网络优化常用参数介绍
常用网优参数算法与脚本制作
数据转换
03
将原始数据转换为适合分析的格式或特征,如时间序列数据、
分类特征等。
特征选择与提取
01
02
03
特征选择
根据业务需求和数据特点, 选择与目标变量相关的特 征,去除无关或冗余特征。
特征提取
对原始特征进行转换和组 合,生成新的特征,以丰 富特征空间。
特征归一化
将特征值缩放到统一范围, 如[0,1]或[-1,1],以提高 模型性能。
01
03
K-均值聚类算法的缺点是容易受到初始聚类中心的影 响,且对异常值和噪声数据敏感。
04
K-均值聚类算法的优点是简单高效、适用于大数据集 的处理。
支持向量机算法
01 02 03 04
支持向量机算法是一种分类和回归方法,通过找到能够将不同类别的 数据点最大化分隔的决策边界来实现分类和回归。
在网络优化中,支持向量机算法可以用于分类和识别网络流量中的正 常和异常行为模式。
降低运营成本
通过对网络优化参数的监测和分析,可以及时发现网络瓶颈和问题,避 免盲目投资和资源浪费,降低运营成本。
网络优化参数的分类
按性质分类
可以分为硬性参数和软性参数。硬性 参数是指物理层参数,如带宽、延迟 等;软性参数是指逻辑层和应用层参 数,如丢包率、抖动等。
按应用场景分类
可以分为移动网络参数和固定网络参 数。移动网络参数包括移动设备的信 号强度、移动速度等;固定网络参数 包括带宽、丢包率等。
Python拥有丰富的第三方库, 如NumPy、Pandas、Scikitlearn等,可以满足各种数据处 理和分析需求。
数据预处理
数据清洗
去除缺失值、异常值和重复数据,确保数据质量。
WLAN性能测试及参数优化方法
WLAN性能测试及参数优化方法无线局域网(WLAN)在现代通信领域中发挥着重要作用,而对其性能的测试和参数的优化是确保其稳定运行和提升用户体验的重要环节。
本文将介绍WLAN的性能测试方法,以及优化WLAN参数的方法。
一、WLAN性能测试方法1. 信号强度测试信号强度是衡量WLAN性能的重要指标之一。
可以使用专业的测试工具或手机APP测量设备之间的信号强度,并绘制热力图来观察信号分布情况。
在测试中,应该关注覆盖范围和信号强度是否满足需求。
2. 信噪比测试信噪比是指有效信号与背景噪声之间的比值,较高的信噪比意味着更清晰的信号传输。
可以通过采用专业的信号分析仪进行信噪比测试,以确保WLAN信号质量的稳定和可靠。
3. 传输速率测试传输速率是衡量WLAN性能的另一个重要指标。
可以使用专业的测试工具或者通过下载和上传文件来测试WLAN的传输速率。
在测试中,应该关注实际的传输速率是否接近设备的理论传输速率。
4. 延迟和抖动测试延迟和抖动是WLAN性能的关键指标之一,直接影响到数据传输的实时性和稳定性。
可以使用专业的网络测试工具来测试延迟和抖动,并根据测试结果对网络进行优化调整。
二、WLAN参数优化方法1. 频段选择WLAN可以在不同的频段进行工作,如2.4GHz和5GHz。
不同频段的性能和干扰情况不同,应根据实际需求选择合适的频段。
通常情况下,5GHz频段相对较少干扰,传输速率更快,但覆盖范围较小。
2. 信道设置在无线网络中,不同的设备会使用不同的信道进行通信。
合理设置信道可以减少信号干扰和碰撞,提升网络性能。
可以通过扫描周围环境和使用专业的网络优化工具选择最佳信道。
3. 功率控制合理的功率控制可以保持WLAN信号的稳定,避免过度干扰周围设备。
应根据实际需求和场景设定合适的信号功率,避免过高或过低。
4. 安全设置WLAN安全设置是保护网络免受未经授权访问和攻击的重要手段。
应启用WPA2等高级加密方式,并设置强密码、MAC地址过滤等措施来增强网络安全性。
AI训练中的深度学习网络参数优化技巧
AI训练中的深度学习网络参数优化技巧在人工智能领域,深度学习网络的参数优化是提高模型性能和准确性的关键步骤。
本文将介绍几种常用的深度学习网络参数优化技巧,帮助AI训练者在训练过程中取得更好的结果。
一、学习率调整学习率是深度学习网络优化过程中最重要的超参数之一。
过大的学习率可能导致模型不收敛,而过小的学习率则会使优化过程缓慢。
因此,合理调整学习率对于优化模型非常重要。
学习率衰减是一种常见的学习率调整方法,即随着训练的进行逐渐降低学习率,使模型收敛得更快更准确。
二、批量归一化批量归一化(Batch Normalization)是一种用于加速神经网络训练的技术。
通过对每个特征的输入进行正则化,批量归一化可以帮助网络更好地适应不同训练样本的分布。
同时,批量归一化还可以缓解梯度消失和梯度爆炸问题,提高模型的稳定性和泛化能力。
三、正则化正则化是一种常用的参数优化技巧,可以避免模型过拟合。
L1正则化和L2正则化是两种常见的正则化方法。
L1正则化通过增加L1范数作为正则化项,使得模型的参数稀疏化,提高模型的泛化能力。
L2正则化则通过增加L2范数作为正则化项,限制模型参数的绝对值,使得模型更加平滑。
在实际应用中,可以根据问题的特点选择合适的正则化方法。
四、随机梯度下降随机梯度下降(Stochastic Gradient Descent,SGD)是一种常用的优化算法,用于更新深度学习网络的参数。
SGD通过对每个样本计算梯度并更新参数,来最小化损失函数。
为了提高训练速度和稳定性,可以使用一些改进的SGD算法,如动量法、自适应学习率方法等。
五、参数初始化深度学习网络参数的初始化对于模型的训练和优化非常重要。
良好的参数初始化可以帮助模型更快地收敛并降低训练难度。
常见的参数初始化方法包括随机初始化、Xavier初始化和He初始化等。
根据网络结构和激活函数的不同,选择合适的参数初始化方法可以提高模型的性能。
六、自适应学习率自适应学习率是一种根据参数梯度的大小自动调整学习率的技巧。
CDMA网络优化常用参数设置说明
本文主要结合呼叫流程、切换流程中涉及到的无线参数进行说明,同时对 双载频的优化设置做了介绍。通过本文的介绍,可以掌握呼叫、通话流程中的相 关参数的具体应用、设置范围、参数调整的影响等;对优化过程中涉及的参数设 置起到说明作用。
1.呼叫
接入成功率是评价系统性能的一个非常重要的指标, 反映系统接通呼叫的能 力。在本文中,将呼叫分为主叫、被叫两个部分。
1.2.2.1 登记的类型................................................................................................................ 9 1.2.3 登记参数设置........................................................................................................... 13 1.3 小结 ............................................................................................................................... 16 2.切换 ........................................................................................................................................ 17 2.1 切换过程 ....................................................................................................................... 19 2.2 切换信令 ....................................................................................................................... 20 2.3 切换参数设置............................................................................................................... 21 2.3.1 搜索窗参数............................................................................................................... 21 2.3.2 切换参数...................................................................................................................... 26 2.3.3 切换相关参数设置..................................................................................................... 32 3.双载频优化参数设置............................................................................................................... 33 3.1 两载频临界区的切换................................................................................................... 33 3.2 半软切换的理论........................................................................................................... 34 3.3 邻区配置....................................................................................................................... 36 3.4 双载频参数配置........................................................................................................... 36
网络优化经常涉及到的小区参数
0-63
0到63 0-80dBm 35-43dBm,奇数有 调整覆盖须互相保持一致;郊区基站减小发射功率会导致覆盖面积减少, 吸收的话务量降低, 发射功率过大又会导致上下行链路功率不平衡问题,因此一般来将建议郊区基站功率可以适当调大一点如45dBm左右,城区 35-43dBm,奇数有 基站功率一般最多为43dBm。 备注:在可以保证覆盖的情况下,应尽量降低BSPWRB和BSPWRT,这样做,不但可以减少干扰,而且可以延长设备的使用期,并增强设备的工作稳定性,减低掉话率 0-150dBm 0-150dBm 0-80dBm 该参数一般的设置建议为33dBm(对 应GSM900移动台)和26dBm(对应 GSM1800移动台)。在实际应用 中,设定该参数后,可以通过实验 方式,即在小区边缘做拨打试验, 在不同的参数设置下测试移动台的 接入成功率和接入时间以决定提高 或降低该参数的数值。 GSM900:13~ 43,步长为2dB GSM1800:4~ 30,步长为2dB 控制信道最大功率电平是关系移动台接入成功率和邻信道干扰的重要参数,可以由网络操作员设定。该参数设置过大(指移动台输出的功率)时,在基站附近的移动台会对本小区造成较大的邻信道干扰,影响小区中 其它移动台的接入和通信质量;反之,若该参数设置过小(指移动台输出的功率)则使在小区边缘的移动台接入成功率降低。 控制信道功率电平的设置原则为:在确保小区边缘处移动台有一定的接入成功率的前提下,尽可能减小移动台的接入电平。显然,小区覆盖面积越大,要求移动台输出的功率电平越大。
CELLQ CELLR CRH CRO 相邻小区名 空闲模式小区重选滞后量 C2-准则小区重选 偏移量
RLLUP RLNRI RLSSC Neighbour Ralation Initiate System SACCH Change 0 不建议超过30DB,一般区域CRO设为 0,PT设为31,业务量较大时PT设为 31,CRO适当调整;双频网等,优选小区 设为20~30DB,其它小区设为4~10DB
LTE网络无线参数及KPI指标优化(详)
一、LTE小区选择及相关参数1.1 小区选择S准那么UE进行小区选择时,需要判断小区是否满足小区选择规那么。
小区选择规那么的根底是EUTRAN小区参考信号的接收功率测量值,即:RSRP。
驻留小区的条件要求符合小区选择S准那么:Srxlev>0。
Srxlev= Qrxlevmeas-〔Qrxlevmin+Qrxlevminoffset〕-Pcompensation;Pcompensation=max(PMax-UE Maximum Outpower,0)各参数含义如下:1、Srxlev:小区选择S值,单位dB;2、Qrxlevmeas:测量小区的RSRP值,单位dBm;3、Qrxlevmin:小区最小接收电平,单位dBm,目前集团规定为:-128;〔该参数可影响用户接入〕4、Qrxlevminoffset:减少PLMN之间的乒乓选择,此参数只在UE驻留在访问PLMN (Visited PLMN)时, 周期性地搜寻更高级别的PLMN时使用.;5、PMax:UE在小区中允许的最大上行发送功率;6、UE Maximum Outpower:UE能力决定的最大上行发送功率1.2 小区选择相关参数小区选择相关参数如下:二、LTE小区重选及相关参数2.1 小区重选相关知识2.1.1 小区重选知识小区重选指〔cell reselection〕指UE在空闲模式下通过监测邻区和当前小区的信号质量以选择一个最好的小区提供效劳信号的过程。
当邻区的信号质量及电平满足S准那么且满足一定重选判决准那么时,终端将介入该小区驻留。
UE驻留到适宜的小区停留1S后,就可以进行小区重选的过程。
小区重选过程包括测量和重选两局部过程,终端根据网络配置的相关参数,在满足条件时发起相应的流程。
2.1.2 重选的分类1〕系统内小区测量及重选;●同频小区测量、重选●异频小区测量、重选2〕系统间小区测量及重选;2.1.3 重选优先级概念1〕与2/3G网络不同,LTE系统中引入了重选优先级的概念●在LTE系统,网络可配置不同频点或频率组的优先级,通过播送在系统消息中告诉UE,对应参数为cellreselectionPriority,取值为〔0….7〕;〔注:0优先级为最低,现网同频设置为5;异频设置宏站加室分底层&高层设置为6,室分高层加宏站为4,室分底层加宏站为5.〕●优先级配置单位是频点,因此在相同载频的不同小区具有相同的优先级;●通过配置各频点的优先级,网络便能方便地引导终端重选到高优先级的小区驻留到达均衡网络负荷、提升资源利用率,保障UE信号质量等作用;2〕重选优先级也可以通过RRCConnectionRelease消息告诉UE,此时UE忽略播送消息中的优先级信息,以该信息为准;网络主动引导UE进行系统间小区重选,完成CS域语音呼叫等;2.1.4 重选系统消息LTE中,SIB3-SIB8全部为重选相关信息,具体如下:2.2 重选测量启动条件1〕UE成功驻留后,将持续进行本小区测量。
网络优化基础知识培训ppt课件
路测 系统组成
SAGEM OT75/OT76
SAGEM OT75/OT76
GPS导 航定位系
统
GSM900/DCS1800 BTS
Scaner GSM900/1800
IBM/THANKP AD便携式计算
机
专业测试手机 + 卫星定位器 + 笔记本电脑
路测数据采集
根据话务统计分析的结果和用户投诉情 况进行路测,并将测试手机的测试数据记录 存入电脑。 路测采集的数据包括:测试路 线区域频点的场强分布、接收信号电平和质 量、Layer3消息的解码数据、6个邻小区状 况、覆盖、掉话和切换情况、测试路线的地 理位置信息等。
频率规划调整
覆盖调整 增加或降低发信功率 改变天线类型、增益、架高下倾角 频率复用
网络优化报告内容
测试内容: BSC\MSC\ANT的测试统计结果报告 问题路段的地理化误码率和场强地图 检查小区规划参数的正确性阻挡强 问题小区的故障来源和分析过程 优化建议和调整方案 再次提供BSC\MSC\ANT的测试统计结果报
网络的评估考核
通话质量的考核 接通率,拥塞率,掉话率的改善 网络覆盖情况考核 话务量的考核 单位频点与设备所服务的用户数的提高
优化手段
参数优化 根据网络的结构和用户的行为对诸如越区切换和 功率控制参数进行调整以改善网络性能。
频率优化 根据路测和话务统计分析,通过改频、调整天线 倾角和俯仰角、小区相邻关系调整等方法,改善覆盖,减少 网内外的频率干扰。
系统调整
系统调整的过程包括制定调整方案和实 施优化方案。其主要内容包含: ▪提高交换机的处理效率,增加容量 ▪调整信道数 ▪变更基站位置 ▪变更天线位置和高度,改变下倾角 ▪改变切换参数,频率,小区参数 ▪对盲区进行覆盖 ▪对高话务量地区增加信道或设置微蜂窝等等。
TDD_LTE网络优化常用参数介绍(华为设备)
A4事件
• A4事件用于触发异频切换。当邻区质量高于指定门限时UE上报A4事件。eNB收到A4后进行切 换判决,判决公式如下:
• 触发条件:Mn + Ofn + Ocn – Hys > Thresh • 取消条件:Mn + Ofn + Ocn + Hys < Thresh
信道配置&链路控制: 介绍影响DRX控制 算法、上行定时控制 算法、上行无线链路 检测算法的相关参 数
数传算法:介绍影响 AQM算法、TCP Agent算法的相关 参数
传输TRM算法: 介绍 影响LMPT接口板下 行流控算法、TRM算 法的相关参数
SON:介绍影响ANR 算法、ICIC自组织模 式选择算法、MRO 算法的相关参数
• Ms:服务小区的测量结果;Ofs:服务小区的特定频率偏置,默认为0,同频切换可不考虑
• Ocs:服务小区的特定小区偏置,通常为0
• Hys:A3事件迟滞,在测量控制中下发(hysteresis)。由MOD INTRARATHOQCI中的同频切 换幅度迟滞(IntraFreqHoA3Hyst)决定。
• Off:A3事件偏置,在测量控制中下发(a3-Offset)。由MOD INTRARATHOQCI中的同频切 换偏置(IntraFreqHoA3Offset)确定。由判决条件可以知,该值用于控制切换的难易程度。当 前版本实际取值范围是-15db~15db,取正值会增加A3事件的触发难度而延迟切换,延迟切换 容易引起掉话;反之会降低事件触发难度而导致过早切换,如果偏置设的过小容易引起乒乓
第1章 参数综述 第2章 切换参数 第3章 下行功率参数 第4章 传输模式修改 第5章 PDCCH符号数修改
LTE网络优化相关参数
LTE网络优化相关参数LTE(Long-Term Evolution)是一种高速无线通信技术,是4G通信标准的一种。
为了让LTE网络能够实现更高的速率和更好的覆盖范围,网络优化是非常重要的。
网络优化包括参数优化、邻区优化和干扰优化等。
参数优化是LTE网络优化的基础,通过对各种参数的调整,可以提高网络的性能并减少干扰。
下面将介绍一些与LTE网络优化相关的参数:1. RSRP(Reference Signal Received Power):RSRP用于表示UE (User Equipment)接收到的参考信号的功率水平,是衡量网络覆盖范围的重要参数。
通过调整天线方向和天线高度,可以优化RSRP值。
2. RSRQ(Reference Signal Received Quality):RSRQ用于表示参考信号接收质量,是衡量网络质量的参数。
通过调整天线方向和天线高度,可以优化RSRQ值。
3. SINR(Signal-to-Interference-plus-Noise Ratio):SINR用于表示信号与干扰加噪声之比,是衡量网络质量的重要参数。
通过减小干扰源或增加信号源功率,可以提高SINR值。
4. PCI(Physical Cell Identifier):PCI用于表示LTE小区的唯一标识符,是用来进行小区切换和干扰管理的重要参数。
通过调整PCI,可以减小小区间的干扰,提高网络性能。
5. TAC(Tracking Area Code):TAC用于表示一个跟踪区域,是UE 在移动过程中的定位信息。
通过合理划分和优化TAC,可以减小信令开销和干扰。
6. RACH(Random Access Channel)参数:RACH参数用于表示随机接入信道的设置,包括前导码配置和接入响应窗口等。
通过调整RACH参数,可以减少接入时延和冲突,提高网络接入效率。
7. QCI(QoS Class Identifier):QCI用于表示业务质量等级,是衡量网络性能的重要指标。
LTE网络优化相关参数
dB、dBm
无线信号的相对强度用分贝( dB )来衡量
dB=10×lg(比值),即取以10为底的对数的结果
无线信号的绝对强度常用dBm表示
•dBm= 10lg(P/1mW) •例如:1W等于30dBm 速算方法: 1)+3dB,功率乘2倍;-3dB,功率乘1/2 举例:33dBm=30dBm+3dB=1W×2=2W
LTE覆盖和信号质量基本测量
RSRP(Reference Signal Receiving Power)参考信号接收功率(强度),参考信 号平均功率,接收电平
定义:频率带宽上承载参考信号的资源单元(RE)上的 接收功率的线性平均值。主要用来衡量下行参考信号( CRS)的发射功率,是基站的发射功率,用来衡量下行 的覆盖,一定程度上可反映UE与ENB的距离。 常见范 围:-140dbm~-50dbm
27dBm=30dBm-3dB=1W×1/2=0.5W 2)+10dB,功率乘10倍;-10dB,功率乘1/10 举例:40dBm=30dBm+10dB=1W×10=10W
20dBm=30dBm-10dB=1W×0.1=0.1W
BLER(Block Error Ratio) 定义: 有差错的块与数字电路接收的总块数之比。误块率(BLER )用于无线通信系统的性能测试。还有类似参数如:误比特率 (BER),误帧率(FER)等。以上均为统计值,即是在相对长的一段时 间内的统计平均值。BLER<5%
-85~-95 -95~5 -105~-115
<-115
SINR(单位dB) >25
16~24 11~15 3~10
<3
LTE覆盖和信号质量基本测量
SINR (Signal to Interference plus Noise Ratio)信干噪比
移动通信网络优化的关键参数指标释义
优化关键参数指标释义目录1 功率过载参数 (5)1.1 参数释义 (5)2 切换参数 (7)2.1 软切换过程 (7)2.2 切换参数释义 (8)3 控制信道参数 (9)3.1 参数释义 (9)4 接入参数 (10)4.1 参数释义 (10)5 PN复用、PN混淆 (11)5.1 概念释义 (11)6 搜索窗 (12)6.1 参数释义 (12)7 小区半径 (14)7.1 概念释义 (14)8 覆盖指标 (15)8.1 覆盖关键指标 (15)8.2 覆盖率 (16)8.3 影响覆盖的因素 (16)8.4 覆盖几个指标的分析 (16)8.5 改善覆盖质量的常用优化措施 (17)9 关键性能指标 (18)9.1 呼叫建立成功率 (18)9.2 业务信道掉话率 (18)9.3 软切换成功率 (18)9.4 软切换比例 (18)9.5 话务掉话比 (19)9.6 坏小区 (19)9.7 系统接通率 (19)9.8 寻呼成功率 (19)10 邻区优化 (20)10.1 邻区列表 (20)10.2 邻接小区 (20)10.3 邻区列表配置原则 (20)11 双载频换频切换 (22)11.1 数据库方式实现换频切换 (22)11.2 伪导频方式实现换频切换 (23)11.3 两种换频切换方式比较 (26)12 常见网优问题分析 (27)12.1 业务信道负载率 (27)12.2 越区覆盖问题 (27)12.3 搜索窗设置问题 (27)12.4 ECAM发送消息参数 (28)12.5 影响话务掉话比指标的问题 (30)12.6 掉话相关定时器 (30)12.7 基站资源拥塞问题 (31)12.8 BSC资源拥塞问题 (31)13 常见问题原因分析 (32)13.1 语音呼叫失败原因 (32)13.2 语音异常释放原因 (32)13.3 语音切换失败原因 (33)参考文章 (34)1序言本文针对自己初步的网优工作积累和网优知识学习汇总介绍了网络优化过程中经常涉及到的关键参数和指标,以及常见网优问题分析和问题产生原因分析,希望对网优还不太精通的同事有所帮助,可能难免有些疏漏之处,请批评指正!2功率过载参数前向功率过载控制采用了3级控制,即T_SETUP(限制呼叫建立门限,缺省设为90%)、T_HO(限制软切换加门限,缺省设为95%)、T_PWRUP(限制现有呼叫功率增长门限,缺省设为100%)。
LTE学习总结—常用参数详解
LTE学习总结—常用参数详解LTE(Long Term Evolution)是一种4G移动通信技术,被广泛应用于现代无线通信网络。
在学习LTE的过程中,了解和熟悉LTE的常用参数对于理解和优化无线网络至关重要。
本文将详细介绍LTE的常用参数,并对其进行解释和分析。
1. PCI(Physical Cell Identity)PCI是指物理小区标识,用于识别无线网络中的不同小区。
每个小区都有一个唯一的PCI,用于区分相邻小区。
PCI的范围是0-503,其中从0-100是专用PCI,101-503用于共享PCI。
选择PCI时,需要考虑到相邻小区之间的干扰和覆盖范围等因素。
2. RSRP(Reference Signal Received Power)RSRP是指参考信号接收功率,表示用户设备接收到的小区的信号功率。
RSRP是衡量信号质量的重要参数之一,数值越大,信号质量越好。
在网络规划和优化中,需要确保RSRP在覆盖范围内保持稳定。
3. RSRQ(Reference Signal Received Quality)RSRQ是指参考信号接收质量,表示信号强度与干扰之间的比率。
RSRQ的数值范围是-3dB到-30dB,数值越大,信号质量越好。
RSRQ常用于评估小区边缘用户的服务质量。
4. SINR(Signal to Interference plus Noise Ratio)SINR是指信号与干扰加噪声比,用于衡量信号质量。
SINR数值大于0dB表示信号质量良好。
SINR常用于无线资源分配和干扰协调。
5. CINR(Carrier to Interference plus Noise Ratio)CINR是指载波与干扰加噪声比,与SINR类似,用于衡量信号质量。
CINR的数值范围是合法的QPSK值和AMC等级的范围。
6. MCS(Modulation and Coding Scheme)MCS是指调制和编码方案,用于确定无线信道上的数据速率。
网络优化参数
RSRP参考信号接收功率RSRP是衡量系统无线网络覆盖率的重要指标,它表示接受信号强度的绝对值,在一定程度上可以反映移动台和基站的距离,LTE系统广播小区参考信号的发射功率,终端根据RSRP 可以计算出传播损耗,从而判断与小区的距离,因此这个值可以用来衡量小区覆盖范围大小。
3GPP协议中规定终端上报测量RSRP的范围是[-140dBm,-44dBm],路测时,在密集城区、一般城区和重点交通干线上,一般要求RSRP大于-100 dBm,否则容易出现掉话、弱覆盖等问题。
RSSI接收信号强度指示RSSI是无线发送层的可选部分,用来判定链接质量以及是否要增大广播发送强度。
3GPP协议中规定终端上报测量RSSI的正常范围是[-90dBm,-25dBm],超过这个范围,则可视为RSSI异常。
RSSI是否正常,对通话质量、切换、掉话、拥塞、网络覆盖、容量等均有显著影响。
RSSI过低(<-90dBm)说明手机收到的信号太弱,可能导致解调失败;RSSI过高(>25dBm)说明手机收到的信号太强,相互之间的干扰太大,也影响信号解调。
RSRQ参考信号接收质量RSRQ决定系统的实际覆盖情况,RSRQ定义为RSRP和RSSI的比值,由于因为两者测量所基于的带宽可能不同,会用一个系数来调整,计算公式如下:其中N是RSSI测量带宽上承载的RB数,3GPP协议规定,终端上报测量RSRQ的范围是[-19.5dBm,-3dBm],RSRQ值随着网络负荷和干扰发生变化,网络负荷越大,干扰越大,RSRQ测量值越小。
SINR信干噪比MCS调制编码方式EARFCN:TD-LTE的载波频点号,FDD的EARFCN从0~35999,TDD的EARFCN从36000~65531。
PCI就是物理小区ID,LTE中对于信道的加扰时的扰码很多情况下是和PCI有关的,所以一旦PCI规划不好,则相邻小区的用户可能相互之间产生干扰,说白了就是影响数据的正确译码PCI跟参考信号RS的发射模式直接相关,2天线情况下,相邻小区PCI模3相同的话,RS信号会存在同频干扰,所以PCI不仅要避免混淆,还要避免模3冲突,规划好不容易。
LTE网络优化 无线参数说明
LTE无线参数总结转载▼分类:LTE学习标签:lte1. 本小区无线参数CC:表示主载波,SCC:表示辅载波,目前LTE(R9版本)都是采用单载波的,到4G(R10版本)有多载波联合技术,就有表示辅载波。
PCI:物理小区标识,范围(0-503)共计504个,RSRP:参考信号接收电平,基站的发射功率;RSRQ:参考信号接收质量,是RSRP和RSSI的比值,当然因为两者测量所基于的带宽可能不同,会用一个系数来调整,也就是RSRQ = N*RSRP/RSSI。
RSSI:接收信号强度指示;UE的发射功率:PUSCH(物理上行共享信道)、PUCCH(物理上行控制信道)、RACH( 随机接入信道)SRS:探测参考信号SINR:信噪比,是接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值;可以这样理解为GSM的 C/I(载干比),CDMA的Ec/IoTransmission mode:传送模式,一共有8种,TM1表示单天线传送数据,TM2表示传输分集(2个天线传送相同的数据,在无线环境差(RSRP和SINR差),情况下,适合在边缘地带),TM3表示开环空间复用(2个天线传送不同的数据,速率可以提升1倍),TM4表示闭环空间复用(),TM5表示多用户mimo,TM6表示rank=1的闭环预编码,TM7表示单流BF,TM8表示:双流BFRank indicator:表示层的意思,rank1表示单层,速率较低,rank2表示2层,速率高PDSCH RB number:表示用户使用的该用户使用的RB数。
这个值看出,该扇区下大概有几个用户。
(20M带宽对应100个RB ,15M对应75个RB,10M对应50个RB,5M 对应25个RB,3M对应15个RB,1.4M对应6个RB),多用户可以造成速率低原因之一。
2. 服务与邻扇区参数介绍EARFCN:表示下行的中心频点服务扇区与邻扇区的PIC不能mod3值相同,否则有很强的干扰。
网络优化常用参数介绍
Page 6
上行功率控制相关参数
DPCCH初始发射功率缺省常数 初始发射功率缺省常数DefaultConstantValue 初始发射功率缺省常数 参数取值范围:-35~-10dB ,缺省值为-27dB。 对网络性能影响: 该参数如果设置过小,可能会使得初始建链时在小区边缘上行同步失败,从而 影响上行覆盖。如果设置过大,会对上行接收造成瞬时干扰,影响上行接收性 能。 相关命令: 在RNC LMT中通过SET FRC命令进行设置,通过LST FRC进行查询。
Page 10
下行功率控制相关参数
无线链路最小下行发射功率RLMinDLPwr 无线链路最小下行发射功率 表明下行DPDCH符号的最小发射功率,使用与导频CPICH的相对值来表示。 参数取值范围:-350~150,步长0.1dB。 对网络性能影响: 这个参数的取值随着具体业务变化,并且与参数“Maxmum DL Tx Power”的 取值和功率的动态范围有关,它们之间的关系如下式:Minimum DL Tx Power=Maximum DL Tx Power - 功控动态调整范围。其中,功控动态调整范 围可以取值为15dB。 该参数设置过低有可能造成因为SIR估计错误等原因而引起发射功率过低, 设置过高可能影响下行功控的正常进行。 相关命令: 在RNC LMT中通过ADD CELLRLPWR设置,通过LST CELLRLPWR 查询, 通过MOD CELLRLPWR进行修改。
Page 8
第1章 功率控制相关参数
1.1 上行功率控制相关参数 1.2 下行功率控制相关参数
Page 9
下行功率控制相关参数
无线链路最大下行发射功率RLMaxDLPwr 无线链路最大下行发射功率 表明下行DPDCH符号的最大发射功率,使用与导频CPICH的相对值来表示。 参数取值范围:-350~150,步长0.1dB。 对网络性能影响: 这个参数的取值随着具体业务变化,该参数设置过高有可能造成下行干扰, 设置过低可能影响下行功控的正常进行。 相关命令: 在RNC LMT中通过ADD CELLRLPWR设置,通过LST CELLRLPWR 查询, 通过MOD CELLRLPWR进行修改。
网络优化参数的调整
网络优化参数的调整
✧天线参数
天线方向角:结合实际地理情况,解决小区合理覆盖;减小小区间的干扰;
天线下倾角:小区的合理覆盖范围的控制;减小小区间的干扰;
✧接入参数
✧切换参数
✧系统窗口参数
✧功率参数
基站发射功率:保证基站总发射功率可达到20W;
各信道数字增益:调整这些值以得到小区的合理覆盖;
✧功率控制参数
✧数据相关参数
提高数据业务的上网数率;
✧邻区表的调整
按照切换比率排列邻区关系顺序;删除不必要的邻区关系,增加缺漏的邻区关系;检查邻区关系表中可能出现的错误。
✧系统出错信息检查
检查系统出错log中记录的错误记录,修改相关的参数;
✧系统告警信息检查
根据系统记录的告警信息,排除对网络质量有影响的告警。
爱立信LTE常用参数介绍
爱立信LTE常用参数介绍爱立信(Ericsson)是全球领先的通信设备和解决方案供应商之一,其LTE(Long Term Evolution)技术被广泛应用于4G网络。
在LTE网络中,有许多常用参数需要进行配置和优化,以确保网络的稳定性和性能。
本文将介绍一些常见的爱立信LTE参数。
1. LTE带宽(LTE Bandwidth)LTE带宽是指LTE网络中可用的频谱带宽。
常见的LTE带宽包括1.4MHz、3MHz、5MHz、10MHz、15MHz和20MHz等。
带宽的选择应根据实际需求和可用频谱资源进行合理配置。
2. 上下行链路调度比(Link Scheduler On/Off)上下行链路调度比是指上、下行链路资源分配的比例。
该参数可以根据网络负载和服务质量要求进行优化调整。
例如,在高负载情况下,可以增加下行链路资源以提供更好的用户体验。
3. PCIs(Physical Cell IDs)物理小区标识符(Physical Cell ID)用于标识不同的物理小区。
在LTE网络中,物理小区标识符的范围是0-503、合理的物理小区标识符分配可以避免干扰和重叠,提高网络覆盖和容量。
4. 小区重选参数(Cell Reselection Parameters)小区重选参数用于控制UE(User Equipment)在网络中进行重选的策略。
例如,小区重选门限(Cell Reselection Threshold)用于判断UE是否需要重新选择更适合的小区。
调整小区重选参数可以优化用户在不同区域之间的切换性能。
5. RSRP(Reference Signal Received Power)参考信号接收功率(Reference Signal Received Power)是衡量UE与基站之间信号强度的指标。
RSRP值越大,信号质量越好。
根据不同的场景需求,可以通过调整功率设置参数来优化RSRP值。
6. RSRQ(Reference Signal Received Quality)参考信号接收质量(Reference Signal Received Quality)用于衡量UE接收到的参考信号的质量。
LTE参数大全范文
LTE参数大全范文LTE(Long Term Evolution,即长期演进)是一种无线通信技术,是目前最常用的4G网络技术之一、LTE具有高速数据传输、低延迟和高网络容量等优点,为提供更好的网络性能和用户体验而不断优化参数配置。
下面是关于LTE参数的详细介绍。
1.频谱分配:LTE的频谱分为不同带宽,包括1.4MHz、3MHz、5MHz、10MHz、15MHz 和20MHz。
较宽带宽能提供更高的数据传输速率,但也需要更多的无线频谱资源。
2.帧结构:LTE使用固定的时隙(slot)和子载波(subcarrier)来传输数据。
每个时隙包含7个符号(symbol),每个符号持续0.5ms。
每个符号又包含12个子载波。
帧结构通常为10ms,是由10个子帧(subframe)组成的。
3.调制方式:LTE采用多种调制方式来传输数据,包括QPSK、16QAM和64QAM。
这些调制方式决定了每个符号所能传输的比特数,从而影响传输速率和可靠性。
4.上行链路调度:LTE使用动态资源分配和调度(Dynamic Resource Allocation and Scheduling)来管理上行链路的资源。
调度器根据用户负载、信道条件和QoS(Quality of Service,服务质量)要求等因素来分配上行资源,以实现较高的系统容量和较低的延迟。
5.下行链路调度:LTE采用基于预测的调度算法来管理下行链路的资源。
调度器根据用户位置、速度和信道条件等信息来预测每个用户的信号质量,并优化资源分配以实现更好的用户体验。
6. 反向链路参考信号(Pilot Signal):LTE中使用的反向链路参考信号是用于估计信道状态和距离的基准信号。
基站使用这些信号来估计每个用户的信道质量,并据此进行链路调度和功率控制。
7.多天线技术:LTE支持多天线技术,包括MIMO(Multiple Input Multiple Output)、Beamforming和空分复用(Spatial Multiplexing)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于重选优先级等于或者低于服务小区的载频:
同频: 当服务小区Srxlev > Sintrasearch时,UE自行决定是否进行同频测量 当服务小区Srxlev <= Sintrasearch或系统消息中Sintrasearch为空时 ,UE必须进行同频测量
异频:
当服务小区Srxlev > Snonintrasearch时,UE自行决定是否进行异频测量 当服务小区Srxlev <= Snonintrasearch或系统消息中Snonintrasearch为空时 ,UE必须进行异频测量
5 6/27/2015
For internal use Document ID / v. 0.1 / Life cycle status / Dept. / Author
©2013 Nokia Solutions and Networks. All rights reserved.
重选概述
重选相关的基础知识
For internal use Document ID / v. 0.1 / Life cycle status / Dept. / Author
3 6/27/2015
©2013 Nokia Solutions and Networks. All rights reserved.
小区选择
2.小区选择准则(S准则)
邻小区Rn大于服务小区Rs,并持续Treselection,同时 UE已在当前服务小区驻留超过1s以上,则触发向邻小区的重选流程
单位
dBm dBm dB
参数名
Qmeas,s Qmeas,t QHyst
意义
UE测量到的服务小区RSRP实际值 UE测量到的邻小区RSRP实际值 服务小区的重选迟滞,常用值:2 可使服务小区的信号强度被高估,延迟小区重选 被测邻小区的偏移值:包括不同小区间的偏移Qoffsets’t和不同频率 之间的偏移Qoffsetfrequency,常用值:0 可使相邻小区的信号或质量被低估,延迟小区重选;还可根据不同小区、载频 设置不同偏置,影响排队结果,以控制重选的方向 该参数指示了同优先级小区重选的定时器时长,用于避免乒乓效应
消息块
SIB3 SIB5 SIB6 SIB7
7 6/27/2015
对应载频
当前载频,即服务小区载频 某个E-UTRA异频载频 某个UTRA-TDD载频 某个UTRA-FDD载频 某个GERAN载频
©2013 Nokia Solutions and Networks. All rights reserved.
小区选择相关的基础知识
小区选择过程中,UE需要对候选小区进行测量,以便进行信道质量评估,判断其是否符合驻留的标准。小区选
择的准则被称为S准则,当某个小区的信道质量满足S准则之后,就可以被选择为驻留小区。S准则的具体内容如下:
Srxlev>0
其中, Srxlev = Qrxlevmeas-(Qrxlevmin+ Qrxlevminoffset)- Pcompensation
小区选择
小区选择相关的基础知识
小区选择参数相关含义
Srxlev:小区选择S值,单位dB
Qrxlevmeas:测量小区的RSRP值,单位dBm Qrxlevmin:小区中RSRP的最小接收强度要求,单位dBm,从广播消息中获得 Qrxlevminoffset: Qrxlevmin的偏置值,当驻留在VPLMN上的UE搜索高优先级的PLMN的时候,为了防止 乒乓效应,可以设定一定的偏移量 Pmax:UE在小区中允许的最大上行发射功率,单位dBm UE Maximum Output Power:由UE能力决定的最大上行发送功率,单位dBm
©2013 Nokia Solutions and Networks. All rights reserved.
Threshserving,low Threshx,high Threshx,low
参数名 单位 dB dB dB S 意义 小区满足选择或重选条件的最小接收功率级别值 小区重选至高优先级的重选判决门限,越大重选至高优先级小区越容易 一般设置为高于Threshserving,low, 重选至低优先级小区的重选判决门限,越小重选至低优先级小区约困难 一般设置为高于Threshserving,high 该参数指示了优先级不同的LTE小区重选的定时器时长,用于避免乒乓效应
系统内小区测量及重选
同频小区测量、重选 异频小区测量、重选
系统间小区测量及重选
LTE中,SIB3-SIB8全部为重选相关信息
6 6/27/2015
For internal use Document ID / v. 0.1 / Life cycle status / Dept. / Author
重选判决准则
重选相关的基础知识
同频小区及同优先级异频小区重选判决 服务小区Cell Rank(R值) Rs = Qmeas,s + Qhyst R准则 候选小区Cell Rank(R值) Rt = Qmeas,t - Qoffset
根据R值计算结果,对于重选优先级等于当前服务载频的邻小区,若:
通过配置各频点的优先级,网络能更方便地引导终端重选到高优先级的小区驻留达到均衡网络负荷、提升资源
利用率,保障UE信号质量等作用
重选优先级也可以通过RRCConnectionRelease消息告诉UE,此时UE忽略广播消息中的优先级信息,以该信息为准
网络能主动引导UE进行系统间小区重选,完成CS域话音呼叫等
选择的信道质量要求,可以选择其作为驻留小区。如果该小区的系统信息中允许驻留,那么UE将选择在此
小区上进行驻留,进入空闲状态。
4 6/27/2015
For internal use Document ID / v. 0.1 / Life cycle status / Dept. / Author
©2013 Nokia Solutions and Networks. All rights reserved.
LTE网络优化常用参数介绍
6/27/2015
For internal use Document ID / v. 0.1 / Life cycle status / Dept. / Author
©2013 Nokia Solutions and Networks. All rights reserved.
©2013 Nokia Solutions and Networks. All rights reserved.
重选优先级概念
重选相关的基础知识
与2/3G网络不同,LTE系统中引入了重选优先级的概念
在LTE系统,网络可配置不同频点或频率组的优先级,通过广播在系统消息中告诉UE,对应参数为 cellReselectionPriority,取值为(0….7) 优先级配置单位是频点,因此在相同载频的不同小区具有相同的优先级
小区重选(cell reselection)指UE在空闲模式下通过监测邻区和当前小区的信号质量以选择一个最好的小区提供
服务信号的过程。当邻区的信号质量及电平满足S准则且满足一定重选判决准则时,终端将接入该小区驻留。
UE驻留到合适的LTE小区停留1s后,就可以进行小区重选的过程。 小区重选过程包括测量和重选两部分过程,终端根据网络配置的相关参数,在满足条件时发起相应的流程。 重选的分类如下:
所在域
cellReselectionServingFreqinfo interFreqCarrierFreqLIst carrierFreqListUTRA-TDD carrierFreqListUTRA-FDD moninfo
For internal use parametersHRPD..physCellIdList Document ID / v. 0.1 / Life cycle status / Dept. / Author
SIB8
某个0载频
重选测量启动条件
重选相关的基础知识
UE成功驻留后,将持续进行本小区测量。RRC层根据RSRP测量结果计算Srxlev,并将其与Sintrasearch和
Snonintrasearch比较,作为是否启动邻区测量的判决条件。
对于重选优先级高于服务小区的载频,UE始终对其测量。
Pcompensation = max(PMax –UE Maximum Output Power,0) UE在进行小区选择时,通过测量得到小区的Qrxlevmeas值,通过小区的系统消息及自身能力等级获得S 准则公式中的其他参数,计算得到Srxlev ,然后与0进行比较,如果Srxlev >0,则UE认为该小区满足小区
重选判决准则 优先级不同的异频小区重选判决
重选相关的基础知识
低先级小区到高优先级小区重选判决准则 异系统小区间的重选和系统内 当同时满足以下条件,UE重选至高优先级的异频小区 异频小区间重选原理基本相同 UE在当前小区驻留超过1s 高优先级邻区的Snonservingcell > Threshx,high 在一段时间(Treselection-EUTRA)内, Snonservingcell 一直好于该阈值 (Threshx,high) 高优先级小区到低优先级小区重选判决准则 当同时满足以下条件,UE重选至低优先级的异频小区 UE驻留在当前小区超过1s 高优先级和同优先级频率层上没有其它合适的小区 Sservingcell < Threshserving,low 低优先级邻区的Snonservingcell,x > Threshx,low 在一段时间(Treselection-EUTRA)内, Snonservingcell,x 一直好于该阈值(Threshx,low)