运筹学 整数规划
运筹学-第3章整数规划

2018/8/17
9
生产计划问题
某机器制造厂可生产四种产品,对于三种主要资源(钢, 人力,能源)的单位消耗及单位利润见表。问如何安排 生产,可使总利润最大?
消耗 产品1
1
产品2 产品3
10 6 0 7 3 4 2 8
产品4
0 1 5 4
资源量
5000 3000 3000
资源A(钢)
资源B(人力) 2 资源C(能源) 2 单位利润 1
这里取M=5000
2018/8/17
15
(2)批量生产
在前例中的基础上, 增加假设:产品4要求批量生 产,批量为不少于500件。 试建立最佳生产计划模型。
定义0-1变量y4
1 , x 4 500 y 4= 0 , x 4=0
500y4 x4 My4 y4 {0,1}
增加约束
2018/8/17 4
附加条件
项目1和项目3至少采纳一个; y1+y2 ≥1 项目2和项目5不能同时采纳; y2+y5 ≤1 项目1仅在项目2采纳后才可考虑是否采纳; y1≤ y2 项目1仅在项目2和3同时采纳后才可考虑是否采纳; 项目1,2,3不能同时采纳; y1+y2+y3 ≤2 或者选择项目1和2,或者选择项目3; y1= y2, y1+y3 =1; 或者 0.5(y1+y2) +y3 =1.
i 1 j 1 5 4
1, 采用Ai建厂 yi , i 3,4,5 0 ,不采用
s.t. x11 x12 x13 x14 400 x x x x 600 23 24 21 22 x31 x32 x33 x34 200y3 x41 x42 x43 x44 200y4 x x x x 200y 5 51 52 53 54 y3 y 4 y5 1 x11 x21 x31 x41 x51 300 x12 x22 x32 x42 x52 350 x13 x23 x33 x43 x53 400 x x x x x 150 24 34 44 54 14 xij 0, i 1,2,3,4,5, j 1,2,3,4 y3 , y4 , y5 {0,1}
运筹学整数规划

运筹学整数规划运筹学是研究在资源有限的条件下,如何进行决策和优化的一门学科。
整数规划是运筹学中的一个重要分支,它解决的是决策变量必须为整数的问题。
整数规划在实际问题中具有广泛的应用,如生产计划、设备配置、选址问题等。
整数规划问题的数学模型可以表示为:max/min c^T xs.t. Ax ≤ bx ≥ 0x ∈ Z其中,c是目标函数的系数矩阵,x是决策变量的向量,A是约束条件的系数矩阵,b是约束条件的向量,Z表示整数集合。
整数规划问题与线性规划问题相似,但整数规划问题的约束条件多了一个整数限制,使得问题的解空间变得更为复杂。
由于整数规划问题的NP-hard性质,求解整数规划问题是一项困难的任务。
求解整数规划问题的常用方法有分支定界法、割平面法和启发式算法等。
分支定界法是一种穷举搜索的方法,它通过将整数规划问题不断分割成更小的子问题,从而逐步搜索解空间,直到找到最优解。
分支定界法对于规模较小的问题比较有效,但对于大规模复杂问题,效率较低。
割平面法是一种通过添加新的约束条件来减少解空间的方法。
它利用线性松弛问题(将整数约束条件放宽为线性约束条件)的解来构造有效的割平面,从而逐步缩小解空间,找到最优解。
割平面法通常比分支定界法更有效,但对于某些问题,可能需要添加大量的割平面才能收敛到最优解。
启发式算法是一种基于经验和启发式搜索的方法。
它通过设置初始解、搜索策略和邻域搜索等步骤,来快速找到近似最优解。
常见的启发式算法有遗传算法、模拟退火算法和禁忌搜索算法等。
启发式算法虽然不能保证找到全局最优解,但能够在可接受的时间内找到较优解。
综上所述,整数规划作为运筹学中的重要分支,解决的是决策变量必须为整数的问题。
整数规划问题具有广泛的应用,但由于其NP-hard性质,求解过程较为困难。
常用的求解方法包括分支定界法、割平面法和启发式算法等。
这些方法各有优劣,根据具体问题的特点选择合适的方法进行求解。
运筹学中的整数规划问题分析

运筹学中的整数规划问题分析运筹学是运用数学和定量分析方法,通过对系统的建模和优化,来解决实际问题的学科。
其中整数规划是运筹学中的一个重要分支,它在许多实际情况中得到广泛应用。
本文将对整数规划问题进行分析,并探讨其解决方法与应用领域。
一、整数规划问题定义及特点整数规划是一类线性规划问题的扩展,其目标函数和约束条件中的变量取值限定为整数。
通常,整数规划问题可以形式化表示为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t.a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + a₂₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z为目标函数值,x₁, x₂, ..., xₙ为待求解的整数变量,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右端常数。
整数规划问题的特点在于整数约束条件的引入,使其解空间变得有限,增加了问题的复杂性。
与线性规划问题相比,整数规划问题更接近实际情况,能够更准确地描述和解决很多实际问题。
二、整数规划问题的解决方法解决整数规划问题的方法主要有以下几种:穷举法、剪枝法、分支定界法、动态规划法等。
具体使用哪种方法需要根据问题的规模和特点来确定。
1. 穷举法是最简单直观的方法,通过枚举搜索整数解空间中的每一个可能解来寻找最优解。
然而,由于整数解空间往往非常大,这种方法在实际问题中往往是不可行的。
2. 剪枝法是一种通过对解空间进行剪枝操作,减少搜索空间的方法。
通过合理选择剪枝条件,可以避免对明显无解的解空间进行搜索,从而提高求解效率。
3. 分支定界法是一种将整数规划问题不断分解为子问题,并对子问题进行界定的方法。
通过不断缩小问题规模,并计算上下界确定最优解的位置,可以有效地求解整数规划问题。
运筹学第5章:整数规划

则问题可表示为:
max z c j x j
j 1 n
n a j x j B j 1 x1 x2 0 s.t. x3 x4 1 x x x 2 7 5 6 x j 0或1 j 1,2, , n 【例5-3】工厂A1和A2生产某种物资,由于该种物资供不应 求,故需要再建一家工厂,相应的建厂方案有A3和A4两个。这 种物资的需求地有B1、B2、B3、B4四个。各工厂年生产能力、各 地年需求量、各厂至各需求地的单位物资运费cij(j=1,2,3,4) 见表5-2。
三、割平面法的算法步骤
步骤1:将约束条件系数及右端项化为整数,用单纯形法求 解整数规划问题(ILP)的松弛问题(LP)。设得到最优基B,相应 的基最优解为X*。 步骤2:判别X*的所有分量是否全为整数?如是,则X*即为 (ILP)的最优解,算法终止;若否,则取X*中分数最大的分 量 x * ,引入割平面(5.7)。
表5-2
Ai cij A1 A2 Bj B1 2 8 B2 9 3 B3 3 5 B4 4 7 生产能力 (千吨/年) 400 600
A3
A4 需求量(千吨/年)
7
4 350
6
5 400
1
2 30025 150200200工厂A3或A4开工后,每年的生产费用估计分别为1200万元或 1500万元。现要决定应该建设工厂A3还是A4,才能使今后每年 的总费用(即全部物资运费和新工厂生产费用之和)最少。
一般来说,整数线性规划可分为以下几种类型:
1. 纯整数线性规划(Pure Integer Linear Programming): 指全部决策变量都必须取整数值的整数线性规划,也称为全整 数规划。 2. 混合整数线性规划(Mixed Integer Linear Programming):指决策变量中一部分必须取整数值,而另一部 分可以不取整数值的整数线性规划。 3. 0-1整数线性规划(Zero-one Integer Linear Programming):指决策变量只能取0或1两个值的整数线性规划。
运筹学中整数规划问题的近似算法

运筹学中整数规划问题的近似算法运筹学是一门研究如何在有限资源下做最优决策的学科,其中整数规划是其中一种重要的决策方法。
整数规划问题是指在线性规划问题的基础上,对决策变量的取值加以限定,限定为整数值。
整数规划问题在实际应用中非常常见,例如优化生产计划、物流配送、资源分配等。
然而,整数规划问题的解空间通常是离散的,由于整数规划问题的NP难解性质,寻找准确解的效率很低,因此近似算法成为解决整数规划问题的重要手段。
一、近似算法的概念近似算法是指在可接受的误差范围内,通过有效的计算方法得到问题的近似最优解。
在整数规划问题中,近似算法主要通过松弛约束条件、局部搜索等方法寻找问题的近似解。
二、近似算法的分类近似算法可以根据问题的特性和解决方法的不同进行分类,下面介绍几种常见的近似算法。
1. 线性松弛算法(Linear Relaxation)线性松弛算法是整数规划问题中常用的近似算法之一。
该算法的基本思想是将整数规划问题的整数约束放宽为实数约束,得到一个线性规划问题。
然后通过求解线性规划问题的松弛解,并将松弛解的整数部分作为整数规划问题的一个近似解。
2. 近似局部搜索算法(Approximate Local Search)近似局部搜索算法通过在整数规划问题的解空间中进行局部搜索,通过一系列的改进和优化策略来逐步提高解的质量。
该算法在每一步都根据某种准则选择当前最优解,并通过局部搜索来寻找局部最优解。
然后,通过重复进行局部搜索和改进操作,逐渐向全局最优解靠近。
3. 启发式算法(Heuristic Algorithm)启发式算法是一种基于经验和直觉的算法,通过在可行解空间中搜索一组近似解,并根据某种评价准则选择最优解。
在解决整数规划问题时,启发式算法通过寻找有效的近似解,来替代寻找准确解,从而节省计算资源和时间。
三、近似算法的应用案例近似算法在实际问题中有广泛的应用,下面以物流配送问题为例,介绍近似算法的应用。
假设某物流公司需要将一批货物从仓库分配到多个客户,其中仓库和客户的位置已知,货物的需求和供应量也已知。
管理运筹学讲义整数规划

管理运筹学讲义整数规划整数规划是管理运筹学中一种重要的优化技术,它在实际问题中具有广泛的应用。
本文将介绍整数规划的基本概念、建模方法以及解决算法,并通过实例展示其在实际问题中的应用。
一、整数规划的基本概念整数规划是线性规划的一种扩展形式,其决策变量被限制为整数。
在实际问题中,往往存在某些变量只能取整数值的约束条件,这时就需要使用整数规划方法进行求解。
与线性规划相比,整数规划的求解难度更大,但可以提供更精确的结果。
二、整数规划的建模方法在进行整数规划建模时,需要确定决策变量、目标函数和约束条件。
1. 决策变量决策变量是问题中需要优化的变量,其取值决定了问题的解。
在整数规划中,决策变量通常表示为整数。
2. 目标函数目标函数是整数规划问题中需要最小化或最大化的目标。
它可以是线性函数或非线性函数,但在整数规划中,通常只考虑线性目标函数。
3. 约束条件约束条件是问题的限制条件,限制了决策变量的取值范围。
在整数规划中,约束条件可以是线性等式或线性不等式。
三、整数规划的解决算法解决整数规划问题的常见算法包括割平面法、分支定界法和动态规划法等。
这些算法通过不断对问题进行优化,逐步逼近最优解。
1. 割平面法割平面法是一种通过添加额外的约束条件来逼近最优解的方法。
它首先求解一个松弛问题,然后根据松弛问题的解加入新的约束条件,直到找到最优解。
2. 分支定界法分支定界法是一种将整数规划问题划分为多个子问题,并对每个子问题进行求解的方法。
它通过不断分支和剪枝来找到最优解。
3. 动态规划法动态规划法是一种通过将问题分解为多个子问题,并通过求解子问题的最优解来求解原始问题的方法。
它采用自底向上的求解方式,将所有可能的决策情况进行组合,得到最优解。
四、整数规划在实际问题中的应用整数规划在实际问题中有着广泛的应用。
以下是一个应用整数规划解决的实际问题示例:某公司生产两种产品A和B,每天的生产时间为8小时。
产品A每单位利润为100元,产品B每单位利润为150元。
运筹学中的线性规划与整数规划算法

运筹学中的线性规划与整数规划算法运筹学是一门研究如何有效地做出决策的学科,它集合了数学、计算机科学和经济学等多个学科的理论和方法。
其中,线性规划和整数规划是运筹学中最常用的一类问题求解方法。
本文将重点讨论运筹学中的线性规划和整数规划算法。
线性规划是一种通过线性数学模型来实现决策优化的方法。
在线性规划中,目标函数和约束条件都是线性关系。
目标函数表示要优化的目标,约束条件则限制了决策变量的取值范围。
线性规划的基本思想是通过调整决策变量的取值,使得目标函数达到最大或最小值。
线性规划的求解方法主要有两种:单纯形法和内点法。
单纯形法是一种通过在顶点间移动来寻找最优解的方法。
它从一个可行解开始,然后通过交替移动到相邻的顶点来逐步优化目标函数值。
而内点法则是一种通过将目标函数与约束条件转化为一组等价的非线性方程组,通过迭代方法逼近最优解的方法。
内点法相对于单纯形法而言,在求解大规模问题时速度更快。
整数规划是线性规划的一个扩展,它要求决策变量只能取整数值。
整数规划问题更接近实际问题,因为很多情况下我们只能从离散的选择中进行决策。
然而,整数规划的求解难度要远远高于线性规划。
因为整数规划问题的解空间是离散的,不再是连续的顶点,这导致了求解整数规划的困难。
为了解决整数规划问题,提出了许多算法,其中最著名的是分支定界法和割平面法。
分支定界法是一种通过将整数规划问题分解为一系列线性规划子问题来求解的方法。
它通过将整数规划问题不断分解为子问题,并利用线性规划的求解方法求解子问题。
割平面法则是一种在单纯形法的基础上引入额外的不等式约束来加强整数规划问题的求解方法。
割平面法通过将不等式约束添加到线性规划模型中,逐步缩小解空间,最终找到整数规划问题的最优解。
除了分支定界法和割平面法之外,还有一些其他的整数规划求解方法,如启发式算法和元启发式算法。
启发式算法是一种基于经验和启发知识的求解方法,它通过模拟生物进化、社会行为等过程来搜索整数规划问题的解。
运筹学 整数规划( Integer Programming )

检查所有分枝的解及目标函数值,若某分枝的解是整数并且目标函数 值大于(max)等于其它分枝的目标值,则将其它分枝剪去不再计算,若 还存在非整数解并且目标值大于(max)整数解的目标值,需要继续分枝, 再检查,直到得到最优解。
割平面法的内涵:
Page 18
通过找适当的割平面,使得切割后最终得到这样的可行域( 不一定一次性得到), 它的一个有整数坐标的顶点恰好是 问题的最优解.
-Gomory割平面法
例: 求解
max z x1 x2 s.t. x1 x2 1
3x1 x2 4 x1 , x2 0, 整 数
1 x1 3/4 1 0 -1/4 1/4 0
1 x2 7/4 0 1 3/4 1/4 0
0 x5 -3 0 0 -3 -1 1
0 0 -1/2 -1/2 0
由对偶单纯形法, x5为换出变量, x3为换入变量, 得Page 29
cj CB XB b 1 x1 1 1 x2 1 0 x3 1
1 100 0 x1 x2 x3 x4 x5 1 0 0 1/3 1/12 0 1 0 0 1/4 0 0 1 -1 -1/3 0 0 0 -1/2 -1/6
收敛性很慢. 但若下其它方法(如分枝定界法)配合使用,
也是有效的.
分支定界法
Page 33
分支定界法的解题步骤:
1)求整数规划的松弛问题最优解; 若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下
一步; 2)分支与定界:
任意选一个非整数解的变量xi,在松弛问题中加上约束: xi≤[xi] 和 xi≥[xi]+1
运筹学中的线性规划与整数规划

运筹学中的线性规划与整数规划在运筹学中,线性规划和整数规划是两个常用且重要的数学模型。
它们被广泛应用于资源分配、生产调度、物流管理等问题的决策过程中。
本文将介绍线性规划和整数规划的基本概念、数学模型以及求解方法。
一、线性规划线性规划是一种通过线性关系来描述问题的数学模型。
它的目标是在给定的约束条件下,找到使目标函数达到最优的决策变量取值。
线性规划模型一般可以表示为如下形式:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t. a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数值,c₁, c₂, ..., cₙ表示目标函数的系数,x₁, x₂, ..., xₙ为决策变量,a₁₁, a₁₂, ..., aₙₙ为约束条件的系数,b₁,b₂, ..., bₙ为约束条件的右侧常数。
线性规划的求解方法主要有两类:图形法和单纯形法。
图形法适用于二维问题,通过绘制目标函数和约束条件在坐标系中的图形,找到交点来确定最优解。
而单纯形法适用于多维问题,通过迭代计算,逐步接近最优解。
二、整数规划整数规划是线性规划的一种特殊情况,它要求决策变量的取值必须为整数。
整数规划模型可以表示为如下形式:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t. a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z表示目标函数值,c₁, c₂, ..., cₙ表示目标函数的系数,x₁, x₂, ..., xₙ为整数决策变量,a₁₁, a₁₂, ..., aₙₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右侧常数。
运筹学01整数规划

第四节 0-1整数规划
• 问题的提出:
0-1整数规划是线性规划及整数规划的一种特殊形式。 模型结构和形式是线性规划,只是决策变量取0或1。 例1:投资场所的选定——相互排斥的计划 某公司拟在城市的东、西、南三区建立分公司,拟议中有七 个位置Ai(i=1, 2,…,7), 规定在东区A1,A2,A3个点中至多选二个; 在 西区A4,A5两点中至少选一个; 在南区A6,A7中至少选一个, 如选用Ai 点,设备投资估计为bi元, 每年可获利润估计为ci元, 但投资总额不能 超过B元, 问应选择哪几个点可年利润最大?
解:求解过程见下表
(x1,x2,x3) (0,0,0)
(0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)
Z值 0 5 -2 3 3 8 1 6
约束条件
过滤条件 Z0 Z5
Z8
所以,最优解为(x1,x2,x3)T=(1,0,1)T, 最优值为8.
令
xi
1
0
当Ai点被选用 当Ai点未被选用
i=1, …,7
7
max Z c i x i
i1
7
bixi
B
i1
x1 x 2 x 3 2
s .t
x
4
x5
1
x
0 or 1
例2: 相互排斥的约束条件
运筹学课件第四节0-1型整数规划

目录
CONTENTS
• 0-1型整数规划概述 • 0-1型整数规划的数学模型 • 0-1型整数规划的求解算法 • 0-1型整数规划的案例分析 • 0-1型整数规划的软件实现
01 0-1型整数规划概述
CHAPTER
定义与特点
定义
0-1型整数规划是一种特殊的整数规 划,其中决策变量只能取0或1。
解决方案通常采用动态规划或混合整数线性规 划方法,通过迭代和优化算法来找到最优解。
05 0-1型整数规划的软件实现
CHAPTER
Excel求解工具
适用范围
适用于简单的0-1型整数规划问题。
优点
操作简单,易学易用,适合初学者。
使用方法
利用Excel的Solver插件,设置目标函数、 约束条件和决策变量,进行求解。
其他约束
除了资源和需求约束外,还可能 存在其他类型的约束,如数量约 束、时间约束等,这些约束条件 都对决策变量的取值范围进行了 限制。
决策变量
离散变量 0-1型整数规划中的决策变量通常 是离散的,只能取0或1两个值。 这些决策变量代表了不同的策略 或选择。
最优解 最优解是指在所有可行解中使目 标函数达到最优值的决策变量的 取值组合。
缺点
对于大规模问题求解能力有限,可能存在精 度问题。
Python求解库
适用范围
适用于各种规模的0-1型整数规 划问题。
使用方法
利用Python的优化库,如PuLP 或CVXPY,编写目标函数和约束 条件,进行求解。
优点
功能强大,可处理大规模问题 ,精度高。
缺点
需要一定的编程基础,学习成 本较高。
MATLAB求解工具
运筹学chap.5整数规划

利用已知的数据,年运输成本为: TC1=5x11+2x12+3x13+4x21+3x22+4x23+9x31+7x32 +5x33+10x41+4x42+2x43+8x51+4x52+3x53
14
建新工厂的年固定成本为:
TC2=175y1+300y2+375y3+500y4; 总成本为:TC=TC1+TC2; 生产能力的约束条件为: 从新工厂B1运到A1,A2,A3三个城市销售中心的总量应小于 等于B1的生产能力,所以约束条件为: x11+x12+x13≤10y1 B1的生产能力; 同理可得: x21+x22+x23≤20y2 B2的生产能力; x31+x32+x33≤30y3 B3的生产能力; x41+x42+x43≤40y4 B4的生产能力; x51+x52+x53≤30 B5的生产能力(已建);
17
例3:投资决策问题
某部门在今后五年中可用于投资的资金总额为
B 万 元 , 有 n(n 2)个 可 以 考 虑 的 投 资 项 目 , 假
定 每 个 项 目 最 多 投 资 一 次 ,第 j ( j 1 , , n ) 个 项 目 所 需 的 资 金 为 b j 万 元 , 将 会 获 得 的 利 润 为c
90 x1 40 x 2 10 x 3 37 x 4
同理得到后三年的约束 条件。
26
0-1整数规划的标准型和解法
标准型
min z
必须大于 等于0
n
c
j 1
运筹学-4-整数规划ppt课件

.
8
第四章 整数规划 0-1规划
解:设xi
1 0
带第 i件物品
不带第 i件物品 数学模型:
Z表示所带物品的总价值
m
Z ci 带第i件
ci xi
i 1
m
携带物品的总重量 bi x i
i 1
m
max Z ci xi
m i1
s.t
i1
bi xi
b
xi 0,1,
i 1, 2, m
i1
1, 2,..., m
i1
s.t. xij bj j 1, 2 , n
i1
xij
0
,
yi 0,1
混合型整数规划
.
11
第四章 整数规划
例 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要再 建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地有 B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各需 求地的单位物资运费cij,见下表:
.
10
第四章 整数规划
解:设 xij表示A 工 i运厂 往B 商 j的店 运量
m
n
则总运费为
c ij x ij
i1 j 1
数学模型:
mn
m
设yi
1 0
则总建厂费为
在第 i个地点建m厂in Z
不在第 i个地点建厂 n
m
fi yi
j1 m
xij
i1
j
ai
1
yi
cij xij
i
fi yi
1 若 建 工 厂 yi 0 若 不 建 工 厂(i3,4)
再设xij为由Ai运往Bj的物资数量,单位为千吨;z表示总费用, 单位万元。
运筹学课程06-整数规划(胡运权 清华大学)

NEUQ
全整数规划:除了所有决策变量要求取非负整数外,系数 和常数也要求取整数(这时引进的松弛变量和剩余变量也必须 是整数)。
混合整数规划:只有一部分的决策变量要求取非负整数, 另一部分可以取非负实数。 0-1整数规划:所有决策变量只能取 0 或 1 两个整数。
14
NEUQ
3、IP与LP关系:
设整数规划问题如下
c1n c2n cin b c nn
min Z Z b
min Z Z b
,则X 0也是 min Z的最优解 若X 0是 min Z的最优解
24
NEUQ
指派问题的最优解: 若 C中有n 个位于不同行不同列的零元素,则令这
些零元素对应的变量取1,其余变量取零,即得指派问 题的最优解 匈牙利算法:
B1 B2 L Bn A1 c11 c12 L c1n a1 f1 A2 c21 c22 L c2 n a2 f 2 M M M M M M Am cm1 cm 2 L cmn am f m b1 b2 L bn
6
NEUQ
设: xij 表示从工厂运往销地的运量(i=1.2…m; j=1.2…n), 1 在Ai建厂 又设 yi= (i=1.2…m) 0 不在Ai建厂 m 模型: min Z cij xij f i yi
NEUQ
整数规划 Integer Linear Programming
整数规划的难度远大于一般线性规划
1
NEUQ
本章主要内容
整数规划的模型 0-1 整数规划
指派问题
分支定界法 割平面法
2
NEUQ
一、整数规划的模型
1、案例: 某财团有 B万元的资金,经初期考察选中 n个 投资项目,每个项目只能投资一个。其中第 j 个项目需投资金额为 b j ( j 1, 2,L , n) 万元, 预计5年后获利 c j 万元,问应如何选择项目使 得5年后总收益最大?
运筹学整数规划

2 0 5 0 3
0 0 7 0 6
2 0 2 4 5
3。重复。依行,不考虑划去的0,只有一个0的 对0打圈,划去列 2
1
5 2 0 9 0
0 3 10 8 6
2 0 5 0 3
0 0 7 0 6
2 0 2 4 5
3
4。重复。依列,不考虑划去的0,只有一个0的 对0打圈,划去行 2
7 8 11
任务 人员
分派情况
甲 乙 丙
E J G R
丁
4
15
所需时间
13
9
甲 1 1 乙 1 丙 1 丁
对应每个指派问题, 都有类似的表格,我们称之 为效率矩阵或系数矩阵,某元素 cij ( i , j = 1,2, · · · · · · , n ) 表示指派第 i 个人去完成 第 j 项任务时的效率(或
整数规划问题的求解要比一般的线性规划困难
本章将着重讨论 1。一类特殊的整数规划——指派问题,它的数 学模型和求解。 2。求解整数规划方法——分枝定界法。
一、指派问题的数学模型
1。数学模型
某单位需要指派 n 个人去完成 n 项任务,每个人 只做一项工作,同时,每项工作只由一个人完成。由 于各人的专长不同,每个人完成各项任务的效率也不 同。于是产生了应指派哪一个人去完成哪一项任务, 使完成 n 项任务的总效率最高(如所用的时间为最 少)。我们把这类问题称之为指派问题或分派问题 (Assignment Problem)。
二、匈牙利法
指派问题的效率矩阵的每一个元素aij≥0
解矩阵是每行或每列只能有一个元素为1,其余 均为 0 的 n 阶方阵。如:
0 0 ( xij ) 1 0 1 0 0 0 0 1 0 0 0 0 0 1
运筹学 整数规划

问应如何选择使年利润最大?
相互排斥的约束条件
某厂用车运和船运两种方式运送甲乙两种 货物,每箱体积、重量、利润及限制条件 如下表:
加入约束: 3 x1-2 x2+5 x3 ≥5
x1 . x 2. x3 ( 0. ( 0. ( 0. ( 1. ( 0. ( 1. ( 1. ( 1. 0. 0. 1. 0. 1. 0. 1. 1. 0 ) 1) 0) 0) 1) 1) 0) 1) (0) 0 5 -2 3 3 8 1 4 0 2 (1) 0 -1 0 1
注:划分不影响原(IP)问题的最优解
LP1 的解
x2
先求(LP1),如图所示。 此时B 在点取得最优解。
3 ⑵ ⑴
B ⑶
x1=1, x2 =3, Z(1)=16 找到整数解,问题已探 明,此支停止计算
3
x1
LP2 的解
再求(LP2),如图所示。 此时C 在点取得最优解。 x1=2, x2 =10/3, Z(2) =56/3≈18.7 Z(2) > Z(1) x2 不是整数,加入条 件x2≤3,x2≥4 将(LP2)继续划分为 (LP3) ,(LP4)
1
C (1,1)
计算步骤
1.
用单纯形法求解(IP)对应的松弛问题(LP):
⑴.若(LP)没有可行解,则(IP)也没有可行解, 停止计算。 ⑵.若(LP)有最优解,并符合(IP)的整数条件,则 即为(IP)的最优解,停止计算。 ⑶.若(LP)有最优解,但不符合(IP)的整数条件, 转入下一步。
运筹学中的线性规划和整数规划

运筹学中的线性规划和整数规划运筹学是一门涉及决策分析、优化、模型构建和仿真等知识领域的学科,应用广泛,如供应链管理、交通规划、制造业生产、金融投资等方面。
其中,线性规划和整数规划是运筹学中最为基础和重要的优化技术,被广泛应用于各个领域。
一、线性规划线性规划是一种在一组线性约束条件下,求解线性目标函数极值问题的数学方法。
在生产、运输、选址等问题中,线性规划都有着重要的应用。
其数学模型可以表示为:$\max c^Tx$$s.t. Ax \leq b,x\geq 0$其中$c$为目标函数的向量,$x$为决策变量向量,$A$为约束矩阵,$b$为约束向量,$c^Tx$表示目标函数的值,$\leq$表示小于等于。
如果目标函数和约束都是线性的,则可以通过线性规划的求解方法来确定决策变量的最优值。
线性规划的求解方法一般分为单纯形法和内点法两种方法。
单纯性法是线性规划中最为常用的方法,通过对角线交替调整,逐步从可行解中寻找最优解,收敛速度较快,但是存在不稳定的情况。
内点法是近年来发展起来的用于求解大规模线性规划问题的数值方法,其核心思想是迭代求解一系列线性方程组,每次保持解在可行域内部,直到找到最优解为止。
这种方法对大规模问题求解能力强,使用较多。
二、整数规划整数规划是线性规划的升级版,它要求决策变量必须取整数值。
整数规划在很多实际问题中都有着重要的应用,比如很多生产过程中需要将生产数量取整数,物流路径问题需要选取整数条路径等。
与线性规划不同的是,整数规划是NP难问题,没有一种有效的算法能够完全解决所有的整数规划问题。
因此,通常需要采用分支定界、割平面等方法来求解。
分支定界是一种常用的整数规划求解方法。
它通过将整数规划问题分为多个子问题,依次求解这些子问题并优化当前最优解,以逐步逼近最优解。
割平面法则是在分支定界方法的基础上加入约束条件,使得求解过程更加严格化,最终得到更好的结果。
总的来说,运筹学中线性规划和整数规划是不可或缺的优化工具,我们可以通过理论和实践加深对它们的理解。
整数规划的特点及应用

整数规划的特点及应用整数规划是运筹学中的一种优化方法,它是线性规划问题的一种扩展形式。
与线性规划相比,整数规划要求变量的取值必须为整数。
整数规划具有以下几个特点:1. 计算复杂度高:整数规划问题通常是NP-hard问题,即在多项式时间内无法找到最优解,只能采用近似算法进行求解。
这是因为整数规划问题中整数约束的引入使得问题的解空间呈离散形式,导致搜索空间大大增加。
2. 解空间离散:整数规划问题的解空间是离散的,通过枚举搜索过程来寻找最优解。
在搜索的过程中,需要遍历所有可能的整数解,所以解的数量随着问题规模的增大指数增加。
3. 解空间约束:整数规划中的整数变量需要满足约束条件,这些条件可能是线性不等式、等式约束或者非线性约束。
这些约束条件限制了整数规划问题的解空间,使得问题的求解变得更有挑战性。
整数规划在实际应用中具有广泛的应用领域,以下是几个常见的应用场景:1. 生产计划:在企业的生产计划中,为了最大程度地满足需求并降低生产成本,往往需要考虑许多约束条件,如产能约束、人力资源约束等。
整数规划可以用来优化生产计划,确保每个生产批次的选择都是整数数量,以便满足实际生产需求。
2. 设备配置:在一些需要配置设备的问题中,整数规划可以帮助企业确定最佳设备配置方案。
比如,在供应链中,如何最优地安排仓库、生产设备等资源的配置,以降低运营成本和提高服务质量,整数规划可以提供有效的优化算法。
3. 项目调度:在项目管理过程中,整数规划可以用于确定最优的项目调度方案。
通过考虑项目的资源约束、任务优先级、工期等因素,整数规划可以帮助确定任务的调度顺序,以最小化项目的总工期或成本。
4. 网络设计:在网络设计中,如何选择最佳的网络节点位置、链路配置以及网络容量规划等问题,可以通过整数规划来解决。
整数规划可以帮助确定网络节点的选择,以最大化网络的覆盖范围或服务质量。
5. 旅行商问题:旅行商问题是一个经典的整数规划问题,它研究的是如何确定一条最短路径,使得旅行商可以依次访问多个城市而不重复,并最终回到起点。