人教版八年级下册数学第十六章单元测试题

合集下载

第十六章 二次根式 单元测试 人教版八年级数学下册

第十六章   二次根式    单元测试  人教版八年级数学下册

2022年春人教版初中八年级数学下册第十六章二次根式班级:________ 姓名:________ 分数:________ 一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( )A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是()A.0.1B. 3C.12D.x33.当x=0时,二次根式4+2x的值等于( ) A.4 B.2 C. 2 D.04.下列各式中不正确的是( )A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±2 5.计算18×12的结果是()A.6 B.6 2 C.6 3 D.6 66.代数式x+1x在实数范围内有意义时,x的取值范围为( )A.x>-1 B.x≥-1 C.x≥-1且x≠0 D.x≠07.如果12·x是一个正整数,那么x可取的最小正整数值为( ) A.2 B.4 C.3 D.128. 2,5,m 是某三角形三边的长,则(m -3)2+(m -7)2等于( )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( )A.-xB.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( )A .16 6 cm 2B .40 cm 2C .8 6 cm 2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 022二、填空题:每小题4分,共16分.13. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__ _.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __ __.15.(河北模拟)32+8=a b ,则ab =__ __.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__ __.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本题满分12分)计算:(1)⎝⎛⎭⎪⎪⎫27-43÷3;(2)20.75+12-|3-2|;(3)-12÷2-13×12+1224;(4)(5+3)(5-3)-(3-1)2.18.(本题满分10分)计算: (1)239a +a4-a 1a;(2)48a 2÷2a 2·⎝ ⎛⎭⎪⎪⎫-232a .19.(本题满分10分 求代数式a +1-2a +a 2的值,其中a =1 007,如图是小亮和小芳的解答过程: (1)________的解法是错误的;(2)求代数式a +2a 2-6a +9的值,其中a =-2 022.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.21.(本题满分10分)如图,有一张边长为6 3 cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.22.(本题满分10分)先化简,再求值.⎝⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝⎛⎭⎪⎪⎫4y x y +36xy ,其中x =32,y =3.23.(本题满分12分)已知x =3+2,y =3-2,求: (1)x 2-y 2的值; (2)x y +yx 的值.24.(本题满分12分)据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5(不考虑风速的影响).(1)求从40 m高空抛物到落地时间;(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x 2+2的有理化因式是1+x 2+2. (2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如: 11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2.【知识理解】(1)填空:2x 的有理化因式是________; (2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________.【启发运用】(3)计算:11+2+13+2+12+3+…+1n +1+n .参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( B)A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是( B)A.0.1B. 3C.12D.x33.当x=0时,二次根式4+2x的值等于( B) A.4 B.2 C. 2 D.04.下列各式中不正确的是( A)A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±2 5.计算18×12的结果是(D)A.6 B.6 2 C.6 3 D.6 66.代数式x+1x在实数范围内有意义时,x的取值范围为( C)A.x>-1 B.x≥-1 C.x≥-1且x≠0 D.x≠07.如果12·x是一个正整数,那么x可取的最小正整数值为( C) A.2 B.4 C.3 D.128. 2,5,m是某三角形三边的长,则(m-3)2+(m-7)2等于( D )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( A ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( D )A.-xB.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( A )A .16 6 cm 2B .40 cm 2C .8 6 cm 2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( D )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 022【解析】先求出a 1,a 2,a 3,…,a n 的值,代入原式利用公式1n (n +1)=1n -1n +1进行化简与计算,即可求解. 二、填空题:每小题4分,共16分.13. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__4__.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __2__.15. 32+8=a b ,则ab =__10__.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__-52__. 三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)计算:(1)⎝ ⎛⎭⎪⎪⎫27-43÷3; 解:原式=⎝⎛⎭⎪⎫33-233÷3=73. (2)20.75+12-|3-2|; 解:原式=3+23-(2-3)=43-2.(3)-12÷2-13×12+1224; 解:原式=-6-2+6=-2.(4)(5+3)(5-3)-(3-1)2.解:原式=5-9-(3-23+1)=-8+2 3.18.(本题满分10分)计算: (1)239a +a 4-a 1a ; 解:原式=2a +12a - a =32a. (2)48a 2÷2a 2·⎝ ⎛⎭⎪⎪⎫-232a . 解:原式=⎝⎛⎭⎪⎫-4× 12× 23·8a 2·2a ·2a =-1623. 19.(本题满分10分) 求代数式a +1-2a +a 2的值,其中a =1 007,如图是小亮和小芳的解答过程:(1)________的解法是错误的;(2)求代数式a +2a 2-6a +9a =-2 022.解:(1)小亮. (2)∵a =-2 022,∴a +2a 2-6a +9=a +2(a -3)2=a +2|a -3| =a +2(3-a)=-a +6,=2 022+6=2 028.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.解:∵9<11<16,∴3<11<4,∴2<11-1<3,∴a=2,∴b=11-1-2=11-3,∴(11+2)(11-3+1)=(11+2)(11-2)=11-4=7.21.(本题满分10分) 如图,有一张边长为6 3 cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.解:(1)制作长方体盒子的纸板的面积为(63)2-4×(3)2=108-12=96(cm2).(2)长方体盒子的体积为(63-23)(63-23)×3=43×43×3=483(cm3).22.(本题满分10分)先化简,再求值.⎝ ⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝ ⎛⎭⎪⎪⎫4y x y +36xy ,其中x =32,y =3. 解:原式=6xy +3xy -4xy -6xy=-xy , 当x =32,y =3时,原式=-32×3=-322. 23.(本题满分12分) 已知x =3+2,y =3-2,求:(1)x 2-y 2的值;(2)x y +y x的值.解:(1)∵x =3+2,y =3-2,∴x +y =(3+2)+(3-2)=23,x -y =(3+2)-(3-2)=22, ∴x 2-y 2=(x +y)(x -y)=23×22=4 6. (2)xy =(3+2)(3-2)=1, 则x y +y x =x 2+y 2xy =(x +y )2-2xy xy =(23)2-2×11=10.24.(本题满分12分) 据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t =h 5(不考虑风速的影响). (1)求从40 m 高空抛物到落地时间;(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?解:(1)由题意知h=40 m,t=h5=405=8=22(s).(2)不正确,理由:当h2=80 m时,t2=805=16=4(s),∵4≠2×22,∴不正确.(3)当t=6 s时,6=h5,h=180 m,鸡蛋产生的动能=10×0.05×180=90(J).25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x2+2的有理化因式是1+x2+2.(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如:11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2. 【知识理解】(1)填空:2x 的有理化因式是________;(2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________. 【启发运用】(3)计算:11+2+13+2+12+3+…+1n +1+n. 解:(1)∵2x ×x =2x ,∴2x 的有理化因式是x.故答案为x.(2)①原式=7-6(7+6)(7-6)=7- 6. ②原式=32-17(32+17)(32-17)=32-17. 故答案为①7-6;②32-17.(3)原式=2-1(1+2)(2-1)+3-2(3+2)(3-2)+2-3(2+3)(2-3)+…+n +1-n (n +1+n )(n +1-n ), =2-1+3-2+2-3+…+n +1-n ,=n +1-1.。

2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)

2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)

2022-2023学年人教新版八年级下册数学《第16章二次根式》单元测试卷一.选择题(共12小题,满分36分)1.化简(﹣)2的结果是()A.﹣5B.5C.±5D.252.下列各式中,一定是二次根式的是()A.B.C.D.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥5C.x≥﹣5D.x≤54.二次根式的值等于()A.﹣2B.±2C.2D.45.下列计算正确的是()A.=±3B.C.D.6.若是最简二次根式,则a的值可能是()A.﹣2B.2C.D.87.的有理化因式是()A.B.C.D.8.下列二次根式中能与合并的是()A.B.C.D.9.若是整数,则正整数n的最小值是()A.4B.5C.6D.710.如图,在数轴上所表示的x的取值范围中,有意义的二次根式是()A.B.C.D.11.已知二次根式,则下列各数中能满足条件的a的值是()A.4B.3C.2D.112.如果+有意义,那么代数式|x﹣1|+的值为()A.±8B.8C.与x的值无关D.无法确定二.填空题(共10小题,满分30分)13.化简的值是,把4化成最简二次根式是.14.计算:÷=.15.若是整数,则最小正整数n的值为.16.使得二次根式在实数范围内有意义的x的取值范围是.17.化简=.18.如果最简二次根式与是同类二次根式,那么x的值为.19.若是整数,则正整数n的最小值是.20.已知n是正整数,是整数,则n的最小值是.21.已知+=0,则+=.22.小明做数学题时,发现=;=;=;=;…;按此规律,若=(a,b为正整数),则a+b=.三.解答题(共5小题,满分54分)23.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.24.(1)通过计算下列各式的值探究问题:①=;=;=;=.探究:对于任意非负有理数a,=.②=;=;=;=.探究:对于任意负有理数a,=.综上,对于任意有理数a,=.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:﹣﹣+|a+b|.25.当a取什么值时,代数式取值最小?并求出这个最小值.26.阅读下面解题过程,并回答问题.化简:解:由隐含条件1﹣3x≥0,得x∴1﹣x>0∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x按照上面的解法,试化简:.27.已知+2=b+8.(1)求a的值;(2)求a2﹣b2的平方根.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:(﹣)2=5.故选:B.2.解:A、x<0时,不是二次根式,故此选项错误;B、x<﹣2时,不是二次根式,故此选项错误;C、是二次根式,故此选项正确;D、当x>0时,不是二次根式,故此选项错误;故选:C.3.解:∵x﹣5≥0,∴x≥5.故选:B.4.解:原式=|﹣2|=2.故选:C.5.解:A、=3,故本选项错误;B、=,故本选项错误;C、=5,故本选项错误;D、==,故本选项正确.故选:D.6.解:∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中﹣2,,8都不合题意,∴a的值可能是2.故选:B.7.解:的有理数因式是,故选:A.8.解:A、,不能与合并,错误;B、,能与合并,正确;C、,不能与合并,错误;D、,不能与合并,错误;故选:B.9.解:∵=3,∴正整数n的最小值是5;故选:B.10.解:从数轴可知:x≥﹣3,A.当﹣3≤x<3时,无意义,故本选项不符合题意;B.当x≥﹣3时,有意义,故本选项符合题意;C.当﹣3≤x≤3时,无意义,故本选项不符合题意;D.当x=﹣3时,无意义,故本选项不符合题意;故选:B.11.解:由题意可知:1﹣a≥0,解得:a≤1.故选:D.12.解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.二.填空题(共10小题,满分30分)13.解:=;4=4×=.故答案是;.14.解:原式===4.故答案为:4.15.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.16.解:∵二次根式在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.17.解:原式===2,故答案为:2.18.解:∵最简二次根式与是同类二次根式,∴2x﹣1=5,∴x=3.故答案为:3.19.解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.20.解:==3,∵是整数,∴n的最小值是3,故答案为:3.21.解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.22.解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三.解答题(共5小题,满分54分)23.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.24.解:(1)①=4;=16;=0;=.探究:对于任意非负有理数a,=a.故答案为:4,16,0,,a;②=3;=5;=1;=2.探究:对于任意负有理数a,=﹣a.综上,对于任意有理数a,=|a|.故答案为:3,5,1,2,﹣a,|a|;(2)观察数轴可知:﹣2<a<﹣1,0<b<1,a﹣b<0,a+b<0.原式=|a|﹣|b|﹣|a﹣b|+|a+b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.25.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.26.解:由隐含条件2﹣x≥0,得x≤2,则x﹣3<0,所以原式=|x﹣3|﹣(2﹣x)=﹣(x﹣3)﹣2+x=﹣x+3﹣2+x=1.27.解:(1)由题意知a﹣17≥0,17﹣a≥0,则a﹣17=0,解得:a=17;(2)由(1)可知a=17,则b+8=0,解得:b=﹣8,故a2﹣b2=172﹣(﹣8)2=225,则a2﹣b2的平方根为:±=±15.。

【3套】人教版数学八年级下册第十六章测试(含解析答案)

【3套】人教版数学八年级下册第十六章测试(含解析答案)

人教版数学八年级下册第十六章测试(含解析答案)一、选择题1.下列各式中,属于二次根式的有( )①; ②;③;④;⑤;⑥(a≤0).A.2个B.3个C.4个D.5个2. (2014·聊城模拟)函数y=中自变量x的取值范围是( )A.x>2B.x<2C.x≠2D.x≥23. (2014·广州模拟)已知|a-1|+=0,则a+b=( )A.-8B.-6C.6D.84.若1≤a≤,则+|a-2|的值是( )A.6+aB.-6-aC.-aD.15.化简×+的结果是( )A.5B.6C. D.56.下列根式中不是最简二次根式的是( )A. B. C. D.7.若x-y=-1,xy=,则代数式(x-1)(y+1)的值等于( )A.2+2B.2-2C.2D.28.(2013·昆明)下列运算正确的是( )A.x6+x2=x3B.=2C.(x+2y)2=x2+2xy+4y2D.-=9.(2014·杭州模拟)已知m=×(-2),则有( )A.5<m<6B.4<m<5C.-5<m<-4D.-6<m<-510.计算÷的结果是( )A.-B.C.D.二、填空题11.如图所示,矩形内两相邻正方形的面积分别是3和8,那么矩形内阴影部分的面积是 (结果可用根号表示).12.当x 时,=1-2x.13.计算:-= .14.我们赋予“※”一个实际含义,规定a ※b=·+,则3※5= . 15.(7-5)2 012×(-7-5)2 013= .16.将一组数,2,,2,,…,2按如下方法进行排列:2 2 23 2 22 4 6若3在第2行第3列的位置记为(2,3),2在第3行第2列的位置记为(3,2),则这组数中最大的有理数的位置记为 .三、解答题17.计算下列各题: (1)÷×;(2)(-2)(+2);(3)--+.18.先化简,再求值:÷,其中a=5-,b=-3+.19.若x,y为实数,且y=++,求-的值.20.已知M=-,N=.甲、乙两个同学在y=++18的条件下分别计算了M和N的值.甲说M的值比N 大,乙说N的值比M大.请你判断谁的结论是正确的,并说明理由.21.阅读下列材料,然后回答问题.在进行二次根式运算时,我们有时会碰上形如,,的式子,其实我们还可以将其进一步化简:==;(一)==;(二)===-1.(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====-1.(四)(1)请用不同的方法化简.①参照(三)式得= ;②参照(四)式得= .(2)化简:+++…+.参考答案1.答案:D 解析:属于二次根式的有①②③⑤⑥,共5个.2.答案:A 解析:根据题意得x-2≥0且x-2≠0.解得x>2.3.答案:B 解析:因为|a-1|+=0,所以a-1=0,7+b=0,解得a=1,b=-7,所以a+b=-6.4.答案:D 解析:原式=|a-1|+|a-2|=a-1-(a-2)=1.5.答案:D 解析:×+=+=+=3+2=5.6.答案:C 解析:==2,被开方数中含有开得尽方的因数,因此不是最简二次根式.7.答案:B 解析:(x-1)(y+1)=xy+x-y-1=+-1-1=2-2.8.答案:D解析:A.本选项不能合并,错误;B.=-2,本选项错误;C.(x+2y)2=x2+4xy+4y2,本选项错误;D.-=3-2=,本选项正确.9.答案:A 解析:m=×(×)=×()2×=2,因为25<28<36,所以<2<,即5<2<6.10.答案:A 解析:原式=÷=-÷=-.11.答案:2-3 解析:S阴影=(-)×=2-3.12.答案:≤解析:由题意得1-2x ≥0,解得x≤.13.答案:2 解析:原式=2+-=2.14.答案:解析:3※5=×+=+=.15.答案:-7-5解析:原式=[(7-5)×(-7-5)]2 012×(-7-5)=(50-49)2 012×(-7-5)=-7-5.16.答案:(17,2) 解析:将各个数都还原为带有根号的式子,不难发现,被开方数是连续的偶数.2=,因为204÷2÷6=17,即2是(17,6),所以是最大的有理数,即(17,2).17.解:(1)÷×==;(2)(-2)(+2)=2-12=-10;(3)--+=2-3-+=-.18.解:化简得原式=,因为a=5-,b=-3+,所以原式===1.19.答案: 解:由已知可得x=,y=,化简得原式=2,把x,y的值代入,可得原式=2=.20.解:乙的结论正确.理由:由y=++18,可得x=8,y=18.因此,M=-==-=-=-;N===0.所以M<N,即N的值比M大.21.解:(1)①===-;②====-.(2)原式=+++…+=+++…+=.人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C.9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c )A. 2a -2cB. -2cC. 2bD.2a11、已知a ,b a 、b ,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1abD.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是()C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)aa b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: 121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+ 同理可得:32321-=+ 从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1;18、±3三、解答题19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+; 四、解答题21、22、;23、2017;24、-a五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0.(3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版(湖北)八年级数学下册:第十六章单元检测题一、选择题(每小题3分,共30分)1.下列式子一定是二次根式的是(C)A.3-xB.-5C.x2+1D.3 42.下列二次根式中,x的取值范围是x≥3的是(C)A.3-xB.6+2xC.2x-6D.1 x-33.下列二次根式中,是最简二次根式的是(A)A.2xy B.ab2 C.0.1 D.x4+x2y24.下列二次根式,不能与12合并的是(B)A.48B.0.3C.113D.-755.下列各式运算正确的是(C) A.2+3= 5 B.2+2=2 2C.3 2-2=2 2 D.18-82=9-4=3-2=16.设5=a,6=b,用含a,b的式子表示 2.7,则下列表示正确的是(A) A.0.3ab B.3ab C.0.1ab2D.0.1a2b7.化简(-4)2+32-(-2 3)2的结果是(A)A.-5 B.18 C.-13 D.118.等式x+1x-1=x+1x-1成立的条件是(A)A.x>1 B.x<-1 C.x≥1 D.x≤-19.已知y<2x-6+6-2x+3,化简(y-3)2+2x-y2-8y+16为(C)A.2y-13 B.13-2y C.5 D.310.已知正整数a,m,n满足a2-42=m-n,则这样的a,m,n的取值(A)A.有一组B.有两组C.多于两组D.不存在二、填空题(每小题3分,共18分)11.化简:18x2y3(x>0,y>0)=.12.比较大小:2 3__<__3 2.13.如果最简二次根式3a-8与17-2a能够合并,那么a的值为__5__.14.若(2a-1)2=1-2a,则a的取值范围为________.15.观察下列式子:1+112+122=112,1+122+132=116,1+132+142=1112……根据此规律,若1+1a2+1b2=1190,则a2+b2=__181__.16.已知a ,b ,c 满足a =2b +2,且ab +32c 2+14=0,则bc a 的值为__0__. 三、解答题(共72分)17.(8分)计算:(1) 27-12+13; (2) (48-75)×113; 【解析】原式=4 33. 【解析】原式=-2.(3) (48+4 6)÷27; (4) (23-5)(23+5)-(5-3)2.【解析】原式=43+432. 【解析】原式=-1+2 15.18.(8分)先化简,再求值:(a -1+2a +1)÷(a 2+1),其中a =2-1. 【解析】原式=1a +1=22.19.(8分)已知a +1a =6,求a -1a ,a 2-1a2的值. 【解析】(a +1a )2=a 2+1a 2+2=6,∴a 2+1a 2=4.∴(a -1a )2=a 2+1a 2-2=2.∴a -1a=±2.∵(a 2+1a 2)2=a 4+1a 4+2=16,∴a 4+1a 4=14.∴(a 2-1a 2)2=a 4+1a 4-2=12,∴a 2-1a 2=±2 3.20.(8分)一个三角形的三边长分别为23 27x ,24 x 12,1x75x 3,其中x >0. (1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值.【解析】(1)周长=113x.(2)当x =3时,周长=33.21.(8分)化简求值:(1)已知x =5-12,求x 2+x -1的值; 【解析】原式=0.(2)已知x +y =-4,xy =2,求x y +y x的值. 【解析】原式=(x +y )xy xy=-2 222.(10分)已知长方形的长a =1232,宽b =1318. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.【解析】(1)2(a +b)=2×(1232+1318)=2×(2 2+2)=6 2.故长方形的周长为6 2.(2)4 ab =4 12 32×13 18=4 2 2×2=4×2=8.因为6 2>8,所以长方形的周长大.23.(10分)全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失的时间近似地满足如下的关系式:d =7×t -12(t ≥12).其中d 代表苔藓的直径,单位是厘米;t 代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,请问冰川约是多少年前消失的?【解析】(1)d =7×t -12,当t =16时,d =7×16-12=14.即冰川消失16年后苔藓的直径为14厘米.(2)在d =7×t -12中,当d =35时,35=7×t -12,即t -12=5,解得t =37.即苔藓的直径是35厘米时,冰川约是37年前消失的.24.(12分)解答下列各题:(1)已知x =3+23-2,y =3-23+2,求x 3-xy 2x 4y +2x 3y 2+x 2y 3的值; 【解析】x =(3+2)2=5+2 6,y =(3-2)2=5-2 6,∴x -y =4 6,xy =1,x +y =10.∴原式=x -y xy (x +y )=2 65.(2)当x =1-2时,求x x 2+a 2-x x 2+a 2+2x -x 2+a 2x 2-x x 2+a 2+1x 2+a 2的值. 【解析】令m =x 2+a 2,则x 2+a 2=m 2.原式=x m (m -x )+2x -m x (x -m )+1m =(m -x )2mx (m -x )+1m =1x=-1- 2.。

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。

人教版八年级数学下册第十六章测试卷及答案

人教版八年级数学下册第十六章测试卷及答案

人教版八年级数学下册第十六章测试卷及答案一.选择题(共10小题,每小题3分,共30分)1.在下列各式中,不是二次根式的有( )同号,且A.3个 B.2个 C.1个 D.0个2.( )A.3-2+1 B.3+2-1 C.3+2+1 D.3-2-13. 下列式子中,为最简二次根式的是( )A4. 下列计算错误的是( )A BC D5.下列计算正确的是( )A.32=6 B.(-25)3=-85C.(-2a2)2=2a4 D6.若实数a,b满足ab>0,则化简( )A7.( )A.5和6之间 B.6和7之间C.7和8之间 D.8和9之间8.若x<0,( )A.0 B.-2 C.0或2 D.29.已知a,b,c为△ABC的三边长,|b-c|=0,则△ABC的形状是( ) A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10. 已知实数x,y满足:y( )A..5二.填空题(共8小题,每小题3分,共24分)11.计算_______.12. 已知a <2,_________.13.如图是一个简单的数值运算程序,当输入x ,则输出的值为________.输入x →→输出14.在△ABC 中,a,b,c 为三角形的三边长,化简2|c -a -b|=________.15.x 的取值范围是________.16.实数a,b 在数轴上对应点的位置如图所示,______.17.某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B 处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n(n >1)倍,且钢梁保持水平,则弹簧秤读数为________(N)(用含n,k 的代数式表示).18.已知三角形的三边长分别为a,b,c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S 其中p =a +b +c 2;我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S 若一个三角形的三边长分别为2,3,4,则其面积是________.三.解答题(共7小题, 66分)19.(8分) 计算下列各式:;20.(8分) 先化简,再求值:a 2-b 2a ÷(a -2ab -b 2a ),其中a 2,b 2.21.(8分) 已知x 2,求(9+2-2)x +4的值.22.(8分) 已知实数a,b 满足(4a -b +11)20,求1的值.23.(10分)如图,用两个边长均为的小正方形拼成一个大的正方形.(1)求大正方形的边长;(2)沿此大正方形边的方向能否剪出一张长.宽之比为4∶3,且面积为720 cm 2的长方形纸片?若能,试求出剪出的长方形纸片的长与宽;若不能,试说明理由.24.(10分) 先阅读材料,再回答问题:已知x1,求x2+2x-1的值.计算此题时,若将x1直接代入,则运算非常麻烦.仔细观察代数式,发现由x1,得x+1所以(x+1)2=3.整理,得x2+2x=2.再代入求值会非常简便.解答过程如下:解:由x1,得x+1∴(x+1)2=3.整理,得x2+2x=2,∴x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x2,求6-2x2+8x的值.25.(14分) (1)用"="">""<"填空:4++16________2+5________2(2)由(1)中各式猜想m+n与,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成长方形的花圃,如图所示,花圃恰好可以借用一段墙体,为了围成面积为200 m2的花圃,所用的篱笆至少为多少米?参考答案1-5BABCD 6-10ABDBD12. 2-a14. -a -3b +3c15. x>216. -2a 17.k n19. 解:(1)原式=2=5;(2)原式=20.解:原式=(a +b)(a -b)a ÷a 2-2ab +b 2a =(a +b)(a -b)a ·a(a -b)2=a +b a -b .当a 2,b 2时,21. 解:原式=(9+2)2-2)+4=(9+--1+4=81-80-1+4=422. 解:由题意得{4a -b +11=013b -4a -3=0解得{a =14b =12.则1==14×14×223. 解:(1)30(cm)(2)不能,理由如下:设长方形纸片的长为4x cm,宽为3x cm,则4x·3x =720,解得x =∴4x =30,∴不能剪出符合要求的长方形纸片24. 解:由x 2,得x -2∴(x -2)2=5.整理,得x 2-4x =1,∴6-2x 2+8x =6-2(x 2-4x)=6-2×1=4.25. 解:(1)>;>;=(2)m 理由如下:当m≥0,n≥0时2≥0,∴2-2≥0.∴m -∴m (3)设花圃平行于墙的一边长为a m,垂直于墙的一边长为b m,则a >0,b >0,ab =200.根据(2)中的结论可得a 2×20=40,∴所用的篱笆至少为40 m.。

人教版数学八年级下册第十六章二次根式单元测试题附答案

人教版数学八年级下册第十六章二次根式单元测试题附答案

人教版数学八年级下册第十六章二次根式一、单选题(共10题;共20分)1.下列等式中,成立的是()A. B. C. D.2.在函数y= 中,自变量的取值范围是()A. ≠0B. ≠3C. >3D. ≤33.下列二次根式中的最简二次根式是()A. B. C. D.4.下列二次根式:,,,,,,是最简二次根式的有()A. 2个B. 3个C. 4个D. 5个5.已知长方形的面积为12,其中一边长为2 ,则另一边长为( )A. 2B. 3C. 3D. 26.若a+b= ,ab=1,则式子的值为()A. B. C. D.7.化简:的结果是()A. B. C. D.8.如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()A. x≤10B. x≥10C. x<10D. x>109.等式成立的条件是()A. x≠3B. x≥0C. x≥0且x≠3D. x>310.已知是正整数,则实数n的最大值为()A. 12B. 11C. 8D. 3二、填空题(共9题;共33分)11.① ________;② ________.12.若,那么的化简结果是________.13.若二次根式与能合并,则x可取的最小正整数是________.14.最简二次根式与是同类二次根式,则a=________,b=________.15.下列各式:① ;② ;③ ;④. 其中正确的是________(填序号).16.化简的结果为________17.若实数x,y,m满足等式,则m+4的算术平方根为________.18.若成立,则x满足________19.等式中的括号应填入________三、计算题(共2题;共20分)20.计算(1)(2)21.计算(1)(2)四、解答题(共4题;共20分)22.已知y<+ +3,化简|y﹣3|﹣.23.先化简,再求值:,其中a= .24.已知+ =0,求的值.25.方老师想设计一个长方形纸片,已知长方形的长是cm,宽是cm,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.五、综合题(共2题;共17分)26.先阅读下列解答过程,然后再解答:形如的化简,只要我们找到两个正数,使,,使得,,那么便有:例如:化简解:首先把化为,这里,由于,即:,,所以。

人教版八年级数学下册 第16章 二次根式 单元测试试题解析版

人教版八年级数学下册 第16章 二次根式 单元测试试题解析版

单元测试题章二次根式人教版八年级数学下册第16小题)一.选择题(共10) 1.矩形的面积为18,一边长为,则另一边长为(24.. CAD. B.) 2、.在根式、中,可以与、进行合并的有(、个.43个 D个 B.2个 C.A.1).计算﹣的结果是(35DC..A.25 B. 2).二次根式的值等于( 44D.C.2BA.﹣2 .±2x)的取值范围是(5 .若二次根式在实数范围内有意义,则xxxx2D..≥ A.C≥≤ B.≤2a)的值为(.若<0 ,则6aa32﹣﹣2 D.A.3 B.﹣3 C.3) 7,.下列各式中,,,,,中,最简二次根式有(个.5 3个C.4个 D.A2个B.baab﹣,则、8.若),=两数的关系是(=1.互为负倒数.互为倒数 C.相等 D.互为相反数A Bn,则最后输出的结果是(值为)9.按如图所示的程序计算,若开始输入的.8+5 D16 C..14+.A14 Bxxx)=( 10.已知(﹣1()= +1),则D .5+. 5B5A.﹣.﹣2C5+2 小题)8二.填空题(共x.有意义,则.如果二次根式11.ba,则这个矩形的面积是12.已知矩形的长,宽==.=.计算:13×.﹣4×14.分母有理化:=.=15.化简:.xy=.是同类二次根式,则 +16.已知最简二次根式和n的最小值为.17.若是正整数,则整数22mnmnnm=.已知18,则代数式1+ + .+3 的值为,﹣=1三.解答题(共7小题)19.计算:(1)2)(yyxy的值.+3,都是实数,且+1=,求20.若acbabC在数轴上的位置如图所示,化简:、|﹣、21﹣|.实数+﹣|+﹣1|.aab.+为整数,求是同类二次根式,与根式22.求最简根式.阅读材料:23Scpba==,记如果一个三角形的三边长分别为,,那么这个三角形的面积,.这个公式叫“海伦公式”,它是利用三角形三条边的边长直接求三角形面积的公式.中国的秦九韶也得出了类似的公式,称三斜求积术,故这个公式又被称为“海伦秦﹣﹣﹣九韶公式”完成下列问题:ABCabc=6.5=,如图,在△中,7=,ABC的面积; 1()求△ABhAChhh +,2()设边上的高为边上的高为,求的值.2121.年后,一种植物苔藓就开始在1224.全球气候变暖导致一些冰川融化并消失,在冰川消失岩石上生长,每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失的年限,近似地满ddt代表苔藓的直径,单位为厘米,它代表=),其中7(12≥足如下的关系式:冰川消失的时间,单位为年. 16年后苔藓的直径;(1)计算冰川消失 14厘米,问冰川约在多少年前消失的?(2)如果测得一些苔藓的直径是.先阅读下列解答过程,然后再解答:25nbabamab,使得形如的化,,,使=简,只要我们找到两个正数+=m那么便有:,=,ba>()例如:化简nm,即:×3=12化为474+3127,这里=,=,由于=,解:首先把,=7,所以.问题:①填空:==,;(请写出计算过程)②化简:参考答案与试题解析一.选择题(共10小题)根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可. 1.【分析】,一边长为【解答】解:∵矩形的面积为 18,3,∴另一边长为=C.故选:【点评】本题考查了矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解此题的关键..【分析】对各个二次根式化简,找出与是同类二次根式的项即可. 2,,【解答】解:,个.2共、进行合并的有中,可以与、、、、∴在根式B.故选:【点评】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式..【分析】首先化简二次根式,然后再合并同类二次根式即可.3,=2﹣【解答】解:3=﹣C.故选:【点评】此题主要考查了二次根式的加减,关键是正确把二次根式进行化简. 4.【分析】直接利用二次根式的性质化简求出答案..=﹣【解答】解:原式=|2|2C故选:.正确掌握二次根式的性质是解题关键.【点评】此题主要考查了二次根式的性质与化简,.【分析】直接利用二次根式有意义的条件分析得出答案.5【解答】解:∵二次根式在实数范围内有意义,x,04﹣2∴≥x解得:≤.A故选:.正确把握二次根式的定义是解题关键.此题主要考查了二次根式有意义的条件,【点评】.aa|,然后去绝对)﹣【分析】利用二次根式的性质和绝对值的意义得到原式=﹣(|﹣3.6值后合并即可.a<0,【解答】解:∵aa| )﹣∴原式=﹣(|﹣3aa +3+=﹣=3.A.故选:【点评】本题考查了二次根式的性质与化简:熟练掌握二次根式的性质进行二次根式的化简与计算.7.【分析】最简二次根式是指被开方数不含分母、不含还能再开方的数的二次根式,据此逐个式子分析即可.a的次数大于2中【解答】解:,不是最简二次根式;没法化简了,属于最简二次根式;是最简二次根式;根号下含义分母,不是最简二次根式;2×3,还能化简,不是最简二次根式;其中的12=2中含有分母,不是最简二次根式.综上,是最简二次根式的有2个.A.故选:【点评】本题考查了最简二次根式的识别,明确最简二次根式的定义,是解题的关键.本题属于基础知识的考查,比较简单.a分母有理化化简后,判断即可..【分析】把 8ba,﹣1=,【解答】解:化简得:1﹣===ba则互为相反数,与A.故选:【点评】此题考查了分母有理化,熟练掌握运算法则是解本题的关键. 9.【分析】根据给出的运算程序计算即可.nnn,15<2+)=+1(时,=【解答】解:当.nnn8+5>15,+1当)==时,2+ (C故选:.【点评】本题考查的是二次根式的混合运算,掌握二次根式的混合运算法则是解题的关键.10.【分析】根据一元一次方程的解法即可求出答案.xx+1),1 )=【解答】解:∵((﹣xx+,∴=﹣xx=+,∴﹣x5+2==∴,C.故选:【点评】本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.二.填空题(共8小题)11.【分析】根据二次根式被开方数是非负数列出不等式,解不等式得到答案.【解答】解:∵二次根式有意义,x,﹣2≥∴0x,≥2解得, 2故答案为:≥.【点评】本题考查的是二次根式应用的条件,掌握二次根式被开方数是非负数是解题的关键. 12.【分析】根据矩形的面积公式列出算式,根据二次根式的乘法法则计算,得到答案.ab【解答】解:矩形的面积==×3×××=44,=故答案为:4.【点评】本题考查的是二次根式的应用,掌握二次根式的乘法法则是解题的关键.然后把二次根式化为最简二次根式后合并即.13先利用二次根式的乘法法则运算,【分析】可.×4 【解答】解:原式=﹣=﹣2=.故答案为.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.【分析】根据分母有理化法则计算.=﹣1,【解答】解:=.﹣1故答案为:【点评】本题考查的是分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.15.【分析】根据二次根式的性质即可求出答案.3a≥0,【解答】解:∵﹣a≤0,∴aa, |=﹣∴原式=|a故答案为:﹣【点评】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.【分析】根据同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.进行解答即可.和是同类二次根式,【解答】解:∵最简二次根式∴,xy=4,,解得:4=xy=4+4=+8,∴故答案为:8.【点评】本题考查了同类二次根式,解答本题的关键在于熟练掌握同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.n的值. 17.【分析】先化简二次根式,然后依据化简结果为整数可确定出n是整数,【解答】解:∵是正整数,n的最小值是3.∴故答案是:3.【点评】本题主要考查的是二次根式的定义,熟练掌握二次根式的定义是解题的关键. 18.【分析】直接将原式变形进而把已知代入求出答案.nm【解答】解:∵==1+1,﹣,22mnnm +∴+32mnnm)=(++2))(1﹣)﹣+(1+=(1++1=4+1﹣3=2.故答案为:2.【点评】此题主要考查了二次根式的化简求值,正确将原式变形是解题关键.三.解答题(共7小题)19.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.)原式= 1【解答】解:(=;)原式=2(18+6+1+3﹣2 =.20+6=【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.x=4,然20,解不等式组可得.【分析】首先根据二次根式有意义的条件可得:yyy的值.+3的值,进而可得可得+1=后再代入.【解答】解:由题意得:,x 4解得:,=y 1则,=y 5.=2+3=+3【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.cabcba|||,再根据二次根式的性质和绝对值0<<|,|>21.【分析】根据数轴得出|<>的意义进行计算,最后合并同类项即可.cabcba|, |>,|||【解答】解:从数轴可知:><|<0<bac﹣﹣1|所以﹣||++﹣|baaccbb+1)()﹣(+)﹣(=﹣﹣+baaccbb﹣+++1 =﹣﹣﹣b﹣1=.【点评】本题考查了数轴,二次根式的性质和绝对值,能正确根据二次根式的性质和绝对值进行计算是解此题的关键.abbab﹣232|知|,由3,﹣==22=.【分析】化简二次根式aaa为整数知8是最简二次根式,且根据≤求得,结合≤aaaa=7,进一步检验可得答案.5或3或4=或 1=或==b|,=| 【解答】解:化简得:ba,=2∵3﹣ab﹣2∴=3,,即∵,a 8≤解得≤,a∵为整数,是最简二次根式,且aaaaa=7, 4或=5或∴=1或=3或=abab=2+;当时,=1,此时=1ba,不是同类二次根式,舍个根式为2,第个根式为1,此时第7=时,3=当.去;ba个根式为,第2个根式化简后是12,舍去;=4时,=10,此时第当ba个根式是个根式为,舍去;2,此时第1当=5时,,第=13ba,第当=7时,2=19,此时第1个根式化简后是个根式为1,舍去;ba.综上的值为+2 【点评】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.cbppa,,的值代入题中所列面积公式计算即可;123.【分析】()根据题意先求,,再将hh和)按照三角形的面积等于×底×高分别计算出的值,再求和即可.(221p9)根据题意知==【解答】解.(1S==6=所以ABC∴△;的面积为6bhchS6==)∵(2=21hh6==×5∴×6 21hh 2,∴==21hh=+∴.21【点评】本题考查了二次根式在三角形面积计算中的应用,读懂题中所列的海伦公式并正确运用,是解题的关键.td的值,直接把对应数值代入关系时,=1624.【分析】(1)根据题意可知分别是求当式即可求解;dt的值,直接把对应数值代入关系式即可求解. 14(2)根据题意可知是求当时,=cmdt; 2=1416时,==77××【解答】解:(1)当=ttd=1416时,年.412=,解得=2,即﹣)当(2=cm,冰川约是在1614年前消失的. 16答:冰川消失年后苔藓的直径为【点评】本题主要考查了平方根、算术平方根概念的运用.会根据题意把数值准确的代入对应的关系式中是解题的关键.25.【分析】①②仿照例题、根据完全平方公式、二次根式的性质解答即可.,+1===【解答】解:①.=+2=,=+2故答案为: +1;;=﹣2②=.=【点评】本题考查的是二次根式的化简,掌握完全平方公式、二次根式的性质是解题的关键.。

人教版八年级数学下册16章单元测试题(含答案)

人教版八年级数学下册16章单元测试题(含答案)

13.计算:人教版八年级数学下册 16章单元测试题(含答案)C .馮十届3D .極"石 二.填空题(共5小题)10 .已知n 为整数,则使 .I 为最小正有理数的n 的值是 三.解答题(共6小题) 11.直接写出答案 一 = --------- ;「•=2. 3. 4. 5. •选择题(共5小题) F 列式子一定是二次根式的是( Jx-2 F 列二次根式中,无论x 取什么值都有意义的是( ) B . 一 I C . _ ‘: D.,- 化简::的结果是( )A . 5 B .- 5 C . i5 D . 25 F 列根式中属于最简二次根式的是(C . :■:D . :F 列运算结果正确的是()7. 计算:■: 1,-' =8计算::9.计算:低-x 「,=12.化简: (1) 'X Tn ;(2)X ! -...( 3).丨-■'..(4)6 .若代数式 Zr 在实数范围内有意义,则x 的取值范围是⑴—一一:.(2).:"宀「:.(3)^_13.计算:1 (4) 6 一:-三15.计算:(1) 4x 2 …, •:二(3)(.「.-)宁; (4)( 口+3)(「+2) (5)( 2 --二)2.(6)壮::;_ 门 :- j ■ .■: ' j _ •16.观察下列的计算: 11腿十1)(近T )14•计算: (1) 2 ' X.-:.(2)2.,.-(3)(4)I : •(V3-V2(血+阿+•••+ . ___ _____ V2013+-W4 1 + 1 + 11+V2 72+V3 V3+V4二J ;-二根据你的观察发现,可得代数式)><(•• .| +1)的结果为(4)人教版八年级数学下册16章单元测试题参考答案.选择题(共5小题) 2=「「=64(4) 642x. - -; :2(2) 3 (3) (5) 2 :;=6 (6) 2xy=x 2(3)原式 原式=3 : 拼144 14.解:(1)原式=4 :■: =15.(2)原式V33 原式=W3 - 6远+昭=8鹿 36. x7. 2017 .8. 3 .9.卜目.10. 3+2 :八: ■J:_ |=」儿|一|=2°. 5三.解答题(共6小题) 11. 2 -、 ; 5a \ 15.解:(1)原式=4x 2^12X 3/iy -=- x 3©6X2 原式=2. -X - X2 原式=一宀:;=.;. (4)原式 V6 」'-:'■'= :;. (4)原式=12 】■- 4 :=8 - (5)原式=3近-4和俊皿=0. (6)原式二 1 , 3 , 4一 2 — 12.解:(1) 'X I 几=3 .飞 (2) (3) 「I -;■ = 亟沖丄44 V 169 13.解:(1)原式=31 ;X5 : 1. C 2. D . 3 . A . 4 . A . 5 . B . .填空题(共5小题) 原式= (2) =x 心 丄8=4,y 2x —Xis.<12. - 13 13 ■- x ■- (3) 原式=「-1 =2 一 -1:(5) 6 6 原式=5+2 广+3 .口+6=11+5 仃; 原式=20 - 4 I i+2=22 - 4 Hi .13(6)原式=5 - 2+3- 2 . -;+1=7 - 2 ;•16.解:由题意给出的等式可知:原式二(並-1+血-呵血-屆…+ 殛区-畅忑)X (•应014 +1)=(“2014 - 1)(也014+1)=2014-仁2013。

人教版八年级下册第16章二次根式单元测试含答案

人教版八年级下册第16章二次根式单元测试含答案

第十六章 《二次根式》单元测试题一、选择题(本大题共10小题,每小题2分,共20分) 1. 下列式子必然是二次根式的是( ) A.2--xB.xC.22+xD.22-x2. 二次根式13)3(2++mm 的值是( )A. 23B. 32C.22D. 03. 若13-m 成心义,则m 能取的最小整数值是( ) A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( )A. 0B. -2C. 0或-2D. 25. 下列二次根式中属于最简二次根式的是( )A.14B.48C.baD.44+a6. 若是)6(6-=-•x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数7. 小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯;③a aa a a =•=112;④a a a =-23。

做错的题是( ) A. ① B. ② C. ③D. ④8. 化简6151+的结果是( ) A.3011B. 33030C.30330D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( ) A. 43-=a B. 34=aC. 1=aD. 1-=a10. 若n 75是整数,则正整数n 的最小值是( ) A. 2B. 3C. 4D. 5二、填空题(本大11. 若b =-32)(12. 2)52(-=13. 若m < 0,则m 14.231-与15. 若35-=x ,16. 若一个长方体的17. 若3+-=x y 18. 若3的整数部19. 已知a ,b ,c 为三20. 观看下列各式:的式子写出你猜三、解答题(本大21. 计算(本题共(1))224(-(3))(632(+22. (5分)已知:23. (10分)已知32-=x ,32+=y ,求下列代数式的值: (1)222y xy x ++;(2)22y x -24. (7分)海伦—秦九韶公式:若是一个三角形三边长别离为a ,b ,c ,设2cb a p ++=,则三角形的面积为))()((c p b p a p p S ---=,用公式计算下图三角形的面积。

人教版八年级数学下册第十六章二次根式单元测试卷(含答案)

人教版八年级数学下册第十六章二次根式单元测试卷(含答案)

⼈教版⼋年级数学下册第⼗六章⼆次根式单元测试卷(含答案)第⼗六章⼆次根式单元测试卷题号⼀⼆三总分得分⼀、选择题(每题3分,共30分)1.要使⼆次根式错误!未找到引⽤源。

有意义,x必须满⾜()A.x≤2B.x≥2C.x>2D.x<22.下列⼆次根式中,不能与错误!未找到引⽤源。

合并的是()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

3.下列⼆次根式中,最简⼆次根式是()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

4.下列各式计算正确的是()A.错误!未找到引⽤源。

+错误!未找到引⽤源。

=错误!未找到引⽤源。

B.4错误!未找到引⽤源。

-3错误!未找到引⽤源。

=1C.2错误!未找到引⽤源。

×3错误!未找到引⽤源。

=6错误!未找到引⽤源。

D.错误!未找到引⽤源。

÷错误!未找到引⽤源。

=35.下列各式中,⼀定成⽴的是()A.错误!未找到引⽤源。

=(错误!未找到引⽤源。

)2B.错误!未找到引⽤源。

=(错误!未找到引⽤源。

)2C.错误!未找到引⽤源。

=x-1D.错误!未找到引⽤源。

=错误!未找到引⽤源。

·错误!未找到引⽤源。

6.已知a=错误!未找到引⽤源。

+1,b=错误!未找到引⽤源。

,则a与b的关系为()A.a=bB.ab=1C.a=-bD.ab=-17.计算错误!未找到引⽤源。

÷错误!未找到引⽤源。

×错误!未找到引⽤源。

的结果为()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

8.已知a,b,c为△ABC的三边长,且错误!未找到引⽤源。

+|b-c|=0,则△ABC的形状是()A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.等腰直⾓三⾓形9.已知a-b=2错误!未找到引⽤源。

-1,ab=错误!未找到引⽤源。

人教版八年级数学下册第十六章《二次根式》单元检测试卷及答案解析

人教版八年级数学下册第十六章《二次根式》单元检测试卷及答案解析

人教版八年级数学下册第十六章《二次根式》单元检测试卷(附答案解析)一、选择题1、若是整数,则正整数n 的最小值是( )A .2B .3C .4D .5 2、如图,将1、、三个数按图中方式排列,若规定(a ,b )表示第a 排第b 列的数,则(8,2)与表示的两个数的积是( )A .B .C .D .13、若与|x ﹣y ﹣3|互为相反数,则x +y 的值为 ( )A .3B .9C .12D .27 4、实数a 、b 在轴上的位置如图所示,且|a|>|b|,则化简的结果为【 】A .2a +bB .-2a +bC .bD .2a -b 5、关于的叙述正确的是( )A .在数轴上不存在表示的点B .=+C .,±2D .与最接近的整数是36、下列二次根式中,最简二次根式是( )A .-B .C .D .7、在式子,,,中,x 可以取2和3的是( )A .B .C .D .8、下列各组数中,两数相乘,积为1的是( )A .2和-2B .-2和C .和D .和-9、下列运算正确的是( ) A .+= B .×=C .(-1)2=3-1 D .=5-310、已知x 1=+,x 2=-,则x ₁²+x ₂²等于( )A .8B .9C .10D .11三、填空题11、计算:×=___。

12、当_________时,二次根式有意义。

13、已知三角形三边的长分别为cm,cm,cm ,则它的周长为_____cm 。

14、已知xy>0,化简二次根式x 的正确结果是_________。

15、若y =++1,则x-y =_____。

16、对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13,那么◇=_____。

四、解答题17、计算:(1)4+-+4(2)÷3×(-5)18、若a =3-,求代数式a 2-6a -2的值.19、已知等式|a -2 018|+=a 成立,求a -2 0182的值.20、拦河坝的横断面是梯形,如图,其上底是m ,下底是m ,高是m.(1)求横断面的面积;(2)若用300 m 3的土,可修多长的拦河坝?21、阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用表示(其中,n ≥1).这是用无理数表示有理数的一个范例。

人教版八年级下第十六章单元测试

人教版八年级下第十六章单元测试

人教版八年级下第十六章单元测试一、选择题(共10小题;共50分)1. 计算的结果是A. B. C. D.2. 若成立,则的取值范围为A. B. C. D. 或3. 下列各式中能与合并的是A. B. D.4. 估计的运算结果应在A. 到之间B. 到之间C. 到之间D. 到之间5. 下列二次根式中属于最简二次根式的是A. B. D.6. 下列各式计算正确的是A. B.C. D.7. 已知,为实数,且,则的值为A. B. C.8. 下列算式();();();();(,.其中正确的有A. 个B. 个C. 个D. 个9. 下列计算中,正确的是B. C. D.10. 下列式子中正确的是A. B.C. D.二、填空题(共6小题;共30分)11. 计算:.12. .13. .14. 当整数时,是最简二次根式.15. 已知最简根式和是同类根式,则,.16. 计算:.三、解答题(共9小题;共117分)17. 计算:(1).(2).18. 计算:(1);(2);(3);(4.19. 将下列二次根式化成最简二次根式..20. (1)化简:;(2)计算:.21. 当是怎样的实数时,下列各式在实数范围内有意义?(1);(2;(3);(4).22. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如,善于思考的小明进行了以下探索:设(其中,,,均为整数),则有.,,这样小明就找到了一种把类似的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当,,,均为正整数时,若,用含,的式子分别表示,,得,;(2)利用所探索的结论,换一组正整数,,,填空:();(3)若,且,,均为正整数,求的值.23. 阅读下列解答过程,回答下列问题:若二次根式和是同类二次根式,求的值.解:因为是二次根式,所以.又因为与是同类二次根式,所以.即解得所以.(1)以上过程有错误吗?若有错误,请改正错误;(2)体验以上解答过程,并完成下题:若与是同类二次根式,求的值.24. 已知,且为偶数,求的值.25. 已知,,求的值.答案第一部分1. A2. B3. C4. C5. A6. B7. D8. B9. B10. C第二部分11.12.13.14.15. ,16.第三部分17. (1)(2)18. (1)(2)(3)(4)19. .20. (1)(2)21. (1).(2).(3).(4).22. (1);(2);;;(答案不唯一)(3)由题意,得:,.,且,为正整数,,或者,,,或.23. (1)有错误,应先将化为最简二次根式.(2).24. 由题意,得即,为偶数,,,当时,.25. 由得所以.。

人教版数学八年级下册第十六单元测试试卷(含答案)(2)

人教版数学八年级下册第十六单元测试试卷(含答案)(2)

人教版数学8年级下册第16单元·一、选择题(共12小题,满分36分,每小题3分)1.(3分)下列计算正确的是( )A.+=B.×=C.―=D÷+=+2.(3分)实数a,b,c在数轴上的对应点如图所示,化简﹣a+|b﹣a|+A.﹣b﹣c B.c﹣b C.2a﹣2b+2c D.2a+b+c3.(3分)若|a﹣2|+b2+4b+4+=0―A.2―B.4C.1D.84.(3分)当x=4x3﹣2025x﹣2022的值为( )A.3B.﹣3C.1D.﹣15.(3分)下列运算正确的是( )+==⋅=2,=―3,=3.A.1个B.2个C.3个D.4个6.(3分)若2、5、n+A.5B.2n﹣10C.2n﹣6D.107.(3分)下列计算正确的是( )A.+=B.×=C=―6D÷+=+8.(3分)下列各式计算正确的是( )A.―=1B.+―2C =35D .―=159.(3分)如图,在甲、乙两个大小不同的6×6的正方形网格中,正方形ABCD ,EFGH 分别在两个网格上,且各顶点均在网格线的交点上.若正方形ABCD ,EFGH 的面积相等,甲、乙两个正方形网格的面积分别记为S 甲,S 乙,有如下三个结论:①正方形ABCD 的面积等于S 甲的一半;②正方形EFGH 的面积等于S 乙的一半;③S 甲:S 乙=9:10.上述结论中,所有正确结论的序号是( )A .①②B .②③C .③D .①②③10.(3分)如果ab >0,a +b <0,那么下列各式中正确的是( )A=B ×=1C ÷=b D .2=﹣ab 11.(3有意义,且关于分式方程2x1―3=m1x 有正整数解,则符合条件的整数m 的和是( )A .5B .3C .﹣2D .012.(3分)已知a =2020×2022﹣2020×2021,b =c =则a ,b ,c 的大小关系是( )A .a <b <cB .b <a <cC .a <c <bD .b <c <a二、填空题(共6小题,满分18分,每小题3分)13.(3分)已知a ,b +=0 .14.(3分)已知m =2+n =2― .15.(3分)把 .16.(3―=+= .17.(3分)把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在底面为长方形,宽为4cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图中两块阴影部分的周长和是 .18.(3分)已知x=则x6﹣5﹣x4+x3﹣2+2x―值三、解答题(共7小题,满分66分)19.(8分)已知:a=+2,b=―2,求:(1)ab的值;(2)a2+b2﹣3ab的值;(3)若m为a整数部分,n为b小数部分,求1的值.m n20.(8分)计算:)﹣2+|1―π﹣2)+(1)―1)+1)﹣(―13(2)(+6+1)×21.(8分)解答下列各题:(1)已知2b+1的平方根为3,3a+2b﹣1的立方根为2,求3a+2b的平方根.(2+0,求x,y的值.22.(10,通过资料的查询,他得到了该二次根式的化简过程如下====|―=―(1(2)善于动脑的小明继续探究:当a,b,m,n为正整数时,若a=+2,则有a=(m+n)+a=m+n,b=mn.若a=+2,且a,m,n为正整数,m>n求a,m,n的值.23.(10分)著名数学教育家G•波利亚,有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学会数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先阅读下列材料,再解决问题:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去里面的一层根号.例如:====1+解决问题:(1===③①: ,②: ,③ .(2+24.(11分)【阅读理解】阅读下列材料,然后解答下列问题:理数,如====2+2+2―(1 , ;(23(3)利用你发现的规律计算:++++1)的值.25.(11分)阅读下列材料,解答后面的问题:1+1=―1;+1+1=2﹣1=1;+1+1+1=1;⋯(2+++⋯+(3+⋯+×+参考答案一、选择题(共12小题,满分36分,每小题3分)1.B2.A3.A4.D5.C6.A7.B8.B9.B10.B11.A12.C;二、填空题(共6小题,满分18分,每小题3分)13.214.15.16.17.16cm18.;三、解答题(共7小题,满分66分)19.解:(1)∵a=+2,b=―2,∴ab+2)―2)=7﹣4=3;(2)∵a=+2,b=―2,ab=3,∴a2+b2﹣3ab=a2+b2﹣2ab﹣ab=(a﹣b)2﹣ab=[+2―2)]2﹣3+2―+2)2﹣3=42﹣3=16﹣3=13;(3)∵m为a整数部分,n为b小数部分,a=+2,b=―2,∴m=4,n=b=―2∴1m n===的值∴1m n20.解:(1)原式=5﹣1﹣9+―1﹣π=﹣4﹣π(2)原式=×==.=1221.解:(1)∵2b+1的平方根为3,∴2b+1=9,解得b=4,又∵3a+2b﹣1的立方根为2,∴3a+2b﹣1=8,∵b=4,∴a=1,3∴3a+2b=1+8=9,∴9的平方根为±=±3,即3a+2b的平方根为±3;(2∴3a+4=19﹣2a,解得a=3,当a=3+=0+=0,∴12﹣3x=0,y﹣3=0,解得x=4,y=3,答:x=4,y=3.22.解:(1====―1.(2)∵a=+2,∴a=(m+n)∴a=m+n,mn=17,m>n,∵a,m,n为正整数,∴m=17,n=1,∴a=17+1=18.23.解:(1===3+则①=5,②=③=3+故答案为:①5;③3+(2+=+=+=5―+2+=7.24.解:(1+―(23===+4;(3)++++1)―1+―+―+•+―+1)―1)+1)=2022﹣1=2021.25.解:(1)第4++++=―1;(2)1+++⋯+=―1 =10﹣1=9;(3)(1++⋯++=[1++⋯+1―(1+++⋯+]×+―1﹣9+―10+―10+10)=2122﹣100=2022.。

人教版八年级数学下册第十六章单元测试题(可编辑修改word版)

人教版八年级数学下册第十六章单元测试题(可编辑修改word版)

D.2
(B) 121 4
121
4 11 2
(C) 5 2 5 2
(D) 4 1 2 1 33
6、计算 1142 642 502 的值为(Βιβλιοθήκη A, 0B, 25
C, 50
7、若 x 3 ,则 1 1 x2 等于( )
) D 80
A.1
B.-1
8、下列根式不能与 48合并的是( )
a
a
A. 2 2
B.8
C. 6
D.6
二、填空题(每题 3 分,共 24 分)
11、计算: 12
3

4
12、使代数式 1 2x 有意义的 x 的取值范围是:

x1
2
13、比较大小: 2015 2014
2014 2013 (填“>”“<”或“=”)
14、若三角形的三边长分别为 a, b, c ,其中 a 和 b 满足 a 2 b2 6b 9 ,则 c 的取
的值。(4 分)
7 2
ab
5
26.(8 分) 观察下列等式:
①1
2 1 2 1 ;②
2 1 ( 2 1)( 2 1)
1
3 2
3 2 ;③
3 2 ( 3 2)( 3 2)
1
4 3
4 3 ;……
4 3 ( 4 3)( 4 3)
回答下列问题:
1
(1)利用你观察到的规律,化简:
x y (2)
x
1
y
x
1
y
2y 2 2xy
2 , 其中 x 3 2, y 3 2
23、(1)实数 a 在数轴上的位置如图所示,化简 | a 2 | a2 8a 16 (4 分)

人教版八年级数学下册第十六章二次根式单元测试

人教版八年级数学下册第十六章二次根式单元测试

第16章《二次根式》单元测试一、选择题(每题3分,共30分)1. 下列式子一定是二次根式的是( ) A .2--x B .x C .22+x D .22-x2.若b b -=-3)3(2,则( ) A .b>3 B .b<3 C .b ≥3 D .b ≤3 3.若x<0,则xx x 2-的结果是( ) A .0 B .—2 C .0或—2 D .2 424是同类二次根式的是( )A 183048 D 545.下列各式正确的是 ( )A .a a =2B .a a ±=2C .a a =2D .22a a =6.若1<x <2,则()213-+-x x 的值为( )A .2x-4 B .-2 C .4-2x D .2 7.下列各式中与327x --是同类二次根式的是( ) A .327x B .273x - C .2391x -- D .3x8.已知a<b,3a b -的结果正确的是( ) A 、ab -- B 、ab - C 、ab D 、ab -9.已知:a b =-=+152152,,则a b 227++的值( ) A. 3 B. 4 C. 5 D. 6 10.如果y x x y +=322,那么y x x y +的值等于( ) A. 32 B. 52 C. 72 D. 92二、填空题(每题3分,共18分)11、比较大小:5765--(填“>”“<”或“=” ) 12、2233x x x x --=--成立,则x 满足_______________; 13、观察思考下列计算过程:∵112=121,∴121=11,∵1112=12321,∴12321=111。

猜想:11234565432= ;14、观察下列各式:222233=+333388+44441515=+……则依次第四个式子是 ; 用)2(≥n n 的等式表达你所观察得到的规律应是 ; 15.若y x x x=-+-+36633,则10x +2y 的平方根为________; 16.若a b ab +==54,,则a b a b-+=_________. 三、解答题(17题15分,18、19题各6分,20题12分,21题6分,22题7分,共52分) 17.计算:(1)213675÷⨯ (2()2331231433+ (3))23)(23(32712-+-+18.若220x x --=,求:()2222313x x x x -+--的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册第十六章单元测试题
师院附中 李忠海
一、选择题(每题3分,共30分)
1、下列各式中①a ;②1+b ; ③2a ; ④32+a ; ⑤12-x ; ⑥122++x x 一定是二次根式的有( )个。

A . 1 个 B. 2个 C. 3个 D. 4个 21a
ab
有意义,则点P (a ,b )在( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限 3、下列二次根式中,最简二次根式是( )
(A (B (C (D 4.若x<0,则x
x x 2
-的结果是( )
A .0
B .—2
C .0或—2
D .2 5、下列计算正确的是( )
(A 4+== (B 11
2
==
(C )5+= (D )3
1
2
314=
6、计算

A, 0 B, 25 C, 50 D 80
7、若3x =-,则1 )
A .1
B .-1
C .3
D .-3 8、下列根式不能与48 合并的是( )
(A)、0.12 (B)、18 (C)、
11
3
(D)、-75
9、如果数上表示a 、b 两个数的点都在原点的左侧,且a 在b 的左侧,则的值为
2)(b a b a ++-( )
A .b 2-
B .b 2
C .a 2
D .a 2- 10
.已知1
a a
+
=1a a -的值为( )
A
.± B .8 C .错误!未找到引用源。

D .6
二、填空题(每题3分,共24分) 11
12、
使代数式
12
x -有意义的x 的取值范围是: ; 13、
- (填“>”“<”或“=”)
14、若三角形的三边长分别为,,a b c ,其中a 和b
269b b -=-,则c 的取值范围是 。

15
n 的最小值是 。

16
、若2y =++

17.
与m -m n -= 18,观察并分析下列数据,寻找规则:0
,3
,…… 那么第10个数据应是
八年级数学下册第十六章单元测试题(满分:120分时间:100分钟)一、选择题(每题3分,共30分)
二、填空题(每题3分,共24分)
11, 12, 13,
14, 15, 16,
17, 18,
三、解答题(共66分)
19,化简(每题3分,共6分)
(1(2(m≥0)
20、计算(每题3分,共12分)
①3
2
2
2
2
3
3-
-
+②)5
2
45
3
20
4(5
2+
-
③ 2+ ④ +-
21、(1)2
= (5分)
(2),若x ,y 是实数,且314114+-+-=x x y ,求)25()493
2
(3xy x xy x x +-+的值。

(5分)
22,先化简,再求值:(每题4分,共8分)
(1) )11
1
(122
2+-+÷+-x x x x x ,其中12+=x .
(2) 2
2
1122y
x y x y xy y
x ⎛⎫-÷ ⎪-+⎝⎭++
, 其中32,x =+ 32y =-
23、(1)实数a 在数轴上的位置如图所示,化简 2|2|816a a a -+-+ (4分)
(2).已知实数x,y 满足2104250x x y -+++=,则2015()x y +的值是多少?(4分)
24、(6分)已知13+=x ,13-=y ,求下列各式的值:
(1)222y xy x ++, (2)22y x -.
25(1)已知实数a 满足2(2008)2009a a a -+-=,求22008a -的值是多少?(4分)
(2)已知
x =a 是x 的整数部分,b 是x 的小数部分,求a b
a b -+的值。

(4分)
26.(8分) 观察下列等式: ①
12)
12)(12(121
21-=-+-=
+;②
23)
23)(23(2
32
31-=-+-=
+;③
34)
34)(34(3
43
41-=-+-=
+;……
回答下列问题:
(1)利用你观察到的规律,化简:11
321+
(2)计算:10
31 (2)
31
3
212
11++
+++
++
+
【素材积累】
1、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。

倘若你想达成目标,便得摘心中描绘出目标达成后的景象;那么,梦想必会成真。

求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。

桂冠上的飘带,不是用天才纤维捻制而成的,而是用痛苦,磨难的丝缕纺织出来的。

你的脸是为了呈现上帝赐给人类最贵重的礼物——微笑,一定要成为你工作醉大的资产。

2、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。

倘若你想达成目标,便得摘心中描绘出目标达成后的景象;那么,梦想必会成真。

求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。

桂冠上的飘带,不是用天才纤维捻制而成的,而是用痛苦,磨难的丝缕纺织出来的。

你的脸是为了呈现上帝赐给人类最贵重的礼物——微笑,一定要成为你工作醉大的资产。

相关文档
最新文档