4分,共20分) 1.数列{}n x 有界是它收敛的( ) .() A 必要但非充分条件; () B 充分但非必要条件 ; () C 充分必要条件; () D 无关条件.2.下列各式正确的是( ) .() A C e dx e x x +=--⎰; () B C xxdx +=⎰1ln ; () C ()C x dx x +-=-⎰21ln 21211; () D C x dx xx +=⎰ln ln ln 1. 3. 设()x f 在[]b a ,上,()0>'x f 且()0>''x f ,则曲线()x f y =在[]b a ,上.() A 沿x 轴正向上升且为凹的; () B 沿x 轴正向下降且为凹的;() C 沿x 轴正向上升且为凸的; () D 沿x 轴正向下降且为凸的.4.设()x x x f ln =,则()x f 在0=x 处的导数( ).() A 等于1; () B 等于1-; () C 等于0; () D 不存在.5.已知()2lim 1=+→x f x ,以下结论正确的是( ).() A 函数在1=x 处有定义且()21=f ; () B 函数在1=x 处的某去心邻域内有定义;() C 函数在1=x 处的左侧某邻域内有定义;() D 函数在1=x 处的右侧某邻域内有定义.三、 计算(每小题6分,共36分) 1.求极限:xx x 1sin lim 20→. 2. 已知()21ln x y +=,求y '. 3. 求函数x x y sin =()0>x 的导数.4. ⎰+dx x x 221. 5. ⎰xdx x cos .6.方程yxx y 11=确定函数()x f y =,求y '.四、 (10分)已知2x e 为()x f 的一个原函数,求()⎰dx x f x 2.五、 (6分)求曲线x xe y -=的拐点及凹凸区间. 六、 (10分)设()()C e x dx x f x++='⎰1,求()x f .(三)一、填空题(本题共5小题,每小题4分,共20分).(1) 210)(cos lim x x x → e1.(2)曲线x x y ln =上与直线01=+-y x 平行的切线方程为1-=x y . (3)已知xxxeef -=')(,且0)1(=f , 则=)(x f =)(x f 2)(ln 21x .(4)曲线132+=x x y 的斜渐近线方程为 .9131-=x y(5)微分方程522(1)1'-=++y y x x 的通解为.)1()1(32227+++=x C x y二、选择题 (本题共5小题,每小题4分,共20分). (1)下列积分结果正确的是( D )(A) 0111=⎰-dx x (B) 21112-=⎰-dx x(C) +∞=⎰∞+141dx x (D) +∞=⎰∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所示,则( D ).(A)21,x x 都是极值点. (B) ()())(,,)(,2211x f x x f x 都是拐点.(C) 1x 是极值点.,())(,22x f x(D) ())(,11x f x 是拐点,2x 是极值点图1-1(3)函数212e e e x x xy C C x -=++满足的一个微分方程是( D ).(A )23e .x y y y x '''--= (B )23e .xy y y '''--=(C )23e .x y y y x '''+-= (D )23e .xy y y '''+-= (4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( A ). (A) ()0f x '. (B) ()0f x '-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是 ( A ).(A) (())().f x dx f x '=⎰ (B) ()().=⎰df x f x (C) [()]().d f x dx f x =⎰ (D) ()().fx dx f x '=⎰三、计算题(本题共4小题,每小题6分,共24分). 1.求极限)ln 11(lim 1x x x x --→.解 )ln 11(lim 1x x x x --→=x x x x x x ln )1(1ln lim 1-+-→ 1分=x x x x x ln 1ln lim1+-→ 2分= xx x x x x ln 1ln lim1+-→ 1分= 211ln 1ln 1lim 1=+++→x x x 2分2.方程⎩⎨⎧+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 与22dx y d .解 ,sin )()(t t t x t y dx dy =''= (3分) .sin tan sin )()sin (22t t t t t x t t dx y d +=''= (6分)3. 4. 计算不定积分.222(1) =2arctan 2 =2d x C =----------+------+---------⎰⎰分分(分4.计算定积分⎰++3011dx xx.解 ⎰⎰-+-=++3030)11(11dx x x x dx x x ⎰+--=30)11(dx x (3分)35)1(323323=++-=x (6分)(或令t x =+1)四、解答题(本题共4小题,共29分).1.(本题6分)解微分方程256xy y y xe '''-+=.2122312*20101*2-56012,31.1()111.21(1)1x x x x r r r r e C e y x b x b e b b y x x e +=----------==----------+-------=+-----------=-=-=-------------解:特征方程分特征解.分 次方程的通解Y =C 分令分代入解得,所以分2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为γ,计算桶的一端面上所受的压力.解:建立坐标系如图0220322203*********RRP g R x g R x g R ρρρρ=---------=--------=--------=----------------⎰⎰)分[()]分分3. (本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1b af x dx =⎰,试求()()baxf x f x dx'⎰.222()()()()21 ()221 =[()]()2211=0222b b aabab ba axf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------⎰⎰⎰⎰解:分分分分4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D. (1) (3) 求D 的面积A;(2) (4) 求D 绕直线e x =旋转一周所得旋转体的体积V.解:(1) 设切点的横坐标为0x ,则曲线x y ln =在点)ln ,(00x x 处的切线方程是).(1ln 000x x x x y -+= 1分由该切线过原点知 01ln 0=-x ,从而.0e x =所以该切线的方程为.1x e y =1分平面图形D 的面积 ⎰-=-=10.121)(e dy ey e A y 2分(2) 切线xe y 1=与x 轴及直线e x =所围成的三角形绕直线e x =旋转所得的圆锥体积为 .3121e V π= 2分曲线x y ln =与x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 2102)(⎰-=π, 1分因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ 1分五、证明题(本题共1小题,共7分).1.证明对于任意的实数x ,1x e x ≥+.解法一:2112xe e x x xξ=++≥+解法二:设() 1.x f x e x =--则(0)0.f = 1分 因为() 1.xf x e '=- 1分 当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥= 2分 当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥= 2分 所以对于任意的实数x ,()0.f x ≥即1x e x ≥+。
大一上学期(第一学期)高数期末考试题及答案
大一上学期(第一学期)高数期末考试题及答案高等数学I(大一第一学期期末考试题及答案)1.当 $\alpha x$ 和 $\beta x$ 都是无穷小时,$\alpha(x)+\beta(x)$ 不一定是无穷小。
2.极限 $\lim\limits_{x\to a}\dfrac{\sin x+e^{2ax}-1}{x}$ 的值是 $2a$。
3.如果 $f(x)=\begin{cases}\dfrac{\ln(x+a)-\ln a}{x},& x\neq 0\\ \quad\quad 1,& x=0\end{cases}$ 在 $x=a$ 处连续,则$a=e^{-1}$。
4.如果 $f(x)$ 在 $x=a$ 处可导,则$f'(a)=\dfrac{1}{3}(f(a+2h)-f(a-h))$。
5.极限 $\lim\limits_{x\to a}\dfrac{\ln(x+a)-\ln a}{x}$ 的值是 $1/a$。
6.确定函数 $y(x)$,使得 $y(x)$ 的导函数为$y'(x)=\dfrac{y}{2\sin(2x)}+\dfrac{y e^{xy}}{x}-\dfrac{x}{y\ln x}$,则 $y(x)=\dfrac{1}{\ln x}$。
7.过点 $M(1,2,3)$ 且与平面 $x+2y-z=0$ 和 $2x-3y+5z=6$ 平行的直线 $l$ 的方程为 $\dfrac{x-1}{-1}=\dfrac{y-2}{-1}=\dfrac{z-3}{2}$。
8.函数 $y=2x-\ln(4x)$ 的单调递增区间为 $(-\infty,0)\cup(1,+\infty)$。
9.计算极限 $\lim\limits_{x\to 0}\dfrac{(1+x)^{-e^x}-e}{x}$,结果为 $-1/2$。
10.设 $f(x)$ 在 $[a,b]$ 上连续,则 $F(x)=\int_a^x(x-t)f(t)dt$ 的二阶导数为 $F''(x)=f(x)$。
大一(第一学期)高数期末考试题及答案
大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnn n ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:112330()2xf x dx xe dx x x dx---=+-⎰⎰⎰123()1(1)xxd e x dx--=-+--⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大一高数期末考试试题
一.填空题(共5 小题,每题4 分,合计20 分)11 x 1x 2005e x e x dx1.lim( e x x) x 2.2.1x 0.3.设函数yy( x) 由方程x y e t 2dtx1确立,则dyxtf (t )dtf ( x)x 0.4. 设f x, f(0) 1,dx可导,且1则fx..5.微分方程y4y4y的通解为二.选择题(共 4 小题,每题 4 分,合计 16 分)1.设常数 k0 ,则函数f ( x) ln xx k)内零点的个数为(e) .在(0,(A) 3 个;(B) 2 个;(C) 1 个 ;(D) 0 个.2. 微分方程y4 y3cos2 x 的特解形式为( ) .( A ) yAcos2 x ;( B )yAx cos2x ;( C )yAx cos2 x Bxsin 2x ;( D ) y*A sin 2x.3.以下结论不必定建立的是() .dbx dx( A )若c,da, b , 则必有f x dxf ; ( B )若f ( x)0 在 a,b 上可cabx dxf是周期为 T 的连续函数 , 则对随意常数 a 都有积, 则 a; ( C )若f xa Tf x dxTf x dxxt dtf x为奇函数 , 则t f a0 ;( D )若可积函数也为奇函数 .4. 设1f x 1 e x1则 x 0是f ( x)的(2 3e x , ) .(A) 连续点 ;(B) 可去中断点 ; (C)本页满分 12 分 跳跃中断点 ;(D) 无量中断点 .三.计算本页得 题(共 5 小题,每题6 分,合计 30 分)分22x 3 e x dx1. 计算定积分x sin xdx2. 2.计算不定积分cos5x.xa(t sin t),t求摆线ya(1 cost ), 在2 处的切线的方程 .xcos(x2t) dtF (x)设,求 F (x) .n(n 1)(n 2)(n 3) (2n)x nnlim x n5.设,求 n .四.应用题(共 3 小题,每题 9 分,合计27 分) 1.求由曲线yx 2与该曲线过坐标原点的切线及x 轴所围图形的面积 .2.设平面图形 D 由 x 2y22x与y x所确立, 试求 D 绕直线 x 2 旋转一周所生成的旋转体的体积 .设 a 1, f (t) a tat 在 (, )内的驻点为t (a).问 a 为什么值时t(a)最小 ? 并求最小值 .五.证明题( 7 分)f (0)= f (1) 1) 1,设函数f ( x)在[0,1]上连续,在(0,1) 内可导且0, f (2试证明起码存在 一 点(0,1) , 使 得f ()=1.一.填空题(每题4 分,5 题 共20 分):111x 1 x 2005ex e xdx4lim( e x x) x 2y y( x) 由方程1.e 21e . 3 .设函数 x 0.2.x yet 2dyxf ( x)dt xx 0e1.4. 设fx可导,且tf (t) dt1,1确立,则 dx1, f (0) 则fx1 x 2的通解为y(C 1 C 2 x)e 2x.二.选择e2. 5.微分方程y4 y4 yf (x) ln x x k在(0, )分):1.设常数 ke 题(每题 4 分,4 题共 160 ,则函数内零点的个数为(B ).(A) 3 个 ;(B) 2 个 ;(C) 1 个;(D)0 个 .2. 微分方程y4 y 3 cos2x 的特解形式为(C )( A ) yAcos2 x ;( B )yAx cos2x ;( C )yAx cos2 x Bxsin 2x ;( D ) y *A sin 2x3.以下结论不必定建立的是 ( A )dfx dxbx dx(A) (A) 若 c,da, b, 则必有f ;cab f x dx 0(B) (B) 若 f (x) 0在 a,b 上可积 , 则 a;(C)(C)若fx是周期为T的连续函数, 则 对 任 意 常 数 a 都 有a Tf x dxTf x dxa;xt dt(D) (D)若 可 积 函 数fx为奇函数, 则t f 也为奇函数.4.设1f x 1 e x10是f ( x)的( C2 3e x , 则 x ) .(A) 连续点 (B) 可去中断点 ;(C)跳跃中断点 ; (D)无量中断点 .三. 计算题 (每题6分,5题共 30分): 1.计算定积分2 x3 ex 2dx.设 x 2t , 则23 ex 22 1tdt 1 2 txdxte2 tde解:22-------21te t 2 tdt 2e-------2e21 t213 2x sin xeexdx.解:222--------22 .计算不定积分cos5xsin x dx1xd ( 1) 1xdx5x4 4 4 cos 4x4coscos xcos x--------3x 1 (tan 2 x 1) d tan x4cos 4 x4x a(tsin t),x1tan 3x1tan x Cya(1 cost), 在4cos 4 x124-----------33 .求摆线t(a(1), a)2 处的切线的方程 . 解:切点为 2-------2kdya sin tdxta(1cost ) t221-------2y ax a(1)y x (22) a切线方程为2 即.-------2F ( x)xt )dt4. 设cos(x 22xcos x2(2x 1) cos(x2 x).5.设,则F (x)n(n 1)( n2)(n3) (2n)x nn lim x n.,求 nln x n1nln( 1i )ni 1n解:---------2ni 11lim ln x nlimln(1)ln(1 x)dxnnn n 0--------------2i 1x) 1011xln(1xdx 2 ln 2 1------------2=0 1 xlim x ne 2 ln 2 149 分,3 题共 27 分)1.求故 n=e四.应用题(每题 由曲线yx2与该曲线过坐标原点的切线及x 轴所围图形的面积 .解:y1x设切点为( x 0, y0 ),则过原点的切线方程为2 x 0 2 ,( x 0 , y 0 )在切线上,带入切线方程,解得切点为x 0 4, y 02.-----3因为点yx过原点和点( 4,2)的切线方程为2-----------------------------32面积s2( y 22 2 2 y)dy 2 2= 3-------------------3s21xdx4 1x2 22 2 (2x2 )dx或2232.设平面图形 D 由x 2y22x 与 yx所确立, 试求 D 绕直线 x2 旋转一周所生成的旋转体的体积 .解: 法一:VV1V 211 y22 1 2dy2 (1) dy( 2 y )21 y2( y 1)2dy 1-------621 ( y 1) 3 12 (1 )4433--------321x)( 2xx2x)dx(2法二: V=21 (2x) 2xx 2dx 21x 2)dx0 (2x------------------ 5( 2 2x) 2x x22 2 x x 2dx4132( 2x x 2) 2312 1 14 3432 1 24 1 2232323------------- 43.设a1, f (t)a tat 在 (,)内的驻点为 t (a).问 a 为什么值时t (a)最由 f (t )a t ln a a0得 t(a) 1ln ln a .小 ? 并求最小值 .解 :ln a --------------- 3又由 t (a)ln ln a 1 0得独一驻点 ae ea(ln a) 2------------3当 ae e 时 , t (a) 0;当 a e e时 , t (a)0,于是 ae e 为 t (a)的极小值点 . -----2 ae e 为 t (a)的最小值点 , 最小值为 t(e e ) 1ln e 1 1 . 故e e --------------1五.证明题( 7 分)设函数 f ( x) 在 [0,1] 上连续,在 (0,1)内可导且f (0)= f (1) 0, f (1)1,2试证明至少存在一点(0,1) , 使得f ()=1.证明:设 F ( x)f ( x)x , F ( x) 在 [0,1] 上连续在 (0,1) 可导,因 f (0)= f (1)=0 ,有 F (0) f (0) 00, F (1)f (1)11,--------------- 2f (111 1 1 1, [1 ,)=1F ( )=f ()- =1-=2 1]又由2,知2222 在 2 上F ( x)用零点定理,F (1)F(1)=-1依据22,--------------- 21,(1)可知在2内起码存在一点,使得1F( )=0,(2,1)(0,1), F(0)= F()=0由 ROLLE 中值定理得起码存在一点(0, )(0,1) 使得 F()=0 即 f () 1=0,证毕 . --------------3。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷及(Ji)答案详解一、选择题(Ti)(共12分)1. (3分(Fen))若为连续函(Han)数,则的(De)值为( ).(A)1 (B)2 (C)3 (D)-12. (3分(Fen))已知则(Ze)的(De)值为().(A)1 (B)3 (C)-1 (D)3. (3分)定积分的值为().(A)0 (B)-2 (C)1 (D)2f x在该点处( ).4. (3分)若在处不连续,则()(A)必不可导 (B)一定可导(C)可能可导 (D)必无极限二、填空题(共12分)1.(3分)平面上过点,且在任意一点处的切线斜率为的曲线方程为 .2. (3分) .3. (3分)= .4. (3分)的极大值为 .三、计算题(共42分)1.(6分)求2.(6分)设求3.(6分)求(Qiu)不定积分4.(6分(Fen))求其(Qi)中5.(6分)设函(Han)数由方(Fang)程所(Suo)确定,求6.(6分(Fen))设求(Qiu)7.(6分)求极限四、解答题(共28分)1.(7分)设且求2.(7分)求由曲线与轴所围成图形绕着x轴旋转一周所得旋转体的体积.3.(7分)求曲线在拐点处的切线方程.4.(7分)求函数在上的最小值和最大值.五、证明题(6分)设在区间上连续,证明标准答案一、 1 B; 2 C; 3 D; 4 A.二、 1 2 3 0; 4 0.三、 1 解原式 5分1分2解 2分4分(Fen)3 解原(Yuan)式 3分(Fen)2分(Fen)1分(Fen)4解(Jie) 令则(Ze) 2分1分(Fen)1分1分1分5两边求导得 2分1分1分2分6解 2分4分7解原式= 4分= 2分四、1 解令则 3分= 2分2分1分2解(Jie) 3分(Fen)2分(Fen)2分(Fen)3解(Jie) 1分(Fen)令(Ling)得(De) 1分当时,当时, 2分为拐点, 1分该点处的切线为 2分4解 2分令得 1分2分最小值为最大值为 2分五、证明1分1分1分1分1分移项即得所证. 1分。
高数(大一上)期末试题及答案
高数(大一上)期末试题及答案第一学期期末考试试卷(1)课程名称:高等数学(上)考试方式:闭卷完成时限:120分钟班级:学号:姓名:得分:一、填空(每小题3分,满分15分)1.lim (3x^2+5)/ (5x+3x^2) = 02.设 f''(-1) = A,则 lim (f'(-1+h) - f'(-1))/h = A3.曲线 y = 2e^(2t) - t 在 t = 0 处切线方程的斜率为 44.已知 f(x) 连续可导,且 f(x)。
0,f(0) = 1,f(1) = e,f(2) = e,∫f(2x)dx = 1/2ex,则 f'(0) = 1/25.已知 f(x) = (1+x^2)/(1+x),则 f'(0) = 1二、单项选择(每小题3分,满分15分)1.函数 f(x) = x*sinx,则 B 选项为正确答案,即当x → ±∞ 时有极限。
2.已知 f(x) = { e^x。
x < 1.ln x。
x ≥ 1 },则 f(x) 在 x = 1 处的导数不存在,答案为 D。
3.曲线 y = xe^(-x^2) 的拐点是 (1/e。
1/(2e)),答案为 C。
4.下列广义积分中发散的是 A 选项,即∫dx/(x^2+x+1)在区间 (-∞。
+∞) 内发散。
5.若 f(x) 与 g(x) 在 (-∞。
+∞) 内可导,且 f(x) < g(x),则必有 B 选项成立,即 f'(x) < g'(x)。
三、计算题(每小题7分,共56分)1.lim x^2(e^(2x)-e^(-x))/((1-cosx)sinx)lim x^2(e^(2x)-e^(-x))/((1-cosx)/x)*x*cosxlim x(e^(2x)-e^(-x))/(sinx/x)*cosxlim (2e^(2x)+e^(-x))/(cosx/x)应用洛必达法则)2.lim {arcsin(x+1) + arcsin(x-1) - 2arcsin(x)}/xlim {arcsin[(x+1)/√(1+(x+1)^2)] + arcsin[(x-1)/√(1+(x-1)^2)] - 2arcsin(x)/√(1+x^2)}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+x^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+x^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+(x+1)^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+(x-1)^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin[(x-1)/√(1+(x-1)^2)]} π/2 (应用洛必达法则)3.y = y(x) 由 x + y - 3 = 0 确定,即 y = 3 - x,因此 dy/dx = -1.4.f(x) = arctan(2x-9) - arctan(x-3) 的导数为 f'(x) = 1/[(2x-9)^2+1] - 1/[(x-3)^2+1],因此 f'(x)。
大一第二学期高数期末考试题(含答案)
大一第二学期高数期末考试一、单项选择题(本大题有4小题, 每小题4分, 共16分)1.。
(A)(B)(C)(D)不可导.2.。
(A)是同阶无穷小,但不是等价无穷小;(B)是等价无穷小;(C)是比高阶的无穷小; (D)是比高阶的无穷小。
3.若,其中在区间上二阶可导且,则().(A)函数必在处取得极大值;(B)函数必在处取得极小值;(C)函数在处没有极值,但点为曲线的拐点;(D)函数在处没有极值,点也不是曲线的拐点。
(A)(B)(C)(D)。
二、填空题(本大题有4小题,每小题4分,共16分)4.。
5..6..7..三、解答题(本大题有5小题,每小题8分,共40分)8.设函数由方程确定,求以及.9.设函数连续,,且,为常数. 求并讨论在处的连续性.10.求微分方程满足的解。
四、解答题(本大题10分)11.已知上半平面内一曲线,过点,且曲线上任一点处切线斜率数值上等于此曲线与轴、轴、直线所围成面积的2倍与该点纵坐标之和,求此曲线方程。
五、解答题(本大题10分)12.过坐标原点作曲线的切线,该切线与曲线及x轴围成平面图形D.(1)求D的面积A;(2)求D绕直线x = e 旋转一周所得旋转体的体积V。
六、证明题(本大题有2小题,每小题4分,共8分)13.设函数在上连续且单调递减,证明对任意的,.14.设函数在上连续,且,.证明:在内至少存在两个不同的点,使(提示:设)解答一、单项选择题(本大题有4小题, 每小题4分,共16分)1、D2、A3、C4、C二、填空题(本大题有4小题,每小题4分,共16分)5.。
6。
.7. . 8.。
三、解答题(本大题有5小题,每小题8分,共40分)9.解:方程两边求导,10.解:11.解:12.解:由,知。
,在处连续。
13.解:,四、解答题(本大题10分)14.解:由已知且,将此方程关于求导得特征方程:解出特征根:其通解为代入初始条件,得故所求曲线方程为:五、解答题(本大题10分)15.解:(1)根据题意,先设切点为,切线方程:由于切线过原点,解出,从而切线方程为:则平面图形面积(2)三角形绕直线x = e一周所得圆锥体体积记为V1,则曲线与x轴及直线x = e所围成的图形绕直线x = e一周所得旋转体体积为V2 D绕直线x = e旋转一周所得旋转体的体积六、证明题(本大题有2小题,每小题4分,共12分)16.证明:故有:证毕.证:构造辅助函数:.其满足在上连续,在上可导。
(完整版)大一高等数学期末考试试卷及答案详解
一、填空题(每小题3分,共18分)
1.设函数 ,则 是 的第类间断点.
2.函数 ,则 .
3. .
4.曲线 在点 处的切线方程为.
5.函数 在 上的最大值,最小值.
6. .
二、单项选择题(每小题4分,共20分)
1.数列 有界是它收敛的().
必要但非充分条件; 充分但非必要条件;
充分必要条件; 无关条件.
二.选择题(每小题4分,4题共16分):
1.设常数 ,则函数 在 内零点的个数为(B).
(A)3个;(B)2个;(C)1个;(D)0个.
2.微分方程 的特解形式为(C)
(A) ;(B) ;
(C) ;(D)
3.下列结论不一定成立的是(A)
(A)(A)若 ,则必有 ;
(B)(B)若 在 上可积,则 ;
(C)(C)若 是周期为 的连续函数,则对任意常数 都有 ;
2.下列各式正确的是().
; ;
; .
3.设 在 上, 且 ,则曲线 在 上.
沿 轴正向上升且为凹的; 沿 轴正向下降且为凹的;
沿 轴正向上升且为凸的; 沿 轴正向下降且为凸的.
4.设 ,则 在 处的导数().
等于 ; 等于 ;
等于 ; 不存在.
5.已知 ,以下结论正确的是().
函数在 处有定义且 ; 函数在 处的某去心邻域内有定义;
大一高等数学期末考试试卷
(一)
一、选择题(共12分)
1. (3分)若 为连续函数,则 的值为( ).
(A)1 (B)2 (C)3 (D)-1
2. (3分)已知 则 的值为( ).
(A)1 (B)3 (C)-1 (D)
3. (3分)定积分 的值为( ).
大一高数 期末考试题及答案
f ( x ) cos
x dx
0 .
证明:在 0, 内至少存在两个不同的点1 ,2 ,使 f (1 ) f (2 ) 0.(提
x
F ( x ) f ( x )dx
示:设
0
)
解答
一、单项选择题(本大题有 4 小题, 每小题 4 分, 共 16 分) 1、D 2、A 3、C 4、C
二、填空题(本大题有 4 小题,每小题 4 分,共 16 分)
M (x0 , y0 ) 处切线斜率数值上等于此曲线与 x 轴、 y 轴、直线 x x0 所围成
面积的 2 倍与该点纵坐标之和,求此曲线方程.
五、解答题(本大题 10 分)
15. 过坐标原点作曲线 y ln x 的切线,该切线与曲线 y ln x 及 x 轴围成
平面图形 D.
(1) 求 D 的面积 A;(2) 求 D 绕直线 x = e 旋转一周所得旋转体的体积
大一上学期 高数期末试题
一、单项选择题 (本大题有 4 小题, 每小题 4 分, 共 16 分)
1. 设 f ( x ) cos x ( x sin x ), 则在 x 0处有 (
) .
(A) f (0) 2 (B) f (0) 1 (C) f (0) 0 (D) f ( x) 不可导.
证:构造辅助函数:
0
,0 x 。其满足在[0, ] 上连续,在 (0, )
上可导。 F ( x) f ( x) ,且 F (0) F ( ) 0
0
f ( x)cos xdx
cos
xdF ( x)
F ( x)cos
x | 0
sin
x F ( x)dx
由题设,有 0
0
0
大一(第一学期)高数期末考试题及答案
大一上学期高数期末考试一、单项选择题 (本大题有 4 小题 , 每题 4 分,共 16分)1. 设 f ( x )cos x ( x sin x ), 则 在 x0处 有() .( A ) f (0)2(B )f(0)1( C ) f (0)(D )f ( x )不行导 .2. 设 ( x)1 x, ( x ) 3 33 x ,则当 x 1时() 1 x.(A ) ( x)与 (x) 是同阶无量小,但不是等价无量小; (B ) ( x)与 (x)是等价无量小;(C ) ( x)是比(x)高阶的无量小;(D )( x)是比(x)高阶的无量小 .F ( x ) x ( 2t x ) f ( t ) dt3. 0, 此中 f ( x) 在 区 间 上 ( 1,1) 二阶可导且若f ( x ) 0 ,则() .(A )函数 F ( x)必在 x 0 处获得极大值;(B )函数 F ( x)必在 x 0 处获得极小值;(C )函数 F ( x) 在 x 0 处没有极值,但点 (0, F (0)) 为曲线 yF ( x) 的拐点;(D )函数F ( x) 在 x 0 处没有极值,点 (0, F (0)) 也不是曲线 yF ( x) 的拐点。
设 f ( x )是 连续 函 数, 且 f ( x )x21)4. f ( t )dt , 则 f ( x ) (x 2x 22(A ) 2(B )2(D ) x 2.(C )x 1二、填空题(本大题有 4 小题,每题25.lim ( 13 x ) sin xx06. 已知cos x是 f ( x ) 的一个原函数 ,x.4 分,共 16 分).则 f ( x )cos xd xxlim(cos 2 cos 2 2L cos 2 n 1 )7.nnnnn12x 2 arcsin x 1dx- 11 x28..2三、解答题(本大题有 5 小题,每题 8 分,共 40 分)9. 设函数 y y(x) 由方程 ex ysin( xy )1确立,求y ( x )以及1 x 710.求x(1 x 7 ) dx ..y (0) .设 f ( x )xex,x求 1 f ( x )dx .2 xx 2, 0 x1311.1lim f ( x)f (x)g( x )f ( xt ) dtA12.设函数 连续,,且xx, 为常数. 求Ag (x)并议论g ( x)在 x处的连续性 .y(1)113. 求微分方程xy2 y x ln x 知足 9的解.四、 解答题(本大题10 分),过点(01,),且曲线上任一点14. 已知上半平面内一曲线yy( x )( x 0) M ( x 0 , y 0 ) 处切线斜率数值上等于此曲线与x 轴、 y 轴、直线x x所围成面积的 2 倍与该点纵坐标之和,求此曲线方程 .五、解答题(本大题 10 分)15. 过坐标原点作曲线ylnx的切线,该切线与曲线yln x及 x 轴围成平面图形 D.(1) 求 D 的面积 A ;(2) 求 D 绕直线 x = e 旋转一周所得旋转体的体积V.六、证明题(本大题有 2 小题,每题 4 分,共 8 分)16. 设函 数 f ( x ) 在 0,1上 连 续 且单 调 递减 ,证 明对 随意 的 q [ 0,1] ,q1 f ( x ) d xq f ( x)dx.17. 设函数f ( x )在0,f ( x ) d xf ( x ) cos x dx 0上连续,且 0,0 .证明:在 0, 内起码存在两个不一样的点1 ,2,使f ( 1 ) f ( 2 ) 0.(提x F ( x )f ( x )dx示:设)解答一、单项选择题 (本大题有 4 小题, 每题 4 分, 共 16分)1、 D2、 A3、 C4、C二、填空题(本大题有4 小题,每题 4 分,共 16 分)5. e 61 ( cos x )2 c 3..6. 2 x .7.2. 8. 三、解答题(本大题有5 小题,每题 8 分,共 40 分) 9. 解:方程两边求导e x y (1 y ) cos( xy )( xyy) 0y ( x )e x yy cos(xy )exy x cos(xy )x0, y0 , y (0)110. 解:ux 7 7 x 6 dx du原式1 (1 u ) du 1 ( 12 )du 7 u(1 u) 7 u u 112ln | u 1|)c(ln | u |71ln | x 7|2ln |1 x 7 | C771f ( x )dxxe1 2x x 2dx11. 解:xdx33xd ( e x)12dx1 ( x 1)3xexex0 0cos2d (令 x1 sin )324 2e 3 112. 解:由f (0)0 ,知 g(0)0。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷一、选择题(共12分)1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( ).(A)1 (B)2 (C)3 (D)-12. (3分)已知(3)2,f '=则0(3)(3)lim 2h f h f h→--的值为( ). (A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ). (A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ).(A)必不可导 (B)一定可导(C)可能可导 (D)必无极限二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. (3分) 1241(sin )x x x dx -+=⎰ . 3. (3分) 201lim sin x x x→= . 4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分)1. (6分)求20ln(15)lim .sin 3x x x x→+2. (6分)设2,1y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +⎰4. (6分)求30(1),f x dx -⎰其中,1,()1cos 1, 1.x x x f x x e x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程00cos 0y xt e dt tdt +=⎰⎰所确定,求.dy6. (6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4. (7分)求函数y x =+[5,1]-上的最小值和最大值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明标准答案一、 1 B; 2 C; 3 D; 4 A.二、 1 31;y x =+ 2 2;33 0;4 0. 三、 1 解 原式205lim3x x x x →⋅= 5分 53= 1分 2 解22ln ln ln(1),12x y x x ==-++ 2分2212[]121x y x x '∴=-++ 4分 3 解 原式221ln(1)(1)2x d x =++⎰ 3分 222212[(1)ln(1)(1)]21x x x x dx x=++-+⋅+⎰ 2分 2221[(1)ln(1)]2x x x C =++-+ 1分 4 解 令1,x t -=则 2分3201()()f x dx f t dt -=⎰⎰ 1分1211(1)1cos t t dt e dt t -=+++⎰⎰ 1分 210[]t e t =++ 1分 21e e =-+ 1分5 两边求导得cos 0,y e y x '⋅+= 2分 cos y x y e '=-1分 cos sin 1x x =- 1分 cos sin 1x dy dx x ∴=- 2分 6 解 1(23)(23)(22)2f x dx f x d x +=++⎰⎰ 2分 21sin(23)2x C =++ 4分7 解 原式=23323lim 12n n n ⋅→∞⎛⎫+ ⎪⎝⎭4分 =32e 2分四、1 解 令ln ,x t =则,()1,t t x e f t e '==+ 3分()(1)t f t e dt =+⎰=.t t e C ++ 2分 (0)1,0,f C =∴= 2分().x f x x e ∴=+ 1分2 解 222cos x V xdx πππ-=⎰ 3分 2202cos xdx ππ=⎰ 2分 2.2π= 2分3 解 23624,66,y x x y x '''=-+=- 1分 令0,y ''=得 1.x = 1分当1x -∞<<时,0;y ''< 当1x <<+∞时,0,y ''> 2分(1,3)∴为拐点, 1分该点处的切线为321(1).y x =+- 2分 4 解1y '=-= 2分 令0,y '=得3.4x = 1分35(5)5 2.55,,(1)1,44y y y ⎛⎫-=-+≈-== ⎪⎝⎭ 2分∴ 最小值为(5)5y -=-+最大值为35.44y ⎛⎫= ⎪⎝⎭ 2分五、证明()()()()()()bba a x a xb f x x a x b df x '''--=--⎰⎰ 1分 [()()()]()[2()b b a a x a x b f x f x x a b dx ''=----+⎰ 1分[2()()b a x a b df x =--+⎰ 1分{}[2()]()2()b b a a x a b f x f x dx =--++⎰ 1分()[()()]2(),b a b a f a f b f x dx =--++⎰ 1分移项即得所证. 1分。
大一(第一学期)高数期末考试题及答案(完整版).doc
大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x y e y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰03()x xd e --=-+⎰⎰0232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷及答案详解IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】大一高等数学期末考试试卷一、选择题(共12分)1.(3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为(). (A)1(B)2(C)3(D)-12.(3分)已知(3)2,f '=则0(3)(3)lim 2h f h f h→--的值为(). (A)1(B)3(C)-1(D)123.(3分)定积分22ππ-⎰的值为(). (A)0(B)-2(C)1(D)24.(3分)若()f x 在0x x =处不连续,则()f x 在该点处().(A)必不可导(B)一定可导(C)可能可导(D)必无极限二、填空题(共12分)1.(3分)平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为.2.(3分)1241(sin )x x x dx -+=⎰. 3.(3分)201lim sin x x x→=. 4.(3分)3223y x x =-的极大值为. 三、计算题(共42分)1. (6分)求20ln(15)lim .sin 3x x x x →+2. (6分)设y =求.y '3. (6分)求不定积分2ln(1).x x dx +⎰4. (6分)求30(1),f x dx -⎰其中,1,()1cos 1, 1.x x x f x x e x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程00cos 0y xt e dt tdt +=⎰⎰所确定,求.dy6. (6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4. (7分)求函数y x =[5,1]-上的最小值和最大值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明标准答案一、1B;2 C;3D;4 A.二、131;y x =+22;330;40. 三、1解原式205lim 3x x x x →⋅=5分 53=1分2解22ln ln ln(1),12x y x x ==-++2分2212[]121x y x x '∴=-++4分 3解原式221ln(1)(1)2x d x =++⎰3分 222212[(1)ln(1)(1)]21x x x x dx x=++-+⋅+⎰2分 2221[(1)ln(1)]2x x x C =++-+1分 4 解令1,x t -=则2分3201()()f x dx f t dt -=⎰⎰1分1211(1)1cos t t dt e dt t-=+++⎰⎰1分 210[]t e t =++1分 21e e =-+1分5 两边求导得cos 0,ye y x '⋅+=2分 cos y x y e '=-1分 cos sin 1x x =-1分 cos sin 1x dy dx x ∴=-2分 6 解1(23)(23)(22)2f x dx f x d x +=++⎰⎰2分 21sin(23)2x C =++4分7 解原式=23323lim 12n n n ⋅→∞⎛⎫+ ⎪⎝⎭4分 =32e 2分 四、1解令ln ,x t =则,()1,t tx e f t e '==+3分 ()(1)t f t e dt =+⎰=.t t e C ++2分(0)1,0,f C =∴=2分().x f x x e ∴=+1分2 解222cos x V xdx πππ-=⎰3分 2202cos xdx ππ=⎰2分 2.2π=2分 3 解23624,66,y x x y x '''=-+=-1分令0,y ''=得 1.x =1分当1x -∞<<时,0;y ''<当1x <<+∞时,0,y ''>2分 (1,3)∴为拐点,1分该点处的切线为321(1).y x =+-2分4解1y '=-=2分 令0,y '=得3.4x =1分35(5)5 2.55,,(1)1,44y y y ⎛⎫-=-+≈-== ⎪⎝⎭2分∴ 最小值为(5)5y -=-+最大值为35.44y ⎛⎫= ⎪⎝⎭2分 五、证明()()()()()()bba a x a xb f x x a x b df x '''--=--⎰⎰1分 [()()()]()[2()bb a a x a x b f x f x x a b dx ''=----+⎰1分[2()()b a x a b df x =--+⎰1分{}[2()]()2()b b a a x a b f x f x dx =--++⎰1分 ()[()()]2(),b a b a f a f b f x dx =--++⎰1分 移项即得所证.1分。
大一高数期末考试试题及答案word
大一高数期末考试试题及答案word一、选择题(每题5分,共30分)1. 设函数f(x)=2x-3,求f(5)的值。
A. 7B. 5C. 13D. 11答案:C2. 已知数列{an}满足a1=1,an+1=2an+1,求a3的值。
A. 5B. 3C. 7D. 9答案:A3. 计算定积分∫(0到1) x^2 dx。
A. 1/3B. 1/2C. 1D. 2答案:A4. 设函数g(x)=x^3-6x^2+11x-6,求g(2)的值。
A. 1B. 5C. 9D. 13答案:B5. 求极限lim(x→0) (sin x)/x。
A. 0B. 1C. 2D. 3答案:B6. 已知函数y=x^2-4x+c,当x=2时,y=0,求c的值。
A. 4B. 0C. -4D. 8答案:A二、填空题(每题5分,共20分)1. 设函数f(x)=x^2-6x+8,求f(1)的值。
答案:32. 计算定积分∫(0到π) sin x dx。
答案:23. 求极限lim(x→∞) (1+1/x)^x。
答案:e4. 设函数h(x)=x^3+2x^2-9x+1,求h'(x)的值。
答案:3x^2+4x-9三、解答题(每题10分,共50分)1. 求函数y=x^3-3x^2+2x-1的导数。
解:y'=3x^2-6x+22. 求函数f(x)=x^2-4x+3在区间[1,3]上的定积分。
解:∫(1到3) (x^2-4x+3) dx = (1/3x^3-2x^2+3x)|1到3 = 63. 求极限lim(x→0) (1-cos x)/x^2。
解:lim(x→0) (1-cos x)/x^2 = lim(x→0) (sin x/x) * (1/x) = 1 * 0 = 04. 设函数f(x)=x^2-6x+8,求f(x)在x=3处的切线方程。
解:f'(x)=2x-6,f'(3)=0,f(3)=1,切线方程为y=1。
5. 求函数g(x)=x^3-6x^2+11x-6的极值点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020
学年第二学期试卷(A 卷)
课程:《高等数学》
一、填空题:(每空 3分,共 30分)
(说明:将运算结果....
填写在每小题相应的横线) 1.设函数22
()30
x x f x x b
x ⎧+<=⎨
+≥⎩ 在0x =处连续,则常数b = . 2.如果0sin 3lim
1x x
kx
→=,则k = .
3.如果()f x 在0x 处可导,则00(2)()
lim x h
f x h f x h
→+-= .
4.设函数1
y x
=
,当x 时此函数为无穷小量,当x 时此函数为无穷大量. 5.曲线2
2
4x xy y ++= 在点(2,2)-处的切线方程为 . 6.函数1
()lg(5)
f x x =
-定义域为 .
7.曲线3
352y x x =-++的拐点是 .
8.曲线1
2
x y x +=
-的水平渐近线为 ,铅直渐近线为 . 9.设x e -是()f x 的一个原函数,则()f x dx =⎰ .
10. 1
31
5sin xdx -=⎰
.
二、选择题:(每题5分,共 15 分)
(说明:将认为正确答案的字母填写在每小题相应的括号内) 1.下列函数在1x =-处连续,但不可导的是【 】. A.1y x =+ B.2ln(1)y x =+ C. 1
1
y x =
+ D. 2(1)y x =+ 2.设2
11x y x
-=+,则1x =-是函数的【 】.
A.连续点
B. 可去间断点
C.跳跃间断点
D. 无穷间断点
3.下列等式不正确是【 】.
A. 1
2
lim(12)x
x x e →+= B. 110
lim(1)
x
x x e --→-=
C. sin lim
0x x x →∞= D. 0tan lim 1x x
x
→=
4.设
()(n f x x n =为自然数),则(1)()n f x +=【 】.
A. !n
B. (1)!n +
C. 0
D. ∞ 5.设 ()f x '存在且连续,则(())df x '=⎰
【 】.
A. ()f x
B. ()f x '
C. ()f x C '+
D. ()f x C +
三、计算与应用题:(每题4分,共40分)
1. 求3
4
lim sin 2x x π
→
.
2.求0sin 2lim
4x x
x
→.
3.求20
x →.
4.求33221
lim 43
x x x x x →∞+-++
5.已知 11()()y x x x x
=-+ ,求 y '.
6.设函数3
ln y x =,求dy .
7.求方程 3
sin e x
y x y += 所确定的隐函数()y f x =的导数.
8.函数6
(1)y x =+ ,求(0)y ''.
四、应用题:(共15分)
1. 求函数3
2
()6152f x x x x =--+的极值和拐点.。