八年级下册数学期中考试测试题(最新整理)

合集下载

八年级下学期数学期中考试试卷含答案(共5套,人教版)

八年级下学期数学期中考试试卷含答案(共5套,人教版)

人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。

()2. 平行四边形的对角线互相平分。

()3. 正方形的对角线相等且互相垂直。

()4. 圆的半径是圆心到圆上任意一点的距离。

()5. 圆的直径是圆上任意两点之间的距离。

()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。

2. 平行四边形的对角线互相平分,所以它的对角线长度是______。

3. 正方形的四个角都是______度。

4. 圆的半径是圆心到圆上______的距离。

5. 圆的直径是圆上______点之间的距离。

四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述平行四边形的性质。

3. 简述正方形的性质。

4. 简述圆的性质。

5. 简述圆的直径和半径之间的关系。

五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。

2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。

数学八下期中考试题及答案

数学八下期中考试题及答案

数学八下期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 3答案:B2. 一个正数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 已知一个三角形的两边长分别为3和4,第三边长x满足的条件是:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 5D. 0 < x < 5答案:A4. 函数y=2x+3的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C5. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A6. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 0D. 5或-5答案:D7. 下列哪个选项是偶数?A. 2B. 3C. 5D. 7答案:A8. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. 3/1D. 1答案:A9. 一个数的平方是9,那么这个数可能是:A. 3B. -3C. 9D. 3或-3答案:D10. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。

答案:162. 一个数的立方根是2,那么这个数是______。

答案:83. 一个数的倒数是2,那么这个数是______。

答案:1/24. 一个数的绝对值是5,那么这个数可能是______。

答案:5或-55. 一个数的相反数是-7,那么这个数是______。

答案:7三、解答题(共50分)1. 解方程:2x - 3 = 7。

(10分)答案:x = 52. 计算:(3x^2 - 2x + 1) - (x^2 + 3x - 4)。

(10分)答案:2x^2 - 5x + 53. 已知一个三角形的两边长分别为5和12,求第三边长的取值范围。

人教版八年级下册数学期中考试试题含答案

人教版八年级下册数学期中考试试题含答案

人教版八年级下册数学期中考试试卷一、单选题1x 的取值范围是()A .x ≥3B .x ≥0C .x >3D .x ≠32.已知△ABC 的三边分别为a 、b 、c ,则下列条件中不能判定△ABC 是直角三角形的是()A .b 2=a 2﹣c 2B .a :b :c=12C .∠C =∠A ﹣∠BD .∠A :∠B :∠C =3:4:53.下列二次根式中最简二次根式是()AB C D4.如图,“赵爽弦图”是由四个全等的直角三角形拼成一个大的正方形,是我国古代数学的骄傲,巧妙地利用面积关系证明了勾股定理.已知小正方形的面积是1,直角三角形的两直角边分别为a 、b 且ab=6,则图中大正方形的边长为()A .5BC .4D .35.下列说法错误的是()A .对角线互相平分的四边形是平行四边形B .两组对边分别相等的四边形是平行四边形C .一组对边平行且相等的四边形是平行四边形D .一组对边相等,对角线互相垂直的四边形是平行四边形6.下列运算正确的是()A B C 23=D =7.如图,为了检验教室里的矩形门框是否合格,某班的四个学习小组用三角板和细绳分别测得如下结果,其中不能判定门框是否合格的是()A.AB=CD,AD=BC,AC=BDB.AC=BD,∠B=∠C=90°C.AB=CD,∠B=∠C=90°D.AB=CD,AC=BD8.如图,在周长为20cm的平行四边形ABCD中,AB AD≠,对角线AC,BD相交于点O,⊥交AD于点E,则ABEOE BD△的周长为()A.6cm B.4cm C.10cm D.8cm9.实数a,b在数轴上对应的点的位置如图所示,化简()2a a b-的结果是()-+B.2a b-C.b-D.bA.2a b10.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A.12秒B.16秒C.20秒D.30秒.二、填空题11.如图所示,DE是△ABC的中位线,BC=8,则DE=_____.12.一个矩形的两条对角线所夹的锐角是60°,这个角所对的边长为20cm ,则该矩形的面积为_____.13.如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是_____.14.如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为_____cm .15.如图,在正方形ABCD 中,O 是对角线AC ,BD 的交点,过O 点作OE OF ⊥,OE ,OF 分别交AB ,BC 于点E 、点F ,3AE =,2FC =,则EF 的长为____________.三、解答题16.计算:(1)()02343218π-+-(2)(()2535321+--17.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个直角三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是5.18.如图,矩形ABCD 中,4AB =,3AD =,将矩形ABCD 沿对角线AC 折叠,点B 落在点E 处,AE 交CD 于点F .(1)写出折叠后的图形中的等腰三角形:;(2)求CF 的长.19a b ==,用含的,a b,甲、乙两位同学跑上讲台,板书了下面两种解法:10ab =======a b ==7ab =老师看罢,提出下面的问题:(1)两位同学的解法都正确吗;(2)请你再给出一种不同于甲、乙二人的解法.20.如图是一副秋千架,左图是从正面看,当秋千绳子自然下垂时,踏板离地面0.5m (踏板厚度忽略不计),右图是从侧面看,当秋千踏板荡起至点B 位置时,点B 离地面垂直高度BC 为1m ,离秋千支柱AD 的水平距离BE 为1.5m (不考虑支柱的直径).求秋千支柱AD 的高.21.如图,△ABC 中,∠ACB=90°,D 、E 分别是BC 、BA 的中点,联结DE ,F 在DE 延长线上,且AF=AE ,(1)求证:四边形ACEF 是平行四边形;(2)若四边形ACEF 是菱形,求∠B 的度数.22.如图,平行四边形ABCD 中,4cm AB =,6cm BC =,60B ∠=︒,G 是CD 的中点,E 是边AD 上的动点(E 不与A ,D 重合),且点E 由点A 向点D 运动,速度为1cm /s ,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF ,设点E 运动时间为t .(1)求证:无论t 为何值,四边形CEDF 都是平行四边形;(2)①当t =s 时,四边形CEDF 是矩形;②当t =s 时,四边形CEDF 是菱形.23.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,将COD ∆沿CD 所在直线折叠,得到CED ∆.(1)求证:四边形OCED 是菱形;(2)若2AB =,当四边形OCED 是正方形时,OC 等于多少?(3)若3BD =,30ACD ∠=︒,P 是CD 边上的动点,Q 是CE 边上的动点,那么PE PQ +的最小值是多少?参考答案1.A【分析】直接利用二次根式的定义分析得出答案.【详解】3x -有意义,则x 的取值范围是:3x ≥.故选:A .2.D【解析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A 、∵b 2=a 2-c 2,∴b 2+c 2=a 2,故能判定△ABC 是直角三角形;B 、∵12+32=22,∴∠C=90°,故能判定△ABC 是直角三角形;C、∵∠C=∠A-∠B,∴∠A=∠B+∠C,∴∠A=90°,故能判定△ABC是直角三角形;D、∵∠A:∠B:∠C=3:4:5,∴∠C=5345++×180°=75°,故不能判定△ABC是直角三角形.故选D.3.C【解析】根据最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、被开方数含开的尽的因数或因式,故A不符合题意;B、被开方数含开的尽的因数或因式,故B不符合题意;C、最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式,故C符合题意D、被开方数含开的尽的因数或因式,故D不符合题意;故选C.【点睛】本题考查了最简二次根式,最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式.4.B【详解】试题分析:大正方形的面积为:4×12ab+1=2ab+1=2×6+1=13,故选B.5.D【解析】根据平行四边形的判定定理即可判断.【详解】解:A、对角线互相平分的四边形是平行四边形,正确;B、两组对边分别相等的四边形是平行四边形,正确;C、一组对边平行且相等的四边形是平行四边形,正确;D、一组对边相等,对角线互相垂直的四边形不一定是平行四边形;故选:D .6.B【解析】根据同类二次根式,二次根式的乘法,二次根式的性质逐一判断即可.【详解】A不是同类二次根式,不能合并,故A 错误;B=,故B 正确;C3=,故C 错误;D ==D 错误.故选:B .7.D【详解】试题分析:A 、∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形,∵AC =BD ,∴四边形ABCD 是矩形,故能判定门框合格;B 、在Rt △ABC 和Rt △DCB 中,AC BDBC CB =⎧⎨=⎩,∴Rt △ABC ≌Rt △DCB (HL ),∴AB =CD ,∵∠B =∠C =90°,∴AB ∥CD ,∴四边形ABCD 是平行四边形,∴四边形ABCD 是矩形,故能判定门框合格;C 、∵∠B =∠C =90°,∴AB ∥CD ,∵AB =CD ,∴四边形ABCD 是平行四边形,∵∠B =∠C =90°,∴四边形ABCD 是矩形,故能判定门框合格;D 、当四边形ABCD 是等腰梯形时,也满足AB =CD ,AC =BD ,故不能判定门框合格.故选D .点睛:本题考查了矩形判定的实际应用,熟记矩形的判定方法是解决此题的关键.8.C【解析】根据线段的垂直平分线的性质可知BE DE =,再结合平行四边形的性质即可计算ABE ∆的周长.【详解】根据平行四边形的性质得:OB OD =,EO BD ⊥ ,EO ∴为BD 的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE DE =,ABE ∴∆的周长120102AB AE DE AB AD =++=+=⨯=cm ,故选:C .【点睛】本题主要考查了平行四边形的性质及中垂线的判定及性质,有一定综合性.9.A【解析】根据数轴确定a 的取值范围,根据绝对值的性质,二次根式的性质化简即可.【详解】解:由数轴可知,a <0<b ,∴a -b <0∴2a a b a b a =-+-=-;故选:A【点睛】本题考查的是二次根式的化简,实数与数轴,掌握绝对值的性质,二次根式的性质是解题的关键.10.B【解析】过点A作AC⊥ON,利用锐角三角函数的定义求出AC的长与200m相比较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪音影响的时间.【详解】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.故选B.11.4【解析】根据三角形的中位线定理,得:DE=12BC=4,故答案为4.12.2【分析】本题首先求证由两条对角线的所夹锐角为60°的角的为等边三角形,易求出短边边长.【详解】解:∵已知矩形的两条对角线所夹锐角为60°,矩形的对边平行且相等.∴根据矩形的性质可求得由两条对角线所夹锐角为60°的三角形为等边三角形.又∵这个角所对的边长为20cm,所以矩形短边的边长为20cm.∴对角线长40cm.根据勾股定理可得长边的长为.∴矩形的面积为=2.故答案为2.【点睛】本题考查的是矩形的性质(对角线相等),先求出短边边长后根据勾股定理可求出长边边长,最后可求出矩形的面积.13.25【解析】【分析】由题意得:①当把长方体按照正面和右侧进行展开时,②当沿长方体的右侧和上面进行展开时,然后利用勾股定理进行求解最短路径即可.【详解】解:由题意得:①当把长方体按照正面和右侧进行展开时,如图所示:∴BD=15,AD=20,AB==;∴在Rt△ADB中,25②当沿长方体的右侧和上面进行展开时,如图所示:∴BD=25,AD=10,∴在Rt △ADB 中,22725AB BD AD =+=72525>,∴一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是25,由长方体的特征可得其他途径必定比①②两种更远,故不作考虑;故答案为25.【点睛】本题主要考查几何体的展开图及勾股定理,熟练掌握几何体的展开图及勾股定理是解题的关键.14.4.8【解析】【分析】直接利用勾股定理得出菱形的边长,再利用菱形的面积求法得出答案.【详解】解:∵菱形的两条对角线分别为6cm 和8cm ,2234+5(cm ),设菱形的高为:xcm ,则5x =12×6×8,解得:x =4.8.故答案为4.8.【点睛】此题主要考查了菱形的性质,正确得出菱形的边长是解题关键.15【解析】【分析】根据正方形的性质和OE OF ⊥,可得AOE BOF ≅△△,从而AE =BF ,得到BE =CF ,然后在Rt BEF △中,由勾股定理即可求解.【详解】解:在正方形ABCD 中,AO =BO ,∠OAB =∠OBC =45°,∠AOB =∠ABC =90°,AB =CB ,∵OE OF ⊥,∴∠EOF =90°,即∠BOE +∠AOE =90°,∠BOE +∠FOB =90°,∴∠AOE =∠FOB ,∴AOE BOF ≅△△,∴AE =BF ,∴AB -AE =CB -BF ,即BE =CF ,∵3AE =,2FC =,∴BF =3,BE =2,在Rt BEF △中,由勾股定理得:EF ===.【点睛】本题主要考查了正方形的性质,全等三角形的判定和性质和勾股定理,得到三角形全等是解本题的关键.16.(1)-3;(2)1-+【解析】【分析】(1)根据零次幂、绝对值和二次根式的性质直接计算即可;(2)先利用平方差公式和完全平方公式进行计算,然后合并同类二次根式即可.【详解】(1)原式14=+-3=-.(2)原式()5321=---5321=--+-1=-+.【点睛】本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.17.(1)如图1所示,Rt △ABC 即为所求;见解析;(2)如图所示,Rt △DEF 即为所求;见解析;(3)如图所示,正方形PQRS 即为所求,见解析.【解析】【分析】(1)画一个边长3,4,5的三角形即可;(2的线段,画三角形即可;(3【详解】(1)如图1所示,Rt △ABC 即为所求;(2)如图所示,Rt △DEF 即为所求;(3)如图所示,正方形PQRS 即为所求.【点睛】本题考查了作图与应用作图.本题需仔细分析题意,结合图形,利用勾股定理即可解决.18.(1)AFC △;(2)258CF =【解析】【分析】(1)依据折叠的性质以及平行线的性质,即可得到AF =CF ,进而得出△ACF 是等腰三角形;(2)设CF =x ,则AF =x ,DF =4−x ,依据勾股定理即可得到x 的值.【详解】解:(1)由折叠可得,∠BAC =∠EAC ,由AB ∥CD 可得,∠BAC =∠DCA ,∴∠EAC =∠DCA ,∴AF =CF ,∴△AFC 是等腰三角形,故答案为:△AFC ;(2)设CF =x ,则AF =x ,DF =4−x ,∵∠D =90°,∴Rt △ADF 中,AD 2+DF 2=AF 2,即32+(4−x )2=x 2,解得:258x =,∴258CF =.【点睛】本题主要考查了折叠问题,解题时,常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.19.(1)都正确;(2)答案见解析.【解析】【分析】(1)仔细阅读两同学的解题过程,然后判断;(2)将4.9化为4910,然后运算,也可得出正确答案.【详解】解:(1)都正确(2ba==771010b ba a ===⨯=【点睛】本题考查了二次根式的乘除法,解答本题的关键是掌握仔细阅读题目,灵活解题.20.秋千支柱AD的高为3m.【解析】【详解】试题分析:设秋千支柱AD的高为x m,根据秋千绳子自然下垂时,踏板离地面0.5m得AB =(x-0.5)m,根据右图得AE=(x-1)m,在Rt△AEB中利用勾股定理列方程求出x的值即可.试题解析:解:设AD=x m,则由题意可得AB=(x-0.5)m,AE=(x-1)m,在Rt△ABE中,AE2+BE2=AB2,即(x-1)2+1.52=(x-0.5)2,解得x=3.即秋千支柱AD的高为3m.点睛:本题考查了勾股定理的应用,若在一个直角三角形中,已知一条边,而其他两边具有一定的数量关系,则可利用勾股定理列方程求出其他两边.21.(1)证明见解析;(2)30°.【解析】【分析】(1)由直角三角形斜边上的中线等于斜边的一半,得到CE=AE=BE,从而得到AF=CE,再由等腰三角形三线合一,得到∠1=∠2,从而有∠F=∠3,得到∠2=∠F,故CE∥AF,然后利用一组对边平行且相等的四边形是菱形证明;(2)由菱形的性质,得到AC=CE,求出AC=CE=AE,从而得到△AEC是等边三角形,得出∠CAE=60°,然后根据直角三角形两锐角互余解答.【详解】解:(1)∵∠ACB=90°,E 是BA 的中点,∴CE=AE=BE ,∵AF=AE ,∴AF=CE ,在△BEC 中,∵BE=CE 且D 是BC 的中点,∴ED 是等腰△BEC 底边上的中线,∴ED 也是等腰△BEC 的顶角平分线,∴∠1=∠2,∵AF=AE ,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F ,∴CE ∥AF ,又∵CE=AF ,∴四边形ACEF 是平行四边形;(2)∵四边形ACEF 是菱形,∴AC=CE ,由(1)知,AE=CE ,∴AC=CE=AE ,∴△AEC 是等边三角形,∴∠CAE=60°,在Rt △ABC 中,∠B=90°﹣∠CAE=90°﹣60°=30°.【点睛】本题考查菱形的性质;平行四边形的判定.22.(1)见解析;(2)①4;②2【解析】【分析】(1)证△FCG ≌()EDG ASA △,推出FG EG =,根据平行四边形的判定推出即可;(2)①求出MBA EDC ∆≅∆,推出90==︒∠∠CED AMB ,即可得出答案;②求出CDE ∆是等边三角形,推出CE DE =,即可得出答案.【详解】∵四边形ABCD 是平行四边形,∴//CF ED ,∴FCD EDC ∠=∠,∵G 是CD 的中点,∴CG DG =,在△FCG 和EDG △中,FCG EDGCG DG CGF DGE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FCG ≌()EDG ASA △,∴FG EG =,∵CG DG =,∴四边形CEDF 是平行四边形.(2)①当t =4s 时,四边形CEDF是矩形;理由是:过A 作AM BC ⊥于M ,60,4B AB ∠=︒= ,2BM ∴=,四边形ABCD 是平行四边形,60,4,6CDA B DC AB BC AD ∴∠=∠=︒====,4AE = ,2DE BM ∴==,在MBA ∆和EDC ∆中,BM DEB CDA AB CD=⎧⎪∠=∠⎨⎪=⎩()MBA EDC SAS ∴∆≅∆90CED AMB ∴∠=∠=︒,即四边形CEDF 是矩形;②当t =2s 时,四边形CEDF 是菱形;理由是:6,2AD AE == ,4DE ∴=,4,60CD CDE =∠=︒ ,CDE ∴∆是等边三角形,CE DE ∴=,即平行四边形CEDF 是菱形,故答案为:4,2.【点睛】本题考查了平行四边形的性质和判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形.23.(1)证明见详解;(2(3【解析】【分析】(1)根据四边相等的四边形是菱形即可判断.(2)由勾股定理得出=2,得出AB=AC ,由等腰三角形的性质得出BD ⊥AC ,即可得出结论;(3)作OQ ⊥CE 于Q ,交CD 于P ,此时PE+PQ ∠DCE=∠DCO ,PE=PO ,得出PE+PQ=PO+PQ=OQ ,由直角三角形的性质得出CQ=12OC=34【详解】(1)证明:∵四边形ABCD 是矩形,∴AC 与BD 相等且互相平分,∴OC=OD ,∵△COD 关于CD 的对称图形为△CED ,∴OD=ED ,EC=OC ,∴OD=ED=EC=OC ,∴四边形OCED 是菱形.(2)解:∵四边形ABCD 是矩形,AB=2,∴AB=CD=2,OD=OC又∵OCED 是正方形∴OD ⊥OC∴△OCD 为等腰直角三角形∴OC=2(3)解:作OQ ⊥CE 于Q ,交CD 于P ,如图所示:此时PE+PQ 的值最小为4;理由如下:∵△COD 沿CD 所在直线折叠,得到△CED ,∴∠DCE=∠DCO ,PE=PO ,∴PE+PQ=PO+PQ=OQ ,∵AC=BD=3,∴OC=OD=32∴∠DCO=∠ACD=30°,∴∠DCE=30°,∴∠OCQ=60°,∴∠COQ=30°,CQ=12OC=34CQ=4.即PE+PQ 的最小值为4.故答案为:4.【点睛】本题考查了翻折变换的性质、矩形的性质、菱形的判定和性质、正方形的判定、勾股定理以及垂线段最短等知识;熟练掌握翻折变换的性质和菱形的判定与性质是解题的关键.。

人教版八年级下册数学期中考试试题含答案

人教版八年级下册数学期中考试试题含答案

人教版八年级下册数学期中考试试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣22.下列二次根式中,最简二次根式是()A.B.C.D.3.下列二次根式中,与之积为无理数的是()A.B.C.D.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.25.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,256.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm29.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.810.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.12.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=.14.相邻两边长分别是2+与2﹣的平行四边形的周长是.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是,面积是.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【解答】解:由题意得:2+x≥0,解得:x≥﹣2,故选D.【点评】本题考查了二次根式有意义的条件,难度不大,解答本题的关键是掌握二次根式的被开方数为非负数.2.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:=a,A错误;=,B错误;=3,C错误;是最简二次根式,D正确,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.下列二次根式中,与之积为无理数的是()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘法进行计算逐一判断即可.【解答】解:A、,不是无理数,错误;B、,是无理数,正确;C、,不是无理数,错误;D、,不是无理数,错误;故选B.【点评】此题考查二次根式的乘法,关键是根据法则进行计算,再利用无理数的定义判断.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,25【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+122=132,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、12+()2=()2,故是直角三角形,故正确;D、72+242=252,故是直角三角形,故正确.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【考点】平行四边形的性质.【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°【考点】三角形内角和定理;正方形的性质.【分析】根据三角形内角和为180°,得到∠BAC+∠BCA+∠ABC=180°,又∠4=∠5=∠6=90°,根据平角为180°,即可解答.【解答】解:如图,∵图中是三个正方形,∴∠4=∠5=∠6=90°,∵△ABC的内角和为180°,∴∠BAC+∠BCA+∠ABC=180°,∵∠1+∠4+∠BAC=180°,∠2+∠6+∠ABC=180°,∠3+∠5+∠ACB=180°,∴∠1+∠4+∠BAC+∠2+∠6+∠ABC+∠3+∠5+∠ACB=540°,∴∠1+∠2+∠3=540°﹣(∠4+∠5+∠6+∠BAC+∠ABC+∠ACB)=540°﹣90°﹣90°﹣90°﹣180°=90°,故选:B.【点评】本题考查了三角形内角和定理,解决本题的关键是运用三角形内角和为180°,正方形的内角为90°以及平角为180°,即可解答.8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm2【考点】勾股定理;矩形的性质.【专题】计算题.【分析】在直角三角形ABC中,由AB与AC的长,利用勾股定理求出BC的长,再由BE的长,求出矩形CBEF的面积即可.【解答】解:在Rt△ABC中,AB=17cm,AC=8cm,根据勾股定理得:BC==15cm,则矩形CBEF面积S=BC•BE=45cm2.故选C【点评】此题考查了勾股定理,以及矩形的性质,熟练掌握勾股定理是解本题的关键.9.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.10.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【考点】勾股定理的逆定理.【分析】对原式进行化简,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()【考点】矩形的性质.【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.12.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为()【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=6.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化简,然后把括号内合并后进行二次根式的乘法运算即可.【解答】解:原式=(+2)×=3×=6.故答案为6.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.相邻两边长分别是2+与2﹣的平行四边形的周长是8.【考点】二次根式的应用.【分析】根据平行四边形的周长等于相邻两边的和的2倍进行计算即可.【解答】解:平行四边形的周长为:(2++2﹣)×2=8.故答案为:8.【点评】本题考查的是平行四边形的周长的计算和二次根式的加减,掌握平行四边形的周长公式和二次根式的加减运算法则是解题的关键.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为60cm2.【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据BC=10cm可知BD=5cm.由勾股定理求出AD的长,再由三角形的面积公式即可得出结论.【解答】解:如图所示,过点A作AD⊥BC于点D,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD===12cm,∴S△ABC=BC•AD=×10×12=60(cm2).故答案为:60cm2.【点评】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是60°.【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=60°;故答案为:60°.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是20,面积是24.【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故答案为:20,24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为(9,4).【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出CD=AB=9,由勾股定理求出OD,即可得出点C的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=9,∵点A的坐标为(﹣3,0),∴OA=3,∴OD===4,∴点C的坐标为(9,4).故答案为:(9,4).【点评】本题考查了平行四边形的性质、坐标与图形性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OD是解决问题的关键.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是24.【考点】平行四边形的性质.【分析】由在平行四边形ABCD中,DE平分∠ADC,易证得△CDE是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CD=CE=BC﹣BE=8﹣4=4,∴AB=CD=4,∴平行四边形ABCD的周长是:AD+BC+CD+AB=24.故答案为:24.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CDE是等腰三角形是关键.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.【考点】图形的剪拼;实数与数轴;分式的化简求值;勾股定理.【分析】(1)首先将括号里面通分,进而利用分式的除法运算法则化简,进而将已知代入求出答案;(2)直接利用勾股定理结合数轴得出的位置;(3)直接利用勾股定理得出大正方形的边长即可.【解答】解:(1)原式=÷=×=,当x=+,y=﹣时,原式==;(2)因为30=25+5,则首先作出以5和为直角边的直角三角形,则其斜边的长即是.如图所示:;(3)如图所示:∵左边是由两个边长为2的小正方形组成,∴大正方形的边长为:=2.【点评】此题主要考查了分式的混合运算以及无理数的确定方法以及勾股定理、图形的剪拼,正确应用勾股定理是解题关键.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.【解答】证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;(2)原式=+++…+=(﹣1).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。

2023年部编版八年级数学下册期中考试题(及参考答案)

2023年部编版八年级数学下册期中考试题(及参考答案)

2023年部编版八年级数学下册期中考试题(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定5.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=10,则S 2的值为( )A .113B .103C .3D .838.如图,等边△ABC 的边长为4,AD 是边BC 上的中线,F 是边AD 上的动点,E 是边AC 上一点,若AE=2,则EF+CF 取得最小值时,∠ECF 的度数为( )A .15°B .22.5°C .30°D .45°9.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x,y的二元一次方程组3133x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则a的取值范围为________.2.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.3.若一个正数的两个平方根分别是a+3和2﹣2a,则这个正数的立方根是________.4.如图,AB∥CD,则∠1+∠3—∠2的度数等于 _________.5.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=________度.6.如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为________.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x=+--(2)2531242x x x-=---2.先化简,再求值[(x2+y2)-(x-y)2+2y(x-y)]÷2y,其中x=-2,y=-12.3.已知,a、b互为倒数,c、d互为相反数,求31-+++的值.ab c d4.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.5.如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当AB=6时,求CD的长.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、A5、C6、B7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、4a<23、44、180°5、:略6、15.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32 x=-2、2x-y;-31 2.3、0.4、(1)略;(2)结论:四边形ACDF是矩形.理由见解析.5、(1)略;(2)CD =36、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。

最新八年级(下)期中考试数学试题及答案

最新八年级(下)期中考试数学试题及答案

最新八年级(下)期中考试数学试题及答案人教版八年级下学期期中数学试卷考试时间: 120分钟 试卷总分:120分一、选择题(本大题共10小题,每小题3分,共30分) 1. 下列计算正确的是( )A.532=+B.632=⨯ C.2332=-D.2221= 2. 要使二次根式3-x 在实数范围内有意义,则x 的取值范围是( )A. x ≠3B. x ≤3C. x >3D. x ≥33. 三角形ABC 的三边长分别为a ,b ,c ,下列条件:①∠A =∠B -∠C②∠A ∶∠B ∶∠C = 3∶4∶5 ③ a 2=(b +c )(b -c ) ④ a ∶b ∶c =5∶12∶13 其中能判定三角形ABC 是直角三角形的有( )个。

A. 1B. 2C. 3D. 44. 如图,在Rt △AED 中,∠E =90°,AE =3,ED =4,以AD 为边在△AED的外侧作正方形ABCD ,则正方形ABCD 的面积是( ) A. 5B. 25C. 7D. 105. 下列条件中,能判定四边形ABCD 为平行四边形的个数是( )①AB ∥CD ,AD=BC ②AB=C D ,AD=BC ③∠A=∠B ,∠C=∠D④AB=AD ,CB=CD A. 1个B. 2个C. 3个D. 4个6. 一架长5米的梯子AB ,斜靠在一竖直的墙上,这时梯子底端距墙底3米,若梯子的顶端沿墙下滑1米,则梯子的底端在水平方向上将滑动( )A.7. A .a +6B .a --6C .a -D .18. 如图,在平面直角坐标系中,点O 、B 、D 的坐标分别是(0,0)、(5,0)、(2,3),若存在点C ,使得以点O 、B 、D 、C 为顶点的 四边形是平行四边形,则下列给出的C 点坐标中,错.误.的是( )A.(3,-3)B.(-3,3)C.(3,5)D.(7,3)9. 在 ABCD 中,对角线AC 、BD 相交于点 O ,若AC 、BD 的和为18 cm ,CD ∶DA =2∶3,△AOB 的周长为13 cm ,那么BC 的长是( ) A .6 cmB .9 cmC .3 cmD .12 cm10. 如图,△ABC 中,∠BAC =60°,∠B =45°,AB =2,点D 是BC 上的一个动点,D 点关于AB ,AC 的对称点分别是E 和F ,四边形AEGF 是平行四边形,则四边形AEGF 面积的最小值是 ( ) A. 1B.26 C. 2 D. 3二、填空题(本大题共6小题,每小题3分,共18分) 11. 化简:12=____________ .12. 如图,数轴上点A 表示数-1,点B 表示数1,过数轴上的点B 作BC 垂直于数轴,若BC =1,以A 为圆心,AC 为半径作圆弧交正半轴于点P ,则点P 所表示的数是______ . 13. 如图,已知长方体的长,宽,高分别为4cm ,3cm ,12cm ,在其中放入一根细棒,则细棒的最大长度可以是 ______ cm.14. 如图,平行四边形ABCD 中,DB =DC ,∠C =70°,AE ⊥BD 于点E ,则∠DAE =____________ .15. 如图,直线L 1,L 2,L 3分别过正方形ABCD 的三个顶点A ,D ,C ,且相互平行,若L 1,L 2的距离为2,L 2,L 3的距离为4,则正方形的对角线长为_______________. 16. 如图,△ABC 中,∠ABC =45°,∠BCA =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则BDAB=____________.三、解答题(本大题共8小题,共72分)17. (满分8分)计算18. (满分8分)已知:如图,在 ABCD 中,点E 、F 在AC 上,且AF =CE ,点G 、H 分别在AB 、CD 上,且AG =CH ,AC 与GH 相交于点O .求证:(1) (4分)EG ∥FH ;(2) (4分)GH 、EF 互相平分.∙19. (满分8分)如图,四边形ABCD 中,AB =BC ==4,∠DAB =∠B =∠C =∠D =90°,E 、F 分别是BC 和CD 边上的点,且,F 为CD 的中点,问△AEF 是什么三角形?请说明理由.20. (满分10分) 已知:2-727=+=n m ,,求: (1) (m +1)(n +1) (2) mn n m +21.(满分8分)如图,在四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,点E是边CD的中点,连接BE并延长交AD的延长线于点F,连接CF.(1)(4分)求证:四边形BDFC是平行四边形;(2)(4分)若CB=CD,求四边形BDFC的面积.(满分8分)在△ABC中,E是AC边上一点,线段BE垂直∠BAC的平分线于D点,点M(2)(4分)若AD=6,BD=8,DM =2,求AC的长.22.(满分10分)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)(2分)出发2秒后,求PQ的长;(2)(2分)当点Q在边BC上运动时,出发几秒钟,△PQB能形成等腰三角形?(3)(6分)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间;23.(满分12分)在平面直角坐标系中,已知A(0,5)B(a,b)且a,b满足b+=.a4-a1--4(1)(3分)如图1,求线段AB的长;(2)(4分)如图2,直线CD与x轴、y轴正半轴分别交于C、D两点,∠OCD=45°,第四象限的点P(m,n)在直线CD上,且mn=-6,求OP2 - OC2的值;(3)(5分)如图3,若点D(1,0),求∠DAO +∠BAO的度数.八年级数学参考答案一、选择题(本大题共10小题,共30分)二、填空题(本大题共6小题,共18分)三、解答题(本大题共8小题,共72分) 17. ①365223+ ②314 18.略19. 直角三角形 20. ①724+ ②32221. ① 略 ② 53 22. ① 略 ② 1423.①132 ②38③ 5.5秒或6秒或6.6秒 24.①132 ②12 ③45°最新人教版八年级(下)期中模拟数学试卷及答案一、选择题(本大题共10小题,每小题3分,共30分。

2023年部编版八年级数学下册期中测试卷(及参考答案)

2023年部编版八年级数学下册期中测试卷(及参考答案)

2023年部编版八年级数学下册期中测试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=6.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,由四个全等的直角三角形拼成的图形,设CE a =,HG b =,则斜边BD 的长是( )A .+a bB .⋅a bC .222a b +D .222a b - 10.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.若n 边形的内角和是它的外角和的2倍,则n =__________.3.在数轴上表示实数a 的点如图所示,化简2(5)a -+|a -2|的结果为____________.4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.三、解答题(本大题共6小题,共72分)1.解分式方程: 2216124x x x --=+-2.先化简,再求值[(x 2+y 2)-(x-y )2+2y (x-y )]÷2y ,其中x=-2,y=-12.3.已知222111x x x A x x ++=---. (1)化简A ;(2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值.4.如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE :y =-2x -4与直线AB 及y 轴围成图形的面积;(3)根据图象,直接写出关于x 的不等式kx +b >-2x -4的解集.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、A5、D6、B7、D8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、7或-12、63、3.4、255.5、36、12三、解答题(本大题共6小题,共72分)1、原方程无解2、2x-y;-31 2.3、(1)11x ;(2)14、(1)y=x+5;(2)272;(3)x>-3.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1)200元和100元(2)至少6件。

八年级数学下册期中测试卷及答案【完整版】

八年级数学下册期中测试卷及答案【完整版】

八年级数学下册期中测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =46.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.因式分解:a 2-9=_____________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知28x px ++与23x x q -+的乘积中不含3x 和2x 项,求,p q 的值.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.5.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系. 销售量y (千克) …34.8 32 29.6 28 … 售价x (元/千克) … 22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、B7、D8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、03、(a+3)(a ﹣3)4、135°5、56、42.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =- 2、1a b-+,-1 3、3p =,1q =.4、(1)DE=3;(2)ADB S 15∆=.5、(5a 2+3ab )平方米,63平方米6、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。

最新八年级下册数学期中考试试题及答案

最新八年级下册数学期中考试试题及答案
(1)已知点A(2,0),B(0,2 ),则以AB为边的“坐标菱形”的面积为;
(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD解析式.
四、填空题(本题6分)
26.如图,OP=1,过P作PP1⊥OP且PP1=1,根据勾股定理,得OP1= ;再过P1作P1P2⊥OP1且P1P2=1,得OP2= ;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;OP4=,…:依此继续,得OP2019=,OPn=(n为自然数,且n>0)
第三步:(画表示 的点)在下面的数轴上画出表示 的点M,并描述第三步的画图步骤:.
四、解答题(本大题共8道小题,其中23小题4分,24小题6分,其它每小题5分,本题共40分)
18.计算:
(1)
(2)
(3)
19.如图,已知平行四边形ABCD中,E、F是对角线BD上的两个点,且BE=DF.
求证:四边形AECF为平行四边形.
【解答】解:∵A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,
∴1•y1=1,2•y2=1,
解得:y1=1,y2= ,
∵1> ,
∴y1>y2.
故选:C.
6.如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为( )
A.16B.24C.4 D.8
【解答】解:∵正方形的一条对角线长为4,
∴这个正方形的面积= ×4×4=8.
故选:A.
5.若A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,则y1与y2的大小关系是( )
A.y1<y2B.y1=y2C.y1>y2D.无法确定
【分析】根据反比例函数图象上点的坐标特征结合点A、B的横坐标,求出y1、y2的值,二者进行比较即可得出结论.

八年级数学下册期中测试卷题及答案精选全文完整版

八年级数学下册期中测试卷题及答案精选全文完整版

八年级(下)期中数学试卷一.选择题(共10小题,每题3分,共30分)1.(3分)下列二次根式中,最简二次根式是()A.B.C.D.2.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣3.(3分)△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.∠A=∠B+∠CC.∠A:∠B:∠C=3:4:5D.a=5,b=12,c=134.(3分)若一个直角三角形的两直角边的长为12和5,则第三边的长为()A.13或B.13或15C.13D.155.(3分)若平行四边形两个内角的度数比为1:2,则其中较大内角的度数为()A.100°B.120°C.135°D.150°6.(3分)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD7.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2B.4C.6D.88.(3分)等边三角形的边长为2,则该三角形的面积为()A.4B.C.2D.39.(3分)如果最简二次根式与能够合并,那么a的值为()A.2B.3C.4D.510.(3分)将实数按如图方式进行有规律排列,则第19行的第37个数是()A.19B.﹣19C.D.﹣二.填空题(共7小题,每题4分,共28分)11.(4分)若在实数范围内有意义,则x的取值范围是.12.(4分)计算:=.13.(4分)如图,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是.14.(4分)已知菱形的两条对角线长分别是6和8,则这个菱形的面积为.15.(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.16.(4分)规定运算:a☆b=﹣,a※b=+,其中a,b为实数,则(3☆5)(3※5)=.17.(4分)如图,四边形ABCD是菱形,AC=8,DB=6,P、Q分别为AC、AD上的动点,连接DP、PQ,则DP+PQ的最小值为.三.解答题(一)(共3小题,每题6分,共18分)18.(6分)(2﹣3)×19.(6分)在△ABC中,AB=13,BC=10,BC边上的中线AD=12,求AC长.20.(6分)如图,在平行四边形ABCD中,E、F是对角线AC所在直线上的两点,且AE =CF.求证:四边形EBFD是平行四边形.四、解答题(二)(共3小题,每题8分,共24分)21.(8分)已知:x=,y=,求+的值.22.(8分)如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD分别相交于点E,F.(1)求证:AE=CF;(2)若AB=2,点E是AB中点,求EF的长.23.(8分)如图,在矩形纸片ABCD中,AB=6,BC=8将矩形纸片ABCD沿对角线BD 折叠,点C落在点E处,BE交AD于点F,连接AE.(1)证明:BF=DF;(2)求AF的值;(3)求△DBF的面积.五、解答题(三)(共2小题,每题10分,共20分)24.(10分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECD是正方形?(不必说明理由)25.(10分)如图1,正方形ABCD的边长为6cm,点F从点B出发,沿射线方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F 同时出发移动t秒.(1)在点E,F移动过程中,连接CE,CF,EF,请判断△CEF的形状并说明理由;(2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;(3)如图3,点G,H分别在边AB,CD上,且GH=3cm,连接EF,当EF与GH 的夹角为45°,求t的值.参考答案与试题解析一.选择题(共10小题,每题3分,共30分)1.【分析】根据最简二次根式的概念判断即可.【解答】解:A、12=3×22,即被开方数中含有能开得尽方的因数,它不是最简二次根式,故本选项不符合题意.B、48=3×42,即被开方数中含有能开得尽方的因数,它不是最简二次根式,故本选项不符合题意.C、符合最简二次根式的定义,故本选项符合题意.D、被开方数中含有分母,它不是最简二次根式,故本选项不符合题意.故选:C.【点评】本题考查的是最简二次根式,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.2.【分析】根据=|a|,×=(a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【解答】解:A、=2,故原题计算错误;B、+=+2=3,故原题计算错误;C、==4,故原题计算正确;D、2和不能合并,故原题计算错误;故选:C.【点评】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、除法及加减法运算法则.3.【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【解答】解:A、∵a2+b2=c2,∴此三角形是直角三角形,故本选项不符合题意;B、∵∠A+∠B+∠C=180°,∠A=∠B+∠C,∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;C、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°,∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符合题意;D、∵52+122=132,∴此三角形是直角三角形,故本选项不符合题意;故选:C.【点评】本题考查的是勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.4.【分析】根据在直角三角形中,两个直角边的平方和等于斜边的平方,然后开方即可得出答案.【解答】解:∵一个直角三角形的两直角边的长为12和5,∴第三边的长为=13.故选:C.【点评】此题主要考查了勾股定理,掌握在直角三角形中,两个直角边的平方和等于斜边的平方是解题的关键.5.【分析】设较大内角的度数为2x,较小内角的度数为x,由平行四边形的性质列出等式可求解.【解答】解:∵平行四边形两个内角的度数比为1:2,∴设较大内角的度数为2x,较小内角的度数为x,∵平行四边形的邻角互补,∴2x+x=180°,∴x=60°,∴2x=120°.故选:B.【点评】本题考查了平行四边形的性质,掌握平行四边形的对角相等、邻角互补是解题的关键.6.【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.∴可添加:AB=AD或AC⊥BD.【解答】解:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC.故选:C.【点评】本题考查菱形的判定,答案不唯一.有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.7.【分析】只要证明△AOB是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=2,∴AC=2OA=4,故选:B.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,解题的关键是熟练掌握矩形的性质,属于中考常考题型.8.【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【解答】解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,∴S△ABC=BC•AD=×2×=,故选:B.【点评】本题考查的是等边三角形的性质,熟知等腰三角形“三线合一”的性质是解题的关键.9.【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,3a﹣8=17﹣2a,移项合并,得5a=25,系数化为1,得a=5.故选:D.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.10.【分析】观察发现,第n行有(2n﹣1)个数,且每行最后一个数字的绝对值等于行数,奇数行的最后一个为正,偶数行的最后一个为负,据此可求得答案.【解答】解:观察发现,第n行有(2n﹣1)个数,且每行最后一个数字的绝对值等于行数,奇数行的最后一个为正,偶数行的最后一个为负,∴第19行有2×19﹣1=37个数,∴第19行的第37个数是19.故选:A.【点评】本题考查了找规律在平方根中的应用,找到题目中数字的排列规律是解题的关键.二.填空题(共7小题,每题4分,共28分)11.【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【解答】解:∵二次根式在实数范围内有意义,∴被开方数x+2为非负数,∴x+2≥0,解得:x≥﹣2.故答案为:x≥﹣2.【点评】此题主要考查了二次根式中被开方数的取值范围,关键把握二次根式中的被开方数是非负数.12.【分析】根据二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=﹣+=+3.故答案为+3.【点评】本题主要考查二次根式的加减运算,计算时先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.13.【分析】三角形的中位线等于第三边的一半,那么第三边应等于中位线长的2倍.【解答】解:∵M,N分别是AC,BC的中点,∴MN是△ABC的中位线,∴MN=AB,∴AB=2MN=2×20=40(m).故答案为:40m.【点评】本题考查三角形中位线等于第三边的一半的性质,熟记性质是应用性质解决实际问题的关键.14.【分析】因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为24.【解答】解:∵菱形的两条对角线长分别是6和8,∴这个菱形的面积为6×8÷2=24故答案为24【点评】此题考查了菱形面积的求解方法:①底乘以高,②对角线积的一半.15.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】本题考查勾股定理,熟练运用勾股定理进行面积的转换是解题关键.16.【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=(﹣)×(+)=3﹣5=﹣2,故答案为:﹣2【点评】此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.17.【分析】如图作DM⊥AB于M.首先利用面积法求出DM的值,作点Q关于直线AC的对称点Q′,则PQ=PQ′,推出PD+PQ=PD+PQ′,推出当D、P、Q′共线时,且垂直AB时,DP+PQ′的值最小,最小值=DM;【解答】解:如图作DM⊥AB于M.∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=4,OB=OD=3,∴AB==5,∵•AB•DM=•BD•AO,∴DM==,作点Q关于直线AC的对称点Q′,则PQ=PQ′,∴PD+PQ=PD+PQ′,∴当D、P、Q′共线时,且垂直AB时,DP+PQ′的值最小,最小值=DM=,故答案为.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会利用垂线段最短解决最短问题,学会利用面积法求高,属于中考常考题型.三.解答题(一)(共3小题,每题6分,共18分)18.【分析】观察,可以首先把括号内的化简,合并同类项,然后相乘.【解答】解:原式=(4×=3×=9.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.19.【分析】在△ABD中,根据勾股定理的逆定理即可判断AD⊥BC,然后根据线段的垂直平分线的性质,即可得到AC=AB,从而求解.【解答】解:∵AD是中线,AB=13,BC=10,∴BD=BC=5.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13.【点评】本题主要考查了勾股定理的逆定理与线段的垂直平分线的性质,关键是利用勾股定理的逆定理证得AD⊥BC.20.【分析】连接BD交AC于点O,根据对角线互相平分的四边形是平行四边形,可证四边形EBFD是平行四边形.【解答】证明:如图,连接BD交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形EBFD是平行四边形.【点评】此题主要考查平行四边形的判定,熟练掌握平行四边形的判定是解题的关键.四、解答题(二)(共3小题,每题8分,共24分)21.【分析】利用分母有理化法则分别求出、,计算即可.【解答】解:∵x=,∴===﹣1,∵y=,∴===+1,∴+=﹣1++1=2.【点评】本题考查的是二次根式的化简求值,掌握分母有理化法则是解题的关键.22.【分析】(1)由四边形ABCD是菱形,可得AB∥CD,OA=OC,继而证得△AOE≌△COF,则可证得结论.(2)利用平行四边形的判定和性质解答即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AO=CO,AB∥CD,∴∠EAO=∠FCO,∠AEO=∠CFO.在△OAE和△OCF中,,∴△AOE≌△COF,∴AE=CF;(2)∵E是AB中点,∴BE=AE=CF.∵BE∥CF,∴四边形BEFC是平行四边形,∵AB=2,∴EF=BC=AB=2.【点评】此题考查了菱形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.23.【分析】(1)由折叠的性质可得到△ABD≌△EDB,那么∠ADB=∠EBD,所以BF=DF;(2)根据折叠的性质我们可得出AB=ED,∠A=∠E=90°,又有一组对应角,因此就构成了全等三角形判定中的AAS的条件.两三角形就全等,从而设BF为x,解直角三角形ABF可得出答案;(3)由(1)知BF=DF,由(2)知BF的长,再由三角形的面积公式即可得出结论.【解答】证明:(1)由折叠的性质知,CD=ED,BE=BC.∵四边形ABCD是矩形,∴AD=BC,AB=CD,∠BAD=90°,∴AB=DE,BE=AD,在△ABD与△EDB中,,∴△ABD≌△EDB(SSS),∴∠EBD=∠ADB,∴BF=DF;(2)(2)在△ABD与△EDB中,,∴△ABF≌△EDF(AAS).∴AF=EF,设BF=x,则AF=FE=8﹣x,在Rt△AFB中,可得:BF2=AB2+AF2,即x2=62+(8﹣x)2,解得:x=,∴AF=8﹣=;(3)∵由(1)知BF=DF,由(2)知BF=,∴DF=,∴S△DBF=DF•AB=××6=.【点评】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.五、解答题(三)(共2小题,每题10分,共20分)24.【分析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)当∠A=45°,四边形BECD是正方形.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形;(3)解:当∠A=45°时,四边形BECD是正方形,理由:∵∠ACB=90°,∴∠ABC=45°,由(2)可知,四边形BECD是菱形,∴∠ABC=∠CBE=45°,∴∠DBE=90°,∴四边形BECD是正方形.【点评】本题考查了平行四边形的性质和判定,菱形的判定,正方形的判定、直角三角形的性质的应用,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.【分析】(1)通过证明△CDE≌△CBF得到CF=CE,∠DCE=∠BCF,则易推知△CEF 是等腰直角三角形;(2)过点E作EN∥AB,交BD于点N,∠END=∠ABD=∠EDN=45°,EN=ED=BF.可证△EMN≌△FMB,则其对应边相等:EM=FM.所以在Rt△AEF中,由勾股定理求得EF的长度,则AM=EF;(3)如图3,连接CE,CF,EF与GH交于P.根据四边形GFCH是平行四边形,则其对边相等:CF=GH=3.所以在Rt△CBF中,由勾股定理得到:BF=3,故t=3.【解答】解:(1)等腰直角三角形.理由如下:如图1,在正方形ABCD中,DC=BC,∠D=∠ABC=90°.依题意得:DE=BF=t.在△CDE与△CBF中,,∴△CDE≌△CBF(SAS),∴CF=CE,∠DCE=∠BCF,∴∠ECF=∠BCF+∠BCE=∠DCE+∠BCE=∠BCD=90°,∴△CEF是等腰直角三角形.(2)如图2,过点E作EN∥AB,交BD于点N,则∠NEM=∠BFM.∴∠END=∠ABD=∠EDN=45°,∴EN=ED=BF.在△EMN与△FMB中,,∴△EMN≌△FMB(AAS),∴EM=FM.∵Rt△AEF中,AE=4,AF=8,∴EF===4,∴AM=EF=2;(3)如图3,连接CE,CF,EF与GH交于P,CE与GH交于点Q.由(1)得∠CFE=45°,又∵∠EPQ=45°,∴GH∥CF,又∵AF∥DC,∴四边形GFCH是平行四边形,∴CF=GH=3,在Rt△CBF中,得BF===3,∴t=3.【点评】本题考查了四边形综合题.解题过程中,涉及到了平行四边形的判定与性质,全等三角形的判定与性质以及勾股定理的应用.解答该类题目时,要巧妙的作出辅助线,构建几何模型,利用特殊的四边形的性质(或者全等三角形的性质)得到相关线段间的数量关系,从而解决问题.。

人教版八年级下册数学期中考试试题含答案

人教版八年级下册数学期中考试试题含答案

人教版八年级下册数学期中考试试卷一、单选题1.下列二次根式中,属于最简二次根式的是()AB C D 2.下列计算正确的是()A .29=B 2÷=C 6=D 2=-3.下列各组数中,能构成直角三角形的是()A .4,5,6B .1,1C .6,8,11D .5,12,234.等边三角形的边长为6,则它的面积为()A .B .18C .36D .5.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是()A .AB =BC ,CD =DA B .AB //CD ,AD =BC C .AB //CD ,∠A =∠CD .∠A =∠B ,∠C =∠D6.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是()A .1∶2∶3∶4B .1∶2∶2∶1C .1∶1∶2∶2D .2∶1∶2∶17.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为()A .10mB .15mC .18mD .20m8.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于()A .1cmB .2cmC .3cmD .4cm9x ,小数部分为y y -的值是()A .3B C .1D .310.给出下列命题:①在直角三角形ABC 中,已知两边长为3和4,则第三边长为5;②三角形的三边a 、b 、c 满足a 2+c 2=b 2,则∠C=90°;③△ABC 中,若∠A :∠B :∠C=1:5:6,则△ABC 是直角三角形;④△ABC 中,若a :b :c=1:2形.其中,正确命题的个数为()A .1个B .2个C .3个D .4个二、填空题11.在实数范围内分解因式:25x -=______.12在实数范围内有意义,则实数x 的取值范围是______________13.在数轴上表示实数a 的点如图所示,化简|a -2|的结果为____________.14.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积和是___cm 2.15.已知ABCD 中一条对角线分A ∠为35°和45°,则B ∠=________度.16.命题“对顶角相等”的逆命题的题设是___________.17.已知a 、b 、c 是△ABC a b 0-=,则△ABC 的形状为_______18.对于任意不相等的两个数a ,b ,定义一种运算※如下:=12※4=______________________.三、解答题19.计算或化简:(1-(2)2+---(3)22⎛+- ⎝(420.先化简,再求值:211x x --÷22x x x+,其中21.如图,已知□ABCD 中,AE 平分∠BAD ,CF 平分∠BCD ,分别交BC 、AD 于E 、F .求证:AF =EC .22.如图在△ABC 中,∠ACB=90°,点D ,E 分别是AC 、AB 的中点,点F 在BC 的延长线上,且∠CDF=∠A .求证:四边形DECF 是平行四边形.23.在△ABC 中,AB=15,AC=13,BC 边上高AD=12,试求△ABC 周长.24.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解).25.如图是一块地,已知AD=4,CD=3,AB=13,BC=12,且CD⊥AD,求这块地的面积.26.观察下列等式:1==;==;==;…回答下列问题:(1)仿照上列等式,写出第n个等式:;(2;(3参考答案1.D 【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A 、被开方数含分母,故A 错误;B 、被开方数含分母,故B 错误;C 、被开方数含能开得尽方的因数,故C 错误;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 正确;故选:D .【点睛】本题考查最简二次根式的定义,被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.B 【解析】分析:根据二次根式的计算法则即可得出正确答案.详解:A 、原式=3,故计算错误;B 、原式2=,故计算正确;C 、原式,故计算错误;D 、原式=22-=,故计算错误;则本题选B .点睛:本题主要考查的就是二次根式的计算法则,属于基础题a a ====,的计算法则.3.B 【解析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、因为42+52≠62,所以不能构成直角三角形;B 、因为12+12=2,所以能构成直角三角形;C 、因为62+82≠112,所以不能构成直角三角形;D 、因为52+122≠232,所以不能构成直角三角形.故选:B .【点睛】此题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.A 【解析】【详解】试题解析:如图所示:等边三角形高线即中线,故D 为BC 中点,∵AB =6,∴BD =3,∴AD ==∴等边△ABC 的面积11622BC AD =⋅=⨯⨯=故选A.点睛:等腰三角形顶角的平分线,底边的中线,底边上的高三线合一.5.C 【解析】【分析】根据平行四边形的判定定理,分别进行判断,即可得到答案.【详解】解:如图:A 、根据AB=BC ,AD=DC ,不能推出四边形ABCD 是平行四边形,故本选项错误;B 、根据AB ∥CD ,AD=BC 不能推出四边形ABCD 是平行四边形,故本选项错误;C 、由AB ∥CD ,则∠A+∠D=180°,由∠A=∠C ,则∠D+∠C=180°,则AD ∥BC ,可以推出四边形ABCD 是平行四边形,故本选项正确;D 、∵∠A=∠B ,∠C=∠D ,∠A+∠B+∠C+∠D=360°,∴2∠B+2∠C=360°,∴∠B+∠C=180°,∴AB ∥CD ,但不能推出其它条件,即不能推出四边形ABCD 是平行四边形,故本选项错误;故选:C .【点睛】本题考查了对平行四边形的判定定理和等腰梯形的判定的应用,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形,等腰梯形的定义是两腰相等的梯形.6.D 【解析】【分析】根据平行四边形的性质得到∠A=∠C ,∠B=∠D ,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.【详解】解:如图,∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D ,∴:::A B C D ∠∠∠∠的值可以是2:1:2:1.故选D .【点睛】本题主要考查对平行四边形的性质的理解和掌握,能根据平行四边形的性质进行判断是解此题的关键,题目比较典型,难度适中.7.C【解析】【详解】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m,∴=13m,∴这棵树原来的高度=BC+AC=5+13=18m.故选C.8.B【解析】【详解】解:如图,∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC-BE=5-3=2.故选B.9.C 【解析】【详解】因为12<11-,即x =1,1y =-,所以1)1y -==.10.B 【解析】【详解】试题分析:①错误,因为没有说明3、4是直角边,还是斜边;②错误,三角形的三边a 、b 、c 满足a 2+c 2=b 2,则∠B=90°;③正确,∵∠A :∠B :∠C=1:5:6,∴∠C=90°,所以是直角三角形;④正确,∵12+2=22,∴是直角三角形.故选B .考点:命题与定理.11.(x x【解析】【分析】根据平方差公式()()22a b a b a b -=+-,得(x x +-.【详解】解:根据平方差公式,得(2225x x x x -=-=+-故答案为:(x x -.【点睛】此题考核知识点:平方差公式()()22a b a b a b -=+-,解题的关键在于将式子化为22a b -形式.12.x≥-2且x≠1,【解析】【详解】由题意得:x+2⩾0且x≠1,解得:x ⩾−2且x≠1,故答案为x ⩾−2且x≠1.13.3.【解析】【详解】试题分析:由数轴得知,a>2,且a<5,所以a-5<0,a-2>0,原式化简=5-a+a-2=3.故答案为3.考点:绝对值意义与化简.14.49【解析】【分析】如图,正方形A ,B 的面积和等于1S ,正方形C ,D 的面积和等于3s ,13249S S S +==,【详解】如图,设正方形A ,B ,C ,D 的边长分别为a b c d ,,,,设标有13,S S 的两个正方形的边长为,x y ,根据勾股定理可得22222213,a b S x c d S y+==+==则2222749x y S +===222249a b c d ∴+++=故答案为:49【点睛】此题考查勾股定理,解题关键在于勾股定理结合正方形面积的运用.15.100【解析】【详解】分析:首先求出∠A的度数,然后根据平行四边形的性质得出答案.详解:∵∠A=35°+45°=80°,∠A+∠B=180°,∴∠B=100°.点睛:本题主要考查的就是平行四边形的性质,属于基础题型.平行四边形的对角相等,邻角互补,本题只要明确这个就非常好解答了.16.两个角相等【解析】【分析】交换原命题的题设与结论即可得到逆命题,然后根据命题的定义求解.【详解】解:命题“对顶角相等”的逆命题是:“如果两个角相等,那么这两个角是对顶角”,题设是:两个角相等故答案为:两个角相等.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.17.等腰直角三角形.【解析】【详解】a b0+-=,∴c2-a2-b2=0,且a-b=0.由c2-a2-b2=0得c2=a2+b2,∴根据勾股定理的逆定理,得△ABC为直角三角形.又由a-b=0得a=b,∴△ABC为等腰直角三角形.18.1. 2【解析】【分析】依据新定义进行计算即可得到答案.【详解】解: a※b=-a b∴12※4=41,12482==-故答案为:1.2【点睛】本题考查的是新定义下的实数的运算,弄懂定义的含义,掌握求解算术平方根是解题的关键.19.(1(2)1+(3)4,(4)【解析】【分析】(1)分别先计算二次根式的乘法与除法,再合并同类二次根式即可,(2)利用乘法公式先计算二次根式的乘法运算,再合并同类二次根式即可,(3)利用乘法公式先计算二次根式的乘法运算,再合并同类二次根式即可,(4)利用乘法公式把分子分解,约分后再合并同类二次根式即可.【详解】解:(1-=-=(2)2+---1812(32)=---65=-+1=+(3)22⎛+- ⎝112(2a a a a =++--+1122a a a a=++-+-4,=(42==【点睛】本题考查的是二次根式的加减乘除的混合运算,掌握运算顺序,运算法则,以及利用乘法公式进行简便运算是解题的关键.20.1x ;3.【解析】【分析】各分式的分子分母分别分解因式,约分后再利用分式的除法运算法则进行化简,然后将数值代入进行计算即可.【详解】原式=()()x 1x 1x 1-+-÷()2x x x 1+=1x 1+•x 1x +=1x,当【点睛】本题考查了分式的化简求值,熟练掌握分式除法运算的运算法则是解本题的关键.21.证明见解析.【解析】【分析】由四边形ABCD 是平行四边形,AE 平分∠BAD ,CF 平分∠BCD ,易证得△ABE ≌△CDF (ASA ),即可得BE=DF ,又由AD=BC ,即可得AF=CE .【详解】证明:∵四边形ABCD 是平行四边形,∴∠B=∠D ,AD=BC ,AB=CD ,∠BAD=∠BCD ,∵AE 平分∠BAD ,CF 平分∠BCD ,∴∠EAB=12∠BAD ,∠FCD=12∠BCD ,∴∠EAB=∠FCD ,在△ABE 和△CDF 中,B D AB CD EAB FCD ===∠∠⎧⎪⎨⎪∠∠⎩,∴△ABE ≌△CDF (ASA ),∴BE=DF .∵AD=BC ,∴AF=EC .【点睛】本题主要考查平行四边形的性质与判定;证明四边形AECF 为平行四边形是解决问题的关键.22.证明见解析.【解析】【详解】∵D ,E 分别为AC ,AB 的中点,∴DE 为△ACB 的中位线.∴DE ∥BC .∵CE 为Rt △ACB 的斜边上的中线,∴CE=12AB=AE .∴∠A=∠ACE .又∵∠CDF=∠A ,∴∠CDF=∠ACE .∴DF ∥CE .又∵DE ∥BC ,∴四边形DECF 为平行四边形.23.周长为42或32【解析】【详解】试题分析:由题可得△ABC为锐角三角形和钝角三角形两种情况.锐角三角形时,AB=15,AC=13,∠ADC=∠ADB=90°,在△ABD中,∠ADB=90°,由勾股定理得BD2=AB2–AD2=152-122=81.∴BD=在△ACD中,∠ADC=90°,由勾股定理得CD2=AC2–AD2=132-122=25.∴CD=∴△ABC的周长=AC+AB+CB=AC+AB+BD+CD=13+15+9+5=42.钝角三角形时,AB=15,AD=12,∠ADB=90°,在△ABD中,∠ADB=90°,由勾股定理得BD2=AB2–AD2=152-122=81.∴BD=在△ACD中,∠ADC=90°,由勾股定理得CD2=AC2–AD2=132-122=25.∴CD=∴BC=BD-CD=9-5=4.∴△ABC的周长=AC+AB+CB=15+13+4=32.∴△ABC的周长是32或42.考点:勾股定理的运用24.小鸟飞行的最短路程为13m.【解析】【详解】试题分析:根据题意画出图形,构造出直角三角形,利用勾股定理求解.试题解析:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB-BE=AB-CD=13-8=5∴在Rt△ADE中,DE=BC=12∴AD 2=AE 2+DE 2=122+52=144+25=169∴AD =13(负值舍去)答:小鸟飞行的最短路程为13m .25.24.【解析】【分析】连接AC ,利用勾股定理可以得出三角形ACD 和ABC 是直角三角形,△ABC 的面积减去△ACD 的面积就是所求的面积.【详解】解:连接AC ,∵CD ⊥AD∴∠ADC=90°,∵AD=4,CD=3,∴AC2=AD2+CD2=42+32=25,又∵AC >0,∴AC=5,又∵BC=12,AB=13,∴AC2+BC2=52+122=169,又∵AB2=169,∴AC2+BC2=AB2,∴∠ACB=90°,∴S 四边形ABCD=S △ABC-S △ADC=30-6=24.【点睛】本题主要考查勾股定理和勾股定理逆定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.26.(1=(2)(3 1.-【解析】【分析】(1)根据观察,发现规律,由发现的规律可得答案,(2)利用平方差公式把分母化为有理数,即可得到答案,(3)利用(1)中发现的规律依次把每一个二次根式化简,再观察可得答案.【详解】解:(1)根据规律得到第n 个等式:==(21211==-(3+…1=∙∙∙+1.-【点睛】本题考查的是二次根式的除法运算中的规律题,掌握化简的方法,概括出发现的规律是解题的关键.。

重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)

重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)

重庆市沙坪坝区2023–2024学年下期期中调研测试八年级数学试题卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列二次根式中,是最简二次根式的是( )ABCD2.已知函数,则自变量x 的取值范围是()A .x >-3B .x≥-3C.x ≠-3D .x ≤-33.下列计算,正确的是( )A B .C.D .4的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间5.下列命题正确的是()A .一组对边平行另一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线相等的平行四边形是菱形D .有一个角是直角的菱形是正方形6.如图,用正方形按规律依次拼成下列图案.由图知,第①个图案中有2个正方形;第②个图案中有4个正方形;第③个图案中有7个正方形.按此规律,第8个图案中正方形的个数为()A .16B .22C .29D .377.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是()A .B .C .D .y ==1-=)221-=54+=1-8.如图,5个阴影四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、5、20,则正方形B 的面积为()A .8B .9C .10D .119.如图,在正方形ABCD 中,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF ⊥AB 与点F ,EG ⊥BC 于点G ,连接DE ,FG ,若∠AED =α,则∠EFG =()A .a -90°B .180°-aC .a -45°D .2a -90°10.将自然数1,2,3,4,5,6分别标记在6个形状大小质地等完全相同的卡片上,随机打乱之后一一摸出,并将摸出的卡片上的数字分别记为,记,以下3种说法中:①A 最小值为3;②A 的值一定是奇数;③A 化简之后一共有5种不同的结果.说法正确的个数为( )A .3B.2C .1D .0二、填空题(本大题8个小题,每小题4分,共32分)11.计算:______.12.已知一次函数y =-2x +1的图象经过,若,则______(填“>”“<”或“=”).13.如图,□ABCD 对角线AC 、BD 相交于点O ,E 为AB 中点,AE =3,OE =4,则□ABCD 的周长为______.14.如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,且∠OAD =55°.则∠ODC =______.123456,,,,,a a a a a a 123456A a a a a a a =-+-+-()2π1--=1122(,),(,)A x y B x y 12x x >1y 2y15.如图,两个边长均为6的正方形ABCD 、正方形OGFE 有一部分堆叠在一起,O 恰为AC 中点,则图中阴影部分的面积为______.16.若关于x 的一次函数y =x +2a -5的图象经过第二象限,且关于y的分式方程的解为非负整数,则所有满足条件的整数a 的值之和为______.17.如图,将一个长为9,宽为3的长方形纸片ABCD 沿EF 折叠,使点C 与点A 重合,则EF 的长为______.18.若一个四位自然数,满足A ,B ,C ,D 互不相同且A -D =B -C >0;若,规定.(1)当N =1234,且F (M *N)为整数时,A +B-C -D =______;(2)若,且F (M *N )是一个立方数(即某一个整数的立方),则满足条件的M 的最小值为______.三、解答题(本大题8个小题,19题8分,其余题各10分,共78分)19.计算:(2).20.如图,四边形ABCD 是矩形,连接AC 、BD 交于点O ,AE 平分∠BAO 交BD 于点E .210122y a y y y+--=--M ABCD =N abcd =()*5Aa Bb Cc DdF M N +++=N DCBA =))2111++(1)用尺规完成基本作图:作∠ACD 的角平分线交BD 于点F ,连接AF ,EC ;(保留作图痕迹,不写作法与结论)(2)求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是矩形,∴AO =OC ,,∴ ① .∵AE 平分∠BAO ,CF 平分∠DCO ,∴,∴ ② .∵在△AEO 和△CFO 中,∴△AEO ≌△CFO (ASA ),∴ ④ .又∵AO =CO ,∴四边形AECF 是平行四边形( ⑤ ).21.已知在Rt △ABC 中,∠ACB =90°,AC =9,AB =15,BD =5,过点D 作DH ⊥AB 于点H .(1)求CD 的长;(2)求DH 的长.22.随着人口的增加和城市化进程的加快,为了预防污水排放量不断增加而导致水体污染,高新区进行了污水治理,现需铺设一段全场为4600米的污水排放管道,铺了1600米后,为了尽量减少施工对城市交通所造成的影响,承包商安排工人每天加班,每天的工作量比原来提高了25%,共用50天完成了全部任务.(1)求原来每天铺设多少米管道?(2)若承包商安排工人加班后每天支付给工人工资增加了20%,完成整个工程后承包商共支付工人工资224000元,请问安排工人加班前每天需支付工人工资多少元?AB CD ∥11,22EAO BAO FCO DCO ∠=∠∠=∠EAO FCOAO CO ∠=∠⎧⎪=⎨⎪⎩③23.如图,在□ABCD 中,AD =6,CD =4,∠ADC =30°,动点P 以每秒1个单位的速度从点B 出发沿折线B →A →D 运动(含端点),在运动过程中,过点P 作PH ⊥BC 于点H ,设点P 的运动时间为x 秒,点P 到直线BC 的距离与点P 到点A 的距离之和记为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)请直接写出当y 为3时x 的值.24.如图,在△ABC 中,,AD 是BC 边上的中线,F 为AC 右侧一点,连接AF 、CF ,恰好满足,连接BF 交AD 于E .(1)求证:四边形ADCF 是菱形;(2)若AB =6,AE =2,求四边形ADCF 的面积.25.如图,在平面直角坐标系中,函数y =-2x +12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式;(2)若点C 是直线AM 上一点,且,求点C 的坐标;(3)点P 为x 轴上一点,当,∠PBA =∠BAM 时,请直接写出满足条件的点P的坐标.90BAC ∠=︒,AF BC CF AD ∥∥23ABC AMO S S =△△26.正方形ABCD 对角线AC ,BD 相交于点O ,E 为线段AO 上一点,连接BE .(1)如图1,若,求AB 的长度;(2)如图2,F 为BC 上一点,连接DF ,G 为DF 上一点,连接OG ,CG ;若∠DOG =∠BEO ,∠FGC =∠BDF ,AE =CG ,求证:BE =2CG ;(3)如图3,若正方形ABCD 边长为2,延长BE 交AD 于F ,在AD 上截取DG =AF ,连接CG 交BD 于H ,连接AH 交BF 于K ,连接DK ,直接写出DK 的最小值.重庆市沙坪坝区2023—2024学年度下期期中调研测试八年级数学试题参考答案及评分意见一、选择题:题号12345678910答案ABCBDDADCB二、填空题:11.2; 12.<; 13.28; 14.35°; 15.9; 16.14; 1718.10;6721.三、解答题:19.;解:原式.BE AE==22=+=+-=(2)解:原式20.(1)如图:(2)①∠BAO =∠DCO . ②∠EAO =∠FCO . ③∠AOE =∠COF . ④OE =OF .⑤对角线互相平分的四边形是平行四边形.21.解:(1)∵∠ACB =90°,AC =9,AB =15,∴Rt △ABC 中,由勾股定理得:,∴CD =CB -BD =12-5=7.(2)∵DH ⊥AB ,∴,∴,∴DH =3.22.解:(1)设原来每天铺设x 米管道,由题意得.解得:x =80.经检验,x =80是原方程的解,且符合题意;答:原来每天铺设80米管道.(2)设安排工人加班前每天应支付工人y 元,由题意得.解得:y =4000.答:安排工人加班前每天应支付工人4000元.))2111++31619=-+-=-12BC ===1122ADB S AB DH BD AC =⋅=⋅△11155922DH ⨯⋅=⨯⨯()1600300050125%x x+=+()160030120%22400080y y ⋅++=23.解:(1)(2)性质:当0<x <4时,y 随x 增大而减小;当4<x <10时,y 随x 增大而增大.(3)x =2或5.24.解:(1)证明:∵,∴四边形ADCF 是平行四边形;∵∠BAC =90°,AD 是BC 边上的中线,∴CD =DA =BD ,∴四边形ADCF 是菱形.(2)如图,连接DF 交AC 于O ;∵四边形ADCF 是平行四边形,∴CD =AF ,∵BD =CD ,∴BD =AF ;∵,∴四边形BDAF 是平行四边形,∴E 为DA 中点,DF =AB =6;∴AD =2AE =4,∴BC =2AD =8;∵在Rt △BAC 中,∠BAC =90°,∴由勾股定理得:∴25.解:(1)在函数y =-2x +12中,令x =0得y =12;∴B (0,12).令y =0得x =6;∴A (6,0).∵M 为OB 中点,∴M (0,6).设直线AM 解析式为y =kx +b ,()140422(410)x x y x x ⎧-+≤≤⎪=⎨⎪-<≤⎩//,//AM BC CF AD //BD AF AC ===11622ADCF S DF AC =⋅⋅=⨯⨯=菱形将A(6,0),M(0,6)代入得:解得∴直线AM解析式为y=-x+6.(2)如图,过点C作CD⊥x轴于N,交直线AB于D,设C(c,-c+6),则D(c,-2c+12),∴∴;∵,∴;∴3|c-6|=12,∴c=10或2,∴C(10,-4)或(2,4).(3)P(12,0)或.26.解:(1)如图,过点E作EH⊥AB于H,60,06k bk b+=⎧⎨⋅+=⎩16kb=-⎧⎨=⎩()()62126CD c c c=-+--+=-ABC ADC BDCS S S=-△△△1122CD AN CD NO=⋅⋅-⋅()1116636 222CD AN NO CD AO c c=⋅-=⋅⋅=⨯⋅-=-11661822AMOS AO MO=⋅⋅=⨯⨯=△22181233ABC AMOS S=⨯=⨯=△△12,07⎛⎫⎪⎝⎭∵四边形ABCD 为正方形,∴∠BAE =∠ABO =45°,∴△AHE 为等腰直角三角形,∴.∴在Rt △BHE 中,由勾股定理得:,∴AB =AH +HB =1+2=3.(4分)(2)证明:如图,过点C 作直线,交DG 延长线于M ,交OG 延长线于N ,连接BM .∵四边形ABCD 是正方形,∴AB =BC ,AC ⊥BD ,BO =DO ,∠BAE =∠DBC =45°;∵,∴∠BDG =∠1,∠BCM =∠DBC =45°=∠BAE ;∵∠BDG =∠CGF ,∴∠1=∠CGF ,∴CG =CM ;∵AE =CG ,∴AE =CM ;∴在△BAE 与△BCM 中,∴,∴∴BE =BM ,∠ABE =∠2.∵∠DBM =∠2+45°,∠DOG =∠BEO =45°+∠ABE ,∴∠DBM =∠DOG ,∴,∴四边形BONM 是平行四边形,∴BO =MN ,∴DO =MN ;∴在△ODG 与△NMG 中,∴,∴∴OG =GN ,G 为O 中点,∵∠OCN =90°,∴CG =OG ,∵BE =BM =2OG ,∴BE =2G C.1AH HE AE ====2BH ===//MN BD //MN BD AB CBBAE BCM AE CG =⎧⎪∠=∠⎨⎪=⎩()SAS BAE BCM △≌△//BM OG 1DOG OGD NGM OD MN ∠=∠⎧⎪∠=∠⎨⎪=⎩()SAS ODG NMG △≌△(简释,如图:,取AB 中点T ,连接TK ,TD ,则)1-90AHO CHO HAO HCOEBO AKE ⇒∠=∠=∠⇒∠=︒△≌△112DK DT KT AB AB ≥-=-=-。

人教版八年级数学下册期中测试题(含答案)

人教版八年级数学下册期中测试题(含答案)

最新人教版八年级数学下册期中测试题(含答案)班级___________ 姓名___________ 得分___________一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个....是符合题意的,把正确答案前字母序号填在下面表格相应的题号下。

题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.下列式子中,属于最简二次根式的是( ) A.9 B. 7 C. 20 D.312.下列各组数是三角形的三边,不能组成直角三角形的一组数是( ) A . 3,4,5B .6,8,10C . 1.5,2,2.5D .3.下列条件中,能确定一个四边形是平行四边形的是( ) A . 一组对边相等 B . 一组对角相等 C . 两条对角线相等 D . 两条对角线互相平分4.下列计算错误的是 ( )A. 3223-=B.60523÷=C.2598a a a +=D.14772⨯=5.如图,是台阶的示意图.已知每个台阶的宽度都是20cm ,每个台阶的高度都是10cm ,连接AB ,则AB 等于( ) A . 120cm B .130cmC . 140cmD .150cm6.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC =4,则四边形CODE 的周长( )A . 4B . 6C . 8D . 107.如图,在平行四边形ABCD 中,AC 与BD 交于点O ,点E 是BC 边的中点,OE =1,则AB 的长是 A . 1B . 2C .D . 48.菱形具有而矩形不一定具有的性质是( )A.内角和等于360度B.对角相等C. 对边平行且相等D.对角线互相垂直9.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是A.矩形 B.等腰梯形C.对角线相等的四边形D.对角线互相垂直的四边形10.化简(﹣2)2016•(+2)2017的结果为A.﹣1 B.﹣2 C.+2 D.﹣﹣211.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D’处,则重叠部分△AFC的面积为.A.10 B.12 C.16 D.2012、如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.30°B.45°C.55°D.60°二、填空题(本题有8小题,每小题4分,共32分)13、若代数式1xx-有意义,则实数x的取值范围是__________.14.计算的结果是.15.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.16.如图,要使平行四边形ABCD是矩形,则应添加的条件是__________(添加一个条件即可).17.如图,由四个直角边分别为5和4的全等直角三角形拼成“赵爽弦图”,其中阴影部分面积为.18.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为_____。

最新人教版八年级下册数学期中测试卷(最新版)

最新人教版八年级下册数学期中测试卷(最新版)

八年级下册数学期中测试卷一、选择答案:( )1、下列二次根式中,属于最简二次根式的是A .21B . 8.0C . 4D . 5( )2、有意义的条件是二次根式3+xA .x>3 B. x>-3 C. x ≥-3 D.x ≥3 ( )3、正方形面积为36,则对角线的长为 A .6 B. C .9 D.( )4、如图,在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC边于点E ,则EC 等于 (A)1cm (B)2cm (C)3cm (D)4cm( )5、如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是 A .12 B .16 C .20 D .24( )6、如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿 AC 折叠,点D 落在点D’处,则重叠部分△AFC的面积为. A .6 B .8 C .10 D .12 ( )7、如图,正方形ABCD 中,AE =AB ,直线DE 交 BC 于点F ,则∠BEF = A .45° B .30° C .60° D .55°( )8、已知x ,y 为实数,且1-x +3(2—y )2=0,则x —y 的值是A .3 B.—3 C.1 D.—1( )9、下列各式中,是最简二次根式的是()A .22b a + B 。

18 C 。

b a 2 D 。

32( )10、把(a -(1)a -移人根号内得()A B CD( )11、如图所示,在□ABCD 中,对角线AC 、BD 相交于点O ,且AB ≠AD ,则下列式子不 正确的是( )A.AC ⊥BDB.AB =CDC.BO =ODD.∠BAD =∠BCD ( )12、如图为菱形ABCD 与正方形EFGH 的重迭情形,其中E 在CD 上,AD与GH 相交于I 点,且AD ∥HE .若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI 的面积为何?( ) A 、6错误!未找到引用源。

最新部编人教版八年级数学下册期中测试卷(完美版)

最新部编人教版八年级数学下册期中测试卷(完美版)

最新部编人教版八年级数学下册期中测试卷(完美版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .03.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是32x y =⎧⎨=⎩,则a=_____. 3.若2|1|0a b -++=,则2020()a b +=_________.4.如图,正方形ABCD 中,点E 、F 分别是BC 、AB 边上的点,且AE ⊥DF ,垂足为点O ,△AOD 的面积为7,则图中阴影部分的面积为________.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。

最新部编人教版八年级数学下册期中考试(必考题)

最新部编人教版八年级数学下册期中考试(必考题)

最新部编人教版八年级数学下册期中考试(必考题) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .3 7.已知=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,则2m n -的算术平方根为( )A .±2B 2C .2D .4 8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩10.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__________. 3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:(1﹣11a -)÷2244a a a a -+-,其中2.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、A6、D7、C8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、-1或5或13-3、如果两个角互为对顶角,那么这两个角相等4、()()2a b a b ++.5、36、20 三、解答题(本大题共6小题,共72分)1、(1)2x 3=;(2)10x 9=. 2、原式=2aa -=2+1.3、(1)102b -≤≤;(2)2 4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

2022-2023年部编版八年级数学下册期中考试题及答案【最新】

2022-2023年部编版八年级数学下册期中考试题及答案【最新】

2022-2023年部编版八年级数学下册期中考试题及答案【最新】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里9.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=________.2.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为__________.3.因式分解:a 3﹣2a 2b+ab 2=________.4.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再求值:233()111a a a a a -+÷--+,其中2+1.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +的值.4.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、A5、B6、A7、D8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、60 133、a(a﹣b)2.4、40°5、46、32°三、解答题(本大题共6小题,共72分)1、4x=2、3、0.4、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5、(1)2;(2)60︒;(3)见详解6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


15.如图,P 是边长为 4 的正方形 ABCD 的边 AD 上的一点,且 PE⊥AC,PF⊥BD,则
PE+PF=

16.如图,△ABC 中,∠A=90°,AB=AC,BD 平分∠ABE,DE⊥BC,如果 BC=10cm,则△DEC 的周
长是
cm。
_A _P _D
_E _B
第15题
_F _O
_C
A
A
O
B
D
B
C
第8题
E
A
B
第9题
D C
7.在 A ABCD 中,已知 AB,BC,CD 的长度分别为(X+5)cm,(X-6)cm,15cm,则这个平行四
边形的周长是(

A 14 cm B 28 cm C 19 cm D 38 cm
8.如图,在菱形 ABCD 中,对角线 AC、BD 相交于点 O,且 AC=BD,则图中全等的三角形有
添加一个条件,还不能证明四边形为正方形的是(

A,BC=AC B,CF⊥BF
C,BD=DF D,AC=BF
11.一个四边形截去一个角后得到的多边形的内角和将(

A,增加 180°
B,减少 180° C,不变
D 以上都有可能
12.如图,将两根宽度都为 1 的纸条叠放在一起,如果∠DAB=60°,则四边形 ABCD 的面积为

三、解答题(共 7 小题,共 70 分)
21.(8 分)已知一个 n 边形的内角和与外角和之比为 9︰2。求 n 边形的边数。
22(8 分)已三角形的三边长分别是: n2 n, n 1 , n2 n 1 (n>0)。求证:这个三角形是直角三角形。
2
2
23,(8 分)如图,已知 A ABCD 中,点 F 是 BC 的中点,连接 DF 并延长,交 AB 的延长线于点 E,求证:AB=BE
5.如图所示,在 A ABCD 中,AC 与 BD 相交于点 O,E 是边 BC 的中点,AB=4,则 OE 的长是
()
A2
B2
C1
D1 2
6.如图,现有一长方形公园,如果游人要从景点 A 走到景点 C,则至少走( )
A 900m
B 1000m
C 1200m
D 1400m
600m
800m D
C 第6题
八年级下册数学期中考试测试题
一、 选择题(共 12 题,每小题 4 分,共 48 分)
1.随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称的
图形的是:
()
A
B
C
D
2.下面的性质中,平行四边形不一定具备的是
()
Байду номын сангаас
A 对角互补 B 邻角互补 C 对角相等 D 内角和为 360°
A B
第 16 题
D
C E
17,在直角坐标系中,若点 A(2x-5,x-4)在第四象限,则 x 的取值范围是
18.分解因式: a3 4a2 4a
。代数式: x2 4x 7 的最小值为
19.勾股定理的逆定理是:

20.若点 A(2a+1,a-1)在 X 轴上,则点 A 坐标为
_N _C
D C
F
A
B
E
24,(10 分)在△ABC 中,∠ACB=90°,AC=BC,直线 MN 经过点 C,且 AD⊥MN 于 D,BE⊥MN 于 E,求证:DE=AD+BE
_A _M
_D
_B _N
C_ _E
25(12 分)如图,矩形 ABCD 的周长为 40cm,两条对角线相交于点 O,作 AC 的垂线 EF,分别交 AD、BC 于点 E、F,连接 CE。 (1)求△CDE 的周长。 (2)连接 AF,四边形 AECF 是什么特殊的四边形?说明你的理由。
E A
D
O
B
F
C
26(12)如图,在菱形 ABCD 中,AB=2, ∠DAB=60°,点 E 是 AD 的中点,点 M 是 AB 边上的一个
动点(不与点 A 重合),延长 ME 交 CD 的延长线于点 N,连接 MD、AN。
(1) 求证:四边形AMDN是平行四边形。
(2) 当AM的值为何值时,四边形AMDN是矩形?并说明理由。
D_
_N
_C
_E
A_
M
_B
27(12 分)如图,在矩形 ABCD 中,对角线 BD 的垂直平分线 MN 与 AD 相交于点 M,与 BC 相交 于点 N,连接 BM,DN。 (1) 求证:四边形 BMDN 是菱形。 (2) 若 AB=4,AD=8,求 MD 的长。
_A _M
_D
_O
_B


A.6 对 B,8 对 C,10 对 D,12 对 9.如图,在 A ABCD 中,过点 C 的直线 CE⊥AB,垂足为 E,若∠EAD=53°,则∠BCE 的度数为
()
A,53 ° B,37° C,47°
D,123°
10.如图,在△ABC 中,∠ACB=90°,BC 的垂直平分线 EF 交 BC 于点 D,交 AB 于点 E,且 BE=BF,
3.、如图在 Rt△ABC 中,CD 是斜边 AB 上的中线,若∠A=20°,则∠BDC 等于( )
A 30° B 40° C 45° D 60°
B D


第3题
A
B
C
第4题
AO B
E
D
F
C
第5题
4.在山坡上种树时,已知 AC=7.5m,BC=4m,则相邻两株树的坡面距离 AB 等于( )
A, 6m B , 8m C , 8.5m D ,11.5m


A,1
B, 1 2
C, 3
D, 2 3 3
E A 第 10 题
B DF C
D C
A B
第 12 题
二、 填空题(共 8 小题,每小题 4 分,共 32 分)
13.若从一个多边形的一个顶点出发,一共做了 6 条对角线,则这个多边形的内角和为

这个多边形一共有
条对角线。
14.在 Rt△ABC 中,斜边 AB=3,则 AB2 BC2 CA2
相关文档
最新文档