高考全国卷文科数学第一轮复习讲义一数列

合集下载

新课标2023版高考数学一轮总复习第7章数列第1节数列的概念与简单表示法课件

新课标2023版高考数学一轮总复习第7章数列第1节数列的概念与简单表示法课件

所以 an=aan-n 1·aann- -12·…·aa21·a1=n+n 1·n-n 1·nn- -21·…·23=n+2 1.
2,n=1, 所以 an=2nn-1,n≥2.
已知 Sn 求 an 的步骤 (1)利用 a1=S1 求出 a1. (2)用 n-1 替换 Sn 中的 n 得到一个新的关系,利用 an=Sn-Sn- 1(n≥2)求出当 n≥2 时 an 的表达式. (3)检验 n=1 时的值是否符合 n≥2 时的表达式,再写出通项公 式 an.
式 an=59(10n-1).
1.错误地表示符号规律致误:项正负相间的数列可以用(-1)n, (-1)n+1 表示符号,要分清是先负后正还是先正后负.
2.未对项变形致误:若已知的项的形式不统一,则不便求通项 公式,因此可以先将项通过变形统一形式后再观察求通项公式,如题 (3).
3.求通项公式时要注意联想:对于如题(4)这样的数列,可以通 过联想 10,100,1 000,10 000→9,99,999,9 999→1,11,111,1 111 进而得 到通项公式.
考点2 由Sn与an的关系求通项——综合性
(1)若数列{an}的前 n 项和 Sn=n2-10n,则此数列的通项 公式为 an=________.
(2)若数列{an}的前 n 项和 Sn=2n+1,则此数列的通项公式为 an =________.
3,n=1, (1)2n-11 (2)2n-1,n≥2.
解:(1)这个数列的前 4 项的绝对值都等于序号与序号加 1 的乘 积的倒数,且奇数项为负,偶数项为正,故它的一个通项公式 an=(- 1)n·nn1+1.
(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为 1×3,3×5,5×7,7×9,9×11,…,即分母的每一项都是两个相邻奇数 的乘积,故所求数列的一个通项公式 an=2n-12n2n+1.

高考数学一轮复习讲义(新高考版) 第7章 第1讲 数列的概念及简单表示法

高考数学一轮复习讲义(新高考版) 第7章 第1讲 数列的概念及简单表示法

第1讲 数列的概念及简单表示法一、知识梳理 1.数列的有关概念 (1)数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项. (2)数列的分类 分类标准 类型 满足条件 按项数 分类 有穷数列 项数有限 无穷数列 项数无限按项与项 间的大小 关系分类递增数列 a n +1>a n 其中n ∈N *递减数列 a n +1<a n 常数列 a n +1=a n按其他 标准分类有界数列存在正数M ,使|a n |≤M摆动数列 从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列周期数列对n ∈N *,存在正整数常数k ,使a n +k =a n数列有三种表示法,它们分别是列表法、图象法和解析式法. 2.数列的通项公式 (1)数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表达,那么这个公式叫做这个数列的通项公式.(2)已知数列{a n}的前n 项和S n,则a n=⎩⎪⎨⎪⎧S 1n =1S n-S n -1n ≥2.3.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫做数列的递推公式.常用结论1.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在正整数集或其子集{1,2,3,…,n }上的函数,当自变量依次从小到大取值时所对应的一列函数值.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧a n ≥a n -1a n ≥a n +1若a n 最小,则⎩⎨⎧a n ≤a n -1a n ≤a n +1.二、教材衍化1.在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A .32B .53C .85D .23解析:选D .a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.2.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.答案:5n -4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)所有数列的第n 项都能使用通项公式表示.( ) (3)数列{a n }和集合{a 1,a 2,a 3,…,a n }是一回事.( )(4)若数列用图象表示,则从图象上看都是一群孤立的点.( ) (5)一个确定的数列,它的通项公式只有一个.( )(6)若数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n =S n -S n -1.( ) 答案:(1)× (2)× (3)× (4)√ (5)× (6)× 二、易错纠偏常见误区| (1)忽视数列是特殊的函数,其自变量为正整数集N *或其子集{1,2,…,n }; (2)根据S n 求a n 时忽视对n =1的验证.1.在数列-1,0,19,18,…,n-2n2中,0.08是它的第________项.解析:依题意得n-2n2=225,解得n=10或n=52(舍).答案:102.已知S n=2n+3,则a n=________.解析:因为S n=2n+3,那么当n=1时,a1=S1=21+3=5;当n≥2时,a n=S n-S n-1=2n+3-(2n-1+3)=2n-1(*).由于a1=5不满足(*)式,所以a n=⎩⎪⎨⎪⎧5n=12n-1n≥2.答案:⎩⎪⎨⎪⎧5n=12n-1n≥2考点一由数列的前几项求通项公式(基础型)复习指导|了解数列的概念和几种简单的表示方法(列表法、图象法和通项公式法).核心素养:逻辑推理1.数列1,3,6,10,…的一个通项公式是()A.a n=n2-(n-1)B.a n=n2-1C.a n=n(n+1)2D.a n=n(n-1)2解析:选C.观察数列1,3,6,10,…可以发现1=13=1+26=1+2+310=1+2+3+4…第n项为1+2+3+4+…+n=n(n+1)2.所以a n=n(n+1)2.2.数列{a n}的前4项是32,1,710,917,则这个数列的一个通项公式是a n=________.解析:数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.答案:2n +1n 2+13.数列3,7,11,15,…的一个通项公式是________.解析:因为7-3=11-7=15-11=4,即a 2n -a 2n -1=4,所以a 2n =3+(n -1)×4=4n -1,所以a n =4n -1.答案:a n =4n -14.已知数列{a n }为12,14,-58,1316,-2932,6164,…,则数列{a n }的一个通项公式是________.解析:各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子数比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…故其通项公式可以为a n=(-1)n·2n -32n .答案:a n =(-1)n·2n -32n解决此类问题,需抓住下面的特征: (1)各项的符号特征,通过(-1)n 或(-1)n+1来调节正负项.(2)考虑对分子、分母各个击破或寻找分子、分母之间的关系. (3)相邻项(或其绝对值)的变化特征. (4)拆项、添项后的特征.(5)通过通分等方法变化后,观察是否有规律.[注意] 根据数列的前几项求其通项公式其实是利用了不完全归纳法,蕴含着“从特殊到一般”的数学思想,由不完全归纳法得出的结果不一定是准确的!考点二 由a n 与S n 的关系求a n (基础型)复习指导| 由S n 与a n 的关系求a n .利用a n =S n -S n -1(n ≥2),求出当n ≥2时a n 的表达式.(1)(2020·湖南三市联考)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1的值为( )A .12B .14C .18D .116(2)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a 1=________,{a n }的通项公式为________.【解析】(1)因为S n=a1(4n-1)3,a4=32,所以S4-S3=255a13-63a13=32,所以a1=12,故选A.(2)数列{a n}满足a1+3a2+…+(2n-1)a n=2n,当n≥2时,a1+3a2+…+(2n-3)a n-1=2(n-1),所以(2n-1)a n=2,所以a n=22n-1.当n=1时,a1=2,上式也成立.所以a n=22n-1.【答案】(1)A(2)2a n=22n-1(1)已知S n求a n的三个步骤①先利用a1=S1求出a1;②用n-1替换S n中的n得到一个新的关系式,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式;③注意检验n=1时的表达式是否可以与n≥2的表达式合并.(2)S n与a n关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化.①利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式,再求解;②利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.1.已知数列{a n}的前n项和S n=n2+2n+1(n∈N*),则a n=________.解析:当n≥2时,a n=S n-S n-1=2n+1;当n=1时,a1=S1=4≠2×1+1.所以a n=⎩⎪⎨⎪⎧4n=12n+1n≥2.答案:⎩⎪⎨⎪⎧4n=12n+1n≥22.若数列{a n}的前n项和S n=23a n+13,则{a n}的通项公式a n=________.解析:由S n=23a n+13,得当n≥2时,S n-1=23a n-1+13,两式相减,整理得a n=-2a n-1,又当n=1时,S 1=a 1=23a 1+13,所以a 1=1,所以{a n }是首项为1,公比为-2的等比数列,故a n =(-2)n -1.答案:(-2)n -1考点三 由递推关系求通项公式(基础型)复习指导| 由数列的递推关系求通项公式常利用构造法、累加法、累乘法等.分别求出满足下列条件的数列的通项公式. (1)a 1=0,a n +1=a n +(2n -1)(n ∈N *); (2)a 1=1,a n +1=2n a n (n ∈N *); (3)a 1=1,a n +1=3a n +2(n ∈N *).【解】 (1)a n =a 1+(a 2-a 1)+…+(a n -a n -1)=0+1+3+…+(2n -5)+(2n -3)=(n -1)2,所以数列的通项公式为a n =(n -1)2.(2)由于a n +1a n =2n ,故a 2a 1=21,a 3a 2=22,…,a n a n -1=2n -1,将这n -1个等式叠乘, 得a n a 1=21+2+…+(n -1)=2n (n -1)2,故a n =2n (n -1)2,所以数列的通项公式为a n =2n (n -1)2.(3)因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3,又a 1+1=2,所以a n +1=2·3n -1,所以该数列的通项公式为a n =2·3n -1-1.由递推关系求数列的通项公式的常用方法1.在数列{a n }中,若a 1=2,a n +1=a n +2n -1,则a n =________.解析:a 1=2,a n +1=a n +2n -1⇒a n +1-a n =2n -1⇒a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1,则a n =2n -2+2n -3+…+2+1+a 1 =1-2n -11-2+2=2n -1+1.答案:2n -1+12.若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________. 解析:由na n -1=(n +1)a n (n ≥2),得a n a n -1=n n +1(n ≥2).所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n +1·n -1n ·n -2n -1·…·34×23×1=2n +1,(*)又a 1也满足(*)式,所以a n =2n +1. 答案:2n +1考点四 数列的函数特征(综合型)复习指导| 通过实例,了解数列是一种特殊函数. 核心素养:逻辑推理 角度一 数列的单调性已知数列{a n }的通项公式为a n =3n +k2n ,若数列{a n }为递减数列,则实数k 的取值范围为( )A .(3,+∞)B .(2,+∞)C .(1,+∞)D .(0,+∞)【解析】 因为a n +1-a n =3n +3+k 2n +1-3n +k 2n =3-3n -k2n +1,由数列{a n }为递减数列知,对任意n ∈N *,a n +1-a n =3-3n -k2n +1<0,所以k >3-3n 对任意n ∈N *恒成立,所以k ∈(0,+∞).故选D .【答案】 D(1)解决数列单调性问题的三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列; ②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断;③结合相应函数的图象直观判断. (2)求数列最大项或最小项的方法①可以利用不等式组⎩⎨⎧a n -1≤a na n ≥a n +1(n ≥2)找到数列的最大项;②利用不等式组⎩⎨⎧a n -1≥a na n ≤a n +1(n ≥2)找到数列的最小项.角度二 数列的周期性设数列{a n }满足:a n +1=1+a n1-a n ,a 2 020=3,那么a 1=( )A .-2B .2C .-3D .3【解析】 设a 1=x ,由a n +1=1+a n1-a n ,得a 2=1+x1-x,a 3=1+a 21-a 2=1+1+x 1-x 1-1+x1-x =-1x ,a 4=1+a 31-a 3=1-1x 1+1x =x -1x +1,a 5=1+a 41-a 4=1+x -1x +11-x -1x +1=x =a 1,所以数列{a n }是周期为4的周期数列. 所以a 2 020=a 505×4=a 4=x -1x +1=3.解得x =-2.【答案】 A解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.1.等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 取得最大值时的项数n 的值为( )A .5B .6C .5或6D .6或7解析:选C .由a 21=a 211,可得(a 1+a 11)(a 1-a 11)=0,因为d <0,所以a 1-a 11≠0,所以a 1+a 11=0, 又2a 6=a 1+a 11,所以a 6=0. 因为d <0,所以{a n }是递减数列,所以a 1>a 2>…>a 5>a 6=0>a 7>a 8>…,显然前5项和或前6项和最大,故选C .2.(2020·辽宁重点中学协作体联考)在数列{a n }中,a 1=1,a n +1-a n =sin (n +1)π2,记S n 为数列{a n }的前n 项和,则S 18=( )A .0B .18C .10D .9解析:选C .因为a n +1-a n =sin(n +1)π2, 所以a n +1=a n +sin (n +1)π2.因为a 1=1,所以a 2=a 1+sin π=1,a 3=a 2+sin 3π2=0,a 4=a 3+sin 4π2=0,a 5=a 4+sin 5π2=1,a 6=a 5+sin 6π2=1,a 7=a 6+sin 7π2=0, a 8=a 7+sin 8π2=0,…,故数列{a n }为周期数列,周期为4.所以S 18=4(a 1+a 2+a 3+a 4)+a 1+a 2=10.故选C .3.已知数列{a n }满足a n =(n -λ)2n (n ∈N *),若{a n }是递增数列,则实数λ的取值范围是________.解析:因为数列{a n }是递增数列,所以a n +1>a n ,所以(n +1-λ)2n +1>(n -λ)2n ,化为λ<n +2,对∀n ∈N *都成立.所以λ<3.答案:(-∞,3)[基础题组练]1.已知数列5,11,17,23,29,…,则55是它的( ) A .第19项 B .第20项 C .第21项D .第22项 解析:选C .数列5,11,17,23,29,…中的各项可变形为5,5+6,5+2×6,5+3×6,5+4×6,…,所以通项公式为a n =5+6(n -1)=6n -1,令6n -1=55,得n =21. 2.已知数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A .132B .116C .14D .12解析:选A .因为数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,所以a 2=a 1a 1=14,a 3=a 1·a 2=18.那么a 5=a 3·a 2=132.故选A .3.在数列{a n }中,“|a n +1|>a n ”是“数列{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B .“|a n +1|>a n ”⇔a n +1>a n 或-a n +1>a n ,充分性不成立,数列{a n }为递增数列⇔|a n+1|≥a n +1>a n 成立,必要性成立,所以“|a n +1|>a n ”是“数列{a n }为递增数列”的必要不充分条件.故选B .4.(多选)已知数列{a n }满足a n +1=1-1a n (n ∈N *),且a 1=2,则( )A .a 3=-1B .a 2 019=12C .S 3=32D .S 2 019=2 0192解析:选ACD .数列{a n }满足a 1=2,a n +1=1-1a n (n ∈N *),可得a 2=12,a 3=-1,a 4=2,a 5=12,…所以a n -3=a n ,数列的周期为3.a 2 019=a 672×3+3=a 3=-1.S 3=32,S 2 019=2 0192.5.(2020·广东广州天河毕业班综合测试(一))数列{a n }满足a 1=1,对任意n ∈N *,都有a n +1=1+a n +n ,则1a 1+1a 2+…+1a 99=( )A .9998B .2C .9950D .99100解析:选C .由a n +1=1+a n +n ,得a n +1-a n =n +1,则a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+1=n (n +1)2,则1a n =2n (n +1)=2n -2n +1, 则1a 1+1a 2+…+1a 99=2×[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫199-1100]=2×⎝⎛⎭⎫1-1100=9950.故选C . 6.若数列{a n }满足a 1·a 2·a 3·…·a n =n 2+3n +2,则数列{a n }的通项公式为________. 解析:a 1·a 2·a 3·…·a n =(n +1)(n +2), 当n =1时,a 1=6;当n ≥2时,⎩⎪⎨⎪⎧a 1·a 2·a 3·…·a n -1·a n =(n +1)(n +2)a 1·a 2·a 3·…·a n -1=n (n +1)故当n ≥2时,a n =n +2n,所以a n =⎩⎪⎨⎪⎧6n =1n +2n n ≥2n ∈N *. 答案:a n =⎩⎪⎨⎪⎧6n =1n +2n n ≥2n ∈N * 7.(2020·黑龙江大庆一中模拟)数列{a n }的前n 项和S n 满足a 2=2,S n =12n 2+An ,则A =________,数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和T n =________. 解析:因为a 2=S 2-S 1=(2+2A )-⎝⎛⎭⎫12+A =2,所以A =12. 所以当n ≥2时,a n =S n -S n -1=12n 2+12n -⎣⎡⎦⎤12(n -1)2+12(n -1)=n ,当n =1时,a 1=S 1=1满足上式,所以a n =n .所以1a n a n +1=1n (n +1)=1n -1n +1,所以T n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1. 答案::12 n n +18.(2020·重庆(区县)调研测试)已知数列{a n }的前n 项和为S n ,a 1=1,2S n =(n +1)a n ,则a n =________.解析:由2S n =(n +1)a n 知,当n ≥2时,2S n -1=na n -1,所以2a n =2S n -2S n -1=(n +1)a n -na n -1,所以(n -1)a n =na n -1,所以当n ≥2时,a n n =a n -1n -1,所以a n n =a 11=1,所以a n =n . 答案:n9.已知数列{a n }的前n 项和为S n .(1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若S n =3n +2n +1,求a n .解:(1)因为a 5+a 6=S 6-S 4=(-6)-(-4)=-2,当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合此式,所以a n =(-1)n +1·(2n -1).(2)因为当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2×3n -1+2, 由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6n =12×3n -1+2n ≥2. 10.(2020·衡阳四校联考)已知数列{a n }满足a 1=3,a n +1=4a n +3.(1)写出该数列的前4项,并归纳出数列{a n }的通项公式;(2)证明:a n +1+1a n +1=4. 解:(1)a 1=3,a 2=15,a 3=63,a 4=255.因为a 1=41-1,a 2=42-1,a 3=43-1,a 4=44-1,…,所以归纳得a n =4n -1.(2)证明:因为a n +1=4a n +3,所以a n +1+1a n +1=4a n +3+1a n +1=4(a n +1)a n +1=4. [综合题组练]1.(2020·安徽江淮十校第三次联考)已知数列{a n }满足a n +1-a n n =2,a 1=20,则a n n的最小值为( )A .4 5B .45-1C .8D .9 解析:选C .由a n +1-a n =2n 知a 2-a 1=2×1,a 3-a 2=2×2,…,a n -a n -1=2(n -1),n ≥2, 以上各式相加得a n -a 1=n 2-n ,n ≥2,所以a n =n 2-n +20,n ≥2,当n =1时,a 1=20符合上式,所以a n n =n +20n-1,n ∈N *, 所以n ≤4时a n n 单调递减,n ≥5时a n n单调递增, 因为a 44=a 55,所以a n n 的最小值为a 44=a 55=8,故选C . 2.(多选)在数列{a n }中,a n =(n +1)⎝⎛⎭⎫78n,则数列{a n }中的最大项可以是( )A .第6项B .第7项C .第8项D .第9项 解析:选AB .假设a n 最大,则有⎩⎪⎨⎪⎧a n ≥a n +1a n ≥a n -1即⎩⎪⎨⎪⎧(n +1)⎝⎛⎭⎫78n ≥(n +2)⎝⎛⎭⎫78n +1(n +1)⎝⎛⎭⎫78n ≥n ·⎝⎛⎭⎫78n -1所以⎩⎪⎨⎪⎧n +1≥78(n +2)78(n +1)≥n 即6≤n ≤7,所以最大项为第6项或第7项. 3.(2020·河南焦作第四次模拟)已知数列{a n }的通项公式为a n =2n ,记数列{a n b n }的前n项和为S n ,若S n -22n +1+1=n ,则数列{b n }的通项公式为b n =________. 解析:因为S n -22n +1+1=n ,所以S n =(n -1)·2n +1+2.所以当n ≥2时,S n -1=(n -2)2n +2,两式相减,得a n b n =n ·2n ,所以b n =n ;当n =1时,a 1b 1=2,所以b 1=1.综上所述,b n =n ,n ∈N *.故答案为n .答案:n4.(2020·新疆一诊)数列{a n }满足a 1=3,a n -a n a n +1=1,A n 表示{a n }的前n 项之积,则A 2 019=________.解析:由a n -a n a n +1=1,得a n +1=1-1a n, 又a 1=3,则a 2=1-1a 1=23,a 3=1-1a 2=1-32=-12,a 4=1-1a 3=1-(-2)=3, 则数列{a n }是周期为3的周期数列,且a 1a 2a 3=3×⎝⎛⎭⎫23×⎝⎛⎭⎫-12=-1,则A 2 019=(a 1a 2a 3)·(a 4a 5a 6)·…·(a 2017a 2 018a 2 019)=(-1)673=-1.答案:-15.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值;(2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2; 同理a 3=3,a 4=4.(2)S n =12a 2n +12a n,① 当n ≥2时,S n -1=12a 2n -1+12a n -1,②①-②得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n .6.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围.解:(1)依题意得S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ),即b n +1=2b n ,又b 1=S 1-3=a -3,因此,所求通项公式为b n =(a -3)2n -1,n ∈N *.(2)由(1)可知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2, a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎡⎦⎤12·⎝⎛⎭⎫32n -2+a -3, 所以,当n ≥2时,a n +1≥a n ⇒12⎝⎛⎭⎫32n -2+a -3≥0⇒a ≥-9,又a 2=a 1+3>a 1,a ≠3.所以,所求的a 的取值范围是[-9,3)∪(3,+∞).。

2023年高考数学一轮复习讲义——等比数列

2023年高考数学一轮复习讲义——等比数列

§6.3 等比数列 考试要求 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.了解等比数列与指数函数的关系. 知识梳理1.等比数列的有关概念(1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,此时,G 2=ab .2.等比数列的有关公式(1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧ na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1. 3.等比数列的性质(1)通项公式的推广:a n =a m ·q n -m (m ,n ∈N *).(2)对任意的正整数m ,n ,p ,q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k .(3)若等比数列前n 项和为S n ,则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列(m 为偶数且q =-1除外).(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .(5)若⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1,则等比数列{a n }递增. 若⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1,则等比数列{a n }递减. 常用结论1.若数列{a n },{b n }(项数相同)是等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1a n ,{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 也是等比数列. 2.等比数列{a n }的通项公式可以写成a n =cq n ,这里c ≠0,q ≠0.3.等比数列{a n }的前n 项和S n 可以写成S n =Aq n -A (A ≠0,q ≠1,0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)等比数列的公比q 是一个常数,它可以是任意实数.( × )(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( × )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a .( × ) (4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( × )教材改编题1.已知{a n }是等比数列,a 2=2,a 4=12,则公比q 等于( ) A .-12 B .-2 C .2 D .±12答案 D解析 设等比数列的公比为q ,∵{a n }是等比数列,a 2=2,a 4=12, ∴a 4=a 2q 2,∴q 2=a 4a 2=14, ∴q =±12. 2.在各项均为正数的等比数列{a n }中,a 1a 11+2a 6a 8+a 3a 13=25,则a 6+a 8=______. 答案 5解析 ∵{a n }是等比数列,且a 1a 11+2a 6a 8+a 3a 13=25,∴a 26+2a 6a 8+a 28=(a 6+a 8)2=25.又∵a n >0,∴a 6+a 8=5.3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数为________. 答案 1,3,9或9,3,1解析 设这三个数为a q ,a ,aq , 则⎩⎨⎧ a +a q +aq =13,a ·a q ·aq =27,解得⎩⎪⎨⎪⎧ a =3,q =13或⎩⎪⎨⎪⎧a =3,q =3, ∴这三个数为1,3,9或9,3,1.题型一 等比数列基本量的运算例1 (1)(2020·全国Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n等于( )A .2n -1B .2-21-n C .2-2n -1D .21-n -1 答案 B解析 方法一 设等比数列{a n }的公比为q ,则q =a 6-a 4a 5-a 3=2412=2. 由a 5-a 3=a 1q 4-a 1q 2=12a 1=12,得a 1=1.所以a n =a 1q n -1=2n -1,S n =a 1(1-q n )1-q=2n -1, 所以S n a n =2n -12n -1=2-21-n . 方法二 设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3q 2-a 3=12,①a 4q 2-a 4=24, ② ②①得a 4a 3=q =2.将q =2代入①,解得a 3=4.所以a 1=a 3q 2=1,下同方法一. (2)(2019·全国Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.答案 1213解析 设等比数列{a n }的公比为q ,因为a 24=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.教师备选1.已知数列{a n }为等比数列,a 2=6,6a 1+a 3=30,则a 4=________.答案 54或24解析 由⎩⎪⎨⎪⎧ a 1·q =6,6a 1+a 1·q 2=30,解得⎩⎪⎨⎪⎧ q =3,a 1=2或⎩⎪⎨⎪⎧q =2,a 1=3,a 4=a 1·q 3=2×33=54或a 4=3×23=3×8=24.2.已知数列{a n }为等比数列,其前n 项和为S n ,若a 2a 6=-2a 7,S 3=-6,则a 6等于() A .-2或32 B .-2或64C .2或-32D .2或-64答案 B解析 ∵数列{a n }为等比数列,a 2a 6=-2a 7=a 1a 7,解得a 1=-2,设数列的公比为q ,S 3=-6=-2-2q -2q 2,解得q =-2或q =1,当q =-2时,则a 6=(-2)6=64,当q =1时,则a 6=-2.思维升华 (1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.(2)等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q 1-q. 跟踪训练1 (1)(2020·全国Ⅱ)数列{a n }中,a 1=2,a m +n =a m a n ,若a k +1+a k +2+…+a k +10=215-25,则k 等于( )A .2B .3C .4D .5答案 C解析 a 1=2,a m +n =a m a n ,令m =1,则a n +1=a 1a n =2a n ,∴{a n }是以a 1=2为首项,q =2为公比的等比数列,∴a n =2×2n -1=2n .又∵a k +1+a k +2+…+a k +10=215-25,∴2k +1(1-210)1-2=215-25, 即2k +1(210-1)=25(210-1),∴2k +1=25,∴k +1=5,∴k =4.(2)(2020·新高考全国Ⅱ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.①求{a n }的通项公式;②求a 1a 2-a 2a 3+…+(-1)n -1a n a n +1.解 ①设{a n }的公比为q (q >1).由题设得⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8,解得⎩⎪⎨⎪⎧ q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32(舍去). 所以{a n }的通项公式为a n =2n ,n ∈N *.②由于(-1)n -1a n a n +1=(-1)n -1×2n ×2n +1 =(-1)n -122n +1,故a 1a 2-a 2a 3+…+(-1)n -1a n a n +1=23-25+27-29+…+(-1)n -1·22n +1=23[1-(-22)n ]1-(-22)=85-(-1)n 22n +35. 题型二 等比数列的判定与证明例2 已知数列{a n }满足a 1=1,na n +1=2(n +1)a n ,设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由;(3)求{a n }的通项公式.解 (1)由条件可得a n +1=2(n +1)na n . 将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4.将n =2代入得,a 3=3a 2,所以a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列,由条件可得a n +1n +1=2a n n,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a n n=2n -1,所以a n =n ·2n -1. 教师备选已知各项都为正数的数列{a n }满足a n +2=2a n +1+3a n .(1)证明:数列{a n +a n +1}为等比数列;(2)若a 1=12,a 2=32,求{a n }的通项公式.(1)证明 a n +2=2a n +1+3a n ,所以a n +2+a n +1=3(a n +1+a n ),因为{a n }中各项均为正数,所以a n +1+a n >0,所以a n +2+a n +1a n +1+a n=3, 所以数列{a n +a n +1}是公比为3的等比数列.(2)解 由题意知a n +a n +1=(a 1+a 2)3n -1=2×3n -1,因为a n +2=2a n +1+3a n ,所以a n +2-3a n +1=-(a n +1-3a n ),a 2=3a 1,所以a 2-3a 1=0,所以a n +1-3a n =0,故a n +1=3a n ,所以4a n =2×3n -1,a n =12×3n -1. 思维升华 等比数列的三种常用判定方法(1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则{a n }是等比数列. (3)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.跟踪训练2 S n 为等比数列{a n }的前n 项和,已知a 4=9a 2,S 3=13,且公比q >0.(1)求a n 及S n ;(2)是否存在常数λ,使得数列{S n +λ}是等比数列?若存在,求λ的值;若不存在,请说明理由.解 (1)易知q ≠1,由题意可得⎩⎪⎨⎪⎧ a 1q 3=9a 1q ,a 1(1-q 3)1-q =13,q >0,解得a 1=1,q =3,∴a n =3n -1,S n =1-3n 1-3=3n -12. (2)假设存在常数λ,使得数列{S n +λ}是等比数列,∵S 1+λ=λ+1,S 2+λ=λ+4,S 3+λ=λ+13,∴(λ+4)2=(λ+1)(λ+13),解得λ=12, 此时S n +12=12×3n , 则S n +1+12S n +12=12×3n +112×3n =3, 故存在常数λ=12,使得数列⎩⎨⎧⎭⎬⎫S n +12是以32为首项,3为公比的等比数列. 题型三 等比数列的性质例3 (1)若等比数列{a n }中的a 5,a 2 019是方程x 2-4x +3=0的两个根,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 2 023等于( )A.2 0243B .1 011 C.2 0232D .1 012答案 C解析 由题意得a 5a 2 019=3,根据等比数列性质知,a 1a 2 023=a 2a 2 022=…=a 1 011a 1 013=a 1 012a 1 012=3,于是a 1 012=123,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 2 023=log 3(a 1a 2a 3…a 2 023) 11011232023=l 3·og 3.2⎛⎫= ⎪⎝⎭(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12等于( )A .40B .60C .32D .50答案 B解析 数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即4,8,S 9-S 6,S 12-S 9是等比数列,∴S 12=4+8+16+32=60.教师备选1.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=__________. 答案 73解析 设等比数列{a n }的公比为q ,易知q ≠-1,由等比数列前n 项和的性质可知S 3,S 6-S 3,S 9-S 6仍成等比数列,∴S 6-S 3S 3=S 9-S 6S 6-S 3, 又由已知得S 6=3S 3,∴S 9-S 6=4S 3,∴S 9=7S 3,∴S 9S 6=73. 2.已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.答案 2解析 由题意,得⎩⎪⎨⎪⎧ S 奇+S 偶=-240,S 奇-S 偶=80, 解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2. 思维升华 (1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n 项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.跟踪训练3 (1)(2022·安康模拟)等比数列{a n }的前n 项和为S n ,若S 10=1,S 30=7,则S 40等于( )A .5B .10C .15D .-20答案 C解析 易知等比数列{a n }的前n 项和S n 满足S 10,S 20-S 10,S 30-S 20,S 40-S 30,…成等比数列.设{a n }的公比为q ,则S 20-S 10S 10=q 10>0,故S 10,S 20-S 10,S 30-S 20,S 40-S 30,…均大于0. 故(S 20-S 10)2=S 10·(S 30-S 20),即(S 20-1)2=1·(7-S 20)⇒S 220-S 20-6=0.因为S 20>0,所以S 20=3.又(S 30-S 20)2=(S 20-S 10)(S 40-S 30),所以(7-3)2=(3-1)(S 40-7),故S 40=15.(2)在等比数列{a n }中,a n >0,a 1+a 2+a 3+…+a 8=4,a 1a 2·…·a 8=16,则1a 1+1a 2+…+1a 8的值为( )A .2B .4C .8D .16 答案 A解析 ∵a 1a 2…a 8=16,∴a 1a 8=a 2a 7=a 3a 6=a 4a 5=2,∴1a 1+1a 2+…+1a 8=⎝⎛⎭⎫1a 1+1a 8+⎝⎛⎭⎫1a 2+1a 7+⎝⎛⎭⎫1a 3+1a 6+⎝⎛⎭⎫1a 4+1a 5 =12(a 1+a 8)+12(a 2+a 7)+12(a 3+a 6)+12(a 4+a 5)=12(a 1+a 2+…+a 8)=2. 课时精练1.(2022·合肥市第六中学模拟)若等比数列{a n }满足a 1+a 2=1,a 4+a 5=8,则a 7等于( )A.643 B .-643C.323 D .-323答案 A解析 设等比数列{a n }的公比为q ,则a 4+a 5a 1+a 2=q 3=8,所以q =2,又a 1+a 2=a 1(1+q )=1,所以a 1=13,所以a 7=a 1×q 6=13×26=643.2.已知等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),则a 7的值为( )A .2B .4 C.92 D .6答案 B解析 根据等比数列的性质得a 3a 5=a 24,∴a 24=4(a 4-1),即(a 4-2)2=0,解得a 4=2.又∵a 1=1,a 1a 7=a 24=4,∴a 7=4.3.(2022·开封模拟)等比数列{a n }的前n 项和为S n =32n -1+r ,则r 的值为() A.13 B .-13 C.19 D .-19答案 B解析 由等比数列前n 项和的性质知,S n =32n -1+r =13×9n +r ,∴r =-13. 4.(2022·天津北辰区模拟)我国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第四天走的路程为( )A .6里B .12里C .24里D .48里答案 C解析 由题意可知,该人所走路程形成等比数列{a n },其中q =12, 因为S 6=a 1⎝⎛⎭⎫1-1261-12=378, 解得a 1=192,所以a 4=a 1·q 3=192×18=24. 5.(多选)设等比数列{a n }的公比为q ,则下列结论正确的是( )A .数列{a n a n +1}是公比为q 2的等比数列B .数列{a n +a n +1}是公比为q 的等比数列C .数列{a n -a n +1}是公比为q 的等比数列D .数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列 答案 AD解析 对于A ,由a n a n +1a n -1a n=q 2(n ≥2)知数列{a n a n +1}是公比为q 2的等比数列; 对于B ,当q =-1时,数列{a n +a n +1}的项中有0,不是等比数列;对于C ,当q =1时,数列{a n -a n +1}的项中有0,不是等比数列;对于D ,1a n +11a n=a n a n +1=1q, 所以数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列.6.(多选)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=2S n (n ∈N *),则有( )A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .a n =⎩⎪⎨⎪⎧1,n =1,2·3n -2,n ≥2 答案 ABD解析 由题意,数列{a n }的前n 项和满足a n +1=2S n (n ∈N *),当n ≥2时,a n =2S n -1,两式相减,可得a n +1-a n =2(S n -S n -1)=2a n ,可得a n +1=3a n ,即a n +1a n=3(n ≥2), 又a 1=1,则a 2=2S 1=2a 1=2,所以a 2a 1=2, 所以数列{a n }的通项公式为 a n =⎩⎪⎨⎪⎧1,n =1,2·3n -2,n ≥2. 当n ≥2时,S n =a n +12=2·3n -12=3n -1, 又S 1=a 1=1,适合上式,所以数列{a n }的前n 项和为S n =3n -1,又S n +1S n =3n 3n -1=3, 所以数列{S n }为首项为1,公比为3的等比数列,综上可得选项ABD 是正确的.7.(2022·嘉兴联考)已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则a 1=________. 答案 1解析 由于S 3=7,S 6=63知公比q ≠1,又S 6=S 3+q 3S 3,得63=7+7q 3.∴q 3=8,q =2.由S 3=a 1(1-q 3)1-q =a 1(1-8)1-2=7, 得a 1=1.8.已知{a n }是等比数列,且a 3a 5a 7a 9a 11=243,则a 7=________;若公比q =13,则a 4=________. 答案 3 81解析 由{a n }是等比数列,得a 3a 5a 7a 9a 11=a 57=243,故a 7=3,a 4=a 7q 3=81. 9.(2022·徐州模拟)已知等差数列{a n }的公差为2,其前n 项和S n =pn 2+2n ,n ∈N *.(1)求实数p 的值及数列{a n }的通项公式;(2)在等比数列{b n }中,b 3=a 1,b 4=a 2+4,若{b n }的前n 项和为T n ,求证:数列⎩⎨⎧⎭⎬⎫T n +16为等比数列.(1)解 S n =na 1+n (n -1)2d =na 1+n (n -1) =n 2+(a 1-1)n ,又S n =pn 2+2n ,n ∈N *,所以p =1,a 1-1=2,即a 1=3,所以a n =3+2(n -1)=2n +1.(2)证明 因为b 3=a 1=3,b 4=a 2+4=9,所以q =3,所以b n =b 3·q n -3=3n -2,所以b 1=13, 所以T n =13(1-3n )1-3=3n -16, 所以T n +16=3n 6, 又T 1+16=12,所以T n +16T n -1+16=3n 63n -16=3(n ≥2), 所以数列⎩⎨⎧⎭⎬⎫T n +16是以12为首项,3为公比的等比数列. 10.(2022·威海模拟)记数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +1.设b n =a n +1-2a n .(1)求证:数列{b n }为等比数列;(2)设c n =|b n -100|,T n 为数列{c n }的前n 项和.求T 10.(1)证明 由S n +1=4a n +1,得S n =4a n -1+1(n ≥2,n ∈N *),两式相减得a n +1=4a n -4a n -1(n ≥2),所以a n +1-2a n =2(a n -2a n -1),所以b n b n -1=a n +1-2a n a n -2a n -1=2(a n -2a n -1)a n -2a n -1 =2(n ≥2),又a 1=1,S 2=4a 1+1,故a 2=4,a 2-2a 1=2=b 1≠0,所以数列{b n }为首项与公比均为2的等比数列.(2)解 由(1)可得b n =2·2n -1=2n ,所以c n =|2n -100|=⎩⎪⎨⎪⎧100-2n ,n ≤6,2n -100,n >6, 所以T 10=600-(21+22+…+26)+27+28+29+210-400=200-2(1-26)1-2+27+28+29+210 =200+2+28+29+210=1 994.11.(多选)(2022·滨州模拟)已知S n 是数列{a n }的前n 项和,且a 1=a 2=1,a n =a n -1+2a n -2(n ≥3),则下列结论正确的是( )A .数列{a n +1+a n }为等比数列B .数列{a n +1-2a n }为等比数列C .a n =2n +1+(-1)n 3D .S 20=23(410-1) 答案 ABD解析 因为a n =a n -1+2a n -2(n ≥3),所以a n +a n -1=2a n -1+2a n -2=2(a n -1+a n -2),又a 1+a 2=2≠0,所以{a n +a n +1}是等比数列,A 正确;同理a n -2a n -1=a n -1+2a n -2-2a n -1=-a n -1+2a n -2=-(a n -1-2a n -2),而a 2-2a 1=-1, 所以{a n +1-2a n }是等比数列,B 正确;若a n =2n +1+(-1)n 3,则a 2=23+(-1)23=3, 但a 2=1≠3,C 错误;由A 知{a n +a n -1}是等比数列,且公比为2,因此数列a 1+a 2,a 3+a 4,a 5+a 6,…仍然是等比数列,公比为4,所以S 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)=2(1-410)1-4=23(410-1),D 正确. 12.(多选)(2022·黄冈模拟)设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项积为T n ,并且满足条件a 1>1,a 7·a 8>1,a 7-1a 8-1<0.则下列结论正确的是( ) A .0<q <1B .a 7·a 9>1C .S n 的最大值为S 9D .T n 的最大值为T 7 答案 AD解析 ∵a 1>1,a 7·a 8>1,a 7-1a 8-1<0, ∴a 7>1,0<a 8<1,∴0<q <1,故A 正确;a 7a 9=a 28<1,故B 错误;∵a 1>1,0<q <1,∴数列为各项为正的递减数列,∴S n 无最大值,故C 错误;又a 7>1,0<a 8<1,∴T 7是数列{T n }中的最大项,故D 正确.13.(2022·衡阳八中模拟)设T n 为正项等比数列{a n }(公比q ≠1)前n 项的积,若T 2 015=T 2 021,则log 3a 2 019log 3a 2 021=________. 答案 15解析 由题意得,T 2 015=T 2 021=T 2 015·a 2 016a 2 017a 2 018a 2 019a 2 020a 2 021,所以a 2 016a 2 017a 2 018a 2 019a 2 020a 2 021=1,根据等比数列的性质,可得a 2 016a 2 021=a 2 017a 2 020=a 2 018a 2 019=1,设等比数列的公比为q ,所以a 2 016a 2 021=(a 2 021)2q 5=1⇒a 2 021=52,q a 2 018a 2 019=(a 2 019)2q =1⇒a 2 019=12,q 所以log 3a 2 019log 3a 2 021=123523log 1.5log q q= 14.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,……,如此继续下去得到一个树状图形,称为“勾股树”.若某勾股树含有1 023个正方形,且其最大的正方形的边长为22,则其最小正方形的边长为________.答案 132解析 由题意,得正方形的边长构成以22为首项,22为公比的等比数列,现已知共含有1 023个正方形,则有1+2+…+2n -1=1 023,所以n =10,所以最小正方形的边长为⎝⎛⎭⎫2210=132.15.(多选)在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”,下列关于“等差比数列”的判断正确的是( )A .k 不可能为0B .等差数列一定是“等差比数列”C .等比数列一定是“等差比数列”D .“等差比数列”中可以有无数项为0答案 AD解析 对于A ,k 不可能为0,正确;对于B ,当a n =1时,{a n }为等差数列,但不是“等差比数列”,错误; 对于C ,当等比数列的公比q =1时,a n +1-a n =0,分式无意义,所以{a n }不是“等差比数列”,错误;对于D ,数列0,1,0,1,0,1,…,0,1是“等差比数列”,且有无数项为0,正确.16.已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列,数列{a n b n }的前n项和为(2n -1)·3n +12. (1)分别求出数列{a n }和{b n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,∀n ∈N *,S n ≤m 恒成立,求实数m 的最小值. 解 (1)因为a 1=2,且a 1,a 2,a 3-8成等差数列,所以2a 2=a 1+a 3-8,即2a 1q =a 1+a 1q 2-8,所以q 2-2q -3=0, 所以q =3或q =-1,又q >1,所以q =3, 所以a n =2·3n -1(n ∈N *).因为a 1b 1+a 2b 2+…+a n b n =(2n -1)·3n +12, 所以a 1b 1+a 2b 2+…+a n -1b n -1=(2n -3)·3n -1+12(n ≥2), 两式相减,得a n b n =2n ·3n -1(n ≥2), 因为a n =2·3n -1,所以b n =n (n ≥2),当n =1时,由a 1b 1=2及a 1=2,得b 1=1(符合上式),所以b n =n (n ∈N *).(2)因为数列{a n }是首项为2,公比为3的等比数列,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为13的等比数列,所以S n =12⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=34⎣⎡⎦⎤1-⎝⎛⎭⎫13n <34. 因为∀n ∈N *,S n ≤m 恒成立,所以m ≥34,即实数m 的最小值为34.。

高考总复习一轮数学精品课件 第六章 数列 第一节 数列的概念与简单表示法

高考总复习一轮数学精品课件 第六章 数列 第一节 数列的概念与简单表示法
典例突破
1
例 4.在数列{an}中,a1=2且(n+2)an+1=nan,则它的前 30 项和 S30=(
30
A.
31
29
B.
30
28
C.
29
19
D.
29
)
答案 A
解析 易知
+1
an≠0,∵(n+2)an+1=nan,∴

2 3

∴an=a1·
· ·
…·
1 2
-1
=
1 1 2
2-1-2 , ≥ 2.
增素能 精准突破
考点一
利用an与Sn的关系求通项公式(多考向探究)
考向1.已知Sn求an
典例突破
例1.(1)(2023北京朝阳二模)已知数列{an}的前n项和是2n-1,则a5=(
)
A.9
B.16
C.31
D.33
(2)若数列{an}对任意n∈N*满足a1+2a2+3a3+…+nan=n,则数列{
∴{an}是首项为1,公差为1的等差数列.
∴a4 023=1+(4 023-1)×1=4 023.故选B.
(2)因为 + -1 =an=Sn-Sn-1=( + -1 )( − -1 )(n≥2),所以
− -1 =1.又 1 = √1 =1,所以数列{ }是首项为 1,公差为 1 的等差
(+1)
1+2+3+…+n=
.
2
考向2.已知an与Sn的关系式求an
典例突破
例2.(1)(2023河南名校联考改编)已知正项数列{an}的前n项和为Sn,满足

高考数学一轮复习第六章数列1数列的概念与表示课件新人教A版文

高考数学一轮复习第六章数列1数列的概念与表示课件新人教A版文

, ≥ 2.
-24考点1
考点2
考点3
1 , = 1,
解题心得已知数列的前n项和Sn,则通项公式 an=
--1 , ≥ 2.
当n=1时,若a1适合Sn-Sn-1,则n=1的情况可并入n≥2时的通项公式an;
当n=1时,若a1不适合Sn-Sn-1,则用分段函数的形式表示.
-25考点1
函数y=3x+5的定义域是R,an=3n+5的图象是离散的点,且排列在
y=3x+5的图象上.
-8知识梳理
双基自测
5.数列的前n项和
在数列{an}中,Sn=
1
2
3
4
5
a1+a2+…+an
6
叫做数列的前n项和.
-9知识梳理
双基自测
1
2
3
4
5
6
6.数列{an}的an与Sn的关系
若数列{an}的前n项和为Sn,则 an=
式.
思考已知在数列{an}中,an+1=an+f(n),利用什么方法求an?
解 ∵an+1=an+3n+2,
∴an+1-an=3n+2,
∴an-an-1=3n-1(n≥2).
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(3n-1)+(3n-4)+…+5+2
(3+1)
的大小关

分类
递增数列 an+1
>
an
递减数列 an+1
<
an

2024年高考数学一轮复习课件(新高考版) 第6章 §6.4 数列中的构造问题[培优课]

2024年高考数学一轮复习课件(新高考版)  第6章 §6.4 数列中的构造问题[培优课]

跟踪训练2 若x=1是函数f(x)=an+1x4-anx3-an+2x+1(n∈N*)的极值点, 数列{an}满足a1=1,a2=3,则数列{an}的通项公式an=__3_n-__1 _.
f′(x)=4an+1x3-3anx2-an+2, ∴f′(1)=4an+1-3an-an+2=0, 即an+2-an+1=3(an+1-an), ∴数列{an+1-an}是首项为2,公比为3的等比数列, ∴an+1-an=2×3n-1, 则an=an-an-1+an-1-an-2+…+a2-a1+a1=2×3n-2+…+2×30 +1=3n-1.
可设an=c1·(-1)n-1+c2·3n-1, 由a1=1,a2=2, 解得 c1=14,c2=34, 所以 an=3n-4-1n.
思维升华
可以化为an+1-x1an=x2(an-x1an-1),其中x1,x2是方程x2-px-q=0 的两个根,若1是方程的根,则直接构造数列{an-an-1},若1不是方 程的根,则需要构造两个数列,采取消元的方法求数列{an}.
∵an1+1=a3n+2,等式两边同时加 1 整理得an1+1+1=3a1n+1, 又∵a1=1,∴a11+1=2, ∴a1n+1是首项为 2,公比为 3 的等比数列. ∴a1n+1=2·3n-1,∴an=2·3n-11-1.
命题点2 an+1=pan+qn+c(p≠0,1,q≠0)
例2 已知数列{an}满足an+1=2an-n+1(n∈N*),a1=3,求数列{an}的 通项公式.
(2)已知数列{an}满足a1=1,a2=2,且an+1=2an+3an-1(n≥2,n∈N*).
3n--1n 则数列{an}的通项公式为an=_____4______.
方法一 因为an+1=2an+3an-1(n≥2,n∈N*), 设bn=an+1+an, 所以bbn-n 1=aann+ +1+an-a1n=3aann++aann--11=3, 又因为b1=a2+a1=3, 所以{bn}是以首项为3,公比为3的等比数列. 所以bn=an+1+an=3×3n-1=3n, 从而a3nn+ +11+13·a3nn=13,

高考数学(文科,大纲)一轮复习配套课件:3.1数列的概念

高考数学(文科,大纲)一轮复习配套课件:3.1数列的概念

第三章数列2014高考导航考纲解读1 •理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2•理解等差数列的概念,掌握等差数列的通项公式与前〃项和公式,并能解决简单的实际问题.3.理解等比数列的概念,掌握等比数列的通项公式与前〃项和公式,并能解决简单的实际问题.§3.1数列的概念本节目录知能演练轻松闯关考向瞭望把脉高考 考点探究讲练互动 教材回顾夯实双基基础梳理1.数列的概念按一定次序排列的一列数叫做数列.数列中的每一个数叫做这个数列的项.数列可以看作一个定义域为正整数集N*(或它的有限子集{123,…,〃})的函数,当自变量从小到大依次取值时对应的一列函数值.它的图象是一一群孤立的点.数歹的第兀项知与项数〃的关系若能用一个公式知=加)给出,则这个公式叫做这个数列的通项公式•3.数列的前〃项和数列的前〃项和S“=ai+a2 ----------- 5,且下列关系成立Si (n = l)a tl=^S n~S n^i (/i M2).4.递推公式如果已知数列仏啲第1项(或前几项),且任一项心与它的前一项给-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.思考探究1.{〜}与a“有何关系?提示:{心与◎是两个不同的概念,{a“}表示数列%a v …,a”,…,而知只表示数列{〜}中的第〃项.2.一个数列的通项公式是否唯一?提示:不一定,有的数列通项公式唯一,有的数列有多个通项公式,有的数列没有通项公式.课前热身3 8 151•(教材改编)数列务节, A.n2—1 ""—nB.(n +1)2— 1a,~ n + 1C.(W+1/+2”"l(T)n + 1D.(n n(W+l)2_ 1 "l(T)n + 1答案:C¥,…的一个通项公式是()2.已知«o=l,如=3,怎一%w“+i=(-1)"仗WN*),则如等于() A・ 33 B. 21C 17 D. 10答案:A3. (2011•高考江西卷)已知数列《}的前兀项和S”满足:S“+S = ^n+m9且"1 = 1,B. 9那么"10 = ()A. 1C. 10D. 55解析:*/ S n+S m=S n+m,且幻=1,・・・S1 = 1・可令加=1,得s“+]=s” + i,s“+i _s“=i・即当必1时9知+i = l, .\a10=l.4.如果数列仏J的前孔项和为S n=2n2+19贝!|妁=答案:3 (n = l)4H—2 (〃$2)5.在数列仏}中, 项之和为________ 答案:-1005=1,尤一冷+1 — 1=0,则此数列的前2 014考点1由数列的前几项写数列的通项公式据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项符号特征等,并对此进行归纳、联想.根据数列的前几项,写出下列各数列的一个通项公式:(1) 0.8,0・8&0.888,(4)0丄….【思路分析】(1)循环数借助于1—命来解决.5_ 2932 6164917710 13-2^ XI/3 1一* 2⑵正负号交叉用(一1)"或(一1严1来调节,这是因为H和«+1 奇偶交错.(3)分式形式的数列,分子找通项,分母找通项,要充分借助分子、分母的关系.(4)对于比较复杂的通项公式,要借助于等差数列、等比数列和其他方法解决.【解】⑴将数列变形为尹一0.1)勺(1—0.01),尹一0.001),…,・• a n—^(1 — ]0") •⑵各项的分母分别为亍夕,,,…,易看出第2,3,4项的分子2 —3分别比分母少3.因此把第1项变为一二一,至此原数列已化为21-3 22-3 23-3 24-322,一a“=(—1)"宁.IT ‘~ir ‘ …'3 5 7 9(3)将数列统_为㊁,丁,帀p,…,对于分子3,5,7,9,…是序号的2倍加1,可得分子的通项公式为b n =2n+l f 对于分母2,5,1047,…联想到数列1A016,…,即数列{/}, 可得分母的通项公式为c“ = /+l,2n±ln 2+r/° (〃为奇数)又0=1_1 1=丄+丄11 s 为偶数)’又 2 2, 1—2+2,.••也可为。

2024届高考一轮复习数学课件(新教材人教A版强基版):数列

2024届高考一轮复习数学课件(新教材人教A版强基版):数列
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5.等比数列{an}中,a1+a2=6,a3+a4=12,则{an}的前 8 项和为
√A.90
B.30( 2+1)
C.45( 2+1)
D.72
等比数列{an}中,a1+a2=6, a3+a4=(a1+a2)q2=12, ∴q2=2,a5+a6=(a3+a4)q2=24, 同理a7+a8=48, 则{an}的前8项和a1+a2+a3+a4+a5+a6+a7+a8=6+12+24+48=90.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
11.数列{an}的前n项和为Sn,若a1=1,an+1=2Sn(n∈N*),则有
√A.Sn=3n-1
√B.{Sn}为等比数列
C.an=2·3n-1
√D.an=12·,3nn-=2,1n,≥2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8.数列{an}中,a1=5,a2=9.若数列{an+n2}是等差数列,则{an}的最大 值为
A.9
√B.11
45 C. 4
D.12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
令bn=an+n2,又a1=5,a2=9, ∴b2=a2+4=13,b1=a1+1=6, ∴数列{an+n2}的首项为6,公差为13-6=7, 则an+n2=6+7(n-1)=7n-1, ∴an=-n2+7n-1=-n-722+445,又 n∈N*, ∴当 n=3 或 4 时,an 有最大值为-14+445=11.

高三数学第一轮复习《数列求和》讲义

高三数学第一轮复习《数列求和》讲义
=3+2× -(2n+1)3n
=3n-(2n+1)3n=-2n·3n.
∴Tn=n·3n.
③.在等差数列 中, ,前 项和 满足条件 ,
(Ⅰ)求数列 的通项公式;
(Ⅱ)记 ,求数列 的前 项和 。
解:(Ⅰ)设等差数列 的公差为 ,由 得: ,所以 ,即 ,所以 。
(Ⅱ)由 ,得 。所以 ,
当 时, ;
例题分析:
题型一 分组转化求和
例1 求和:(1)Sn= + + + +…+ ;
(2)Sn= 2+ 2+…+ 2.
解 (1)由于an= =n+ ,
∴Sn= + + +…+
=(1+2+3+…+n)+
= + = - +1.
(2)当x=±1时,Sn=4n.当x≠±1时,
Sn= 2+ 2+…+ 2= + +…+
∴Sn=3+2×32+3×33+…+n·3n,③
∴3Sn=32+2×33+3×34+…+n·3n+1.④
④-③得2Sn=n·3n+1-(3+32+33+…+3n),即2Sn=n·3n+1- ,
∴Sn= + .
变式训练2①已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
,
故 ( )
(2)
两式相减得

数列求和练习(1)
1.数列 的通项公式是 ,若它的前 项和为10,则其项数 为
A.11 B.99 C.120 D.121
解: ,则由 ,得 ,选C
2.数列 的通项是 , ,则数列 的的前 项和为
A. B. C. D.
解: ,则
,选A
3.已知数列 的前 项和为 ,则 的值是

2023年高考数学一轮复习讲义——数列求和

2023年高考数学一轮复习讲义——数列求和

§6.5 数列求和 考试要求 1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法. 知识梳理数列求和的几种常用方法1.公式法直接利用等差数列、等比数列的前n 项和公式求和.(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 2.分组求和法与并项求和法(1)若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)形如a n =(-1)n ·f (n )类型,常采用两项合并求解.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.4.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)常见的裂项技巧①1n (n +1)=1n -1n +1. ②1n (n +2)=12⎝⎛⎭⎫1n -1n +2. ③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. ④1n +n +1=n +1-n .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( √ ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( √ ) (3)求S n =a +2a 2+3a 3+…+na n 时,只要把上式等号两边同时乘a 即可根据错位相减法求得.( × )(4)求数列⎩⎨⎧⎭⎬⎫12n +2n +3的前n 项和可用分组转化法求和.( √ ) 教材改编题1.数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( )A .-200B .-100C .200D .100答案 D解析 S 100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100.2.等差数列{a n }中,已知公差d =12,且a 1+a 3+…+a 99=50,则a 2+a 4+…+a 100等于( ) A .50B .75C .100D .125 答案 B解析 a 2+a 4+…+a 100=(a 1+d )+(a 3+d )+…+(a 99+d )=(a 1+a 3+…+a 99)+50d=50+25=75.3.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =________. 答案 2 022解析 a n =1n (n +1)=1n -1n +1, ∴S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0222 023, ∴n =2 022.题型一 分组求和与并项求和例1 (2022·衡水质检)已知各项都不相等的等差数列{a n },a 6=6,又a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2n a +(-1)n a n ,求数列{b n }的前2n 项和T 2n .解 (1)∵{a n }为各项都不相等的等差数列,a 6=6,且a 1,a 2,a 4成等比数列.∴⎩⎪⎨⎪⎧ a 6=a 1+5d =6,(a 1+d )2=a 1(a 1+3d ),d ≠0,解得a 1=1,d =1,∴数列{a n }的通项公式a n =1+(n -1)×1=n .(2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.延伸探究 在本例(2)中,如何求数列{b n }的前n 项和T n ?解 由本例(2)知b n =2n +(-1)n n .当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n 2-2;当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ]=2n +1-2+n -12-n =2n +1-n 2-52. 所以T n =⎩⎨⎧ 2n +1+n 2-2,n 为偶数,2n +1-n 2-52,n 为奇数.教师备选(2020·新高考全国Ⅰ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100. 解 (1)由于数列{a n }是公比大于1的等比数列,设首项为a 1,公比为q ,依题意有⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8, 解得⎩⎪⎨⎪⎧ a 1=32,q =12(舍)或⎩⎪⎨⎪⎧a 1=2,q =2, 所以{a n }的通项公式为a n =2n ,n ∈N *.(2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b 1对应的区间为(0,1],则b 1=0;b 2,b 3对应的区间分别为(0,2],(0,3],则b 2=b 3=1,即有2个1;b 4,b 5,b 6,b 7对应的区间分别为(0,4],(0,5],(0,6],(0,7],则b 4=b 5=b 6=b 7=2,即有22个2;b 8,b 9,…,b 15对应的区间分别为(0,8],(0,9],…,(0,15],则b 8=b 9=…=b 15=3, 即有23个3;b 16,b 17,…,b 31对应的区间分别为(0,16],(0,17],…,(0,31],则b 16=b 17=…=b 31=4,即有24个4;b 32,b 33,…,b 63对应的区间分别为(0,32],(0,33],…,(0,63],则b 32=b 33=…=b 63=5,即有25个5;b 64,b 65,…,b 100对应的区间分别为(0,64],(0,65],…,(0,100],则b 64=b 65=…=b 100=6,即有37个6.所以S 100=1×2+2×22+3×23+4×24+5×25+6×37=480.思维升华 (1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.(2)若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和.跟踪训练1 (2022·重庆质检)已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25.(1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5,又a 5=9=a 1+4d ,所以d =2,a 1=1,所以a n =2n -1,S n =n (1+2n -1)2=n 2. (2)结合(1)知b n =(-1)n n 2,当n 为偶数时,T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)]=1+2+3+…+n =n (n +1)2. 当n 为奇数时,n -1为偶数,T n =T n -1+(-1)n ·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2. 题型二 错位相减法求和例2 (10分)(2021·全国乙卷)设{a n }是首项为1的等比数列,数列{b n }满足b n =na n 3.已知a 1,3a 2,9a 3成等差数列.(1)求{a n }和{b n }的通项公式; [切入点:设基本量q ](2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <S n 2. [关键点:b n =n ·⎝⎛⎭⎫13n ]教师备选(2020·全国Ⅰ)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项.(1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.解 (1)设{a n }的公比为q ,∵a 1为a 2,a 3的等差中项,∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0,∴q 2+q -2=0,∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n ,a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n=1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n 3, ∴S n =1-(1+3n )(-2)n 9,n ∈N *. 思维升华 (1)如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,常采用错位相减法.(2)错位相减法求和时,应注意:①在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.②应用等比数列求和公式必须注意公比q 是否等于1,如果q =1,应用公式S n =na 1.跟踪训练2 (2021·浙江)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34. 当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9, 解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列, 所以a n =-94×⎝⎛⎭⎫34n -1=-3n +14n . (2)因为3b n +(n -4)a n =0,所以b n =(n -4)×⎝⎛⎭⎫34n .所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3.所以-3≤λ≤1.题型三 裂项相消法求和例3 (2022·咸宁模拟)设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *. (1)求数列{a n }的通项公式; (2)若b n =1a n -1,求数列{b n }的前n 项和S n . 解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *, 所以a n +1+a n -2a n +1a n =4, 即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列,所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列,所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+ 12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 教师备选设数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求{a n }的通项公式;(2)若b n =3n (a n +1)(a n +1+1),求{b n }的前n 项和T n ,证明:38≤T n <34. (1)解 因为2S n =3a n -1,所以2S 1=2a 1=3a 1-1,即a 1=1.当n ≥2时,2S n -1=3a n -1-1,则2S n -2S n -1=2a n =3a n -3a n -1,整理得a n a n -1=3, 则数列{a n }是以1为首项,3为公比的等比数列,故a n =1×3n -1=3n -1.(2)证明 由(1)得b n =3n(3n -1+1)(3n +1)=32×⎝ ⎛⎭⎪⎫13n -1+1-13n +1, 所以T n =32×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫130+1-131+1+⎝ ⎛⎭⎪⎫131+1-132+1+⎝ ⎛⎭⎪⎫132+1-133+1+…+⎝ ⎛⎭⎪⎫13n -1+1-13n +1, 即T n =32×⎝ ⎛⎭⎪⎫12-13n +1=34-323n +1, 所以T n <34, 又因为T n 为递增数列,所以T n ≥T 1=34-38=38, 所以38≤T n <34. 思维升华 利用裂项相消法求和的注意事项(1)抵消后不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2)将通项裂项后,有时需要调整前面的系数,如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1, 1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. 跟踪训练3 (2022·河北衡水中学模拟)已知数列{a n }满足a 1=4,且当n ≥2时,(n -1)a n = n (a n -1+2n -2).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)记b n =2n +1a 2n ,求数列{b n }的前n 项和S n . (1)证明 当n ≥2时,(n -1)a n =n (a n -1+2n -2),将上式两边都除以n (n -1),得a n n =a n -1+2n -2n -1, 即a n n -a n -1n -1=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是以a 11=4为首项,2为公差的等差数列. (2)解 由(1)得a n n=4+2(n -1)=2n +2, 即a n =2n (n +1),所以b n =2n +1a 2n =14⎣⎢⎡⎦⎥⎤1n 2-1(n +1)2, 所以S n =14⎩⎨⎧ ⎝⎛⎭⎫1-122+⎝⎛⎭⎫122-132+⎭⎪⎬⎪⎫…+⎣⎢⎡⎦⎥⎤1n 2-1(n +1)2 =14⎣⎢⎡⎦⎥⎤1-1(n +1)2=n 2+2n 4(n +1)2. 课时精练1.已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49.(1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7,故公差d =a 4-a 3=7-5=2,故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1,T n =21+1+23+3+…+22n -1+2n -1=21+23+…+22n -1+(1+3+…+2n -1)=21-22n +11-4+n (1+2n -1)2 =22n +13+n 2-23. 易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000,故T n ≥1 000,解得n ≥6,n ∈N *.2.(2020·全国Ⅲ改编)设数列{a n }满足a 1=3,a n +1=3a n -4n .(1)计算a 2,a 3,猜想{a n }的通项公式;(2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5,a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1.(2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,① 2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1=6+2×22×(1-2n -1)1-2-(2n +1)·2n +1 =(1-2n )·2n +1-2,即S n =(2n -1)·2n +1+2.3.(2022·合肥模拟)已知数列{a n }满足:a 1=2,a n +1=a n +2n .(1)求{a n }的通项公式;(2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n . 又a 1=2,也满足上式,故a n =2n .(2)由(1)可知,b n =log 2a n =n ,1b n b n +1=1n (n +1)=1n -1n +1, T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1,故T n =n n +1.4.(2022·济宁模拟)已知数列{a n }是正项等比数列,满足a 3是2a 1,3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =(-1)n log 2a 2n +1,求数列{b n }的前n 项和T n . 解 (1)设等比数列{a n }的公比为q ,因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q -2=0,解得q =2或q =-12, 因为数列{a n }是正项等比数列,所以q =2.所以a n =a 4·q n -4=2n .(2)方法一 (分奇偶、并项求和)由(1)可知,a 2n +1=22n +1,所以b n =(-1)n ·log 2a 2n +1=(-1)n ·log 222n +1=(-1)n ·(2n +1),①若n 为偶数,T n =-3+5-7+9-…-(2n -1)+(2n +1)=(-3+5)+(-7+9)+…+[-(2n -1)+(2n +1)]=2×n 2=n ; ②若n 为奇数,当n ≥3时,T n =T n -1+b n =n -1-(2n +1)=-n -2,当n =1时,T 1=-3适合上式,综上得T n =⎩⎪⎨⎪⎧n ,n 为偶数,-n -2,n 为奇数 (或T n =(n +1)(-1)n -1,n ∈N *).方法二 (错位相减法)由(1)可知,a 2n +1=22n +1,所以b n =(-1)n ·log 2a 2n +1=(-1)n ·log 222n +1=(-1)n ·(2n +1), T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n ·(2n +1), 所以-T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n +1(2n +1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n ]-(-1)n +1(2n +1)=-3+2×1-(-1)n -12+(-1)n (2n +1) =-3+1-(-1)n -1+(-1)n (2n +1)=-2+(2n +2)(-1)n ,所以T n =(n +1)(-1)n -1,n ∈N *.5.(2022·重庆调研)在等差数列{a n }中,已知a 6=12,a 18=36.(1)求数列{a n }的通项公式a n ;(2)若________,求数列{b n }的前n 项和S n ,在①b n =4a n a n +1,②b n =(-1)n ·a n ,③b n =2n a n a ⋅这三个条件中任选一个补充在第(2)问中,并对其求解.解 (1)由题意知⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36, 解得d =2,a 1=2.∴a n =2+(n -1)×2=2n .(2)选条件①.b n =42n ·2(n +1)=1n (n +1), 则S n =11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1. 选条件②.∵a n =2n ,b n =(-1)n a n =(-1)n ·2n , ∴S n =-2+4-6+8-…+(-1)n ·2n , 当n 为偶数时,S n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ] =n 2×2=n ; 当n 为奇数时,n -1为偶数, S n =n -1-2n =-n -1. ∴S n =⎩⎪⎨⎪⎧ n ,n 为偶数,-n -1,n 为奇数. 选条件③.∵a n =2n ,b n =2n a n a ⋅,∴b n =22n ·2n =2n ·4n , ∴S n =2×41+4×42+6×43+…+2n ·4n ,① 4S n =2×42+4×43+6×44+…+2(n -1)·4n +2n ·4n +1,② ①-②得 -3S n =2×41+2×42+2×43+…+2×4n -2n ·4n +1=4(1-4n )1-4×2-2n ·4n +1 =8(1-4n )-3-2n ·4n +1, ∴S n =89(1-4n )+2n 3·4n +1.。

2023年高考数学一轮复习讲义——数列的概念

2023年高考数学一轮复习讲义——数列的概念

§6.1数列的概念考试要求 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.知识梳理1.数列的定义按照确定的顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n+1>a n其中n∈N*递减数列a n+1<a n常数列a n+1=a n摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3.数列的通项公式如果数列{a n}的第n项a n与它的序号n之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.4.数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.常用结论1.已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1(n ≥2,n ∈N *);若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1(n ≥2,n ∈N *). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( × ) (2)1,1,1,1,…,不能构成一个数列.( × )(3)任何一个数列不是递增数列,就是递减数列.( × )(4)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n .( √ ) 教材改编题1.若数列{a n }满足a 1=2,a n +1=1+a n1-a n ,则a 2 023的值为( )A .2B .-3C .-12 D.13答案 C解析 因为a 1=2,a n +1=1+a n1-a n ,所以a 2=1+a 11-a 1=-3,同理可得a 3=-12,a 4=13,a 5=2,…,可得a n +4=a n ,则a 2 023=a 505×4+3=a 3=-12.2.数列13,18,115,124,135,…的通项公式是a n =________.答案1n (n +2),n ∈N *解析 ∵a 1=11×(1+2)=13,a 2=12×(2+2)=18,a 3=13×(3+2)=115,a 4=14×(4+2)=124,a 5=15×(5+2)=135,∴通过观察,我们可以得到如上的规律, 则a n =1n (n +2),n ∈N *.3.已知数列{a n }的前n 项和S n =2n 2-3n ,则数列{a n }的通项公式a n =________. 答案 4n -5解析 a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1 =(2n 2-3n )-[2(n -1)2-3(n -1)] =4n -5,因为a 1也适合上式,所以a n =4n -5.题型一 由a n 与S n 的关系求通项公式例1 (1)设S n 为数列{a n }的前n 项和,若2S n =3a n -3,则a 4等于( ) A .27 B .81 C .93 D .243答案 B解析 根据2S n =3a n -3, 可得2S n +1=3a n +1-3, 两式相减得2a n +1=3a n +1-3a n , 即a n +1=3a n ,当n =1时,2S 1=3a 1-3,解得a 1=3,所以数列{a n }是以3为首项,3为公比的等比数列, 所以a 4=a 1q 3=34=81.(2)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =________. 答案 ⎩⎪⎨⎪⎧2,n =1,2n -12n -1,n ≥2解析 当n =1时,a 1=21=2. ∵a 1+3a 2+…+(2n -1)a n =2n ,①∴a 1+3a 2+…+(2n -3)a n -1=2n -1(n ≥2),② 由①-②得,(2n -1)·a n =2n -2n -1=2n -1, ∴a n =2n -12n -1(n ≥2).显然n =1时不满足上式,∴a n=⎩⎪⎨⎪⎧2,n =1,2n -12n -1,n ≥2.教师备选1.已知数列{a n }的前n 项和S n =n 2+2n ,则a n =________. 答案 2n +1解析 当n =1时,a 1=S 1=3.当n ≥2时,a n =S n -S n -1=n 2+2n -[(n -1)2+2(n -1)]=2n +1.由于a 1=3适合上式,∴a n =2n +1.2.已知数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________. 答案 -2n -1解析 当n =1时,a 1=S 1=2a 1+1, ∴a 1=-1.当n ≥2时,S n =2a n +1,① S n -1=2a n -1+1.②①-②得S n -S n -1=2a n -2a n -1, 即a n =2a n -2a n -1, 即a n =2a n -1(n ≥2),∴{a n }是首项为a 1=-1,公比为q =2的等比数列. ∴a n =a 1·q n -1=-2n -1.思维升华 (1)已知S n 求a n 的常用方法是利用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2转化为关于a n 的关系式,再求通项公式.(2)S n 与a n 关系问题的求解思路方向1:利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解. 方向2:利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解.跟踪训练1 (1)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n +1,n ∈N *,则a n =________.答案 ⎩⎪⎨⎪⎧4,n =1,4n -1,n ≥2解析 根据题意,可得S n -1=2(n -1)2+(n -1)+1. 由通项公式与求和公式的关系, 可得a n =S n -S n -1, 代入化简得a n =2n 2+n +1-2(n -1)2-(n -1)-1=4n -1. 经检验,当n =1时,S 1=4,a 1=3, 所以S 1≠a 1,所以a n =⎩⎪⎨⎪⎧4,n =1,4n -1,n ≥2.(2)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则a n =________. 答案 ⎩⎪⎨⎪⎧-1,n =1,1n (n -1),n ≥2解析 由已知得a n +1=S n +1-S n =S n +1S n , 两边同时除以S n +1S n , 得1S n +1-1S n =-1. 故数列⎩⎨⎧⎭⎬⎫1S n 是以-1为首项,-1为公差的等差数列,则1S n =-1-(n -1)=-n . 所以S n =-1n .当n ≥2时,a n =S n -S n -1=-1n +1n -1=1n (n -1),故a n=⎩⎨⎧-1,n =1,1n (n -1),n ≥2.题型二 由数列的递推关系求通项公式 命题点1 累加法例2 在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n答案 A解析 因为a n +1-a n =ln n +1n =ln(n +1)-ln n ,所以a 2-a 1=ln 2-ln 1, a 3-a 2=ln 3-ln 2, a 4-a 3=ln 4-ln 3, ……a n -a n -1=ln n -ln(n -1)(n ≥2),把以上各式分别相加得a n -a 1=ln n -ln 1, 则a n =2+ln n (n ≥2),且a 1=2也适合, 因此a n =2+ln n (n ∈N *). 命题点2 累乘法例3 若数列{a n }满足a 1=1,na n -1=(n +1)·a n (n ≥2),则a n =________. 答案2n +1解析 由na n -1=(n +1)a n (n ≥2),得a n a n -1=n n +1(n ≥2). 所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n +1×n -1n ×n -2n -1×…×34×23×1=2n +1,又a 1=1满足上式,所以a n =2n +1. 教师备选1.在数列{a n }中,a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.答案 4-1n解析 ∵a n +1-a n =1n (n +1)=1n -1n +1,∴当n ≥2时,a n -a n -1=1n -1-1n ,a n -1-a n -2=1n -2-1n -1,……a 2-a 1=1-12,∴以上各式相加得,a n -a 1=1-1n ,∴a n =4-1n ,a 1=3适合上式,∴a n =4-1n.2.若{a n }满足2(n +1)·a 2n +(n +2)·a n ·a n +1-n ·a 2n +1=0,且a n >0,a 1=1,则a n =________.答案 n ·2n -1解析 由2(n +1)·a 2n +(n +2)·a n ·a n +1-n ·a 2n +1=0得 n (2a 2n +a n ·a n +1-a 2n +1)+2a n (a n +a n +1)=0,∴n (a n +a n +1)(2a n -a n +1)+2a n (a n +a n +1)=0, (a n +a n +1)[(2a n -a n +1)·n +2a n ]=0, 又a n >0,∴2n ·a n +2a n -n ·a n +1=0,∴a n +1a n =2(n +1)n , 又a 1=1, ∴当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1=2n n -1×2(n -1)n -2×2(n -2)n -3×…×2×32×2×21×1=2n -1·n .又n =1时,a 1=1适合上式, ∴a n =n ·2n -1.思维升华 (1)形如a n +1-a n =f (n )的数列,利用累加法,即利用公式a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1(n ≥2),即可求数列{a n }的通项公式.(2)形如a n +1a n =f (n )的数列,常令n 分别为1,2,3,…,n -1,代入a n +1a n =f (n ),再把所得的(n -1)个等式相乘,利用a n =a 1·a 2a 1·a 3a 2·…·a na n -1(n ≥2)即可求数列{a n }的通项公式.跟踪训练2 (1)已知数列{a n }的前n 项和为S n ,若a 1=2,a n +1=a n +2n -1+1,则a n =________. 答案 2n -1+n解析 ∵a n +1=a n +2n -1+1, ∴a n +1-a n =2n -1+1,∴当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n -2+2n -3+…+2+1+a 1+n -1=1-2n -11-2+2+n -1=2n -1+n .又∵a 1=2满足上式, ∴a n =2n -1+n .(2)(2022·莆田模拟)已知数列{a n }的前n 项和为S n ,a 1=1,S n =n 2a n (n ∈N *),则数列{a n }的通项公式为________. 答案 a n =2n (n +1)解析 由S n =n 2a n ,可得当n ≥2时,S n -1=(n -1)2a n -1, 则a n =S n -S n -1=n 2a n -(n -1)2a n -1, 即(n 2-1)a n =(n -1)2a n -1, 易知a n ≠0,故a n a n -1=n -1n +1(n ≥2).所以当n ≥2时,a n =a na n -1×a n -1a n -2×a n -2a n -3×…×a 3a 2×a 2a 1×a 1=n -1n +1×n -2n ×n -3n -1×…×24×13×1=2n (n +1).当n =1时,a 1=1满足a n =2n (n +1).故数列{a n }的通项公式为a n =2n (n +1).题型三 数列的性质 命题点1 数列的单调性例4 已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N *),则“λ<1”是“数列{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 若数列{a n }为递增数列, 则有a n +1-a n >0,∴(n +1)2-2λ(n +1)-n 2+2λn =2n +1-2λ>0,即2n +1>2λ对任意的n ∈N *都成立,于是有λ<⎝⎛⎭⎪⎫2n +12min =32, ∵由λ<1可推得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件. 命题点2 数列的周期性例5 (2022·广州四校联考)数列{a n }满足a 1=2,a n +1=11-a n(n ∈N *),则a 2 023等于( ) A .-2 B .-1 C .2 D.12答案 C解析 ∵数列{a n }满足a 1=2, a n +1=11-a n(n ∈N *), ∴a 2=11-2=-1,a 3=11-(-1)=12,a 4=11-12=2,…,可知此数列有周期性,周期T =3, 即a n +3=a n ,则a 2 023=a 1=2. 命题点3 数列的最值例6 已知数列{a n }的通项公式a n =(n +1)·⎝⎛⎭⎫1011n ,则数列{a n }的最大项为( ) A .a 8或a 9 B .a 9或a 10 C .a 10或a 11 D .a 11或a 12答案 B解析 结合f (x )=(x +1)⎝⎛⎭⎫1011x的单调性, 设数列{a n }的最大项为a n ,所以⎩⎪⎨⎪⎧a n ≥a n +1,a n ≥a n -1,所以⎩⎨⎧(n +1)·⎝⎛⎭⎫1011n ≥(n +2)·⎝⎛⎭⎫1011n +1,(n +1)·⎝⎛⎭⎫1011n≥n ·⎝⎛⎭⎫1011n -1,解不等式组可得9≤n ≤10.所以数列{a n }的最大项为a 9或a 10. 教师备选1.已知数列{a n }的通项公式为a n =3n +k2n ,若数列{a n }为递减数列,则实数k 的取值范围为( )A .(3,+∞)B .(2,+∞)C .(1,+∞)D .(0,+∞)答案 D解析 因为a n +1-a n =3n +3+k 2n +1-3n +k2n=3-3n -k2n +1,由数列{a n }为递减数列知, 对任意n ∈N *,an +1-a n =3-3n -k2n +1<0, 所以k >3-3n 对任意n ∈N *恒成立, 所以k ∈(0,+∞).2.在数列{a n }中,a 1=1,a n a n +3=1,则log 5a 1+log 5a 2+…+log 5a 2 023等于( ) A .-1 B .0 C .log 53 D .4答案 B解析 因为a n a n +3=1,所以a n +3a n +6=1,所以a n +6=a n ,所以{a n }是周期为6的周期数列, 所以log 5a 1+log 5a 2+…+log 5a 2 023 =log 5(a 1a 2…a 2 023)=log 5[(a 1a 2…a 6)337·a 1], 又因为a 1a 4=a 2a 5=a 3a 6=1, 所以a 1a 2…a 6=1,所以原式=log 5(1337×1)=log 51=0. 思维升华 (1)解决数列的单调性问题的方法用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. (2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)求数列的最大项与最小项的常用方法 ①函数法,利用函数的单调性求最值.②利用⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1(n ≥2)确定最大项,利用⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1(n ≥2)确定最小项.跟踪训练3 (1)在数列{a n }中,a n +1=⎩⎨⎧2a n ,a n <12,2a n-1,a n≥12,若a 1=45,则a 2 023的值为( )A.35B.45C.25D.15答案 D 解析 a 1=45>12,∴a 2=2a 1-1=35>12,∴a 3=2a 2-1=15<12,∴a 4=2a 3=25<12,∴a 5=2a 4=45,……可以看出四个循环一次,故a 2 023=a 4×505+3=a 3=15.(2)(2022·沧州七校联考)已知数列{a n }满足a n =n +13n -16(n ∈N *),则数列{a n }的最小项是第________项. 答案 5解析 a n =n +13n -16=13⎝⎛⎭⎪⎫1+193n -16, 当n >5时,a n >0,且单调递减; 当n ≤5时,a n <0,且单调递减, ∴当n =5时,a n 最小.课时精练1.数列{a n }的前几项为12,3,112,8,212,…,则此数列的通项公式可能是( )A .a n =5n -42B .a n =3n -22C .a n =6n -52D .a n =10n -92答案 A解析 数列为12,62,112,162,212,…,其分母为2,分子是以首项为1,公差为5的等差数列,故数列{a n }的通项公式为a n =5n -42.2.在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23 答案 D解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.3.已知数列{a n }的前n 项积为T n ,且满足a n +1=1+a n 1-a n (n ∈N *),若a 1=14,则T 2 023为( )A .-4B .-35C .-53D.14答案 C解析 由a n +1=1+a n 1-a n,a 1=14,得a 2=53,a 3=-4,a 4=-35,a 5=14,…,所以数列{a n }具有周期性,周期为4, 因为T 4=a 1·a 2·a 3·a 4=1,2 023=4×505+3, 所以T 2 023=(a 1a 2a 3a 4)…(a 2 021a 2 022a 2 023) =14×53×(-4)=-53. 4.若数列{a n }的前n 项和S n =2a n -1(n ∈N *),则a 5等于( ) A .8 B .16 C .32 D .64 答案 B解析 数列{a n }的前n 项和S n =2a n -1(n ∈N *), 则S n -1=2a n -1-1(n ≥2), 两式相减得a n =2a n -1(n ≥2), 由此可得,数列{a n }是等比数列, 又S 1=2a 1-1=a 1,所以a 1=1, 故数列{a n }的通项公式为a n =2n -1, 令n =5,得a 5=16.5.(多选)已知数列{a n }的通项公式为a n =9n 2-9n +29n 2-1(n ∈N *),则下列结论正确的是( ) A .这个数列的第10项为2731B.97100是该数列中的项 C .数列中的各项都在区间⎣⎡⎭⎫14,1内D .数列{a n }是单调递减数列 答案 BC解析 a n =9n 2-9n +29n 2-1=(3n -1)(3n -2)(3n -1)(3n +1) =3n -23n +1, 令n =10得a 10=2831,故A 错误;令3n -23n +1=97100得n =33∈N *, 故97100是数列中的项,故B 正确; 因为a n =3n -23n +1=3n +1-33n +1=1-33n +1,又n ∈N *.所以数列{a n }是单调递增数列, 所以14≤a n <1,故C 正确,D 不正确.6.(多选)若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(n ∈N *),其中是“差递减数列”的有( ) A .a n =3n B .a n =n 2+1 C .a n =n D .a n =lnn n +1答案 CD解析 对于A ,若a n =3n ,则a n +1-a n =3(n +1)-3n =3,所以{a n +1-a n }不为递减数列,故A 错误;对于B ,若a n =n 2+1,则a n +1-a n =(n +1)2-n 2=2n +1, 所以{a n +1-a n }为递增数列,故B 错误; 对于C ,若a n =n ,则a n +1-a n =n +1-n =1n +1+n,所以{a n +1-a n }为递减数列,故C 正确; 对于D ,若a n =ln nn +1,则a n +1-a n =ln n +1n +2-ln nn +1=ln ⎝⎛⎭⎪⎫n +1n +2·n +1n =ln ⎝ ⎛⎭⎪⎫1+1n 2+2n , 由函数y =ln ⎝ ⎛⎭⎪⎫1+1x 2+2x 在(0,+∞)上单调递减,所以{a n +1-a n }为递减数列,故D 正确.7.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则a n =________.答案 ⎩⎪⎨⎪⎧1,n =1,3·4n -2,n ≥2解析 ∵a n +1=3S n (n ∈N *), ∴当n =1时,a 2=3; 当n ≥2时,a n =3S n -1, ∴a n +1-a n =3a n , 得a n +1=4a n ,∴数列{a n }从第二项起为等比数列, 当n ≥2时,a n =3·4n -2,故a n =⎩⎪⎨⎪⎧1,n =1,3·4n -2,n ≥2.8.(2022·临沂模拟)已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________. 答案 (-3,+∞)解析 因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n , 即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ∈N *,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 9.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3,由S 3=53a 3,得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知当n =1时,a 1=1. 当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1,于是a 2=31a 1,a 3=42a 2,…,a n -1=nn -2a n -2,a n =n +1n -1a n -1,将以上n -1个等式中等号两端分别相乘,整理得a n =n (n +1)2. 当n =1时,a 1=1满足a n =n (n +1)2. 综上可知,{a n }的通项公式为a n =n (n +1)2.10.求下列数列{a n }的通项公式. (1)a 1=1,a n +1=a n +3n ; (2)a 1=1,a n +1=2n a n .解 (1)由a n +1=a n +3n 得a n +1-a n =3n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=1+31+32+33+…+3n -1 =1×(1-3n )1-3=3n -12,当n =1时,a 1=1=31-12,满足上式,∴a n =3n -12(n ∈N *).(2)由a n +1=2n a n 得a n +1a n=2n ,当n ≥2时,a n =a 1×a 2a 1×a 3a 2×a 4a 3×…×a na n -1=1×2×22×23×…×2n -1 =21+2+3+…+(n -1)=()122n n -.当n =1时,a 1=1满足上式, ∴a n =()122n n -(n ∈N *).11.已知数列{a n }满足a n =⎩⎪⎨⎪⎧(3-a )n -2,n ≤6,a n -5,n >6,且{a n }是递增数列,则实数a 的取值范围是( ) A.⎝⎛⎭⎫167,3 B.⎣⎡⎭⎫167,3 C .(1,3) D .(2,3)答案 D解析 若{a n}是递增数列,则⎩⎪⎨⎪⎧3-a >0,a >1,a 7>a 6,即⎩⎪⎨⎪⎧a <3,a >1,a 2>6(3-a )-2,解得2<a <3,即实数a 的取值范围是(2,3).12.(多选)(2022·江苏盐城中学模拟)对于数列{a n },若存在数列{b n }满足b n =a n -1a n (n ∈N *),则称数列{b n }是{a n }的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{a n }是单增数列,则其“倒差数列”不一定是单增数列 B .若a n =3n -1,则其“倒差数列”有最大值 C .若a n =3n -1,则其“倒差数列”有最小值 D .若a n =1-⎝⎛⎭⎫-12n ,则其“倒差数列”有最大值 答案 ACD解析 若数列{a n }是单增数列,则b n -b n -1=a n -1a n -a n -1+1a n -1=(a n -a n -1)⎝ ⎛⎭⎪⎫1+1a n a n -1,虽然有a n >a n -1,但当1+1a n a n -1<0时,b n <b n -1,因此{b n }不一定是单增数列,A 正确; a n =3n -1,则b n =3n -1-13n -1,易知{b n }是递增数列,无最大值,B 错误;C 正确,最小值为b 1.若a n =1-⎝⎛⎭⎫-12n , 则b n =1-⎝⎛⎭⎫-12n -11-⎝⎛⎭⎫-12n ,∵函数y =x -1x 在(0,+∞)上单调递增,∴当n 为偶数时,a n =1-⎝⎛⎭⎫12n∈(0,1), ∴b n =a n -1a n<0,当n 为奇数时,a n =1+⎝⎛⎭⎫12n>1,显然a n 是单调递减的, 因此b n =a n -1a n 也是单调递减的,即b 1>b 3>b 5>…,∴{b n }的奇数项中有最大值为b 1=32-23=56>0,∴b 1=56是数列{b n }(n ∈N *)中的最大值,D 正确.13.已知数列{a n }的通项公式a n =632n ,若a 1·a 2·…·a n ≤a 1·a 2·…·a k 对n ∈N *恒成立,则正整数k 的值为________. 答案 5解析 a n =632n ,当n ≤5时,a n >1;当n ≥6时,a n <1,由题意知,a 1·a 2·…·a k 是{a n }的前n 项乘积的最大值,所以k =5.14.(2022·武汉模拟)已知数列{a n }中,a 1=1,1a n +1-1a n =n +1,则其前n 项和S n =________.答案2n n +1解析 ∵1a 2-1a 1=2,1a 3-1a 2=3,1a 4-1a 3=4,…,1a n -1a n -1=n , 累加得1a n -1a 1=2+3+4+…+n ,得1a n =1+2+3+4+…+n =n (n +1)2, ∴a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,∴S n =2⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=2nn +1.15.(多选)若数列{a n }满足a 1=1,a 2=3,a n a n -2=a n -1(n ≥3),记数列{a n }的前n 项积为T n ,则下列说法正确的有( ) A .T n 无最大值 B .a n 有最大值 C .T 2 023=1 D .a 2 023=1答案 BCD解析 因为a 1=1,a 2=3,a n a n -2=a n -1(n ≥3),所以a 3=3,a 4=1,a 5=13,a 6=13,a 7=1,a 8=3,… 因此数列{a n }为周期数列,a n +6=a n ,a n 有最大值3,a 2 023=a 1=1,因为T 1=1,T 2=3,T 3=9,T 4=9,T 5=3,T 6=1,T 7=1,T 8=3,…, 所以{T n }为周期数列,T n +6=T n ,T n 有最大值9, T 2 023=T 1=1.16.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *). 结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8.即a的取值范围是(-10,-8).。

高考数学一轮总复习课件:数列的概念及简单表示

高考数学一轮总复习课件:数列的概念及简单表示

1)(an-
2).设bn=an-
2,则bn+1=(
2
-1)·bn,即
bn+1 bn

2-1,
b1=a1- 2=2- 2,因此数列{bn}是以 2-1为公比,以2- 2为
首项的等比数列.
所以bn=(2- 2)×( 2-1)n-1= 2×( 2-1)n,所以an= 2( 2 -1)n+ 2.
(4)已知数列{an}满足a1= 2
【解析】
(累加法)原递推式可化为an+1=an+
1 n

1 n+1
,则a2
=a1+11-12,a3=a2+12-13,a4=a3+13-14,…,an=an-1+n-1 1-1n.
逐项相加,得an=a1+1-1n.又a1=3,故an=4-1n.
(2)设数列{an}是首项为1的正项数列,且(n+1)·an+12-nan2+ 1
2 n
(3)an=2n+1-3
(4)an=32n-1
状元笔记
已知数列的递推关系求通项公式的常用方法 (1)当出现an=an-1+f(n)时,用累加法求解. (2)当出现aan-n 1=f(n)时,用累乘法求解. (3)当出现an=xan-1+y时,构造等比数列.
思考题2 (1)在数列{an}中,a1=3,an+1=an+ n(n1+1),则通项公式an=_4_-__1n____.

5 5

7 10
, 197
,…,对于分子3,5,
7,9,…,是序号的2倍加1,可得分子的通项公式为bn=2n+ 1,对于分母2,5,10,17,…联想到数列1,4,9,16,…,
即数列{n2},可得分母的通项公式为cn=n2+1,故可得它的一个 通项公式为an=2nn2++11.

高考数学(数列)第一轮复习

高考数学(数列)第一轮复习

高考数学(数列)第一轮复习资料知识点小结1. 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n d n n =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+{}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn a b n n n ⇔=+ 0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2 项,即:当,,解不等式组可得达到最大值时的值。

a d a a S n n n n 110000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。

a d a a S n n n n 11000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27)2. 等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110 等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+= (),,……仍为等比数列2232S S S S S n n n n n -- 时应注意什么求由n n a S .3 (时,,时,)n a S n a S S n n n ==≥=--12111 4.. 你熟悉求数列通项公式的常用方法吗? 例如:(1)求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a∴a n n =+21∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534 (注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n 144== n a S S n n n n ≥=-==--23411时,……· (2)叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133==(3)等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥-- ()()a n n=-1231 (4)等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1 ()⇒=+--a ca c x n n 11令,∴()c x d x dc -==-11∴是首项为,为公比的等比数列a d c a dc c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c dc n n =+-⎛⎝⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-84311(5)倒数法例如:,,求a a a a a n nn n 11122==++由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-= ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为()()∴=+-=+11112121a n n n · ∴a n n =+215.. 你熟悉求数列前n 项和的常用方法吗? 例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

2023届高三数学一轮复习专题 数列累加法构造等比等递推公式求通项及常用求和方法 讲义 (解析版)

2023届高三数学一轮复习专题 数列累加法构造等比等递推公式求通项及常用求和方法  讲义 (解析版)

数列求解通项的方法总结方法一、公式法当已知数列的类型(如已知数列为等差或等比数列)时,可以设出首项和公差(公比),列式计算。

1、等差数列通项公式: dn a a n )1(1-+=2、等比数列通项公式:例1、设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q=d ,S 10=100.(1)求数列{a n },{b n }的通项公式 (2)当d >1时,记c n =,求数列{c n }的前n 项和T n .变式1、已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5﹣3b 2=7.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.11-=n n q a a方法二、利用前n 项和与通项的关系已知数列{ a n }前n 项和S n ,求通项公式,利用 a n ={)1()2(11=≥--n S n S S n n 特别地,当n=1的值与S 1的值相同时,合并为一个通项公式,否则写成分段的形式。

例2、(1)设数列{a n }的前n 项和为S n ,已知2S n =3n+3.求{a n }的通项公式;(2)S n 为数列{a n }的前n 项和,己知a n >0,a n 2+2a n =4S n +3 (I )求{a n }的通项公式.(Ⅱ)设b n =,求数列{b n }的前n 项和.变式2、(2015·四川)数列{a n }(n=1,2,3…)的前n 项和S n ,满足S n =2a n ﹣a 1,且a 1,a 2+1,a 3成等差数列.(Ⅰ)求数列{a n }的通项公式; (Ⅱ)设数列的前n 项和为T n ,求T n .方法三、利用递推关系式与通项的关系类型1、累加法 形如)(1n f a a n n +=+例3、(2014·全国卷)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.变式3、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

2025届高考数学一轮复习教案:数列-数列的概念

2025届高考数学一轮复习教案:数列-数列的概念

第七章数列第一节数列的概念【课程标准】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.3.能够利用a n与S n的关系求数列的通项公式.4.能根据数列递推关系求数列的项或通项公式.【考情分析】考点考法:高考题常以数列的概念为载体,考查数列项、前n项和及其与通项公式的关系.S n和a n的关系是高考热点,在各种题型中都会有所体现.核心素养:数学抽象、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.数列的有关概念概念含义数列按照确定的顺序排列的一列数数列的项数列中的每一个数数列的通项数列{a n}的第n项a n通项公式数列{a n}的第n项与序号n之间的关系式前n项和数列{a n}中,S n=a1+a2+…+a n2.数列的表示法列表法列表格表示n与a n的对应关系图象法把点(n,a n)画在平面直角坐标系中公式法通项公式把数列的通项使用公式表示的方法递推公式使用初始值a1和a n与a n+1的关系式或a1,a2和a n-1,a n,a n+1的关系式等表示数列的方法函数法a n=f(n),n∈N*【微点拨】(1)并不是所有的数列都有通项公式;(2)数列的通项公式不唯一;(3)归纳与猜想是研究数列的重要方法.3.数列的分类单调性递增数列∀n∈N*,a n+1>a n递减数列∀n∈N*,a n+1<a n常数列∀n∈N*,a n+1=a n摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列周期性∀n∈N*,存在正整数k,a n+k=a n【微点拨】(1)数列的单调性可以类比数列的通项公式对应的函数解析式在区间(0,+∞)上的单调性;(2)可以把数列函数化,利用函数方法研究数列的单调性.4.数列的前n项和数列{a n}的前n项和S n=a1+a2+a3+…+-1+a n,则a n=1,=1,--1,≥2.【基础小题·自测】类型辨析改编题号12,3,4 1.(多维辨析)(多选题)下列结论不正确的是()A.数列5,2,0与2,0,5是同一个数列B.根据数列的前几项归纳出数列的通项公式可能不止一个C.任何一个数列不是递增数列,就是递减数列D.如果数列{a n}的前n项和为S n,则对∀n∈N*,都有a n=S n-S n-1【解析】选ACD.A中两个数列项的顺序不同,不是同一个数列;B正确;C中数列可能是常数数列或摆动数列;D中当n=1时,a1=S1-S0无意义.2.(选择性必修第二册P5例2·变形式)数列0,23,45,67,…的一个通项公式为()A.a n=-1r1B.a n=-12r1C.a n=2(-1)2-1D.a n=22r1【解析】选C.将0写成01,观察数列中每一项的分子、分母可知,分子为偶数列,可表示为2(n-1),n∈N*;分母为奇数列,可表示为2n-1,n∈N*.3.(选择性必修第二册P6例5·变形式)数列1,3,6,10,15,…的递推公式可以是()A.a n+1=a n+n,n∈N*B.a n=a n-1+n,n≥2,n∈N*C.a n+1=a n+(n+1),n≥2,n∈N*D.a n=a n-1+(n-1),n∈N*,n≥2【解析】选B.设数列1,3,6,10,15,…为,则a2-a1=2,a3-a2=3,a4-a3=4,a5-a4=5,…,n=2时,A,D不合题意;而C中不包含a2-a1=2,由此可得数列满足a n-a n-1=n,n≥2,n∈N*.4.(选择性必修第二册P4例1·变形式)已知数列{a n}满足a n=(r1)2,则S3=________.【解析】数列{a n}满足a n=(r1)2,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.答案:10【巧记结论·速算】在数列{a n}中,若a n最大,则≥-1,≥r1(n≥2).若a n最小,则≤-1,≤r1(n≥2).【即时练】已知数列中,a n=n2-5n+4,则数列的最小项是()A.第1项B.第3项、第4项C.第4项D.第2项、第3项【解析】选D.根据题意,数列中,a n=n2-5n+4,则a n+1-a n=(n+1)2-5(n+1)+4-n2+5n-4=2n-4,当n<2时,有a n+1-a n<0,则有a1>a2,当n=2时,有a n+1-a n=0,则有a2=a3,当n>2时,有a n+1-a n>0,则有a3<a4<……故数列的最小项是第2项、第3项.【核心考点·分类突破】考点一通项公式的探索及应用[例1](1)(多选题)已知数列{a n}的通项公式为a n=9+12n,则在下列各数中,是{a n}的项的是()A.21B.33C.152D.153【解析】选ABD.由数列的通项公式得,a1=21,a2=33,a12=153.(2)写出数列的一个通项公式,使它的前4项分别是下列各数.①23,45,87,169;②-12,23,-34,45;③3,4,3,4;④6,66,666,6666.【解析】①4个项都是分数,它们的分子依次为2,22,23,24,分母是正奇数,依次为2×1+1,2×2+1,2×3+1,2×4+1,所以给定4项都满足的一个通项公式为a n=22r1.②4个项按先负数,后正数,正负相间排列,其绝对值的分子依次为1,2,3,4,分母比对应分子多1,所以给定4项都满足的一个通项公式为a n=(-1)nr1.③4个项是第1,3项均为3,第2,4项均为4,所以给定4项都满足的一个通项公式为a n=3,=2-14,=2(k∈N*).④4个项,所有项都是由数字6组成的正整数,其中6的个数与对应项数一致,依次可写为6=23(10-1),66=23(102-1),666=23(103-1),6666=234-1),所以给定4项都满足的一个通项公式为a n=23(10n-1).【解题技法】由数列的前几项求通项公式的方法(1)根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.(2)对于正负符号变化,可用(-1)n或(-1)n+1来调整.【对点训练】1.若一数列为1,37,314,321,…,则398是这个数列的()A.不在此数列中B.第13项C.第14项D.第15项【解析】选D.因为1=37×0,37=37×1,314=37×2,321=37×3,因此符合题意的一个通项公式为a n=37(n-1),由37(n-1)=398解得n=15,所以398是这个数列的第15项.2.根据下面各数列前几项的值,写出数列的一个通项公式:(1)-1,7,-13,19,…;(2)-11×2,12×3,-13×4,14×5,…;(3)23,415,635,863,1099,…;(4)9,99,999,9999,….【解析】(1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n;观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n=(-1)n(6n-5).(2)这个数列的前4项的绝对值都等于序号与序号加1的乘积的倒数,且奇数项为负,偶数项为正,故它的一个通项公式为a n=(-1)n·1(r1).(3)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,即分母的每一项都是两个相邻奇数的乘积,故所求数列的一个通项公式为a n=2.(2-1)(2r1)(4)这个数列的前4项可以写成10-1,100-1,1000-1,10000-1,故所求数列的一个通项公式为a n=10n-1.考点二已知S n或S n与a n的关系求a n[例2]金榜原创·易错对对碰①若数列{a n}的前n项和S n=2n+1,则数列的通项公式为a n=________.②若数列{a n}的前n项和S n=2n-1,则数列的通项公式为a n=________.【解析】①当n=1时,a1=S1=21+1=3;当n≥2时,a n=S n-S n-1=(2n+1)-(2n-1+1)=2n-2n-1=2n-1.综上有a n=3,=1,2-1,≥2.答案:3,=1,2-1,≥2.②当n=1时,a1=S1=21-1=1;当n≥2时,a n=S n-S n-1=(2n-1)-(2n-1-1)=2n-2n-1=2n-1.综上有a n=2n-1.答案:2n-1【解题技法】1.已知S n求a n的三个步骤(1)利用a1=S1求出a1.(2)用n-1替换S n中的n得到一个新的关系式,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的解析式.(3)对n=1时的结果进行检验,看是否符合n≥2时a n的解析式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写.2.已知S n与a n的关系求a n的两个方法(1)利用S n-S n-1=a n(n≥2)消去S n,转化为a n与a n-1的关系求a n;(2)利用a n=S n-S n-1(n≥2)消去a n,转化为S n与S n-1的关系,求出S n后再求a n.提醒:当n≥2时推出的关系不包含n=1的情况,因此需要验证n=1时是否成立,如果成立,则合并表示,如果不成立,则分段表示.【对点训练】1.已知正项数列{a n}中,1+2+…+=(r1)2,则数列{a n}的通项公式为()A.a n=nB.a n=n2C.a n=2D.a n=2 2【解析】选B.因为1+2+…+=(r1)2,所以1+2+…+-1=(-1)2(n≥2),两式相减得=(r1)2-(-1)2=n(n≥2),所以a n=n2(n≥2),①又当n=1时,1=1×22=1,a1=1,适合①式,所以a n=n2,n∈N*.2.记S n为数列{a n}的前n项和,若S n=2a n+1,则S n=________.【解析】因为S n=2a n+1,所以S n+1=2a n+1+1,所以a n+1=2a n+1-2a n,所以a n+1=2a n,当n=1时,S1=a1=2a1+1,所以a1=-1,所以数列{a n}是以-1为首项,2为公比的等比数列,所以S n=-(1-2)1-2=1-2n.答案:1-2n【加练备选】1.已知数列{a n}满足a1+2a2+3a3+…+na n=2n,则a n=________.【解析】当n=1时,a1=21=2,因为a1+2a2+3a3+…+na n=2n,①故a1+2a2+3a3+…+(n-1)a n-1=2n-1(n≥2),②由①-②得na n=2n-2n-1=2n-1,所以a n=2-1.显然当n=1时不满足上式,所以a n=1,,≥2.答案=1,≥22.已知数列的前n项和S n=3n+b,求的通项公式.【解析】当n=1时,a1=S1=3+b.当n≥2时,a n=S n-S n-1=2·3n-1,因此,当b=-1时,a1=2适合a n=2·3n-1,所以a n=2·3n-1.当b≠-1时,a1=3+b不适合a n=2·3n-1,所以a n=3+,=1,2·3-1,≥2.综上可知,当b=-1时,a n=2·3n-1;当b≠-1时,a n=3+,=1,2·3-1,≥2.考点三数列的性质及其应用【考情提示】数列作为一种特殊的函数,除考查求通项公式、求和等之外,还考查数列的单调性,项的最值,周期性等,解题时要类比函数的研究方法,结合数列的特性.角度1数列的单调性及项的最值[例3]已知数列{a n}的通项公式为a n=3-23r1(n∈N*).则下列说法正确的是()A.这个数列的第10项为2731B.98101是该数列中的项C.数列中的各项都在区间[14,1)内D.数列{a n}是单调递减数列【解析】选C.令n=10,得a10=2831.故选项A不正确,令3-23r1=98101,得9n=300,此方程无正整数解,故98101不是该数列中的项.因为a n=3-23r1=3r1-33r1=1-33r1,又n∈N*,所以数列{a n}是单调递增数列,所以14≤a n<1,所以数列中的各项都在区间[14,1)内,故选项C正确,选项D不正确.【解题技法】关于数列的单调性及项的最值(1)求数列项的最值需要先研究数列的单调性,一是通过列举项找规律;二是利用数列递增(减)的等价条件,求出递增、递减项的分界点处的n值.(2)利用函数方法,令n∈(0,+∞),研究对应函数的单调性、图象确定最值,再回归到数列问题.【对点训练】已知数列{a n}的通项公式为a n=3r2,若数列{a n}为递减数列,则实数k的取值范围为()A.(3,+∞)B.(2,+∞)C.(1,+∞)D.(0,+∞)【解析】选D.因为a n+1-a n=3r3+2r1-3r2=3-3-2r1,由数列{a n}为递减数列知,对任意n ∈N*,a n+1-a n=3-3-2r1<0,所以k>3-3n对任意n∈N*恒成立,所以k∈(0,+∞).角度2数列的周期性[例4]已知数列{a n}满足a n+1=a n-a n-1(n≥2),a1=m,a2=n,S n为数列{a n}的前n项和,则S2029的值为()A.2029n-mB.n-2029mC.mD.n【解析】选C.根据题意计算可得a3=n-m,a4=-m,a5=-n,a6=m-n,a7=m,a8=n,…,因此数列{a n}是以6为周期的周期数列,且a1+a2+…+a6=0,所以S2029=S338×6+1=a1=m.【解题技法】关于数列的周期性在求数列的某一项的值,且该项的序号较大时,应该考虑该数列是否具有周期性,一般地,求出数列的前几项,确定周期,然后利用数列的周期性即可求出所求项.【对点训练】已知数列{a n}中,a1=12,a n+1=1+1-,则a2025=()A.-2B.12C.-13D.3【解析】选B.因为a1=12,所以a2=1+11-1=3,a3=1+21-2=-2,a4=1+31-3=-13,a5=1+41-4=12,…,所以数列{a n}是周期数列且周期T=4,所以a2025=a1=12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2017高考文科数学)2016-4-30讲义一数列一、高考趋势1、考纲要求(1).了解数列的概念和几种简单的表示方法(列表、图像、通项公式).(2).了解数列是自变量为正整数的一类函数.(3).理解等差数列的概念.(4).掌握等差数列的通项公式及前n项和公式.(5).了解等差数列及一次函数的关系.(6).理解等比数列的概念.(7).掌握等比数列的通项公式及前n项和公式.(8).能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.(9).了解等比数列及指数函数的关系.2、命题规律数列一般在全国文科卷中平均考查分值为12分。

考察形式一般有两种,第一种是选择题+填空题的形式,第二种是解答题的形式。

并且全国文科卷解答题第一题是数列和三角函数二选一。

因此数列题在高考中属于“要尽量全部做对且拿到满分”的“高期待值”题。

二、基础知识+典型例题 1、等差数列的概念及运算 (1).等差数列的定义如果一个数列从第二项开始每一项及前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. (2).等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,则它的通项公式是1(1)n a a n d =+-.)(*∈N n (3).等差中项 如果2a bA +=,那么A 叫做a 及b 的等差中项. (4).等差数列的前n 项和等差数列{a n }的前n 项和公式:11()(1)22n n n a a n n S na d +-=+=)(*∈N n(5).等差数列的判定通常有两种方法:① 第一种是利用定义,a n -a n -1=d (常数) (n ≥2), ② 第二种是利用等差中项,即2a n =a n +1+a n -1 (n ≥2).a 1,d . 如果再给出第三个条件就可以完成a n ,a 1,d ,n ,S n 的“知三求二”问题.这体现了用方程的思想解决问题.考点一:等差数列通项公式及前n 项和公式例1、 (15全国卷一)已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) A 、172 B 、192C 、10D 、12例2、 (15安徽卷)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于 .2、等差数列的性质(1)通项推广:a n =a m +(n -m )d ,)(*∈N n (d 为数列{a n }的公差). (2)若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q . 特别地:a 1+a n =a 2+a n -1=a 3+a n -2=….(3)项数成等差数列,则相应的项也成等差数列,即若m +n =2p ,则a m +a n =2a p . (4)S n =a 1+a n2n =a 2+a n -12n =a 3+a n -22n =….(5)等差数列的单调性① 等差数列公差为d ,若d >0,则数列递增. ② 若d <0,则数列递减. ③ 若d =0,则数列为常数列.背诵知识点二:(1)等差中项的性质:若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .(2)等差中项的性质:若m +n =2p ,则a m +a n =2a p . (3)等差数列的性质:d m n a a m n )(-=-考点二:等差数列中项的性质例3、 (15全国卷二) 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( )A .5B .7C .9D .11例4、(15陕西卷)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________.3、等比数列的概念及运算 (1).等比数列的定义如果一个数列从第二项开始每一项及它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示. (2).等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项11n n a a q -=.)(*∈N n (3).等比中项若20G ab =≠,那么G 叫做a 及b 的等比中项. (4).等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , ① 当q =1时,S n =na 1;)(*∈N n ② 当q ≠1时,S n =qq a a q q a n n --=--11)1(11)(*∈N n (5).在涉及等比数列前n 项和公式时要注意对公式q 是否等于1的判断和讨论.(6).等比数列的判定方法:① 定义法:若a n +1a n =q (q 为非零常数)或a na n -1=q (q 为非零常数且n≥2),则{a n }是等比数列.② 中项公式法:若数列{a n }中a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.考点三:等比数列定义及前n 项和公式例5、 (15全国卷一) 数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .例6、 (12全国卷) 等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =________例7、 (13全国卷一) 设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则 ( )A.21n n S a =-B.32n n S a =-C.43n n S a =-D.32n n S a =-例8、 (12全国卷) 数列{}n a 满足1(1)21n n n a a n ++-=-,则{}n a 的前60项和为( )A.3690B.3660C.1845 D .18304、等比数列的性质(1)通项公式的推广:m n n m a a q -=,(n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则n m l k a a a a ⋅=⋅ (3)若{a n },{b n }(项数相同)是等比数列:则{λa n }(λ≠0),{1a n },{a 2n },{a n ·b n },{a nb n}仍是等比数列.(4)等比数列的单调性.① ⎩⎪⎨⎪⎧a 1>0q >1或⎩⎪⎨⎪⎧ a 1<00<q <1⇔{a n }为递增数列;② ⎩⎪⎨⎪⎧a 1>00<q <1或⎩⎪⎨⎪⎧a 1<0q >1⇔{a n }为递减数列;③ q =1⇔{a n }为非零常数列; ④ q <0⇔{a n }为摆动数列.(5) a n a m=q n -m(m ,n ∈N *)考点四:等比数列中项的性质例9、(14全国卷二) 等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A. (1)n n +B. (1)n n -C. (1)2n n + D.(1)2n n -例10、(15全国卷二) 已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1 1C.21D.8例11、(15浙江卷)已知{a n}是等差数列,公差d不为零.若a2,aa7成等比数列,且2a1+a2=1,则a1=________,d=________.3,例12、(15广东卷)若三个正数a,b,c成等比数列,其中a=5+26,c=5-26,则b=________.5、数列的通项(1).数列的通项公式:若数列{}n a 的第n 项n a 及项数n 之间的关系可以用一个式子表示出来,记作()n a f n =,称作该数列的通项公式. (2).等差数列的通项公式:1(1)n a a n d =+-()m a n m d =+-. (3).等比数列的通项公式:11n n m n m a a q a q --== (4).等差数列性质: ① ()n m a a n m d =+-;② 若*,,,m n p q N m n p q ∈+=+且,则m n p q a a a a +=+; (5).等比数列性质: ① n m n m a a q -=;② 若*,,,m n p q N m n p q ∈+=+且,则m n p q a a a a = (6).等差数列的判定:①定义法;②等差中项法 (7).等比数列的判定:①定义法;②等比中项法(8).数列通项公式求法① 累加法:对于可转化为)(1n f a a n n +=+形式数列的通项公式问题 ② 累乘法:对于可转化为1()n n a a f n +=形式数列的通项公式问题 ③ 构造法:对于化为1()n n a pa f n +=+(其中p 是常数)型的通项公式问题④ 利用前n 项和n S 及第n 项n a 关系求通项公式问题 对递推公式为n S 及n a 的关系式(或()n n S f a =),利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n nn 进行求解.注意n a =1n n S S --成立的条件是n ≥2,求n a 时不要漏掉n =1即n a =1S 的情况,当1a =1S 适合n a =1n n S S --时,n a =1n n S S --;当1a =1S 不适合n a =1n n S S --时,用分段函数表示.考点五:求数列的通项公式 ①、累加法例13、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

②、累乘法例14、已知数列{}n a 满足,1211==+a a a n n n ,,求数列{}n a 的通项公式。

③、构造法例15、已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式.④、利用前n 项和n S 及第n 项n a 关系求通项公式问题例16、已知数列}{n a 的前n 项和12-=n s n ,求}{n a 的通项公式。

6、数列的求和(1).数列{}n a 的前n 项和为12n n S a a a =+++. (2).等差数列{}n a 的前n 和公式:11()(1)22n n n a a n n S na d +-=+=. (3).等比差数列{}n a 的前n 和公式:1111,1,1(1),1,111n n n na q na q S a a q a q q q qq ==⎧⎧⎪⎪==--⎨⎨≠≠⎪⎪--⎩⎩,(4).倒序相加法:适用于求首项及尾项有关系的前n 项和(5).分组转化法:适用于求等差数列+(-)等比数列数列的前n 项和(6).错位相减法:适用于求等差数列x(÷)等比数列数列的前n 项和(7).裂项相消法:适用于求通项为1a n a n +1的数列的前n 项和,常见的拆项公式:① ⇒+-=+111)1(1n n n n =+)(1k n n 1k (1n -1n +k ); ② ⇒-+=++n n n n 1111n +n +k= 1k (n +k -n ).③)121121(211)(21)-2(1+--=+⋅n n n n ;考点六:求数列的前n 项和 ①、倒序相加法例17、已知等差数列的通项公式为1(1)n a a n d =+-)(*∈N n ,求数列的前n 项和②、分组转化法例18、求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…③、错位相减法例19、(14全国卷一)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

相关文档
最新文档