圆柱圆锥难题
六年级数学下册圆柱圆锥解决问题
1、一个圆柱形蓄水池,直径10米,深2米。
这个蓄水池的占地面积是多少?在池的一周及池底抹上水泥,抹水泥的面积是多少?2、做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米3、压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。
如果每分转动5周,每分钟可以压多大面积的路面?4、一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶至少要用铁皮多少平方厘米?(接口处不计)5、一个圆柱的侧面积是200.96平方厘米,底面半径是2厘米,它的表面积是多少?6、把两个底面直径都是4厘米、长都是3分米圆柱形钢材焊接成一个大的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?7、工人叔叔把一根高1米的圆柱形木料,沿横截面锯成三段,这时表面积比原来增加了314平方分米,求这根料的底面半径是多少分米?8、有一个长方体木块,高20厘米,底面是个长方形,长30厘米,宽15厘米,上面有一个底面直径和高都是10厘米的圆柱形的孔,它的表面积是多少平方厘米9、把一个圆柱体的侧面展开,得到一个边长6.28分米的正方形,这个圆柱体底面积是多少平方分米?10、右图是一个零件的直观图。
下部是一个棱长为40cm 的正方体,上部是圆柱体的一半。
求这个零件的表面积。
11、把一棱长10厘米的正方形木块,削成一个最大的圆柱体,这个圆柱体的表面积是多少平方厘米?12、一个圆柱体高为10cm ,若截去3cm 的一段后,表面积比原来减少了75.36平方厘米,求剩下的圆柱体表面积?13.一个圆柱,它的高增加2厘米,它的侧面积就增加37.68平方厘米,这个圆柱的底面半径是多少厘米?14、把一根2米长的圆柱体木料截成3段,表面积增加了12平方分米,这跟木料的体积是多少立方米?15、把一个长8厘米、宽8厘米、高6厘米的长方体木块,切成一个最大的圆柱,圆柱的体积是多少立方厘米?16、将一个底面周长是12.56厘米的圆柱体沿底面半径切成若干等份,拼成一个长方体,表面积比原来增加了20平方厘米.求原来这个圆柱体的体积?17、一个圆柱形水桶盛满水,倒出水的32后,还剩下8立方分米,已知桶高5分米,求桶的底面积.(水桶厚度不计)6.08升=( )毫升=( )立方分米=( )立方厘米 8.9平方米=( )平方分米6.7公顷=( )平方米 415平方厘米=( )平方分米 4.5立方米=( )立方分米2.4立方分米=( )升( )毫升 4070立方分米=( )立方米3立方分米40立方厘米=( )立方分米 3.22立方米=( )立方米( )立方分米1、把一圆柱体钢坯削成一个最大的圆锥,削去1.8立方厘米,未削前圆柱的体积是()立方厘米。
六年级圆柱圆锥难题练习题
六年级圆柱圆锥难题练习题六年级圆柱圆锥难题练习题无论是在学校还是在社会中,我们很多时候都会有考试,接触到试题,试题是命题者根据测试目标和测试事项编写出来的。
一份什么样的试题才能称之为好试题呢?下面是小编为大家整理的六年级圆柱圆锥难题练习题,仅供参考,希望能够帮助到大家。
六年级圆柱圆锥难题练习题篇1一、填空:1、5.4平方分米=()平方厘米; 1.05立方米=()升;240立方厘米=()立方分米; 10.01升=()毫升。
2、圆柱的上、下两面都是()形,而且大小();圆柱的高有()条,圆锥的高有()条。
3、一个圆柱体,如果把它的高截短了3厘米,表面积就减少了94.2平方厘米,体积就减少()立方厘米。
X k B 1 . c o m4、一个圆锥的底面积是40平方厘米,高12分米,体积是()立方厘米。
5、一个圆柱的底面半径是3分米,高2分米,它的侧面积是()),体积是()。
6、一个圆柱的底面周长6.28厘米,高是3厘米,它的体积是(7、一个圆柱和一个圆锥等底等高,如果圆柱的体积是18)立方分米;如果圆锥的体积是18立方分米,那么圆柱的体积是(18立方分米,那么圆锥的体积是()立方分米。
8、把棱长为2)立方分米。
(结果保留两位小数)9、在一个高24厘米的圆锥形量杯里装满了水,如果将这些水倒入与它底面积相等的圆柱形量杯中,水面高(105段,表面积比原来增加()1 )ABC23倍,圆锥的体积是15立方分米,圆柱A3、圆柱的底面半径和高都乘3,它的体积应乘()。
A、3B、6C、9D、274、用一根小棒粘住直角三角形的一条直角边,旋转一周,这个三角形转动后产生的图形是()。
A、三角形B、圆形C、圆锥D、圆柱5、一个圆柱体杯中盛满15升水,把一个与它等底等高的铁圆锥倒放入水中,杯中还有()水。
A、5升B、7.5升C、10升D、9升6、把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体。
下面哪句话是正确的?()A、表面积和体积都没变B、表面积和体积都发生了变化C、表面积变了,体积没变D、表面积没变,体积变了三、应用题1、一根长2m的圆柱形木头,截去2分米的一段小圆柱后,表面积减少了12.56平方分米,那么这根木头原来的体积是多少?2、将一块长方形铁皮,利用图中阴影的部分,刚好制成一个油桶,求这个油桶的体积。
圆柱、圆锥知识(50题)
圆柱圆锥知识练习50题1,一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米。
2,工地上运来 6 堆同样大小的圆锥形沙堆,每堆沙的底面积是18.84平方米,高是0.9米。
这些沙有多少立方米?如果每立方米沙重1.7吨,这些沙有多少吨?3,圆柱形无盖铁皮水桶的高与底面直径的比是3∶2,底面直径是4分米。
做这样的2只水桶要用铁皮多少平方分米?(得数保留整十平方分米)4,会议大厅里有10根底面直径0.6米,高6米的圆柱形柱子,现在要刷上油漆,每平方米用油漆0.5千克,刷这些柱子要用油漆多少千克?5一个圆柱形容器的底面半径是4分米,高6分米,里面盛满水,把水倒在棱长是8分米的正方体容器内,水深是多少分米?6、压路机的前轮是圆柱形,轮宽1.5米,直径1.2米,前轮每分钟转动10周,每分钟前进多少米?每分钟压路多少平方米?7、有一段钢可做一个底面直径8厘米,高9厘米的圆柱形零件。
如果把它改制成高是12厘米的圆锥形零件,零件的底面积是多少平方厘米?8、一个圆柱,侧面展开后是一个边长9.42分米的正方形。
这个圆柱的体积是多少分米?9、一个圆柱铁皮油桶内装有半捅汽油,现在倒出汽油的 35升后,还剩12升汽油。
如果这个油桶的内底面积是10平方分米,油桶的高是多少分米?10、压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。
如果每分转动5周,每分可以压多大的路面?11、大厅里有10根圆柱,圆柱底面直径1米,高8米。
在这些圆柱的表面涂油漆,平均每平方米用油漆0.8千克,共需油漆多少千克?12、一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,它的表面积是多少?13、把两个底面直径都是4厘米、长都是3分米圆柱形钢材焊接成一个大的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?14、将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.这个物体的表面积是多少平方米?15、一个圆柱体的高是37.68厘米,它的侧面展开后恰好是正方形,这个圆柱体的体积是多少?(保留整数)16、一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少17、把一根长1.5米的圆柱形钢材截成三段后,表面积比原来增加9.6平方分米,这根钢材原来的体积是多少?18、把一段长20分米的圆柱形木头沿着底面直径劈开,表面积增加80平方分米,原来这段圆柱形木头的表面积是多少?19、砌一个圆柱形水池,底面周长是25.12米,深2米,要在它的底面和四周抹上水泥,如果每平方米用水泥10千克,共需水泥多少千克?20、一堆圆锥形黄沙,底面周长是25.12米,高1.5米,每立方米的黄沙重1.5吨,这堆沙重多少吨?21、一个无盖的圆柱形水桶,底面直径20厘米,高30厘米,制造这样一对水桶,至少要多少铁皮?如果用这对水桶盛水,能盛多少千克?(每升水重1千克,得数保留整千克)22、一个圆锥形沙堆,底面周长是12.56米,高6米,将这些沙铺在宽10米的道路上铺0.04厘米厚,可以铺多少米长?23、一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。
圆柱与圆锥(奥数)
圆柱与圆锥(奥数)一、圆柱与圆锥1.求圆柱的表面积和圆锥的体积。
(1)(2)【答案】(1)解:2×3.14×3×4+2×3.14×32=103.62(cm2)(2)解:【解析】【分析】(1)圆柱的表面积=圆柱的底面积×2+圆柱的侧面积,圆柱的底面积=πr2,圆柱的侧面积=圆柱的底面周长×高,圆柱的底面周长=2πr;(2)圆锥的体积=πr2h。
2.将一根底面直径是20厘米,长1米的圆木沿着直径劈成相等的两半。
每半块木头的表面积和体积是多少?【答案】解:1米=100厘米,表面积:3.14×(20÷2)2+[3.14×20×100]÷2+20×100=5454(平方厘米)体积:3.14×(20÷2)2×100÷2=15700(立方厘米)答:每半块木头的表面积是5454平方厘米,体积是15700立方厘米。
【解析】【分析】根据题意,劈开的每半块木头的表面积是原来木头的表面积的一半增加了一个切面的面积,据此代入公式解答即可;劈开的每半块木头的体积是原来木头的体积的一半,据此代入公式解答即可;圆柱表面积S=2×底面积+侧面积=2×3.14×r2+3.14×d×h;截面面积S=dh;体积V=3.14×r2×h。
3.如下图,已知圆锥底面周长是18.84dm,求圆锥的体积。
【答案】解:18.84÷3.14÷2=3(dm)3.14×3²×5×=3.14×15=47.1(dm²)【解析】【分析】用底面周长除以3.14再除以2求出底面半径,然后用底面积乘高再乘求出体积。
4.一种圆柱形状的铁皮油桶,量得底面直径8dm,高5dm.做一个这样的铁皮油桶至少需多少平方米铁皮?(铁皮厚度不计,结果保留整数)【答案】解:8dm=0.8m5dm=0.5m0.8÷2=0.4(m)3.14×0.8×0.5+3.14×0.42×2=1.256+3.14×0.16×2=1.256+1.0048=2.2608(平方米)≈3(平方米)答:做一个这样的铁皮油桶至少需3平方米铁皮。
圆柱圆锥练习题以及答案
圆柱圆锥练习题以及答案一、选择题1. 一个圆柱的底面半径为3厘米,高为5厘米,其体积为:A. 141.3立方厘米B. 282.6立方厘米C. 94.2立方厘米D. 47.1立方厘米2. 一个圆锥的底面半径为4厘米,高为9厘米,其体积为:A. 75.36立方厘米B. 100.48立方厘米C. 50.24立方厘米D. 37.68立方厘米3. 圆柱的侧面积公式是:A. 2πr²B. πr²C. 2πrhD. πrh4. 圆锥的侧面积公式是:A. πr²B. πrlC. πr²+πrlD. 2πrh二、填空题1. 一个圆柱的底面直径为6厘米,高为10厘米,其侧面积为______平方厘米。
2. 一个圆锥的底面半径为5厘米,高为12厘米,其体积为______立方厘米。
三、解答题1. 一个圆柱形水桶的底面直径为40厘米,高为60厘米,求这个水桶的容积。
2. 一个圆锥形沙堆,底面半径为3米,高为4米,如果每立方米沙重1.5吨,求这堆沙的重量。
四、计算题1. 一个圆柱形油桶,底面直径为50厘米,高为80厘米,求油桶的表面积。
2. 一个圆锥形粮仓,底面直径为20米,高为15米,如果每立方米粮食重750千克,求粮仓的容积以及能装多少千克的粮食。
答案:一、选择题1. B2. B3. C4. C二、填空题1. 376.82. 188.4三、解答题1. 水桶的容积为:V=πr²h=π×(20)²×60=37680立方厘米。
2. 圆锥形沙堆的体积为:V=1/3πr²h=1/3×π×(3)²×4=12.56立方米。
沙堆的重量为:12.56×1.5=18.84吨。
四、计算题1. 油桶的表面积为:A=2πr(h+r)=2π×25(80+25)=4712.5平方厘米。
2. 圆锥形粮仓的体积为:V=1/3πr²h=1/3×π×(10)²×15=1570立方米。
圆柱与圆锥难题解析课件
2
6
4
3、如图, 你能否求它的体积?( 单位:厘米)
3.14×(2÷2)2×(4+6)
÷2
= 15.7(cm3)
五、图形题
2
6
4
3.14×(2÷2)2×4=12.56(cm3)
3.14×(2÷2)2×(6-4)÷2 =3.14(cm3)
12.56+3.14= 15.7(cm3)
解法二:
2
3
A、36 B、32 C、24 D、18
B
半 径 3 2 h水:h圆柱=3:4 1÷( - )=8(dm) ×8 =32
圆锥
水的高
圆柱
水的体积 1 1
h锥水:h柱水=4:3
底面积 9 4
02
Байду номын сангаас
03
五、图形题
1、如图,在一个棱长是20厘米的正方体铸铁中,以相对的两个面为底,挖出一个最大的圆锥体。求剩下的铸铁的体积是多少立方厘米?
20×20×20
-3.14×(20÷2)2×20
÷4×(4-3.14)
解法一:
解法二:
= 1720(cm3)
×20
20×20
S正
S底
五、图形题
4、仓库墙角有一堆沙子。沙堆的顶点在两墙交界线上,沙堆的底面是半径为1米的扇形,沙堆的高是0.6米,求沙堆的体积。
一、等积变形
如图,一个酒瓶里面深30厘米,底面内直径是10厘米,瓶里酒深15厘米,把酒瓶塞紧后,使其瓶口向下倒立,这时酒深25厘米,酒瓶的容积是多少毫升?
一、等积变形
一个圆锥形的小麦堆,底面积是62.8平方米,高是1.2米。如果将这堆小麦在10米宽的公路上铺2厘米厚,能铺多少米?
六年级数学圆柱圆锥难度题
1.一种圆柱形的饮料罐,底面直径7厘米,高12厘米。
将24罐这样的饮料放入一个长方体的纸箱。
(1) 这个长方体的纸箱的长、宽、高至少各是多少厘米?
(2) 这个纸箱的容积至少是多少?
(3) 做一个这样的纸箱,至少要用硬纸板多少平方厘米?(纸箱盖和箱底的重叠部分按2000平方厘米计算)
2.求表面积和体积
3.一根方木的横截面是边长为4分米的正方形,方木的长为40分米,要将这根方木加工成体积最大的圆柱,木料的损耗率是多少?
4.圆柱形容器中装有一些水,容器底面半径为5厘米,容器高20厘米,水深10厘米,现将一根底面半径3厘米、高25厘米的圆柱形铁棒垂直插入容器,使铁棒底面与容器底面接触,这时水深多少厘米?
5.有一个下面是圆柱、上面是圆锥的容器,圆柱的高是10厘米,圆锥的高是6厘米,容器内液面的高是7厘米。
当将这个容器倒过来放时,从圆锥的尖到液面的高是多少厘米?
6、一圆锥形的底面半径和高都 等于正方体的棱长,已知正方体的体积是30立方厘米,圆锥的体积是多少?
7.一个圆柱底面周长减少10%,高增加10%,那么( )。
A 、体积不变
B 、侧面积不变
C 、表面积不变
D 、以上三种都
6。
圆柱圆锥切割问题解决问题10道
圆柱圆锥切割问题解决问题简介圆柱圆锥切割问题是在几何学中的一个经典问题,涉及到如何通过切割一个圆柱体或圆锥体来得到所需的形状。
本文将介绍圆柱圆锥切割问题的背景,以及解决这些问题的方法和技巧。
背景在现实生活中,我们经常需要将圆柱体或圆锥体切割成特定形状,以满足不同场景的需求。
例如,在建筑工程中,我们可能需要将墙壁上的圆柱体切割成着色区域和非着色区域,以营造出特殊的装饰效果。
在制造业中,切割圆锥体的需求更为常见,例如在制造机械零件时,往往需要将圆锥体切割成特定角度的平面来满足设计要求。
解决方法解决圆柱圆锥切割问题的方法多种多样,下面将介绍其中几种常见的解决方法。
1. 平面切割法平面切割法是最常见的解决圆柱圆锥切割问题的方法之一。
该方法适用于需要将圆柱体或圆锥体切割成平面形状的情况。
步骤如下:1.确定需要切割的平面形状的位置和方向。
2.使用切割工具(如锯子、切割机等)沿着确定的位置和方向进行切割。
3.检查切割结果是否符合要求,并进行修整和磨光。
2. 曲线切割法曲线切割法适用于需要将圆柱体或圆锥体切割成曲线形状的情况。
该方法通常需要使用特殊的切割工具和技术,步骤如下:1.确定需要切割的曲线形状的位置和方向。
2.使用特殊的切割工具(如曲线切割机等)沿着确定的位置和方向进行切割。
3.根据需要,可能需要进行进一步的修整和磨光。
3. 利用模具切割法利用模具切割法适用于需要大批量生产相同形状的切割件的情况。
该方法通常需要制作一个特殊的模具,并使用模具进行切割,步骤如下:1.根据所需形状制作一个模具。
2.将需要切割的圆柱体或圆锥体放入模具中。
3.使用特殊的切割工具(如压力机等)将模具与圆柱体或圆锥体一起进行切割。
4.检查切割结果是否符合要求,并进行修整和磨光。
解决技巧解决圆柱圆锥切割问题时,可以通过以下技巧提高效率和准确性。
1. 使用合适的工具选择合适的切割工具对于解决圆柱圆锥切割问题至关重要。
不同形状和材料的圆柱体和圆锥体可能需要不同的切割工具。
六年级下册数学难题
六年级下册数学难题一、圆柱与圆锥相关难题。
1. 一个圆柱的底面半径是2厘米,高是5厘米。
把它的侧面沿高展开后得到一个长方形,这个长方形的长和宽分别是多少厘米?解析:圆柱侧面展开后长方形的长等于圆柱底面的周长,根据圆的周长公式C = 2π r(其中r为底面半径,π取3.14),可得底面周长C=2×3.14×2 = 12.56厘米,所以长方形的长是12.56厘米;长方形的宽等于圆柱的高,即宽为5厘米。
2. 一个圆锥的底面直径是6分米,高是3分米。
它的体积是多少立方分米?解析:首先求出底面半径r = 6÷2=3分米,根据圆锥体积公式V=(1)/(3)π r^2h (h为圆锥的高),可得V=(1)/(3)×3.14×3^2×3=(1)/(3)×3.14×9×3 = 28.26立方分米。
3. 把一个棱长为6分米的正方体木块削成一个最大的圆柱,这个圆柱的体积是多少立方分米?解析:要削成最大的圆柱,圆柱的底面直径和高都等于正方体的棱长。
所以圆柱底面半径r = 6÷2 = 3分米,高h=6分米。
根据圆柱体积公式V=π r^2h,可得V =3.14×3^2×6=3.14×9×6 = 169.56立方分米。
二、比例相关难题。
4. 一辆汽车从甲地到乙地,前2小时行驶了120千米,照这样的速度,再行驶3小时到达乙地。
甲乙两地相距多少千米?解析:因为速度一定,路程和时间成正比例。
设甲乙两地相距x千米,(120)/(2)=(x)/(2 + 3),即2x=120×(2 + 3),2x=120×5,x = 300千米。
5. 用比例解:一种农药,用药液和水按照1:1500配制而成。
如果现在只有3千克药液,能配制这种农药多少千克?解析:设能配制这种农药x千克,药液和农药的比例为1:(1 + 1500),则(1)/(1+1500)=(3)/(x),x=3×(1 + 1500)=3×1501 = 4503千克。
(完整版)圆柱圆锥难题
1.一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?2.如下图高是10厘米,底面半径分别是3厘米和6厘米的两个圆柱组成的几何体,求这个物体的表面积?20厘米,宽15厘米,怎样旋转得到一个体积最大的圆柱,体积最大是多少?4.如图,ABC是直角三角形,AB、AC的长分别是3和4.将ABC∆绕AC旋转一周,求ABC∆扫出的立体图形的体积.(π 3.14=)CB A5.一段圆柱体木料,如果截成两个小圆柱体,它的表面积增加6.28平方厘米,如果沿着直径劈成两个半圆柱体,它的表面积将增加80平方厘米,求原圆柱体的表面积?6.圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水升.1 2rr12hh7.一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.7cm4cm5cm8.一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm.把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm.酒瓶的容积是多少?(π取3)2530159.有一个底面周长为12.56厘米的圆柱,斜着截成两个形状完全相同的立体图形(如图),求截后的体积。
10.如图的容器,倒过来后,水面高度是多少厘米?11.在一个直径是20厘米的圆柱形容器里,放入一个底面半径3厘米的圆锥形铁块,全部浸没在水中时,水面上升0.3厘米。
圆锥形铁块的高是多少厘米?12.一个长方体容器,底面是一个边长为60厘米的正方形,容器里直立着一个高1米,底面边长为15厘米的长方体铁块,这时容器里的水深为0.5米。
现在把铁块轻轻地向上提起24厘米,那么露出水面的铁块上被水浸湿的部分长多少厘米?13.一个圆柱被挖去一个圆锥(如图),圆锥高是圆柱高的32。
底面半径为2厘米,圆柱高为9厘米,则剩余部分的体积是多少?14.如图ABCD是直角梯形。
六年级数学圆柱圆锥应用题奥数题拓展难题带答案
圆柱与圆锥1、如下图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?2、如下图,一张扇形薄铁片,弧长18.84分米,它能够围成一个高4分米的圆锥,试求圆锥的容积(接缝处忽略不计)。
3、有一张长方形铁皮如图所示,剪下阴影部分制成圆柱体(单位:分米),求这个圆柱体的表面积。
(提示:圆桶盖的周长等于长方形铁皮的长)4、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米³。
现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。
问:瓶内现有饮料多少立方分米?5、一个圆柱形的玻璃杯盛有水,水面高2.5厘米,玻璃杯内侧底面积是72平方厘米,在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块,这时水面高多少厘米?h12h6、用铁皮做一个如下图所示的通风工件(单位:厘米),需用铁皮多少平方厘米?7、用直径为20厘米的圆钢,锻造成长、宽、高分别为30厘米、20厘米、5厘米的长方体钢板,应截取圆钢多长(精确到0.1厘米)?8、已知一个圆锥体的底面半径和高都等于一正方体的棱长,这个正方体的体积是216立方分米。
求这个圆锥体的体积。
9、如下图所示,将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体。
求这个物体的表面积。
10、在一个底面直径为20cm的装有一部分水的圆柱体玻璃杯,水中放着一个底面直径为6cm,高20cm的一个圆锥体铅锤。
当铅锤从水中取出后,杯中的水将下降几cm?(π=3.14)答案1、如下图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?半径比=1:2 底面积比=1:4高之比=12h :h =1:2 体积之比=1:8 5×(8-1)=35(升)答:这个容器还能装35升水。
2、如下图,一张扇形薄铁片,弧长18.84分米,它能够围成一个高4分米的圆锥,试求圆锥的容积(接缝处忽略不计)。
北师大小学数学六年级下册圆柱与圆锥典型难题练习题带答案
小学数学圆柱与圆锥练习题一.选择题(共30小题)1.如果一个圆柱体和一个圆锥体等底等高,它们的体积一共是48立方厘米,那么圆柱的体积是()立方厘米.A.36B.24C.162.从圆柱的正面看,看到的轮廓是一个正方形,说明圆柱的()相等.A.底半径和高B.底面直径和高C.底周长和高3.一个圆锥的体积是6立方分米,与它等底、等高的圆柱的体积是()立方分米.A.2B.6C.184.把一个圆柱削成一个最大的圆锥,削去部分的体积是这个圆柱体积的()A.B.C.2倍5.圆柱的侧面沿直线剪开,在下列的图形中,不可能出现()A.长方形或正方形B.三角形C.平行四边形6.12个同样的铁圆锥,可以熔铸成等底等高的圆柱体的个数是()A.6B.4C.187.圆柱的底面直径是6分米,高是8分米,与它等底等高的圆锥的体积是()立方分米.A.113.04B.226.08C.75.368.图中线段AB围绕A点旋转到AB2的位置,是按逆时针方向旋转()°.A.30B.60C.909.用一块长25.12厘米,宽18.84厘米的长方形铁皮,配上、下面()圆形铁片,正好可以做成圆柱形容器.A.r=8cm B.d=4cm C.r=3cm D.d=3cm10.下面图形中,()是圆柱的展开图.A.B.C.11.下面图形中,()绕着中心点旋转60°后能和原图重合.A.B.C.12.圆柱和圆锥的底面积、体积分别相等,圆锥的高是圆柱的高的()A.B.C.2倍D.3倍13.一个圆的直径扩大3倍,那么它的面积扩大()倍.A.3B.6C.9D.414.一个图形以中心点为旋转点顺时针旋转90°和()的图形重合.A.顺时针旋转360°B.逆时针旋转270°C.逆时针旋转90°15.一个圆锥和一个圆柱等底等高,那么()A.圆锥的体积是圆柱的3倍B.圆柱的体积是圆锥的3倍C.圆柱的体积是圆锥的16.一个圆柱的侧面展开是一个正方形,这个圆柱的底面半径和高的比是()A.1:πB.1:2πC.π:1D.2π:117.把一段圆柱形的木料削成一个最大的圆锥,削去部分体积是圆锥体积的()A.B.2倍C.3倍D.18.如图是一个直角三角形,两条直角边的长分别为3cm、4cm,斜边的长为5cm.如果以斜边为轴旋转一周,求所形成的立体图形的体积算式是()A.3.14×32×4÷3 B.3.14×42×3÷3C.3.14×(3×4÷5)2×5÷3 D.3.14×32×5÷319.一张长方形纸可以沿较长边或较短边围成不同的圆柱形纸筒(如图).如果给两个纸筒都配上两个底面,则圆柱A 的表面积与圆柱B的表面积相比,()A.A>B B.A<B C.A=B D.无法比较20.如图中瓶子的底面积和圆锥形杯口的面积相等,若将瓶子中的液体倒入圆锥形杯子中,能倒满()杯.A.3B.4C.6D.921.如图,把一个圆柱切成若干等份,拼成一个近似的长方体,表面积增加了40平方厘米.圆柱的侧面积是()平方厘米.A.40B.20πC.40πD.160π22.图中的正方体、圆柱体和圆锥体的底面积相等,高也相等,下面说法正确的是?()A.圆锥的体积与圆柱的体积相等B.圆柱的体积比正方体的体积大一些C.圆锥的体积是正方体体积的D.以上说法都不对23.有一个圆柱和一个圆锥的体积相等,圆柱的高是圆锥的一半,圆锥的底面积是9cm2,圆柱的底面积是()cm2A.6B.3C.924.如图可以看作是由绕一个顶点经过()变换而得到的.A.平移B.旋转C.平移和旋转25.一棵大树,量得底部直径为40厘米,树干高10米,这棵树干的体积是多少?下列说法最符合实际的是()(π=3)选择的理由:A.树干的体积正好是1.2立方米B.树干的体积比1.2立方米略多些C.树干的体积比1.2立方米略少些D.树干的体积比12立方米略少些26.一个圆柱底面直径为8厘米,若高增加1厘米.则表面积增加()平方厘米.A.3.14B.8C.25.12D.6.2827.等底等高的圆柱体和圆锥体,已知圆柱体体积比圆锥体体积大9.42立方厘米,圆锥体的体积是()A.4.71立方厘米B.3.14立方厘米C.18.84立方厘米28.一个圆柱和一个圆锥体积和高都相等,那么圆锥的底面积是圆柱底面积的()A.2倍B.3倍C.6倍29.把长60厘米的圆柱体按3:2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米.截成的较长一个圆柱的体积是()立方厘米.A.360B.540C.720D.108030.一个圆柱和一个圆锥等底等高,圆锥的体积比圆柱的体积少0.8立方分米,那么圆柱的体积是()立方分米.A.0.4B.0.8C.1.2D.2.4二.填空题(共5小题)31.一个底面半径为10厘米的圆柱形玻璃杯中装有10厘米深的水,将一个底面直径是2厘米、高是6厘米的圆锥形铅锤放入杯中,水面会上升厘米.32.一个圆柱体高不变,如果底面周长增加20%,那么体积则增加%.33.有甲乙两个圆柱体,如果甲的高等于乙的底面直径,甲的体积将缩小,如果乙的底面直径等于甲的高,乙的体积将增加倍.34.如图所示,圆锥形容器装有32升水,水面高度正好是圆锥高度的一半,这个容器还能装升水.35.将一根高是1.5米的圆柱形木料沿直径劈成两个半圆柱后,(如图)发现表面积比原来增加了60平方分米,原来这根木料的体积是立方分米.三.计算题(共1小题)36.看图计算(单位:厘米)(1)计算圆柱的表面积和体积.(2)计算圆锥的体积.四.应用题(共2小题)37.一根长1米,横截面直径是20厘米的木头浮在水面上,小明发现它正好是一半露出水面,请你求出这根木头与水接触的面的面积是多少平方厘米.这根木头的体积是多少立方厘米?38.把一根长2米的圆柱形钢材横截成三段,表面积比原来增加24平方厘米.原来这根圆柱形钢材的体积是多少立方厘米?五.操作题(共1小题)39.请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择.(1)你选择的材料是号和号(2)你选择的材料制成的水桶表面积是多少平方分米?六.解答题(共1小题)40.一个圆锥形沙堆,底面积是28.26平方米,高是2.5米.用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?参考答案与试题解析一.选择题(共30小题)1.【解答】解:48÷(3+1)×3,=48÷4×3,=36(立方厘米),答:圆柱的体积是36立方厘米.故选:A.2.【解答】解:从圆柱的正面看,看到的轮廓是一个正方形,说明圆柱的圆柱的底面直径和高相等.故选:B.3.【解答】解:6×3=18(立方分米);故选:C.4.【解答】解:削成的最大圆锥与原来圆柱等底等高,则圆锥的体积是圆柱的体积的,所以削去部分的体积是圆柱体积的:1﹣=.故选:B.5.【解答】解:围成圆柱的侧面的是一个圆筒,沿高直线剪开会得到长方形或正方形,沿斜直线剪开会得到平行四边形.但是无论怎么直线剪开,都不会得到三角形.故选:B.6.【解答】解:因为,等底等高的圆柱体的体积是圆锥体体积的3倍,因此,12个铁圆锥,可以熔铸成等底等高的圆柱体的个数是:12÷3=4(个),答:12个铁圆锥,可以熔铸成等底等高的圆柱体的个数是4个,故选:B.7.【解答】解:3.14×(6÷2)2×8,=3.14×9×8,=226.08(立方分米),226.08×=75.36(立方分米),答:圆锥的体积是75.36立方分米.故选:C.8.【解答】解:根据旋转的性质并结合题意可知:图中线段AB围绕A点旋转到AB2的位置,是按逆时针方向旋转90°;故选:C.9.【解答】解:25.12÷3.14÷2=4(厘米);d=4×2=8(厘米);或:18.84÷3.14÷2=3(厘米);d=3×2=6(厘米);故选:C.10.【解答】解:A:底面周长为:3.14×3=9.42,因为长=3,所以不是圆柱的展开图,B:底面周长为:3.14×4=12.56,因为长=12,所以不是圆柱展开图,C:底面周长为:3.14×2=6.28,因为长=6.28,所以是圆柱展开图,故选:C.11.【解答】解:A、是旋转对称图形,绕旋转中心旋转120°后能与自身重合.B、是旋转对称图形,绕旋转中心旋转90°后能与自身重合;C、是旋转对称图形,绕旋转中心旋转60°后能与自身重合;所以C答案是正确的.故选:C.12.【解答】解:等底等高的圆柱的体积是圆锥体积的3倍,可知一个圆柱和一个圆锥底面积相等,体积也相等,那么圆锥的高是圆柱高的3倍.故选:D.13.【解答】解:假设这个圆原来的直径是2厘米,则扩大后是6厘米.原来圆的面积S=πr2=3.14×(2÷2)2=3.14(平方厘米)扩大后圆的面积S=πr2=3.14×(6÷2)2=28.26(平方厘米)28.26÷3.14=9故选:C.14.【解答】解:逆时针旋转:360﹣90=270(度)故选:B.15.【解答】解:如果一个圆锥和一个圆柱等底等高,那么圆柱的体积是圆锥体积的3倍,圆锥的体积是圆柱体积的.故选:B.16.【解答】解:设圆柱的底面半径为r,则圆柱的底面周长是:2πr,即圆柱的高为:2πr,圆柱的底面半径和高的比是:r:2πr=1:2π;故选:B.17.【解答】解:(1﹣)÷=2;故选:B.18.【解答】解:如图,斜边的高为:3×4÷5=2.4(厘米),×3.14×2.42×5=×3.14×5.76×5=30.144(立方厘米);综合算式为:3.14×(3×4÷5)2×5÷3.故选:C.19.【解答】解:假设这张长方形纸的长是12.56厘米,宽是9.42厘米,圆柱A的表面积:3.14×(9.42÷3.14÷2)2×2+12.56×9.42=3.14×1.52×2+118.3152=3.14×2.25×2+118.3152=14.13+118.3152=132.4452(平方厘米)圆柱B的表面积:3.14×(12.56÷3.14÷2)2×2+12.56×9.42=3.14×22×2+118.3152=3.14×4×2+118.3152=25.12+118.3152=143.4352(平方厘米)143.4352>132.4452答:圆柱A的表面积大.故选:B。
六年级下册数学应用题难题
六年级下册数学应用题难题一、圆柱与圆锥相关难题1. 一个圆锥形沙堆,底面半径是2米,高是1.5米。
把这堆沙铺在一个长5米、宽2米的长方形沙坑里,能铺多厚?解析:首先求出圆锥形沙堆的体积。
根据圆锥体积公式V = (1)/(3)π r^2h(其中r是底面半径,h是高),这里r = 2米,h=1.5米。
则圆锥体积V=(1)/(3)×3.14×2^2×1.5先计算2^2=4。
再计算(1)/(3)×3.14×4×1.5(1)/(3)×1.5 = 0.5。
3.14×4×0.5=6.28(立方米)。
把这堆沙铺在长方形沙坑中,体积不变。
长方形沙坑的底面积为S = 5×2=10平方米。
沙的厚度(也就是长方体的高)h=(V)/(S),已知V = 6.28立方米,S=10平方米。
则h=(6.28)/(10)=0.628米。
2. 一个圆柱形容器的底面直径是10厘米,里面盛有一些水。
把一个底面半径为3厘米的圆锥形铅锤完全浸没在水中,水面上升了0.3厘米。
这个圆锥形铅锤的高是多少厘米?解析:圆柱形容器底面半径r = 10÷2 = 5厘米。
水面上升的体积就是圆锥形铅锤的体积。
根据圆柱体积公式V=π r^2h(这里h是水面上升的高度)。
则圆锥体积V = 3.14×5^2×0.3先计算5^2=25。
则3.14×25×0.3 = 23.55(立方厘米)。
已知圆锥底面半径R = 3厘米,根据圆锥体积公式V=(1)/(3)π R^2H(H是圆锥的高)。
可得23.55=(1)/(3)×3.14×3^2× H。
先计算3^2=9,(1)/(3)×3.14×9 = 9.42。
则H=(23.55)/(9.42)=2.5厘米。
二、比例相关难题1. 学校图书馆有科技书、文艺书和故事书共12000本,其中科技书占(1)/(3),文艺书与故事书的比是2:3。
小升初难点---图形圆柱与圆锥难题六大类型难题解析
小升初难点---图形圆柱与圆锥难题六大类型难题解析
圆柱与圆锥问题作为立体图形的基本知识点,很多学生感到晕乎乎。
1.“切”
〔问题〕把一根圆柱体木材锯成相等的4份,
需要锯几次可以?
①可以横切,分两段切一刀,增加两个底面大小的面,分三段切两刀,增加4个底面大小的面,以此类推。
②还可以沿直径纵切,增加两个长方形的面,长和圆柱的高相等,宽和直径相等。
2、“刷”
〔问题:〕针对这一圆木组合,刷油漆要刷多少?
给圆木涂油漆求涂漆面积的时候需要用表面积的知识。
直接算出,还是想一下有什么简便的计算。
①如果是柱子时,只刷侧面。
②如果是个木桩,只涂一个侧面和一个上面。
③如果是个圆木料,可涂整个表面。
一个“刷”,刷出了与表面积有关的符合实际的有价值的问题,培养了学生灵活运用所学知识解决实际问题的能力。
(单位换算、转化的数学思想)
3、“削”
圆柱容球计算球体积。
〔问题〕除了对圆木“涂”“切”以外,有同学说还可以“削”成一个最大的圆锥。
那怎样“削”才算是最大呢?你能用四句话说出它们之间的关系吗?
等底等高的圆柱和圆锥:圆柱体积是圆锥体积的3倍,圆锥体积是圆柱体积的三分之一,圆柱体积比圆锥体积多2倍,圆锥体积比圆柱体积少三分之二。
〔教师引导:〕如果圆柱和圆锥等底等积,那你能说出它们之间
的关系吗?
圆柱和圆锥等底等积:圆柱高是圆锥高的三分之一,圆锥高是圆柱高的3倍。
如果圆柱和圆锥等高等积,那你能说出它们之间的关系吗?
圆柱和圆锥等高等积:圆柱底是圆锥底的三分之一,圆锥底是圆柱底的3倍。
学会思维导图。
圆柱和圆锥的几何难题
圆柱和圆锥的几何难题
1. 圆柱的表面积计算公式
圆柱的表面积即由它的侧面积和底面积组成。
圆柱的侧面积是一个矩形,其中长度为圆柱高度,宽度为圆周长。
圆柱的底面积是一个圆的面积。
圆柱的表面积计算公式如下:
表面积 = 2 * (圆周长 * 圆柱高度) + 圆的面积
2. 圆锥的表面积计算公式
圆锥的表面积包括圆锥侧面积和底面积。
圆锥的侧面积是一个扇形,其中弧长为圆锥的斜高,半径为圆锥底面半径。
圆锥的底面积是一个圆的面积。
圆锥的表面积计算公式如下:
表面积= π * 圆锥底面半径 * 斜高 + 圆的面积
3. 一个几何难题的解决
假设有一个圆柱和一个圆锥,它们的底面半径相同,且高度也
相同。
我们的难题是判断哪个形状的表面积更大。
通过应用上述计算公式,我们可以得知:
- 圆柱的表面积只与圆周长有关,而圆锥的表面积除了和圆周长,还与斜高有关。
- 圆柱的斜高为0,因此圆锥的表面积肯定大于圆柱的表面积。
所以,可以得出结论:圆锥的表面积更大。
4. 结论
通过计算公式和解决一个几何难题的例子,我们可以看出,圆
锥的表面积在给定相同底面半径和高度的情况下,要大于圆柱的表
面积。
这个结论在实际生活中有着广泛的应用,例如在计算建筑材料的用量或的容积时,可以根据这个结论,做出更准确的估算。
注意:以上结论仅适用于给定相同底面半径和高度的情况下,不适用于其他情况。
总结完毕。
(完整word)圆柱和圆锥难题
圆柱和圆锥1、你玩过脱落吗?它上面是圆柱,下面是圆锥.经过测试,当圆锥的高是圆柱高的75%时,陀螺才能旋转的又稳又快。
淘气照这个标准做了一个陀螺,圆柱的底面直径是6厘米,高是6厘米。
这个陀螺的体积有多大?2、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是500毫升.现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米,瓶内现有饮料多少毫升?3、一个内直径是10cm的瓶子里,水的高度是24厘米,如果把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是6厘米.现将一个底面半径3厘米的圆柱形零件完全浸没在水中,这时水面正好上升至瓶口。
这个圆柱形零件的高是( )厘米.3、有A、B两个容器,原来容器A中装有4800毫升的水,容器B是空的。
现在以400毫升每分钟的流速往两个容器里注入水,4分钟后,两个容器的水面高度相等,已知容器B的地面半径是2厘米。
求容器A的地面直径.3、一个底面半径6厘米,高12厘米的圆锥体容器里盛满了水,将这些水全部倒入一个底面半径4厘米的圆柱体容器,这时圆柱体容器的水深10厘米,求原来圆柱体容器中水深多少厘米?4、底面半径是4cm的圆柱体容器盛有3cm高的水,在杯中竖直放入一个底面半径是2cm高6cm圆柱体铅块,两地面接触但水没有完全淹没圆柱体,此时水面高度比原来上升了多少厘米?5、甲乙两个圆柱体容器,底面积之比是5:4,甲容器水深12厘米,乙容器水深8厘米,再往两个容器注入同样多的水,直到水深相等,甲的水面上升了多少厘米?6、一只装水的圆柱形玻璃杯,底面积是80平方分米,水深8厘米,现将一个底面积是16平方厘米的长方体铁块竖放在水中后,仍有一部分铁块露在外面。
现在水深( )厘米。
1、一个底面半径是4分米,高6分米的圆柱体零件熔铸成一个底面直径为4分米的圆锥形零件,求圆锥零件的高是多少分米?1、段圆柱形木料,如果截成3个小圆柱,表面积就增加了78.5平方分米,如果沿着底面直径切成两个半圆柱,表面积增加了70平方分米。
苏教版六年级数学圆柱和圆锥重难点练习题及答案
苏教版六年级数学圆柱圆锥重难点练习题及答案例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?圆柱圆锥底面两个底面完全相同,都是圆形。
一个底面,是圆形。
侧面曲面,沿高剪开,展开后是长方形。
曲面,沿顶点到底面圆周上的一条线段剪开,展开后是扇形。
高两个底面之间的距离,有无数条。
顶点到底面圆心的距离,只有一条。
2.下面()图形旋转会形成圆柱。
3、在下图中,以直线为轴旋转,可以得出圆锥的是()。
4、求下列圆柱体的侧面积(1)底面半径是3厘米,高是4厘米。
(3)底面周长是12.56厘米,高是4厘米。
5、求下列圆柱体的表面积(1)底面半径是4厘米,高是6厘米。
(3)底面周长是25.12厘米,高是8厘米。
6、用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
8、一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部抹上水泥。
如果每平方米要用水泥20千克,一共要用多少千克水泥?一、圆柱体积1、求下面各圆柱的体积。
(3)底面直径是8米,高是10米。
(4)底面周长是25.12分米,高是2分米。
2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7。
第一个圆柱的体积是24立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?3、在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?4、牙膏出口处直径为5毫米,小红每次刷牙都挤出1厘米长的牙膏。
这支牙膏可用36次。
该品牌牙膏推出的新包装只是将出口处直径改为6毫米,小红还是按习惯每次挤出1厘米长的牙膏。
这样,这一支牙膏只能用多少次?5、一根圆柱形钢材,截下1.5米,量得它的横截面的直径是4厘米。
如果每立方厘米钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数。
)6、把一个棱长6分米的正方体木块,削成一个最大的一圆柱体,这个圆柱的体积是多少立方分米?7、右图是一个圆柱体,如果把它的高截短3厘米,它的表面积减少94.2平方厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?
2.如下图高是10厘米,底面半径分别是3厘米和6厘米的两个圆柱组成的几何体,求这个物体的表面积?
20厘米,宽15厘米,怎样旋转得到一个体积最大的圆柱,体积最大是多少?
4.如图,ABC是直角三角形,AB、AC的长分别是3和4.将ABC
∆绕AC旋转一周,求ABC
∆
扫出的立体图形的体积.(π 3.14
=)
C
B A
5.一段圆柱体木料,如果截成两个小圆柱体,它的表面积增加
6.28平方厘米,如果沿着直径劈成两个半圆柱体,它的表面积将增加80平方厘米,求原圆柱体的表面积?
6.圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水升.
1 2r
r
1
2
h
h
7.一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.
7cm
4cm
5cm
8.一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm.把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm.酒瓶的容积是多少?(π取3)
25
30
15
9.有一个底面周长为12.56厘米的圆柱,斜着截成两个形状完全相同的立体图形(如图),求截后的体积。
10.如图的容器,倒过来后,水面高度是多少厘米?
11.在一个直径是20厘米的圆柱形容器里,放入一个底面半径3厘米的圆锥形铁块,全部浸没在水中时,水面上升0.3厘米。
圆锥形铁块的高是多少厘米?
12.一个长方体容器,底面是一个边长为60厘米的正方形,容器里直立着一个高1米,底面边长为15厘米的长方体铁块,这时容器里的水深为0.5米。
现在把铁块轻轻地向上提起24厘米,那么露出水面的铁块上被水浸湿的部分长多少厘米?
13.一个圆柱被挖去一个圆锥(如图),圆锥高是圆柱高的3
2。
底面半径为2厘米,圆柱高为9厘米,则剩余部分的体积是多少?
14.如图ABCD是直角梯形。
(单位:厘米)
(1)以AB边为轴将梯形旋转一周得到一个立体图形,它的体积是多少?
(2)如果以CD便为轴,并将梯形绕这个轴旋转一周,得到的立体图形的体积是多少?
15.一个棱长是3厘米的正方体木块,各面中心凿穿一孔面边长是1厘米的正方形柱孔,它余下的体积是多少立方厘米?表面积是多少?。