摆动活塞式发动机的结构设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言
内燃机的发明,带动了汽车的发展,给世人在“行”上带来极大的便利,使得窨距离缩小,人们的工作速度得以提高。近年来随着电子技术的发展,又使汽车发动机如虎添翼,成为高新技术的集成。
汽车用内燃机作动力并发展成为支柱产业,在历史上有几次革命性的进步,第一次是石油作为内内燃机的燃料,这使发动机摆脱了最初建立在煤气为燃料基础上的固定式发动机,从而迈向移动式的车用动力。第二次革命是汽车生产的工业化。第三次是电子技术与发动机技术相结合。电子技术最初在汽油机上的应用是实现电子点火,然后到电控燃油喷射,至今天点火和喷射的集成管理。
短短几十年,发动机成为高新技术的集成。无论是燃油经济性、动力性、废气排放水平等等,是任何一种其他动力机械所无法比拟的。这一切都来源于电子技术发挥的作用。汽车内燃机是通过燃料的燃烧,把燃料的化学能转化为热能,再将热能转化为机械功的热动力机械。热力学、燃烧学和机械学的理论分析表明,内燃机是热效率最高的热力机械,但仍存在着巨大的节能及降低尾气污染的潜力。
1内燃机
1.1内燃机的概述
内燃机是发动机的一种。发动机是把某种形式的能转变为机械能的机器。能够将燃料中的化学能经过燃烧转变为热能,并通过一定的结构使之再转化为机械能的发动机也称为热机。内燃机是热机的一种,他区别于其他形式热机的特点,是燃料在机器内部燃烧,燃料燃烧时放出大量的热量,使燃烧后的气体膨胀推动机械做功。燃气是实现热能向机械能转化的媒介物质,这种媒介物质称为工作介质[1]。
发动机可以根据不同的特征来分类:
⑴按所用燃料分有汽油发动机、柴油发动机和其他代用燃料发动机。汽油发
动机是用电火花强制点燃由汽油与空气组成的可燃混合气,使之燃烧并产生热能,故汽油机又称强制点火式发动机。柴油机使用的柴油是直接喷入发动机气缸,在高温高压条件下自燃而产生热能,故柴油机又称压燃式发动机。
⑵按完成一个工作循环所需要的活塞冲程数分有四冲程发动机和二冲程发动
机。
⑶按结构特点分有水冷发动机和风冷发动机;单缸发动机和多缸发动机。多
缸发动机根据各缸的排列方式,又有直列式发动机和“V”形发动机等。汽车发动机大多采用水冷式多缸发动机。
⑷按活塞的运动方式分有往复活塞式发动机和旋转发动机。往复活塞发动机
的活塞为上下运动,旋转发动机的活塞是旋转的[2]。
现代汽车用的内燃机绝大多数为往复活塞式内燃机。为了方便叙述我们对各种型式的内燃机都简称为内燃机或发动机。本文主要介绍的便是在旋转活塞式发动机上进行改造,而得出的摆动活塞式发动机,其工作冲程为二冲程。
发动机是汽车、拖拉机、飞机和船舶等机器的动力源,是它们的“心脏”,其性能是决定这些机器使用性能好坏的关键。往复机已有百年的历史了,经过长期使用和发展,到目前,不论是二冲程还是四冲程,可以说已经达到了比较完善的程度。它的最大优点是经济可靠,因此在工农业和交通运输业中,一直占据主要地位。
1.2选题的背景
众所周知,往复机的基本结构方案,是利用曲轴连杆机构,将活塞的往复运动转
变为曲轴的旋转运动。由于活塞的往复运动所造成的惯性力和惯性力矩,不能得到完全平衡,这是往复机结构本身存在的缺陷。这些不平衡的力和力矩,随着发动机转速的提高而急剧增大,作用在发动机轴承上的惯性负荷显著增加,并引起振动和噪音的增大。特别是随着发动机不断向高速发展时,活塞连杆机构和气阀机构表现出明显的弊病。同时,活塞的平均速度,由于受到现有金属材料性能的限制,通常不得超过允许值,也限制了往复机向高速方向发展。加之往复机的运动机构复杂,这些因素是往复机进一步提高功率、降低重量(和体积)的严重障碍。
而旋转发动机机与往复式发动机比较,它的优点是:结构简单,体积小,重量轻,发动机振动很小,动转平稳,此外制造成本也比较低。特别是在要求发动机高转速大功率的使用场合,转子发动机的优越性就更为突出。但是,转子发动机也还存在着不少问题,例如低速动力性差,起动性能和耐久性也有待进一步提高等等。
基于以上几种原因,我们希望有一种发动机能够一定程度上结合了旋转发动机与往复发动机的优点。即具有旋转发动机的旋转特性,也具有往复机的曲柄连杆机构。它能够利用旋转特性很好地解决曲柄连杆机构存在的惯性力问题,而且根除了四杆机构的急回特性。而正在此时,老师向我们提出了晋江某企业已经设计出了一种摆动发动机,而且做成了样机,还成功发动起来。只是这个样机结构设计时存在着一些不合理性,以至于后来发生了故障。由于这种摆动发动机具有较好的市场开拓前景,我们在对样机的理解上大胆地提出了改进与创新。而所有的这些我们都将在下面的文章中做出详细的说明。
2 往复发动机基本工作原理
2.1 二冲程发动机工作原理及换气过程
汽油机是将汽油和空气混合成可燃混合气,然后进入气缸用电火花点燃。首先,我们以曲柄轴箱扫气二冲程发动机为例说明一下二冲程汽油机的工作过程。二冲程汽油机的工作冲程如下:
2.1.1 工作原理
(1).第一冲程活塞自下止点向上移动,三个气孔被关闭后,在活塞上方,已进入气缸的可燃混合气体被压缩;而活塞下方的曲柄轴箱内因容积增大,形成一定的真空度,在进气孔露出时,可燃混合气体自化油器经进气孔流入曲柄轴箱内。
(2).第二冲程活塞压缩到上止点附近时,火花塞点燃混合气体,高温高压的燃气膨胀,推动活塞下移做功。活塞下移做功时进气孔关闭,密闭在曲轴箱内的可燃混合气体冲入气功,驱除废气,进行换气过程。此过程一直进行到下一冲程活塞上移,三个气孔完全关闭为止。总之,活塞上行时进行换气、压缩、曲柄轴箱进气;活塞下行时进行做功、压缩曲柄轴箱混合气体、换气。
2.1.2二冲程发动机的换气过程
二冲程发动机与四冲程发动机相比,由于省去单独的进排气冲程,必须在下死点前后很短的时间内同时进行进排气,进排气的时间差不多只有四冲程发动机的三分之一,因此,必须用有压力的新气清除气缸内的废气,称为扫气作用。如果在此期间,有可能把废气完全驱除,而用新鲜气充满气缸,则与同样大小同样转速的四冲程发动机相比,可使功率增大50%-70%。但如扫气作用进行得不好,在气缸中残留下很多废气,与新气混合,而且新气中相当一部分进入气缸后并没有留在缸内,而在扫气期间短路经过排气口流出缸外的话,则由于气缸内空气不足(加上为了压缩新气要消耗一定能量),功率就要受到影响。如果是汽化器式发动机,新气中含有燃料,短路溜走的燃料又会造成浪费。这样会使燃料消耗率增高很多,而且排气污染更严重[3]。
由此可见,对二冲程发动机来说,扫气作用对性能影响特别大。如果扫气不良,压缩空气中废气率高,实际的混合气体浓度将很稀,经常由于缺火使工作不稳定,有时也会因为压缩过量,温度过高而发生爆燃。小负荷由于进气节流,缺火会特别严重,甚至变成两转爆发一次,像四冲程那样。由于二冲程的汽化器式发动机经济性较差,如果能采用汽油直接喷射即可大大改善指标(燃料消耗可下降1/4左右)。二冲程原理应用于柴油机,效果显著。
排气口一经开启,膨胀过程就告结束,因此排气口应尽可能晚开启,但是它应保