2011年小升初数学综合模拟试卷(三)及答案
福州3新重点小学小升初数学模拟试题(含答案)
小升初考试数学模拟试卷数 学班级____________ 姓名____________ 得分:____________一、对号入座填一填(将答案写在对应的横线上,每空1分,共12分)1. 10米比8米多________%.2. 一块三角形菜地,边长的比是3:4:5,周长为84米,其中最短的边长________米.3. 一件上衣以480元的标价卖出后,刚好赚了20%,这件上衣的本钱是________元.4. 在1:20000的地图上量得甲、乙两地距离是36厘米,甲、乙两地的实际距离是________米.5. 景德镇市内电话的计费标准如下:小明给市内的爸爸打了9分40秒的电话,应付电话费________元.6. 小敏和小刚都是集邮爱好者,小敏和小刚现在两人邮票枚数的比是3:4,如果小刚给小敏9枚邮票,那么他们的邮票张数就相等,两人共有邮票________枚. 7. 一个三位数23□,当□中填________时,这个数既是偶数,同时又含有约数5. 8. 今年植树节,花园路小学种植了180棵树苗,其中15棵未成活,后来又补种了20棵,全部成活,今年花园路小学种植树苗的成活率是________.9. 一个盒子里有8个红球、4个黄球、3个白球,每个球除颜色不同外,其余的没有区别,李明同学现在从盒子里任意摸出一个球,他摸到白球的可能性是________.(此处必须填最简分数)10. 音乐课,聪聪坐在音乐教室的第4列第2行,对数对(4,2)表示,明明坐在聪聪正后方第一个位置上,明明的位置用数对表示是________.11. 甲、乙两人骑车同时分别从,A B 两地相对出发,甲每小时行16千米,乙每小时行14千米,两人在距中点2千米处相遇,则,A B 两地的距离是________千米.12. 甲、乙两个长方形相互重叠(如右图),阴影部分的面积占甲的面积的25 ,占乙的面积的37,甲、乙两个长方形面积的比是________.二、择优录取选一选(每题只有一个正确答案,将答案写在括号内,每题1分,共6分)13. 一个圆的周长增加30%,那么这个圆的面积将增加()%A. 69B. 90C. 60D. 3014. 下面能较为准确地估算12.98×7.09的积的算式是()A. 12×7B. 13×7C. 12×8D. 13×815. 美术组为艺术节做准备工作,第一天工作15分钟,以后的五天中,后一天工作时间是前一天的2倍,第6天工作()小时.A. 1.5B. 3C. 4.8D. 816. 小张买了一张入场券,它的号码是四位数,其中个位数是质数,十位数是5的倍数,百位数是偶数,千位数是个位数的3倍,入场券的号码是().A. 9303B. 9402C. 9455D. 985317. 在学校领导下,同学们齐心协力,积极投入我市开展创建“全国文明城市”活动中,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面相对的面上标的字应是().A. 全B. 明C. 城D. 国18. 33路公交车在中学站时,车上乘客的17先下车后,又上了这时车上乘客的17,上车的人和下车的人比较().A. 上车的人多B. 下车的人多C. 一样多D. 无法确定三、神机妙算算一算(共28分)19. 解下列方程.(每题5分,共10分)(1)11:4:320x=(2)35(6)2x?+20. 用你喜欢的方法计算下列各题(每题6分,共18分)四、实验操作做一做(每题6分,共18分)21. 按下图方式摆放餐桌和椅子,请仔细观察并算一算,填一填.22. (1)以直线MN为对称轴作图形A的轴对称图形,得到图形B;(2)将图形B向右平移5格,得到图形C,请你分别画出B,C23. 如图中的三个圆的半径都是5厘米,三个圆两两相交于圆心,求阴影部分的面积.五、解决问题比一比(第24题6分,第25、26题7分,第27、28题8分,共36分)24. 某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元,运后结算时,共付运费4400元,托运损坏了多少箱玻璃?25. 把一根长2.4米的长方体木料锯成5段,表面积比原来增加了96平方厘米,这根木料原来的体积是多少立方厘米?26. 如图表示甲、乙、丙三个工人单独完成某项工作所需的天数,则(1)甲乙合作这项工程________天可完成.(2)甲单独做3天后,由丙接替,丙还要________天才能完成.(3)乙的工效比甲低________%.27. 有一列数,任何相邻的四个数之和等于25,已知第1个数是3,第6个数是6,第11个数是7,问:这列数中第2016个数是几?(请写出你的分析过程)28. 一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有两道红条,如图中阴影所示,红条宽都是2厘米,问:这条手帕白色部分的面积是多少?一、对号入座填一填1. 25 解析(10-8)÷×100%=25%2. 21 解析334845´++=21(米)3. 400 解析480÷(1+20%)=400(元)4. 7200 解析36×20000=720000(厘米)=7200(米)5. 0.9 解析(10-3)×0.1+0.2=0.9(元)6. 126 解析9×2÷4334-+=126(枚)7. 0 解析含约数5尾数只能为0或5,又是偶数所以填08. 92.5% 解析,(180-15+20)÷(180+20)×100%=92.5%9. 15解析,331843155==++10. (4,3)解析正后方表示同一列,第一个位置,2+1=311. 60 解析2×2÷(16-14)=2(小时)2×(16+14)=60(千米)12. 15:14 解析甲是阴影部分的52,乙是73,57:15:1423=二、择优录取选一选13. A 解析设周长为a,130%[()2ap2•π-()2ap2π] ÷()2ap2π=0.69=69%14. B 解析12.98≈13 7.09≈715. D 解析第6天工作,60×2×2×2=480(分钟)=8小时16. D17. C18. B 解析三、神机秒算算一算四、实验操作做一做21. 解1张:2+1×4;2张:2+2×4;3张:2+3×4;…;10张:2+10×4;n张:2+4n22. 解(1)以直线MN为对称轴作图形A的轴对称图形,得到图形B(下图)(2)将图形B向右平移5格,得到图形C(下图)答阴影部分的面积是39.25平方厘米五、解决问题比一比24. 解(20×25-4400)÷(100+20)=600÷120=5(箱)答托运中损坏了5箱玻璃25. 2.4米=240厘米,96÷8×240=12×240=2880(立方厘米)答这根木料原来的体积是2880立方厘米27. 解因为这串数中任何相邻的四个数之和都等于25,可得第1,2,3,4个数的和等于第2,3,4,5个数的和,所以第1个数与第5个数相同,进一步推得,第1,5,9,13…个数都相同;同理,可推得第2,6,10,14,…个数都相同,第3,7,11,15,…个数都相同,第4,8,12,16,…个数都相同,也就是说,这串数是按照每四个数为一个周期循环出现的,所以,第2个数等于第6个数,是6;第3个数等于第11个数,是7,前三个数依次是3,6,7,第四个数是25-(3+6+7)=9,即这串数是按照3,6,7,9的顺序循环出现;因2016÷4=504,所以第2016个数与第4个数相同,等于9答这串数中第2016个数是928. 解(18-2×2)×(18-2×2)=(18-4)×(18-4)=14×14=196(平方厘米)答这条手帕白色部分的面积是196平方厘米小升初数学综合模拟试卷一、填空题:1.8+88+888+8888+88888=______.2.如图,阴影部分S1的面积比阴影部分S2的面积大12平方厘米,且BD=4厘米,DC=1厘米,则线段AB=______厘米.3.一个人在河中游泳,逆流而上,在A处将帽子丢失,他向前游了15分后,才发现帽子丢了,立即返回去找,在离A处15千米的地方追到了帽子,则他返回来追帽子用了______分.4.乒乓球单打决赛在甲、乙、丙、丁四位选手中进行,赛前,有些人预测比赛结果,A说:甲第4;B说:乙不是第2,也不是第4;C说:丙的名次在乙的前面;D说:丁将得第1.比赛结果表明,四个人中只有一人预测错了.那么,甲、乙、丙、丁四位选手的名次分别为:_______.5.如图,正立方体边长为2,沿每边的中点将每个角都切下去,则所得到的几何体有______条棱.6.一本书,如果每天读50页,那么5天读不完,6天又有余;如果每天读70页,那么3天读不完,4天又有余;如果每天读n页,恰可用n天读完(n是自然数).这本书的页数是______.使每一横行,每一竖行,两对角线斜行中三个数的和都相等.8.有本数学书共有600页,则数码0在页码中出现的次数是______.9.张明骑自行车,速度为每小时14千米,王华骑摩托车,速度为每小时35千米,他们分别从A、B两点出发,并在A、B两地不断往返行驶,且两人第四次相遇(两人同时到达同一地点叫做相遇)与第五次相遇的地点恰好相距120千米,那么,A、B两地之间的距离是______千米.10.某次数学竞赛原定一等奖8人,二等奖16人,现在将一等奖中最后4人调整为二等奖,这样得二等奖的学生的平均分提高了1.2分,得一等奖的学生的平均分提高了4分,那么原来一等奖平均分比二等奖平均分多______分.二、解答题:1.学校要建一段围墙,由甲、乙、丙三个班完成,已知甲班单独干需要20小时完成,乙班单独干需要24小时完成,丙班单独干需要28小时完成,如果先由甲班工作1小时,然后由乙班接替甲班干1小时,再由丙班接替乙班干1小时,再由甲班接替丙班干1小时,……三个班如此交替着干,那么完成此任务共用了多少时间?2.如图甲、乙、丙三个皮带轮的半径比分别为:5∶3∶7,求它们的转数比.当甲轮转动7圈时,乙、丙两轮各转多少圈?3.甲、乙、丙三个小孩分别带了若干块糖,甲带的最多,乙带的较少,丙带的最少.后来进行了重新分配,第一次分配,甲分给乙、丙,各给乙、丙所有数少4块,结果乙有糖块最多;第二次分配,乙给甲、丙,各给甲、丙所有数少4块,结果丙有糖块最多;第三次分配,丙给甲、乙,各给甲、乙所有数少4块,经三次重新分配后,甲、乙、丙三个小孩各有糖块44块,问:最初甲、乙、丙三个小孩各带糖多少块?4.甲容器中有纯桔汁16升,乙容器中有水24升,问怎样能使甲容器中纯桔汁含量为60%,乙容器中纯桔汁含量为20%,甲、乙容器各有多少升?答案,仅供参考。
宁波5小升初数学综合测试卷及答案
答案,仅供参考。 一、填空题:
1.10 原式= [ 240- (0.125×76+ 0.125×24)×8] ÷14 = [ 240- 0.125×(76+ 24)×8] ÷14
= [ 240- 100]÷14 = 10 2.20 由于千位相加不向前进位,所以千位数字“我”只能是 1 或 2. 若“我”是 2,则千位上的“数”是 9,个位上的“学”是 4,并且个位相加向 十位进 1;从十位数字看,“爱”是 7,并且十位相加向百位进 1;再看百位,7+ 5= 12,加上进位 1 得 13,百位上的“学”得3 与“学”是 4 矛盾,所以“我”不是2. 若“我”是 1,则个位上的“学”是 3,并且个位相加向十位进 1;由于百位结 果是 3,必然百位相加向千位进 1,因此千位上的“数”是 9,这样十位上的“爱” 是 7,所以 1+ 3+ 9+ 7= 20. 3. 如图,连结 AC,因为 E、F 分别是 BC、DC 的中点,所以 BE= EC,DF= FC.由于 在△ADF 与△AFC 中,它们的底 DF= FC,高均为 AD,所以这两个三角形的面积相等; 同 理 , △ ABE 与 △ AEC 的 面 积 也 相 等 , 所 以
10.30 甲每分做 4 道题,做 1 道题用的时间: 1÷4=0.25(分) 甲算 20 道题用的时间: 0.25×20=5(分) 乙算 20 道题用的时间: 乙做完 100 道题的时间: 3.5×100÷20=17.5(分) 乙做完 100 道题时,甲做了: 17.5÷0.25=70(道) 甲还有 100-70=30 道题没做. 二、解答题: 1.标有数字 2 的对面是数字 5. 从图中可以看出标有数字 6 的对面不可能是数字 1、2、4、5,所以 标有数字 6 的对面应是数字 3,标有数字 1 的对面不可能是 2、3、5、6, 所以标有数字 1 的对面应是数字 4,故标有数字 2 的对面只能是 5. 2.每 500 克香蕉售价是 3.8 元. 2 千克香蕉价+1.5 千克芦柑价= 21. 5 元① 1.5 千克香蕉价+2 千克芦柑价=21.5-1.7=19.8(元) 将①+②得③ 3.5 千克香蕉价+3.5 千克芦柑价=41.3 元 1.5 千克香蕉价+1.5 千克芦柑价=41.3÷3.5×1.5=17.7 元得③
人教版数学小升初全真模拟试卷含答案
人教版数学小升初全真模拟试卷含答案一、选择题(8分)1.一袋糖平均分给5个人或8个人都正好分完,这袋糖最少有( )块。
A .20 B .40 C .60 D .802.小明在直线上表示出-4,-1,4,5这几个数,( )离1最近。
A .-4B .- 1C .4D .53.把一段圆柱形铁块切成最大的圆锥体,切剩下的部分重a 千克,这段铁块原来重( )千克。
A .2aB .3aC . aD . a4.下面说法中正确的有( )个。
(1)假分数的倒数一定都是真分数。
(2)在“1,-2.5,32,0,+4.8,-12,2016”这7个数中,正数有4个,正整数有2个,整数有3个。
(3)水果店有苹果、橘子和梨三种水果,已知苹果的质量比梨的6倍多6 kg,同时苹果的质量比橘 子的2倍少2 kg,则橘子的质量减少4 kg 后就正好是梨质量的3倍。
A .0B .1C .2D .35.下面四个圆柱中,表面积最小的是( )。
(π取3.14)A .底面半径2cm,高3cmB .底面直径4cm,高1cmC .底面半径3cm,高2cmD .底面直径1cm,高4cm6.一种袋装食品标准净重为200g,质监工作人员为了解该种食品每袋的净重与标准的误差,把食品净 重205g 记为+5g ,那么食品净重196g 就记为( )g 。
A .+196B .-196C .+4D .-47.六一儿童节,科学馆的门票打六折出售。
原价60元,折后(____)元。
A .36 B .40 C .24 D .108.如果4a=7b ,那么下面的等式成立的是( )。
(a 、b 均不等于0)A .a ∶7=4∶bB .a ∶4=b ∶7C .a ∶b=4∶7D .a ∶b=7∶4二、填空题(26分)9.一条裤子的原价是180元.现在打九折出售,现在的售价是(_____)元,比原来省了(____)元。
10.把7颗糖分给3个小朋友,不管怎么分,总有一个小朋友至少分到(_____)颗糖.11.某县前年秋粮产量为2.8万吨,去年比前年增产三成。
小学六年级小升初数学模拟综合试卷
小学六年级小升初数学模拟综合试卷一、选择题1.—幅地图的比例尺是1:12000000,那么在这幅地图上1厘米表示的实际距离是( )千米.A.12 B.120 C.1200 D.120002.上午7时我军监控到一架它国不明无人侦察机在东经161°,北纬37°,我侦察员用数对表示其位置是(161,37),到了上午8时,该架无人侦察机的位置是(178,16),此时它的位置处于()A.东经16°,北纬178°B.东纬178°,北经16°C.东经178°,北纬16°3.一块长方形绿地,长12 dm,宽是长的23,求这块长方形绿地的面积.正确的算式是( ).A.12×23B.12×(12×23)C.(12+23)×2 D.12×(1-23)4.一个三角形三个内角度数的比是5∶3∶2,这个三角形是()。
A.锐角三角形B.直角三角形C.钝角三角形5.如果a的310等于b的14(a、b都不等于0),那么比较a和b的大小,结果是()。
A.a>b B.b>a C.a=b D.无法确定6.右面三个图形中的阴影部分的面积相比().(每个正方形边长相等)A.图A中的阴影部分面积最大B.图B中的阴影部分面积最小C.三个图形中的阴影部分面积一样大7.下列陈述中,错误的是()。
A.直径是圆内最长的线段B.31名生日在7月的学生中一定有2人的生日是同一天C.同一钟表上时针与分针的速度比是1:128.把一个圆柱体的侧面展开,得到一个正方形,这个圆柱的底面半径是5厘米,高是()厘米。
A.5 B.10 C.15.7 D.31.49.两件进价一样的商品,一件降价10%后出售,另一件提价10%后出售,这两件商品卖出后结果是()A.赚了B.赔了C.不赚不赔10.下列说法中,正确的有()句.(1)钟面上,分针与时针转动的速度比是60︰1.(2)0既不是正数也不是负数.(3)将一张正方形纸连续对折2次,展开后其中一份是这张纸的.(4)一根圆木锯成5段要8分钟,照这样计算,如果锯成10段需要16分钟.A.1 B.2 C.3 D.4二、填空题11.海王星与太阳之间的平均距离大约是4504000000千米。
四川省绵阳市东辰国际学校小升初数学模拟试卷
四川省绵阳市东辰国际学校小升初数学模拟试卷四川省绵阳市东辰国际学校小升初数学模拟试卷一、选择题:(3×10=30分)1.(3分)学校毕业文艺汇演从2:45分开始,经过3小时35分结束,结束时是()2.(3分)a□bc是一个四位数,已知a b c=15,且a□bc是3的倍数,方框中可填的数有()个.3.(3分)两个质数的和是31,这两个质数中最大的是()4.(3分)一个长方体的侧面展开后是一个边长为12厘米的正方形,其中长比宽多2厘米,这个长方体的体积是()立方厘米.5.(3分)骰子是一个正方体,6个面上分别写着1、2、3、4、5、6这6个数字.小东和小辰玩掷骰子的游戏比赛,用了两个骰子,若骰子向上的两个面上数的和是7,则小东获胜;若两个骰子向上的两个面上数的和是8,小辰获胜.下面说法正确的是()6.(3分)一个包装盒,从里面量长30厘米,宽25厘米,体积约为12立方分米.艾东辰同学想用它来包装一件长28厘米,宽18厘米,高20厘米的玻璃器皿,能否包装的结果是()7.(3分)有一个班的同学去划船.他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人.问:这个班共有________同学?8.(3分)一个长方体长、宽、高分别是a,b,c,如果宽增加2,它的体积增加()9.(3分)a,b,c,d四个数的平均数是16,如果要让这四个数的平均数提高到18,其中一个数要()10.(3分)用12个小正方体可以拼成()种不同的长方体.二、填空题.(3×12=36分)11.(3分)一个长方体的棱长和是96分米,它的长、宽、高恰好是三个连续偶数.这个长方体的体积是_________ .12.(3分)一个大正方体由若干个小正体体组成,在大正方形的表面涂色,其中一面涂色的小正方体有150个,这个大正方体由_________ 小正方体组成.13.(3分)规定,A△B=5A﹣4B,如果X△(5△2)=4,那么X= _________ .14.(3分)(2013·黄冈模拟)一个五位数8□35△,如果这个数能同时被2、3、5整除,那么□代表的数字是_________ ,△代表的数字是_________ .15.(3分)在1,2,3,…,1000这1000个自然数中,既不是2的倍数,又不是3的倍数的数共有_________ 个.16.(3分)的分母增加15,要使分数大小不变,分子应扩大_________ 倍.17.(3分)把一个表面积是6cm2的正方体切成两个相同的长方体,每个长方体的表面积是_________ cm2;每个长方体的体积是_________ cm3.18.(3分)a是自然数,那么a 1、a、a 3、a 4这四个数的中位数是_________ .19.(3分)在直角梯形ABCD中,三角形ABD的面积是15平方厘米,AF=4厘米,AB=3厘米.那么图中阴影部分的面积是_________ 平方厘米.20.(3分)若干人分一篮橘子,如果其中二人每人分4个,其余每人分2 个,就剩4个;如果只有一人分6个,其余每人分4个,就少12个.这蓝橘子共有_________ 个.21.(3分)如图是一个平行四边形,已知CE=2BE,F是DC中点,三角形ABE的面积是6cm2,那么三角形ADF的面积为_________ cm2.22.(3分)五个数的平均数是12,如果把其中一个数改成18后,平均数就变成了10.原来这个数是_________ .三、选择恰当的方法计算下列各题.(3×6=18分)23.(3分)0.5×1.6 0.5×26.4.24.(3分)7.16﹣(3.5﹣3.84)25.(3分)(0.125×8﹣0.5)÷0.25.26.(3分).27.(3分)999×778 333×666.28.(3分)(13×0.58﹣4.87 0.42×13﹣5.13)×4.25.四、解方程:(4×3=12分)29.(4分)5x﹣12.5=.30.(4分)3×(2x 7)=45.31.(4分)5.6﹣4x=3.2.五、操作、探索、阅读归纳题.((5×3=15分)32.(5分)在图中,三角形DEF比三角形ABF面积小15平方厘米,求DE=?厘米.33.(5分)在一张长为10分米、宽为8分米的长方形铁皮四个角上剪去边长为2分米的正方形后,把它折成一个长方体容器,这个容器的容积是多少立方分米?34.(5分)观察:3.5⊗3=3.5×5 3×3,3⊗3.5=3×5 3.5×3,…那么:(1)m⊗n= _________ ;(2)若x⊗(2.4⊗6)=210,那么x=?六、应用与解答问题.(5×6=30分)35.(5分)修一条公路,计划每天修60米,实际每天多修15米,结果提前4天修完,一共修了多少米?36.(5分)甲、乙、丙三个数的和是120,其中甲、乙两个数的和是丙的3倍,甲比乙多10.三个数各是多少?37.(5分)生产一批零件,甲单独生产要用6小时,乙单独生产要用8小时.如果甲每小时比乙多生产10个零件,这批零件一共有多少个?38.(5分)一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分,男生平均每人90.5分.求这个班男生有多少人?39.(5分)搬运1000只玻璃瓶,规定安全运到一只可得搬运费3角.但打碎一只,不仅不给搬运费,还要赔5角,如果运完后共得运费260元.那么,搬运途中打碎了多少只?40.(5分)(2007·静宁县)甲、乙两汽车同时从东、西两地相向开出,甲每小时行56千米,乙每小时行48千米.两车在距中点32千米处相遇.东、西两地相距多少千米?七、思维拓展应用(3 3 3=9分)41.(3分)甲、乙、丙三个自然数的和是100,甲数除以乙数,或丙数除以甲数,得数都是商5余1,问甲数是_________ .42.(3分)9=32,16=42,121=112,像这样9、16、和121这些数叫平方数.在1﹣﹣1999这些自然数中共有_________ 个平方数.43.(3分)某旅游景点的门票价格及优惠办法如下表:现有两个旅游团,若分别购票,两个团应付门票费1166元,如果两个团合并在一起购票,两个团一共只需880元,这两个团分别有多少人?2011年四川省绵阳市东辰国际学校小升初数学模拟试卷参考答案与试题解析一、选择题:(3×10=30分)1.(3分)学校毕业文艺汇演从2:45分开始,经过3小时35分结束,结束时是()2.(3分)a□bc是一个四位数,已知a b c=15,且a□bc是3的倍数,方框中可填的数有()个.3.(3分)两个质数的和是31,这两个质数中最大的是()4.(3分)一个长方体的侧面展开后是一个边长为12厘米的正方形,其中长比宽多2厘米,这个长方体的体积是()立方厘米.5.(3分)骰子是一个正方体,6个面上分别写着1、2、3、4、5、6这6个数字.小东和小辰玩掷骰子的游戏比赛,用了两个骰子,若骰子向上的两个面上数的和是7,则小东获胜;若两个骰子向上的两个面上数的和是8,小辰获胜.下面说法正确的是()6.(3分)一个包装盒,从里面量长30厘米,宽25厘米,体积约为12立方分米.艾东辰同学想用它来包装一件长28厘米,宽18厘米,高20厘米的玻璃器皿,能否包装的结果是()7.(3分)有一个班的同学去划船.他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人.问:这个班共有________同学?8.(3分)一个长方体长、宽、高分别是a,b,c,如果宽增加2,它的体积增加()9.(3分)a,b,c,d四个数的平均数是16,如果要让这四个数的平均数提高到18,其中一个数要()10.(3分)用12个小正方体可以拼成()种不同的长方体.二、填空题.(3×12=36分)11.(3分)一个长方体的棱长和是96分米,它的长、宽、高恰好是三个连续偶数.这个长方体的体积是480立方分米.12.(3分)一个大正方体由若干个小正体体组成,在大正方形的表面涂色,其中一面涂色的小正方体有150个,这个大正方体由343 小正方体组成.13.(3分)规定,A△B=5A﹣4B,如果X△(5△2)=4,那么X= 14.4 .14.(3分)(2013·黄冈模拟)一个五位数8□35△,如果这个数能同时被2、3、5整除,那么□代表的数字是2或5或8 ,△代表的数字是0 .15.(3分)在1,2,3,…,1000这1000个自然数中,既不是2的倍数,又不是3的倍数的数共有333 个.16.(3分)的分母增加15,要使分数大小不变,分子应扩大 4 倍.17.(3分)把一个表面积是6cm2的正方体切成两个相同的长方体,每个长方体的表面积是 4 cm2;每个长方体的体积是0.5 cm3.18.(3分)a是自然数,那么a 1、a、a 3、a 4这四个数的中位数是 a 2 .19.(3分)在直角梯形ABCD中,三角形ABD的面积是15平方厘米,AF=4厘米,AB=3厘米.那么图中阴影部分的面积是24 平方厘米.20.(3分)若干人分一篮橘子,如果其中二人每人分4个,其余每人分2 个,就剩4个;如果只有一人分6个,其余每人分4个,就少12个.这蓝橘子共有26 个.21.(3分)如图是一个平行四边形,已知CE=2BE,F是DC中点,三角形ABE的面积是6cm2,那么三角形ADF的面积为9 cm2.22.(3分)五个数的平均数是12,如果把其中一个数改成18后,平均数就变成了10.原来这个数是28 .三、选择恰当的方法计算下列各题.(3×6=18分)23.(3分)0.5×1.6 0.5×26.4.24.(3分)7.16﹣(3.5﹣3.84)25.(3分)(0.125×8﹣0.5)÷0.25.26.(3分).27.(3分)999×778 333×666.28.(3分)(13×0.58﹣4.87 0.42×13﹣5.13)×4.25.四、解方程:(4×3=12分)29.(4分)5x﹣12.5=.30.(4分)3×(2x 7)=45.31.(4分)5.6﹣4x=3.2.五、操作、探索、阅读归纳题.((5×3=15分)32.(5分)在图中,三角形DEF比三角形ABF面积小15平方厘米,求DE=?厘米.33.(5分)在一张长为10分米、宽为8分米的长方形铁皮四个角上剪去边长为2分米的正方形后,把它折成一个长方体容器,这个容器的容积是多少立方分米?34.(5分)观察:3.5⊗3=3.5×5 3×3,3⊗3.5=3×5 3.5×3,…那么:(1)m⊗n= 5m 3n ;(2)若x⊗(2.4⊗6)=210,那么x=?六、应用与解答问题.(5×6=30分)35.(5分)修一条公路,计划每天修60米,实际每天多修15米,结果提前4天修完,一共修了多少米?36.(5分)甲、乙、丙三个数的和是120,其中甲、乙两个数的和是丙的3倍,甲比乙多10.三个数各是多少?37.(5分)生产一批零件,甲单独生产要用6小时,乙单独生产要用8小时.如果甲每小时比乙多生产10个零件,这批零件一共有多少个?38.(5分)一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分,男生平均每人90.5分.求这个班男生有多少人?39.(5分)搬运1000只玻璃瓶,规定安全运到一只可得搬运费3角.但打碎一只,不仅不给搬运费,还要赔5角,如果运完后共得运费260元.那么,搬运途中打碎了多少只?40.(5分)(2007·静宁县)甲、乙两汽车同时从东、西两地相向开出,甲每小时行56千米,乙每小时行48千米.两车在距中点32千米处相遇.东、西两地相距多少千米?七、思维拓展应用(3 3 3=9分)41.(3分)甲、乙、丙三个自然数的和是100,甲数除以乙数,或丙数除以甲数,得数都是商5余1,问甲数是16 .42.(3分)9=32,16=42,121=112,像这样9、16、和121这些数叫平方数.在1﹣﹣1999这些自然数中共有44 个平方数.43.(3分)某旅游景点的门票价格及优惠办法如下表:现有两个旅游团,若分别购票,两个团应付门票费1166元,如果两个团合并在一起购票,两个团一共只需880元,这两个团分别有多少人?。
小升初名校选拔真题模拟试卷-数学-5、6(含答案及详细解析)
小升初数学真题模拟试卷一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.讯10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E1997B C D E A9971(第一次变动)C D E A B9719(第二次变动)D E A B C7199(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?答案一、填空题:1.(5)500÷10÷10=52.(1+7=8,9-3=6,4×5=20)首先考虑0只能出现在乘积式中.即分析2×5,4×5,5×6,8×5几种情况.最后得以上结论.3.(56)96÷8=12=3×4,所以两个数为8×3=24,4×8=32,和为32+24=56.5.(210)梯形的总数为:BC上线段总数×BD上线段总数,即(4+3+2+1)×(6+5+4+3+2+1)=2106.(中午12点40分)3千米/小时=0.05千米/分,0.05×50=2.5千米,即每小时她走2.5千米.12÷2.5=4.8,即4小时后她走4×2.5=10千米.(12-10)÷0.05=40(分),最后不许休息,即共用4小时40分.7.(58)画图分析可得22-6=16为甲做题数,所以可得乙10道,丙16×2=32道,一共16+10+32=58(道).8.(36)长方形的宽是“一”与“二”两个正方形的边长之和.长方形的长是“一”、“二”、“三”三个正方形的边长之和.长-宽=30-22=8是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22-8×2=6,中间小正方形面积=6×6=36.9.(10∶9)10.(13)考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+1=13(只).二、解答题:1.(20)由变动规律知,A、B、C、D、E经5次变动重新出现,而1997经过4次即重新出现,故要使ABCDE1997重新出现最少需20次(即4和5的最小公倍数.)3.(15千米)4.(56个)本题可列表解.除终点,我们将车站编号列表:14+12+10+8+6+4+2=56(个)小升初数学真题模拟试卷一、填空题:1.1997+199.7+19.97+1.997=______.3.如图,ABCD是长方形,长(AD)为8.4厘米,宽(AB)为5厘米,ABEF是平行四边形.如果DH长4厘米,那么图中阴影部分面积是______平方厘米.4.将一个三位数的个位数字与百位数字对调位置,得到一个新的三位数.已知这两个三位数的乘积等于52605,那么,这两个三位数的和等于______.5.如果一个整数,与l,2,3这三个数,通过加、减、乘、除运算(可以添加括号)组成算式,能使结果等于24,那么这个整数就称为可用的.在4,7,9,11,17,20,22,25,31,34这十个数中,可用的数有______个.6.将八个数从左到右列成一行,从第三个数开始,每个数都恰好等于它前面两个数之和,如果第7个数和第8个数分别是81,131,那么第一个数是______.7.用1~9这九个数码可以组成362880个没有重复数字的九位数.那么,这些数的最大公约数是______.8.在下面四个算式中,最大的得数是______.9.在右边四个算式的四个方框内,分别填上加、减、乘、除四种运算符号,使得到的四个算式的答数之和尽可能大,那么,这个6□0.3=0和等于______.10.小强从甲地到乙地,每小时走9千米,他先向乙地走1分,又调头反向走3分又调头走5分,再调头走7分,依次下去,如果甲、乙两地相距600米,小强过______.分可到达乙地.二、解答题:1.水结成冰后,体积增大它的十一分之一.问:冰化成水后,体积减少它的几分之几?辆和小卡车5辆一次恰好运完这批货物.问:只用一种卡车运这批货物,小卡车要比大卡车多用几辆?4.在一个神话故事中,有一只小兔子住在一个周长为1千米的神湖旁,A、B两点把这个神湖分成两部分(如图).已知小兔子从B点出发,沿逆休息,那么就会经过特别通道AB滑到B点,从B点继续跳.它每经过一次特别通道,神湖半径就扩大一倍.现知小兔子共休息了1000次,这时,神湖周长是多少千米?答案一、填空题:1.2218.667.2.423.3.31.平行四边形ABEF的底是长方形的宽,平行四边形的高是长方形的长,因此,平行四边形面积=长方形面积=8.4×5=42(平方厘米),三角形ABH的高是HA,它的长度是8.4—4=4.4(厘米),三角形ABH面积=5×4.4÷2=11(平方厘米),阴影部分面积=(平行四边形面积)-(三角形ABH面积)=42-11=31(平方厘米).4.606.所以,105+501=606.5.9.1×2×3×4=24;7×3+(2+1)=24;9×(2+1)-3=24;11×2+3-1=24;1+2×3+17=24;20+2+3-1=24;22+3+1-2=24;(25-1)×(3-2)=24;31-2×3-1=24;但是,1,2,3,34无法组成结果是24的算式.所以,4,7,9,11,17,20,22,25,31这九个数是可用的.由这排数的排列规则知:第8个数=第6个数+第7个数,所以,第6个数=第8个数-第7个数=131-81=50.同理,第5个数=第7个数-第6个数=81-50=31,第4个数=50—31=19,第3个数=31—19=12,第2个数=19—12=7,第1个数=12—7=5.7.9.1+2+…+9=45,因而9是这些数的公约数,又因123456789和123456798这两个数只差9,这两个数的最大公约数是9.所以9是这些数的最大公约数.现在比较三个括号中的分数的大小.注意这些分数的特点,用同分子的要使四个算式答数尽可能大,除数和减数应取较小的数,乘数和加数应取较大的数.比较(6÷0.3)+(6—0.3)和(6—0.3)+(6÷0.3)的大小知,0.3前10.24.小强每分钟走150米,向乙地方向所走的距离(从甲地算起),依次是:第1分钟走150米;又3分钟反向,5分钟向乙地,其中3分钟向乙地与3分钟反向抵消,实际这8分钟只向乙地走了150×2=300(米),即有前9分钟向乙地走了150+300=450(米);反向走7分钟,只需再向乙地走8分钟,即再走15分钟,就可走完最后150米.二、解答题:2.9辆.3.1997.4.128千米.把周长为1千米的神湖8等分,每一等分算作一段,小兔子休息一次已跳3段,休息4次已跳12段,恰好一周半,第4次休息时正好在A点,于是经过特别通道到B点,此时神湖周长变成2千米;我们再把新的神湖分成16段,现在小兔子休息到8次,共跳了24段才在A点休息,……,如此继续下去,休息到16次,32次,64次,128次,小兔子才在A点休息.参看下表:因为:4+8+16+32+64+128+256=508<10004+8+16+32+64+128+256+512>1000所以小兔子休息1000次,有7次休息恰好在A点,此时神湖周长是128千米.所以休息1000次后,神湖周长是128千米.。
【3套打包】上海久隆模范中学小升初模拟考试数学试卷含答案
【数学】小升初数学试卷及参考答案(1)一.选择题(共7小题,满分21分,每小题3分)1.(3分)下面各数,只读一个零的是()A.6008800B.6000880C.60808002.(3分)你平时上课的宽敞的教室地面面积大约是()A.50平方分米B.50平方米C.50平方厘米D.5000平方分米3.(3分)在比例尺1:30000000的地图上,量得甲地到乙地的距离是5.6厘米,一辆汽车按3:2的比例分两天行完全程,两天行的路程差是()千米A.672B.1008C.3364.(3分)一根绳子剪成两段,第一段长米,第二段占全长的,那么()A.第一段长B.第二段长C.两段一样长D.不能确定5.(3分)王师傅加工一批零件,小时加工了这批零件的,全部加工完还需要()小时.A.1B.C.D.6.(3分)下图中,甲、乙两部分周长相等的是()A.B.C.D.7.(3分)小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入…12345…输出……那么,当输入数据是8时,输出的数据是()A.B.C.D.二.填空题(共7小题,满分21分,每小题3分)8.(3分)5吨40千克=千克3时40分=分9.(3分)一个三角形的三个内角的度数比是6:2:1,这个三角形的三个内角分别是、、,这是一个三角形.10.(3分)一个圆柱体的底面周长是12.56cm,高是6cm,这个圆柱的表面积是平方厘米,体积是立方厘米,与它等底等高的圆锥体的体积是立方厘米.11.(3分)某商品打八折出售就是降价%出售.12.(3分)学校文印室需要复印6张资料,正反面都要复印.如果一次最多能复印2张,至少需要复印次.13.(3分)把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小长方体,其中只有两个面是红色的小长方体恰好是12块,那么至少要把这个大长方体分割成个小长方体.14.(3分)小华玩某种游戏,每局可随意玩若干次,每次得分是8、a(自然数)、0这三个自然数中的一个,每局各次得分的总和叫做这一局的总积分.小华曾得到过这样的积分:103,104,105,106,107,108,109,110,又知道他不可能得到83分这个总积分,则a是.三.计算题(共2小题,满分12分)15.(8分)计算题:2008×+++……16.(4分)解方程.24%x+7=7.24x﹣12.5%x=50.2x+0.3x=9.2×50%四.解答题(共6小题,满分46分)17.(6分)计算如图图形中阴影部分的面积18.(8分)甲、乙两人打一份稿件,甲单独要3小时打完,乙单独要2小时打完.如果甲、乙两人合作打这份稿件,需要多少小时打完?19.(8分)曹老师的手机4G话费套餐里18元包100Mb上网流量,超出部分按0.12元/Mb 计费(不足1Mb按1Mb计费).曹老师这个月的流量费是31.32元,他这个月最多用了多少Mb流量?20.(8分)一个长方体机油桶,长8分米,宽2分米,高6分米.如果每升机油重0.72千克,可装机油多少千克?21.(8分)甲、乙二人沿一环形跑道从某点开始反方向跑步,已知甲的速度是乙的80%,经过10分钟相遇后各自继续向前跑,问甲跑回开始点还需几分钟?22.(8分)某移动通讯公司有两种手机卡,采用不同的收费标准(见下表).假定小王和小李都是你的朋友,小王是公司职员,每月通话时间一般累计不超过100分钟:小李是公司经理,每月通话时间一般累计在200分钟以上.种类固定月粗费每分钟通话费A种卡40元0.35元B种卡0元0.60元(1)请你分别帮他们选择一种较合算的手机卡,并通过计算说明你的理由.(2)算一算,当每月通话时间为多少分钟时,这两种卡的话费刚好相同?参考答案与试题解析一.选择题(共7小题,满分21分,每小题3分)1.【解答】解:6008800读作:六百万八千八百;6000880读作:六百万零八百八十;6080800读作:六百零八万零八百;故选:B.2.【解答】解:你平时上课的宽敞的教室地面面积大约是50平方米.故选:B.3.【解答】解:5.6÷×(﹣),=168000000×,=33600000(厘米)33600000厘米=336千米故选:C.4.【解答】解:第二段占全长的,第一段占全长的1﹣=;;故选:B.5.【解答】解;÷=(1﹣)÷=÷=(小时)答:全部加工完还需要小时.故选:D.6.【解答】解:A、甲的周长=小于长方形的长+长方形的宽+公共曲线边长,乙的周长=大于长方形的长+宽+公共曲线边长,所以甲的周长<乙的周长.B、甲的周长=正方形边长×4,乙的周长=(长方形的长+宽)×2,所以乙的长接近甲的2倍,乙的宽与甲很接近,所以乙的周长大于甲的周长.C、甲的周长=长方形的长+长方形的宽+公共曲线边长,乙的周长=长方形的长+长方形的宽+公共曲线边长,所以甲的周长=乙的周长.D、甲的周长=小于正方形的2条边长+公共曲线边长,乙的周长=大于正方形的2条边长+公共曲线边长,所以甲的周长<乙的周长.故选:C.7.【解答】解:输出数据的规律为,当输入数据为8时,输出的数据为=.故选:C.二.填空题(共7小题,满分21分,每小题3分)8.【解答】解:(1)5吨40千克=5040千克(2)3时40分=220分.故答案为:5040,220.9.【解答】解:6+2+1=9180°×=120°180°×=40°180°×=20°因为三角形的最大角是120°,所以该三角形是钝角三角形.故答案为:120°,40°,20°,钝角.10.【解答】解:底面半径:12.56÷3.14÷2=2(厘米),12.56×6+3.14×22×2=75.36+3.14×4×2=75.36+25.12=100.48(平方厘米),3.14×22×6=3.14×4×6=75.36(立方厘米),3.14×22×6= 3.14×4×6=25.12(立方厘米),答:这个圆柱的表面积是100.48平方厘米,体积是75.36立方厘米,圆锥的体积是25.12立方厘米.故答案为:100.48、75.36、25.12.11.【解答】解:八折=80%1﹣80%=20%答:某商品打八折出售就是降价20%出售.故答案为:20.12.【解答】解:6×2÷2=6(次);答:至少需要复印6次.故答案为:6.13.【解答】解:因为只有两个面是红色的小长方体位于棱上(除去棱的端点);为使分割的块数尽量少,可使12条棱中有8条棱只有端点的两个小长方体,另外4条棱的中间分别有的小长方体:12÷4=3(个),共分割成小长方体的个数:(3+2)×2×2=20(个).故答案为:20.14.【解答】解:83+8×3=107,所以在得到总积分107时,得(8分)的局数必定小于3(否则83=107﹣3×8可以得到),即得(8分)的局数为0、1或2,从而107,107﹣1×8=99,107﹣2×8=91这三个数中必有一个是a的倍数.如果107是a的倍数,那么a=1或107,但a=1时,可以得到总积分83;a=107时,无法得到总积分103,所以这种情况不可能发生.如果99是a的倍数,那么a=1,3,9,11,33,99.因为83=9×3+8×7=11+8×9,所以a不能是1,3,9,11(否则83可以得到).因为103=99+14=33+70=2×33+37,所以a=99或33时,无法得到总分103.因此这种情况也不可能发生.如果91是a的倍数,那么a=1,7,13,91,因为83=7×5+8×6,所以a≠7.1103=91+12,所以a≠91.因此a=13,下面验证a=13是否符合要求.由于103=8×8+3×13,104=8×13,105=8×5+5×13,106=8×10+2×13,107=8×2+7×13,108=8×7+4×13,109=8×12+1×13,110=8×4+6×13,所以a=13符合要求.故答案为:13.三.计算题(共2小题,满分12分)15.【解答】解:(1)2008×=(2008+)×=2008×+×=1+=1;(2)+++……=×(﹣)+×(﹣)+×(﹣)+……+×(﹣)=×(﹣+﹣+﹣+……+﹣)=×(﹣)=×=.16.【解答】解:(1)24%x+7=7.2424%x+7﹣7=7.24﹣724%x=0.2424%x÷24%=0.24÷24%x=1;(2)x﹣12.5%x=50.125x=50.125x÷0.125=5÷0.125x=40;(3)0.2x+0.3x=9.2×50%0.5x=4.60.5x÷0.5=4.6÷0.5x=9.2.四.解答题(共6小题,满分46分)17.【解答】解:6×6+4×4﹣6×6÷2﹣4×4÷2﹣6×(6﹣4)÷2=36+16﹣18﹣8﹣6=20(平方厘米)答:阴影部分的面积是20平方厘米.18.【解答】解:1÷(+)=1÷=1×=1.2(小时)答:甲、乙两人合作打这份稿件要1.2小时打完.19.【解答】解:(31.32﹣18)÷0.12+100=13.32÷0.12+100=111+100=211(Mb)答:他这个月最多用了211Mb流量.20.【解答】解:8×2×6=96(立方分米)96立方分米=96升96×0.72=69.12(千克)答:可装机油69.12千克.21.【解答】解:根据题干分析可得:甲的速度:乙的速度=80:100=4:5,则相遇时甲乙行驶的路程之比就是4:5,设甲行驶的路程是4a,以行驶的路程是5a,则甲的速度是:4a÷10=0.4a,所以5a÷0.4a=12.5(分钟),答:甲跑回到开始点还需要12.5分钟.22.【解答】解:(1)小王:40+100×0.35=75元;0.6×100=60元,所以选择B种卡.小李:40+0.35×200=110元;0.60×200=120元,所以选择A种卡.答:小王选用B卡合算,小李选用A卡合算.(2)设当通话为x分钟时,两种电话卡的收费是一样的,可得方程:40【数学】小升初数学试卷及答案(人教版)(2)一、选择题1.下面算式中,商大于被除数的是()。
【精品】小升初数学模拟试卷及解析(1)
【精品】小升初数学模拟试卷及解析(1)一、计算.[共29分]1.[5分]直接写得数.0.63÷0.9= 6+= ÷= 0.77+0.33= 4﹣1.5=73×193×0= 2011×0.25×4= 1﹣÷1﹣= 3×+= 12×[+]=2.[18分]计算下列各题,怎样简便怎样算.105×13﹣1890÷18 [﹣[﹣]]÷25×+2.75÷27.4﹣52.8÷[1.9+2.1][0.125×8﹣0.5]×4 9.25×9.9+0.9253.[6分]解方程.x+40%x=1.4;x+=;38:x=4.75.二、填空.[8小题空0.5分,其余每空1分,共28分]4.[3分]某市区总人口数达571600人,土地面积32500000平方米,国民生产总值达7563000000元,公共绿地面积达9760000平方米.根据以上信息,完成下列填空:[1]把总人口数改写成用“万”作单位的数是万人.[2]公共绿地面积为公顷.[3]国民生产总值省略亿后面的尾数约是亿元.5.[2分]15和6的最大公因数是,最小公倍数是.6.[2分]20:8的比值是,化成最简整数比是.7.[2分]在1~10这10个自然数中,是偶数又是质数的数是,是奇数又是合数的数是.8.商场有电视机m台,每台进价为a元,售价b元,若全部出售,共可获利元.9.生产一批零件,合格的与不合格的数量比是19:1,这批零件的合格率为%.10.[1分]如果校长在教室的座位是第6组第7个,表示为[6,7]那么小王在教室的座位是第3组第5个可以表示为.11.[4分]3÷=9:==0.375= % 12.[2分]综合实践课上,小芳用3分米的长的铁丝刚好围成一个正方形,这个正方形每条边的长是分米,每条边所用铁丝的长度是铁丝全长的.13.[3分]1吨= 吨千克;3时45分= 时.14.在72.5%,,0.7255,0.725中,最大的数是,最小的数是.15.[1分]字母A、B、C按一定的规律排列:ABBCCCABBCCCABBCCC…第100个字母是.16.[3分]在一只不透明的袋子里装有2只黄球,1只红球,任意摸一只球,摸到的可能性大,摸到红球的可能性是,如果再加入2只红球,任意摸一只,摸到黄球的可能性是.17.一个长方体的高减少2厘米后,表面积减少48平方厘米,成为一个正方体.正方体的体积是立方厘米.18.[2分]如图,把底面周长18.84cm,高5cm的圆柱切成若干等分,拼成一个近似的长方体,这个长方体的表面积是cm2,体积是cm3.[π取3.14]三、选择.[将正确答案的番号填入括号内.][5分]19.[1分]在下列各图中,以直线为轴旋转,能转成圆锥的是[]A. B. C.20.[1分]小明在“红旗”超市买东西,下列适合估算的情况是[]A.小明想10元钱是否够用时B.收银员告诉小明应付多少钱时C.收银员数小明付的钱时D.收银员找给小明剩余钱数时21.[1分]如图从上面看到的是[]A. B. C.22.在三角形三个内角中,∠1=∠2+∠3,那么这个三角形一定是[]三角形.A.锐角B.直角C.钝角D.无法确定23.11路公交车,开到中山公园站时,车上人数的先下车后,又上来这时车上人数的,上车和下车人数比较[]A.上车的多B.下车的多C.同样多D.无法确定四、判断[对的打√,错的打×.][5分]24.[1分]正方形的边长增加20%,则它的面积也增加20%.[判断对错]25.[1分]弟弟比哥哥矮,哥哥与弟弟身高的比是5:6.[判断对错]26.[1分]如果将收入100元记作+100元,那么支出200元就记作﹣200元.[判断对错]27.2008年奥运会在北京举行,这年正好是闰年,按每四年举办一次奥运会,那么以后举办奥运会的年份都是闰年..28.三角形的面积一定,它的底和高成反比例.[判断对错]五、实践与操作.[共11分]29.[2分]在下面的长方形中,用阴影表示×.30.[2分]按要求画图:[1]画出小旗向上平移4格后的图形.[2]画出小旗按2:1扩大后的图形.31.[3分]操作计算:以中心广场为观测点,根据下面信息完成街区图.[1]电影院在正南3000米处.[2]图书馆在北偏东60度离中心广场3500米处.[3]步行街经过电影院,与人民路平行.32.求如图中阴影部分的面积,已知圆的半径为4厘米.六、解决问题.[22分]33.爷爷的药瓶标签上写着“0.1mg×100片”.医生的药方上写着:每天3次,每次0.2mg,服16天.你帮爷爷算一下,这瓶药够吃16天吗?为什么?34.[4分]一支钢笔的价钱是一支圆珠笔价钱的8倍.李老师买了4支圆珠笔和1支钢笔,一共用了36元.每支圆珠笔多少元?〔用方程解〕35.[4分]小刚看一本故事书,已经看了全书的65%,比剩下的页数多45页,这本书一共有多少页?36.[4分]一个圆锥形沙堆,底面积是4.8平方米,高1.2米.把这堆沙铺在长2米、宽l.5米的沙坑里,可以铺多高?37.[4分]下面是某小学六年级男、女生人数的统计图.[2+2+2=6][1]已知该小学六年级三个班的平均人数是46人,六[1]有人[2]请在上面统计图中画出表示六[1]班女生人数的直条.[3]六年级男生总人数比女生少%.一、填空.[每题2分,共8分]38.[2分]鸡和兔一共有8只,数一数腿共有22条,其中兔有只.39.[2分]8个同学见面,如果每两个人握一次手,一共要握次手.40.[2分]如图,已知小正方形的面积是15平方厘米,求圆的面积是平方厘米.[π取3.14]41.[2分]长方体棱长的总和是96厘米,长:宽:高=3:2:1,它的表面积是平方厘米,体积是立方厘米.二、自学下面这段材料,然后回答问题.[共4分]42.自学下面这段材料,然后回答问题.我们知道,在整数中“两个数的和等于这两个数的积”的情形不多,如2+2=2×2.但是在分数中,这种现象却很普遍.请观察下面的几个例子:因为:,所以.因为:,所以=.根据以上结果,我们发现了这样一个规律,两个分数,如果相同,并且,那么这两个数的和等于它们的积.例如+ = ×.三、解决问题.[每题4分,共8分]43.甲、乙两车同时从A、B两地相对开出,2小时相遇.相遇后两车继续前行,当甲车到达B地时,乙车离A地还有60千米,已知甲乙两车速度比是3:2.求甲乙两车速度各是多少?44.[4分]若将一个长方形的长和宽都增加3厘米,则它的面积就比原来增加105平方厘米,原来长方形的周长是多少米?参考答案与试题解析一、计算.[共29分]1.[5分]直接写得数.0.63÷0.9= 6+= ÷= 0.77+0.33= 4﹣1.5=73×193×0= 2011×0.25×4= 1﹣÷1﹣= 3×+= 12×[+]=考点:分数的加法和减法;分数除法;分数的四则混合运算;小数除法.专题:运算顺序及法则;运算定律及简算.分析:根据整数、小数、分数的四则运算的计算法则计算即可,其中2011×0.25×4根据乘法的结合律简算,12×[+]根据乘法的分配律简算即可.解答:解:0.63÷0.9=0.7 6+=6÷=0.77+0.33=1.1 4﹣1.5=2.573×193×0=0 2011×0.25×4=2011 1﹣÷1﹣=3×+=12×[+]=5点评:本题考查了整数、小数、分数的四则运算的口算,要注意能简算的要简算.2.[18分]计算下列各题,怎样简便怎样算.105×13﹣1890÷18 [﹣[﹣]]÷25×+2.75÷27.4﹣52.8÷[1.9+2.1][0.125×8﹣0.5]×4 9.25×9.9+0.925考点:整数四则混合运算;运算定律与简便运算;分数的四则混合运算;小数四则混合运算.专题:运算顺序及法则;运算定律及简算.分析:[1]先同时计算乘法和除法,再算减法;[2]先算小括号里面的减法,再算中括号里面的减法,最后算括号外的除法;[3]先算乘法和除法,再算加法;[4]先算小括号里面的加法,再算括号外的除法,最后算括号外的减法;[5]先算小括号里面的乘法,再算小括号里面的减法,最后算括号外的乘法;[6]先根据积不变规律变形,再根据乘法分配律简算.解答:解:[1]105×13﹣1890÷18=1365﹣105=1260;[2][﹣[﹣]]÷=[﹣]÷=÷=;[3]25×+2.75÷=25×+2.75×=15+1.65=16.65;[4]27.4﹣52.8÷[1.9+2.1]=27.4﹣52.8÷4=27.4﹣13.2=14.2;[5][0.125×8﹣0.5]×4=[1﹣0.5]×4=0.5×4=2;[6]9.25×9.9+0.925=9.25×9.9+9.25×0.1=9.25×[9.9+0.1]=9.25×10=92.5.点评:本题考查了四则混合运算,注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算.3.[6分]解方程.x+40%x=1.4;x+=;38:x=4.75.考点:方程的解和解方程.专题:简易方程.分析:①先化简左边,依据等式的性质,方程两边同时除以1.4求解;②依据等式的性质,方程两边同时减去,再同时乘求解;③解比例,根据比例的性质先把比例式转化成两外项积等于两内项积的形式,就是已学过的简易方程,依据等式的性质,方程两边同时除以4.75求解.解答:解:①x+40%x=1.41.4x=1.41.4x÷1.4=1.4÷1.4x=1②x+=x+﹣=﹣x×=×x=③38:x=4.754.75x=384.75x÷4.75=38÷4.75x=8点评:此题考查了运用等式的性质解方程,即等式两边同加上或同减去、同乘上或同除以一个数[0除外],两边仍相等,同时注意“=”上下要对齐.二、填空.[8小题空0.5分,其余每空1分,共28分]4.[3分]某市区总人口数达571600人,土地面积32500000平方米,国民生产总值达7563000000元,公共绿地面积达9760000平方米.根据以上信息,完成下列填空:[1]把总人口数改写成用“万”作单位的数是57.16 万人.[2]公共绿地面积为976 公顷.[3]国民生产总值省略亿后面的尾数约是76 亿元.考点:整数的改写和近似数;面积单位间的进率及单位换算.专题:整数的认识.分析:改成用万作单位的数,是把万位后面的4个“0”去掉,或者在万位数的右下角点上小数点,然后把小数末尾的0去掉,再在数的后面写上“万”字,据此改写;平方米化成公顷需要除以进率10000;省略“亿”后面的尾数就是四舍五入到亿位,就是看亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字,据此写出.解答:解:[1]571600=57.16万;[2]9760000平方米=976公顷;[3]7563000000≈76亿.故答案为:[1]57.16;[2]976;[3]76点评:本题主要考查整数的写法、改写和求近似数,注意改写和求近似数时要带计数单位.5.[2分]15和6的最大公因数是 3 ,最小公倍数是30 .考点:求几个数的最大公因数的方法;求几个数的最小公倍数的方法.专题:数的整除.分析:把6和15分解质因数,公有的质因数乘积为它们的最大公因数,公有的质因数和独有的质因数乘积得它们的最小公倍数.解答:解:6=2×3,15=3×5,最大公因数是3,最小公倍数是2×3×5=30;故答案为:3,30.点评:此题主要考查根据两个数的质因数情况求它们的最大公因数和最小公倍数的求法.6.[2分]20:8的比值是 2.5 ,化成最简整数比是5:2 .考点:求比值和化简比.专题:比和比例.分析:[1]用比的前项20除以后项8所得的商即为比值;[2]根据比的性质:把20:8的前项和后项同时除以4即可化成最简整数比,最简比是指比的前项和后项是互质数的比;据此进行化简并计算.解答:解:[1]20:8=20÷8=2.5;[2]20:8=[20÷4]:[8÷4]=5:2.故答案为:2.5;5:2.点评:此题考查化简比和求比值的方法,要注意区分:化简比是根据比的基本性质进行化简的,结果仍是一个比;求比值是用比的前项除以后项所得的商,结果是一个数,可以是小数、分数和整数.7.[2分]在1~10这10个自然数中,是偶数又是质数的数是 2 ,是奇数又是合数的数是9 .考点:合数与质数.专题:整数的认识.分析:[1]在10以内的自然数中,质数有2、3、5、7,其中偶数是2,问题得解;[2]在10以内的自然数中,合数有4、6、8、9、10,其中奇数是9,问题得解.解答:解:[1]在10以内的自然数中,既是偶数又是质数的是 2;[2]在10以内的自然数中,既是奇数又是合数的数是 9;故答案为:2,9.点评:本题主要考查质数与合数、奇数与偶数的意义.8.商场有电视机m台,每台进价为a元,售价b元,若全部出售,共可获利m[b﹣a]元.考点:用字母表示数.专题:用字母表示数.分析:用售价减去进价求出每台电视机获利的钱数,再乘m求出全部出售共获利的钱数.解答:解:[b﹣a]×m=m[b﹣a][元],答:共获利m[b﹣a]元,故答案为:m[b﹣a].点评:关键是明白售价﹣进价=获利的钱数,进而求出全部出售共获利的钱数.9.生产一批零件,合格的与不合格的数量比是19:1,这批零件的合格率为95 %.考点:比的意义;百分数的实际应用.分析:根据合格的与不合格的数量比是19:1,可知这批零件共有20份数,这批零件的合格率=×100%.进而列式计算即可.解答:解:这批零件的合格率为:×100%=95%.答:这批零件的合格率为95%.故答案为:95.点评:此题考查求零件的合格率,合格率=×100%.10.[1分]如果校长在教室的座位是第6组第7个,表示为[6,7]那么小王在教室的座位是第3组第5个可以表示为[3,5].考点:数对与位置.专题:图形与位置.分析:数对表示位置的方法是:第一个数字表示列,第二个数字表示行.据此解答.解答:解:校长在教室的座位是第6组第7个,表示为[6,7],那么小王在教室的座位是第3组第5个,表示为[3,5].故答案为:[3,5].点评:此题考查了数对表示位置的方法的灵活应用.11.[4分]3÷8 =9:24 ==0.375= 37.5 %考点:比与分数、除法的关系.专题:综合填空题.分析:解答此题的突破口是0.375,把0.375化成分数并化简是,根据分数的基本性质,分子、分母都乘2就是;根据分数与除法的关系,=3÷8;根据比与分数的关系,=3:8,再根据比的基本性质,比的前、后项都乘3就是9:24;把0.375的小数点向右移动两位,添上百分号就是37.5%.解答:解:3÷8=9:24==0.375=37.5%.故答案为:8,24,6,37.5.点评:本题主要是考查除式、小数、分数、百分数、比之间的关系及转化,利用它们之间的关系和性质进行转化即可.12.[2分]综合实践课上,小芳用3分米的长的铁丝刚好围成一个正方形,这个正方形每条边的长是分米,每条边所用铁丝的长度是铁丝全长的.考点:正方形的周长;分数的意义、读写及分类.专题:平面图形的认识与计算.分析:[1]求每份的米数,平均分的是具体的数量3分米,表示把3分米平均分成4份,求的每一份的具体的数量,平均分的是具体的数量;用除法计算;[2]求每份是几分之几,表示把3分米长的铁丝看作单位“1”,把单位“1”平均分成4份,求的是每一份占的分率,平均分的是单位“1”.解答:解:[1]3÷4=[分米][2]1÷4=答:这个正方形每条边的长是分米,每条边所用铁丝的长度是铁丝全长的.故答案为:、.点评:解决此题关键是弄清求得是分率还是具体的数量,求分率平均分的是单位“1”;求具体的数量平均分的是具体的数量,要注意:分率不能带单位名称,而具体的数量要带单位名称.13.[3分]1吨= 1 吨600 千克;3时45分= 3.75 时.考点:质量的单位换算;时、分、秒及其关系、单位换算与计算.专题:质量、时间、人民币单位.分析:[1]1吨看作1吨与吨之和,把吨乘进率1000化成600千克.[2]把45分除以进率60化成0.75时再与3时相加.解答:解:[1]1吨=1吨600千克;[2]3时45分=3.75时.故答案为:1,600,3.75.点评:本题是考查质量的单位换算、时间的单位换算.单位换算首先要弄清是由高级单位化低级单位还是由低级单位化高级单位,其次记住单位间的进率.14.在72.5%,,0.7255,0.725中,最大的数是,最小的数是72.5%和0.725 .考点:小数大小的比较;小数、分数和百分数之间的关系及其转化.分析:有几个不同形式的数比较大小,一般情况下,都化为小数进行比较得出答案解答:解:72.5%=0.725,=0.,因为0.>0.7255>0.725,所以在0.725,0.,0.7255,0.725中,最大的是0.即,最小的是72.5%和0.725;故答案为:;72.5%和0.725.点评:解决有关小数、百分数、分数之间的大小比较,一般都把分数、百分数化为小数再进行比较,从而解决问题.15.[1分]字母A、B、C按一定的规律排列:ABBCCCABBCCC ABBCCC…第100个字母是C .考点:事物的间隔排列规律.专题:探索数的规律.分析:根据下面字母的排列规律ABBCCCABBCCCABBCCC…发现ABBCCC个一循环,只要求出100里面分别有几个6,余数是几,就在一个循环里数到几,即可得解..解答:解:这排字母的排列规律是:ABBCCC100÷6=16[个]…4[个]所以第100个字母是第17周期的第4个字母,是C;故答案为:C.点评:找出字母的排列规律是解决此题的关键.16.[3分]在一只不透明的袋子里装有2只黄球,1只红球,任意摸一只球,摸到黄球的可能性大,摸到红球的可能性是,如果再加入2只红球,任意摸一只,摸到黄球的可能性是.考点:简单事件发生的可能性求解.专题:可能性.分析:[1]因为袋子里装有2只黄球,1只红球,黄球的数量大于红球的数量,所以摸到黄球的可能性大;[2]首先求出球的总量;然后根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答,即用红球的数量除以球的总量,求出摸到红球的可能性是多少;[3]首先求出球的总量;然后根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答,即用黄球的数量除以球的总量,求出摸到黄球的可能性是多少.解答:解:[1]在一只不透明的袋子里装有2只黄球,1只红球,任意摸一只球,摸到黄球的可能性大,[2]摸到红球的可能性是:1÷[2+1]=[3]摸到黄球的可能性是:2÷[2+1+2]=答:任意摸一只球,摸到黄球的可能性大,摸到红球的可能性是,如果再加入2只红球,任意摸一只,摸到黄球的可能性是.故答案为:黄球,,.点评:解答此类问题的关键是分两种情况:[1]需要计算可能性的大小的准确值时,根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可;[2]不需要计算可能性的大小的准确值时,可以根据各种球数量的多少,直接判断可能性的大小.17.一个长方体的高减少2厘米后,表面积减少48平方厘米,成为一个正方体.正方体的体积是216 立方厘米.考点:长方体和正方体的表面积;长方体和正方体的体积.分析:根据题意一个长方体的高减少2厘米后,表面积减少48平方厘米,成为一个正方体.也就是说长和宽相等就是这个正方体的棱长;有公式可以求得长方体的表面积减少部分面积为[长×2+宽×2]×2=48平方厘米,由此可以解得长+宽=12厘米,12÷2=6厘米,所以这个正方体的棱长为6厘米,由此可以解决问题.解答:解:根据题意可得,[长×2+宽×2]×2=48平方厘米,所以长+宽=12厘米,12÷2=6[厘米],所以这个正方体的棱长为6厘米;6×6×6=216立方厘米;故答案为:216.点评:此题考查了长方体和正方体的公式的运用,关键是由减少部分的面积求出长和宽,即正方体的棱长.18.[2分]如图,把底面周长18.84cm,高5cm的圆柱切成若干等分,拼成一个近似的长方体,这个长方体的表面积是180.72 cm2,体积是141.3 cm3.[π取3.14]考点:简单的立方体切拼问题;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:圆柱切成若干等分,拼成一个近似的长方体,则表面积比原来的圆柱的表面积增加了两个以圆柱的高和半径为边长的长方形的面积,由此求出圆柱的底面半径,再利用圆柱的表面积和体积公式即可解答.解答:解:18.84÷3.14÷2=3[厘米]3.14×32×2+18.84×5+3×5×2=56.52+94.2+30=180.72[平方厘米]3.14×32×5=3.14×9×5=141.3[立方厘米]答:这个长方体的表面积是180.72平方厘米,体积是141.3立方厘米.故答案为:180.72;141.3.点评:抓住圆柱切成若干等分,拼成一个近似的长方体的方法,得出表面积增加的是以圆柱的高和半径为边长的长方形的面积是解决此类问题的关键.三、选择.[将正确答案的番号填入括号内.][5分]19.[1分]在下列各图中,以直线为轴旋转,能转成圆锥的是[]A. B. C.考点:将简单图形平移或旋转一定的度数.专题:图形与变换.分析:根据旋转的性质和圆锥的展开图的特点,可以得出:只有直角三角形绕它的一条直角边旋转一周,才能得到圆锥.解答:解:根据题干分析可得:只有直角三角形绕它的一条直角边旋转一周,才能得到圆锥.所以在这3个图形中符合题意的只有B一个.故选:B.点评:此题考查了旋转的性质及圆锥的展开图的特点.20.[1分]小明在“红旗”超市买东西,下列适合估算的情况是[]A.小明想10元钱是否够用时B.收银员告诉小明应付多少钱时C.收银员数小明付的钱时D.收银员找给小明剩余钱数时考点:数的估算.专题:整数的认识.分析:根据实际生活经验和估算方法可知:买东西时,小明想10元钱是否够用时,要估算大约拿多少钱支付买的东西需要的钱数.解答:解:根据买东西时的经验,小明想10元钱是否够用时,要估算大约拿多少钱支付买的东西需要的钱数.故选:A.点评:本题结合实际生活经验考查了估算的灵活应用.21.[1分]如图从上面看到的是[]A. B. C.考点:从不同方向观察物体和几何体.专题:立体图形的认识与计算.分析:观察图形,从上面看到的图形是三列:中间一列2个正方形,左边一列1个靠下边,右边一列1个靠上边,据此即可解答问题.解答:解:根据题干分析可得,从上面看到的是.故选:C.点评:此题考查了从不同的方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.22.在三角形三个内角中,∠1=∠2+∠3,那么这个三角形一定是[]三角形.A.锐角B.直角C.钝角D.无法确定考点:三角形的内角和;三角形的分类.分析:根据三角形的内角和为180°结合已知,可求∠1=90°,即可判断三角形的形状.解答:解:因为∠1=∠2+∠3,所以∠1=180°÷2=90°,所以这个三角形是直角三角形.故选:B.点评:此题考查了三角形的内角和定理以及三角形的分类,三角形按角分类有锐角三角形、直角三角形、钝角三角形.23.11路公交车,开到中山公园站时,车上人数的先下车后,又上来这时车上人数的,上车和下车人数比较[]A.上车的多B.下车的多C.同样多D.无法确定考点:分数乘法应用题;分数大小的比较.分析:此题没有具体数量,就把公交车的原有人数看作“1”,当做具体数量,第一个是把公交车的原有人数看作单位“1”,第二个是把公交车人数下车后的人数看作单位“1”,由此分别求出上车和下车的人数.解答:解:设公交车的原有人数看作“1”,下车的人数:1×=,上车的人数:[1﹣]×,=×,=,因为,,所以,下车的人数比上车的人数多,故选:B.点评:解答此题的关键是分清两个的单位“1”的不同,找清各自以谁为标准,再把数据设出,问题容易解决.四、判断[对的打√,错的打×.][5分]24.[1分]正方形的边长增加20%,则它的面积也增加20%.×[判断对错]考点:百分数的实际应用;长方形、正方形的面积.专题:分数百分数应用题.分析:把正方形的边长看作单位“1”,边长增加20%就是1+20%=120%,依据正方形面积=边长×边长,分别求出增加前后的面积,再根据增加面积=后来面积﹣原来面积,求出增加的面积,最后与20%比较即可解答.解答:解:1×1=1[1+20%]×[1+20%]=120%×120%=144%144%﹣1=44%44%>20%故答案为:×.点评:依据正方形面积公式:边长×边长,分别求出增加前后的面积,是解答本题的关键.25.[1分]弟弟比哥哥矮,哥哥与弟弟身高的比是5:6.×[判断对错]考点:比的意义.专题:比和比例.分析:弟弟比哥哥矮,把哥哥的身高看作单位“1”,那么弟弟的身高是哥哥身高的1﹣=,哥哥与弟弟身高的比是1:,化成最简整数比是6:5,据此判断.解答:解:弟弟比哥哥矮,弟弟的身高是哥哥身高的1﹣=,哥哥与弟弟身高的比是:1:=6:5,所以哥哥与弟弟身高的比是5:6说法错误.。
小学六年级小升初数学质量模拟试卷(附答案解析)
小学六年级小升初数学质量模拟试卷(附答案解析)一、选择题1.一张地图的比例尺是1∶25000,从图中测得两地的距离是4cm,它们的实际距离是()km.A.1 B.10 C.100 D.1000002.6:50钟面上时针与分针的夹角为() 。
A.95 B.100 C.1203.鲜蘑菇经过晾晒后失去原来质量的85%,则10千克蘑菇干是由多少千克鲜蘑菇制成的?正确的算式是()。
A.10÷85% B.10÷(1-85%)C.10×85% D.10×(1-85%)4.一个三角形三个内角度数的比是5:3:1,这个三角形是()。
A.钝角三角形B.直角三角形C.等腰三角形5.六年级学生参加科技小组有31人,比文艺小组人数的2倍还多3人,文艺小组有多少人?下列方程正确的是()。
A.2x+3=31 B.2x-3=31 C.x÷2+3=31 D.x÷2-3=31 6.下图是一个正方体的展开图。
写有数字“1”的面和写有()的面是相对的。
A.数字“3”B.字母“A”C.字母“B”7.下列说法错误的是()。
A.把7.8%的百分号去掉,这个数就扩大到原数的100倍B.45的分数单位比34的分数单位大C.真分数一定比假分数小D.两位小数表示百分之几8.a是奇数,b是偶数,下面结果是奇数的式子是()。
A.a+b B.2a+b C.2(a+b)9.国庆期间,文具店一款原价121元的钢笔降价111,节日后又提价111,现在这款钢笔的售价是()元。
A.121 B.120 C.132 D.143 10.观察下面的点阵图规律,第(10)个点阵图中点的个数是()A .30个B .33 个C .36个D .39 个二、填空题11.3.05立方米=(________)立方分米 2小时15分=(________)小时5200立方厘米=(________)升 34吨=(________)千克 十12.( )∶40=()12=0.375=( )∶48=( )%。
宁波3六年级重点小学小升初数学模拟试题(含答案)
小升初数学综合模拟试卷一、填空题:3.有一条5.6米长的木料,如锯成每段长为0.8米的短木料,需要30分钟,那么锯成每段长为0.7米的短木料需要______分钟.4.街心花园有一个正方形的花坛,四周有一条宽1.5米的甬道(如图),如果甬道的面积是27平方米,那么中间的花坛面积是______平方米.5.按规律排列的一串数:1,2,4,7,11,16,22,29,…,这串数的第1997个数是______.6.某学校四、五、六三个年级组织了一场文艺演出,共演出18个节目.如果每个年级至少演出四个节目,那么,这三个年级演出节目数的所有不同情况共有______种.7.471除以一个两位数,余数是37,则这个两位数是______.8.如果384×540×875×1875×()的积的最后十个数字都是零,那么括号内填入的自然数最小是______.9.将1,2,3,4,5,6,7这七个数分成两组,组成一个三位数和一个四位数,并使这两个数的乘积最大,那么这个三位数是______.10.平面上有10个圆,最多能把平面分成______个部分.二、解答题:1.买语文书18本,数学书15本,共花167.1元,已知每本语文书比每本数学书贵0.3元,语文书、数学书每本各多少元?2.小强期末五门考试的平均分数是87.5分,其中语文考了96分.如果小强语文只得了88分,那么他的平均成绩应是多少分?3.甲、乙、丙三种大小不同的正方体木块,其中甲的棱长分别是乙、正方体,要求每种木块至少用一块,那么最少需要这三种木块多少块?4.甲、乙两人在相距200米的直路上来回跑步,如果他们同时于6点05分分别在直路两端出发,当他们第11次相遇时(均指迎面相遇),时间是6点19分,已知甲每秒比乙每秒多跑1米,问甲、乙两人的速度是每秒多少米?答案,仅供参考:一、填空题:1.5.61=(2.4+5.4)×1-2.19=7.8-2.19=5.612。
小升初数学模拟试卷(32)-加油站-人教新课标(带解析)
人教新课标小升初数学模拟试卷(32)1.(6分)(9.3×﹣7.3)÷2.2.(6分)如图,一个物体由三个圆柱组成,它们的半径分别为0.5分米,2分米,5分米,而高都是2分米,则这个物体的表面积是平方分米.3.(6分)选择适当的“+、﹣、×、()”符号填入下列算式中的方框里,使得计算结果最大,那么最大值是.□3□0.2□.4.(6分)修一条公路,已修的和未修的长度之比是1:4,再修75米后,已修和未修的长度之比是8:17,则这条公路长是米.5.(6分)用一张圆心角是72度,面积是62.8平方厘米的扇形纸片卷成一个大的圆锥,这个圆锥底面面积是平方厘米.6.(6分)(2011•苏州模拟)足球是用黑、白两种颜色的皮缝制而成的.黑皮是正五边形,白皮是正六边形,其中黑皮有12块,白皮有多少块?7.(6分)用1,2,2,3能组成不同的四位数有个.8.(6分)制造一批零件,按计划36天可以完成它的,实际工作12天后,工作效率提高了20%,那么实际完成这批零件共用了天.9.(6分)一只袋子中有20只红袜子,30只蓝袜子,40只白袜子,大小都一样,不用眼睛看至少摸出只袜子,才能保证摸出袜子中至少有10对袜子(颜色相同的两只袜子为一对).10.(6分)如图,直角三角形ABC中,角A是直角,PB,PC分别平分两个锐角,则∠BPC= 度.11.(6分)某校有一个班的学生都参加了省数学竞赛,七分之一的学生获一等奖,四分之一的学生获二等奖,一半学生获三等奖,还剩下不足6人没获奖,则这个班共有人.12.(6分)在下列两列数中同时出现的数有个.第一列:1、4、7、10、 (1000)第二列:1、11、21、31、 (1001)13.(6分)五个数(有的可以相等)的平均数是2,按照从大到小排成一列,中间的数是2.2,则第一个数减第五个数的差最小是.14.(6分)两个长方形和一个正方形拚成一个大正方形,两个长方形的面积如图,则大正方形的面积是平方米.15.(6分)用f(n)表示组成n的数字中不是零的几个数字乘积,例如:f(5)=5;f (29)=18; f(207)=14.则f(1)+f(2)+f(3)+…+f(99)+f(100)= .16.(15分)能不能将(1)450,(2)225表示成十个连续自然数的和?能,请举例说明;若不能,请说明理由.17.(15分)在一个棱长为4米的正方体六个面的正中间各挖去一个底面半径和高是1米的圆柱体,求剩下的几何体的体积和表面积.18.(15分)某工厂生产了十台机器,重量(单位:吨)分别为:18,19,21,22,23,24,24,27,33,34.两次共运走9台,并且第一次运走机器的总重量是第二次运走的2倍,求剩下的这台机器的重量是多少吨?19.(15分)如图:正方形的边长为1米,==,求四边形ABGD的面积.参考答案1.0.2.【解析】试题分析:本题根据四则混合运算的运算顺序计算即可:先算乘除,再算加减,有括号的要先算括号里面的.解:(9.3×﹣7.3)÷2,=(7.75﹣7.3)÷2.25,=0.45÷2.25,=0.2.点评:当式中同时含有分数与小数时,要根据式中数据的特点灵活将它们进行互化后进行计算.2.251.2.【解析】试题分析:这个物体的表面积是大圆柱的表面积加上中、小圆柱的侧面积,根据公式计算即可.解:大圆柱的表面积:3.14×52×2+2×3.14×5×2=157+62.8=219.8(平方分米)中圆柱侧面积:2×3.14×2×2=25.12(平方分米)小圆柱侧面积:2×3.14×0.5×2=6.28(平方分米)这个物体的表面积:219.8+25.12+6.28=251.2(平方分米)答:这个物体的表面积是251.2平方分米.故答案为:251.2.点评:此题主要考查圆柱的侧面积、表面积公式及其计算.3.19,+,÷,×.【解析】试题分析:一个小于1的分数加一个整数值变大,第一个空用加号;一个整数除以小于1的小数值变大,第二个空填除以号;15乘等于15加上,显然大于15加上,所以第三个空填乘号;因此得解.解:+3÷0.2×,=+15×,=+18,=19;答:选择“+”、“÷”和“×”符号填入下列算式的方框里,使得计算结果最大,那么最大值是 19;故答案为:19,+,÷,×.点评:根据加减乘除运算的性质特点,除以比1小的数值变大,乘大于1的数值变大,乘比1小的数值变小来解决此题.4.625.【解析】试题分析:用修完75米后已修的分率减去没有修75米之前已修的分率,就是修的75米对应的分率,用分量除以对应的分率就是单位“1”,也就是全长.解:75÷(﹣)=75÷(﹣)=75÷=625(米);答:这条公路长625米.故答案为:625.点评:此题关键要找出具体数量75米所对的分率,然后用除法计算即可.5.12.56.【解析】试题分析:先求扇形所在圆的面积:62.8÷=314平方厘米,那么圆的半径的平方是:314÷3.14=100,则半径是10厘米,72度圆心角对应的扇形的弧长是:2×3.14×10×=12.56厘米,这个长度就是圆锥的底面周长,那么圆锥的底面半径是:12.56÷3.14÷2=2厘米,然后根据圆的面积公式解答即可.解:62.8÷=314(平方厘米)圆的半径的平方是:314÷3.14=100(平方厘米)100=10×10所以,半径是10厘米,2×3.14×10×=62.8×=12.56(厘米)12.56÷3.14÷2=2(厘米)3.14×22=3.14×4=12.56(平方厘米)答:这个圆锥底面面积是12.56平方厘米.故答案为:12.56.点评:本题关键是理解扇形即圆锥的展开图之间的转化,计算比较复杂,需要先求出扇形的弧长也就是圆锥的底面周长这一个中间量.6.20【解析】试题分析:足球是用黑、白两种颜色的皮缝制而成的.黑皮是正五边形,白皮是正六边形,通过观察图形,一块黑色周围有6块白皮,一块白皮周围有三块黑皮,黑皮和黑皮不相邻,黑皮的所有边都与白皮相邻,而白皮的六条边有三条与黑皮相邻,三条与白皮相邻;从而得出结论:所有黑皮的边数=所有白皮的边数÷2,由此得解.解:所有黑皮的边数:12×5;一块白皮的边数是6,则白皮的数量是:12×5×2÷6,=120÷6,═20(块);答:白皮有20块.点评:此题考查了图形的拼组,发现黑皮的总边数等于白皮总边数的一半是解决此题的关键.7.12.【解析】试题分析:根据题意,分别以1、2、3为开头依次列举出来即可.解:以1开头:1223,1232,1322,三个,以2开头:2123,2132,2231,2213,2312,2321六个,以3开头:3122,3212,3221,三个;总共3+3+6=12个.故答案为:12.点评:本题考查了简单的组合原理,由于情况数较少可以有枚举法解答,注意要按顺序写出,防止遗漏.8.92【解析】试题分析:我们把制作一批零件的量看作单位“1”,用剩下的工作量除以提高后的工作效率,在加上12天,就是实际完成这批零件共用的时间.解:(1﹣36×12)÷[36×(1+20%)]+12,=÷+12,=80+12,=92(天);答:实际完成这批零件共用了92天.点评:本题运用“工作总量÷工作效率=工作时间”进行计算即可.9.22.【解析】试题分析:最不利原则:先拿3只,三种颜色各1只,此时再拿1只就能保证拿出1对;然后按照最不利原则,只要拿出2只,就能保证凑成1对,一共需要拿出3+1+2×(10﹣1)=22只;由此解答即可.解:3+1+2×(10﹣1)=22(只);答:至少取出22只,才能保证摸出袜子中至少有10对袜子(颜色相同的两只袜子为一对).故答案为:22.点评:根据题干,可得颜色数+1,即可配成一对颜色相同的袜子.10.135.【解析】试题分析:因为直角三角形的两个锐角的度数之和是90度,PB,PC分别平分两个锐角,那么可得∠PBC和∠PCB的度数之和就是90°÷2=45°,那么在三角形PBC中,根据三角形内角和定理即可解答问题.解:根据题干分析可得:因为直角三角形的两个锐角的度数之和是90度,PB,PC分别平分两个锐角,那么可得∠PBC和∠PCB的度数之和就是90°÷2=45°,180°﹣45°=135°.答:∠BPC=135度.故答案为:135.点评:此题考查了直角三角形两个锐角和是90度和角平分线的性质以及三角形内角和定理的灵活应用.11.28.【解析】试题分析:因为人数必须是整数,就是说这个班的总人数乘、乘、乘的结果都是整数,还剩下不足6人没获奖,也就是求参加竞赛的至少有多少名同学.即要求7、4、2的最小公倍数;由此得解.解:1﹣﹣﹣=因为人数是整数,当剩下人数没获奖有3人,才可得出这个班共有:3÷=28(人)故答案为:28.点评:明确要求的问题即求7、4、2的最小公倍数,是解答此题的关键.12.33.【解析】试题分析:先根据两列数的排列规律,找出它们的通项,再求出各自项数;再根据两列数中同时出现的数的规律解答.解:第一列:An=1+3(n﹣1)第二列:Bm=1+10(m﹣1)An为第一列数中第n项,Bm为第二列数中第m项.同时出现即An=Bn时,1+3(n﹣1)=1+10(m﹣1)3(n﹣1)=10(m﹣1)因为,各项的项数n=(1000﹣1)÷3+1=334,m=(1001﹣1)÷10+1=101(n﹣1):(m﹣1)=10:3时,即n=11,m=4;n=21,m=7;…(334﹣11)÷10+1=33 (4)(101﹣4)÷3+1=33 (1)所以,同时出现的数有33个.故答案为:33.点评:关键是根据数列的排列规律,求出项数和同时出现的数的规律.13.0.5.【解析】试题分析:首先判断出要使第一个数减第五个数的差最小,只有第一个数取到最小,第五个数最大,它们之间的差就最小;然后根据中间数是2.2,则第一个数最小为2.2,又因为平均数是2,则第五个数最大为:(2×5﹣2.2×3)÷2=1.7,所以第一个数减第五个数的差最小是:2.2﹣1.7=0.5,据此解答即可.解:根据中间的数是2.2,则第一个数最小为2.2,又因为平均数是2,则第五个数最大为:(2×5﹣2.2×3)÷2=(10﹣6.6)÷2=3.4÷2=1.7;所以第一个数减第五个数的差最小是:2.2﹣1.7=0.5.答:第一个数减第五个数的差最小是0.5.故答案为:0.5.点评:解答此题的关键是:根据中间的数是2.2和平均数是2,判断出第一个数最小为2.2,第五个数最大为1.7.14.36【解析】试题分析:根据两个长方形和一个正方形拼成的是一个大正方形,可知这两个长方形的宽相等,用9平方厘米减去6.75平方厘米,得到的面积就是以长方形的宽为边长的小正方形的面积,据此可求出长方形的宽,再而可求出长方形的长,这样就能求出大正方形的边长,根据正方形的面积公式可求出大正方形的面积.解:9﹣6.75=2.25(平方厘米)2.25=1.5×1.5,所以长方形的宽是1.5米.6.75÷1.5=4.5(米)1.5+4.5=6(米)6×6=36(平方米)答:大正方形的面积是36平方米.故答案为:36.点评:本题主要考查了学生对长方形和正方形面积公式的灵活掌握情况.15.2116.【解析】试题分析:根据题意可以得到规律:个位数结果为个位数,十位数结果为十位数×个位数,百位数为百位数×个位数.据此规律解决此题即可.解:f(1)+f(2)+f(3)+…+f(99)+f(100)=(1+2+3…+9)+1×(1+2+3…+9)+2×(1+2+3…+9)+3×(1+2+3…+9)+…+9×(1+2+3…+9)+(1+2+3…+9+1)=(1+2+3…+9)×(1+1+2+3…+9)+46=45×46+46=2116.故答案为:2116.点评:本题考查了数字变化类问题,解题的关键是仔细地观察题目并从中总结规律,利用总结的规律进行计算即可.16.(1)450不可用;(2)225可以,这十个数是:18,19,20,21,22,23,24,25,26,27.【解析】试题分析:先分别求出450和225的平均数,进而求出这十个数的中间两个数的和,和如果是奇数,则可以写成l0个连续自然数之和,和是偶数,则不能写成l0个连续自然数之和.解:(1)450÷10=4545×2=9090不能为两个连续自然数的和.所以450不可以.(2)225÷10=22.522.5×2=45所以这十个数的中间两个是22,23所以这十个数是:18,19,20,21,22,23,24,25,26,27.点评:关键是求出所给数的平均数,进而求出这十个数的中间两个数的和,再根据中间两个数的和进行判断.17.45.16立方米;133.68平方米【解析】试题分析:由题意可知:剩下部分的体积等于正方体的体积减去6个小圆柱的体积,剩下部分的表面积等于正方体的表面积加上6个小圆柱的侧面积,根据正方体的体积公式:v=a3,圆柱的体积公式:v=sh,圆柱的侧面积公式:s=ch,把数据代入公式解答即可.解:4×4×4﹣3.14×12×1×6=64﹣18.84=45.16(立方米);4×4×6+2×3.14×1×1×6=96+37.68=133.68(平方米);答:剩下的几何体的体积是45.16立方米、表面积是133.68平方米.点评:此题主要考查了学生的空间相象能力,以及正方体、圆柱的体积公式、圆柱的侧面积公式的灵活运用.18.23吨【解析】试题分析:因为第一次是第二次的两倍,所以两次运走的机器的重量和应该是3的倍数,由于全部机器的重量为18+19+…+34=245,245÷3=81…2,所以剩下的那台机器重量应该除以3余2,这一堆数里就23除3余2,因此剩下的机器重量是23吨.解:由题意可知,两次运走的机器的重量和应该是3的倍数,又18+19+…+34=245,245÷3=81…2,经验证:这一堆数里只有23除以3余2,因此剩下的机器重量是23吨.答:剩下的这台机器的重量是23吨.点评:明确全部机器重量除以3的余数即是剩下这台机器除以3的余数是完成本题的关键.19.平方米【解析】试题分析:因为==,所以可得EC=FC,因为正方形的边长是1米,所以EC=FC=米,则三角形DCF和三角形BCE的面积相等,减去公共部分四边形ECFG的面积,则空白处的两个小三角形的面积也相等,连接CG,根据高一定时,三角形的面积与底成正比例的性质可得:三角形EGC的面积=三角形DEG的面积的2倍,三角形FGC的面积=三角形BGF 的面积的2倍,那么三角形EGC与三角形FGC的面积相等,所以三角形DEG的面积=×三角形DCF的面积,则空白处就是三角形DEG的面积的6倍,据此求出空白处的面积,再用正方形的面积减去空白处的面积即可.解:因为==,正方形的边长是1米,所以EC=FC=米,连接CG,三角形FGC的面积=三角形BGF的面积的2倍,三角形EGC的面积=三角形DGE的面积的2倍,那么三角形EGC与三角形FGC的面积相等,所以三角形DEG的面积=×三角形DCF的面积=×1×÷2=(平方米)则空白处就是×6=(平方米)1×1﹣=1﹣=(平方米)答:阴影部分的面积是平方米.点评:此题考查了高一定时,三角形的面积与底成正比例的性质的灵活应用,有点难度.。
厦门5小升初数学综合测试卷及参考答案
小升初数学综合模拟试卷一、填空题:2.某单位举办迎春会,买来5箱同样重的苹果,从每箱取出24千克苹果后,结果各箱所剩的苹果重量的和恰好等于原来一箱的重量,那么原来每箱苹果重_______千克.3.有5分、1角、5角、1元的硬币各一枚,一共可以组成______种不同的币值.4.有500人报考的入学考试,录取了100人,录取者的平均成绩与未录取者的平均成绩相差42分,全体考生的平均成绩是51分,录取分数线比录取者的平均分少14.6分,那么录取分数线为______.5.A、B、C、D分别代表四个不同的数字,依下列除式代入计算:结果余数都是4,如果B=7,C=1,那么A×D=_______.6.某校师生为贫困地区捐款1995元,这个学校共有35名教师,14个教学班,各班学生人数相同且多于30人,不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款______元.7.数一数,图中包含小红旗的长方形有______个.8.在3时与4时之间,时针与分针在______分处重合.一昼夜24小时,时针与分针重合______次.9.如图,大长方形的面积是小于200的整数,它的内部有三个边长是10.将自然数按如下顺序排列:在这样的排列下,9排在第三行第二列,那么1997排在第______行第______列.二、解答题:1.计算:2.5个工人加工735个零件,2天加工了135个,已知2天中有1人因事请假1天,照这样的工作效率,如果以后几天无人请假,还要多少天才能完成任务?3.老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,4.甲、乙在椭圆形跑道上训练,同时从同一地点出发反向而跑,每人跑完第一圈回到出发点立即回头加速跑第二圈.跑第一圈时,乙的速度是甲条椭圆形跑道长多少米?答案一、填空题:2.30.根据题设可知,5箱苹果中共取出(24×5=)120千克,相当于原来4箱苹果的重量,所以每箱苹果重(120÷4=)30千克.3.15.分类计算:从4枚硬币中任取一枚,有4种取法;从4枚硬币中任取二枚,有6种取法;从4枚硬币中任取三枚,有4种取法;从4枚硬币中取4枚,有1种取法,所以共有(4+6+4+1=)15种取法.4.70分.(1)录取者总成绩比未录取者总成绩多多少分?42×100=4200(分)(2)未录取者平均分是多少分?51-4200÷500=42.6(分)(3)录取分数线是多少分?(42.6+42)-14.6=70(分)5.45.验证其余四个算式均满足条件,所以A×D=45.6.3因为1995=3×5×7×19.平均每人捐款钱数定是1995的一个约数.经试验可知,只有3满足条件,此时每个教学班人数为(1995÷3-35)÷14=45(人).7.48.(1)在小红旗所在的竖行中,按照由1个、2个、3个、4个小长方形所组成的长方形的顺序去计算,包含小红旗的长方形共有1+2+2+1=6(个)(2)在小红旗所在的横行中,按照由1个、2个、3个、4个、5个小长方形所组成的长方形的顺序去计算,包含小红旗的长方形共有1+2+2+2+1=8(个)所以包含小红旗的长方形共有从3时开始计算,时针与分针重合需要24小时重合次数:9.53.因为三个正方形的边长是整数,所以长方形的长和宽也是整数.因此长方形的长是16的倍数,长方形的宽是4的倍数.当长是16时,正方形②的边长为16-7=9,所以长方形的宽是大于9且是4的倍数.故宽至少是12.因为长×宽<200,且6×12=192,所以只能是长为16,宽为12.S阴=192-9×9-7×7-3×3=53.10.44;20.先将原图形变形成下图:观察新旧图形发现,新图形中每行从右往左数,第i个位于原图形的第i行.新图形中每行从左往右数,第j个位于原图形的第j列,且第n行左数第1个是(1+n)×n÷2.下面找出1997所在的行数.因为63×62÷2=1953,所以1997在第63行.第62行左数第一个数是1953,第63行左数第一个数是(1953+63=)2016.根据1997-1953=44和2016-1997+1=20,可知1997在第44行第20列.二、解答题:2.8天.(1)1个工人每天可加工多少零件?135÷(5×2-1)=15(个)(2)还需要几天完成?(735-135)÷5÷15=8(天)3.22.+13+14=105,178-105=73>14,不符合条件.所以378-356=22为擦掉的数字.4.400米.设跑道的长为1,甲跑第一圈时的速度为1.(1)甲、乙第一次相遇时,甲跑离起点多远?(2)当甲回到起点时,乙离起点还有多远?(3)当乙回到起点时,甲又跑离起点多远?(4)当乙又跑离起点时,何时与甲相遇?(5)第二次相遇时,乙跑离起点多远?(6)跑道的长度是多少米?小升初数学综合模拟试卷一、填空题:1.在□里填上适当的数,使等式成立73.06-□×(2.357+7.643)-42.06=13则□=______.2.如图,图中包含“★”的大、小三角形共有______个.3.如果买6根铅笔的价钱等于买5块橡皮的价钱,而买6块橡皮要比买5根铅笔多花1.1元,则一根铅笔______元,一块橡皮______元.4.两个人做移火柴棍游戏.比赛规则是:两人从一堆火柴中可轮流移走1至5根火柴,但不可以不取,直到移完为止,谁最后移走火柴就算谁赢.如果开始有55根火柴,首先移火柴的人在第一次移走______根时才能在游戏中保证获胜.5.把整数部分是0,循环节是3的纯循环小数化成最简分数后,如果分母是一个两位数,那么这样的最简分数有______个.6.如图,直角梯形ABCD的上底是5厘米,下底是7厘米,高是4厘米,且三角形ADE、ABF和四边形AECF的面积相等,则三角形AEF的面积是______.7.用5、6、7、8这四个数可以组成许多没有重复数字的四位数,所有这些四位数的和是______.8.如图,五个圆相交后被分成了九个区域,现在两个区域里已分别填上数字15、16,请在另外七个区域里分别填进2,3,4,5,7,8,9这七个数字,使每个圆内的数字和是20.9.三个连续偶数的积是8□□□8,这三个偶数的平均数是______.10.七位数436□75□的末位数字是______的时候,千位数字不管是0到9中的任何一个数字,这个七位数都不是11的倍数.二、解答题:1.在6个塑料袋里放着同样块数的糖,如果从每个袋里拿出80块糖,则6个袋里剩下的糖相当于原来2个袋里的糖数,求每个袋里原有多少块糖?2.有一个200米的环形跑道,甲、乙两人同时从同一地点同方向出发.甲以每秒0.8米的速度步行,乙以每秒2.4米的速度跑步,乙在第2次追上甲时用了多少秒?3.某班有46人,其中有40人会骑车,38人会打乒乓球,35人会打羽毛球,27个人会游泳,则这个班至少有多少人以上四项运动都会?数线高6分,没被录取的学生的平均分比录取分数线低24分,所有考生的平均成绩是60分,那么录取分数线是多少分?答案一、填空题:1.1.8□×(2.357+7.643)=73.06-42.06-13□×10=18□=1.82.10把包含“★”的三角形按三角形的个数进行分类计数:(1)由一个三角形组成的有1个;(2)由二个三角形组成的有2个;(3)由三个三角形组成的有1个;(4)由四个三角形组成的有2个;(5)由五个以上三角形组成的有4个;共有 1+ 2+ 1 + 2+ 4= 10(个)3.一根铅笔0.5元,一块橡皮0.6元.设一块橡皮的价钱看作单位1,那么一根铅笔的价钱相当于一块橡皮的一根铅笔是4.1根据游戏规则,先移火柴的人要想获胜,要设法最后只留下6根给对方,55-6=49,因此他应移走第49根才能获胜.同理为了移走第49根他必须移走第43根,依次类推他应移走第37根、第31根、第25根、…,这些数除以6余数均为1,因此首先移火柴的人在第1次应该移走1根,以后游戏过程中他只要保证两人每次共移走6根,就必能在游戏中获胜.5.54因为循环节是3的纯循环小数,化成分数后分母是999.999=3×3×3×37由于这个分数化简后分母是两位数,所以这个两位数是27或37.如果是27,分子只能是与27互质的数,即分子不是3的倍数,又因为纯循环小数的整数部分是0,因此分子必然小于分母,在1到26的自然数中,3的倍数有8个,所以分母是27的最简真分数有26-8=18个;如果分母是37,由于37是质数,所以1到36的任意一个数都与37互质,因此分母是37的最简真分数有36个,符合条件的所有最简分数共有:18+36=54(个)6.6.8平方厘米S梯形ABCD=(5+7)×4÷2=24(平方厘米)S△ADE=S△ABF=S四边形AECF=24÷3=8(平方厘米)在三角形ADE中,S△ADE=DE×4÷2DE=8×2÷4=4(厘米), EC=7-4=3(厘米)在三角形ABF中,S△ABF=5×BF÷2BF=8×2÷5=3.2(厘米),FC=4-3.2=0.8(厘米)所以S△EFC=3 × 0.8÷2=1.2(平方厘米)S△AEF=8-S△EFC=8-1.2=6.8(平方厘米)7.173316由5、6、7、8组成没有重复数字的四位数,千位有4种选法,百位有3种选法,十位有2种选法,个位只有1种选法,共可以组成4×3×2×1=24(个)不同的四位数.在这24个数里个位是5、6、7、8各有6个,十位是5、6、7、8各有6个,百位是5、6、7、8 各有6个,千位是5、6、7、8各有6个.6个5,6个6,6个7,6个8的和是:(5+6+7+8)×6=156,即,这24个数的个、十、百、千的各个数字和都是156,所以这24个数的和是156个1,156个10,156个100,156个1000的总和,所以156×(1+10+100+1000)=173316.8.如图.由题意先填4、5.题目要填的全部9个数之和是:2+3+4+5+7+8+9+15+16=69而5个圆内数的总和20×5=100,由100-69=31知圆的4个重叠部分的4个数字和是31,已知其中两个分别是4、15,另两个之和是31-4-15=12,已知数中3+9=4+8=5+7=12,由于4、5已用过,只能是3和9,并且3填入含15的圆内,这样其它几个数很容易填出.9.44三个连续偶数的积的末尾数是8,由0、2、4、6、8中找出三个连续偶数,积的个位是8,只有2×4×6的结果满足条件,因此这三个连续偶数的个位分别是2、4、6.由于积是五位数,这三个偶数必是两位数,又由于最高位是8,所以两位数的十位数字是4,这是因为,40×40×40=64000,50×50×50=12500064000<8□□□8<125000因此这三个偶数依次是42、44、46,它们的平均数是44.10.这个七位数的末位数字是1倍数,则4+6+7+y的和与3+x+5的和之差为0或11的倍数。
2011年数学小升初数学模拟试卷附答案[1]
六年级数学升学模拟试卷(满分120分)一、认真思考,对号入座(20分,每空1分)1、3∶()= ()20=24÷()=()%= 六成2、目前,我国香港地区的总面积是十亿五千二百万平方米,改写成“万”作单位的数写作()平方米,省略“亿”后面的尾数约是()平方米。
3、a与b是相邻的两个非零自然数,它们的最大公约数是(),最小公倍数是()。
4、如果=y,那么x与y成()比例,如果=y,那么x和y成()比例。
5、甲数是150,乙数比甲数多15%,丙数比乙数少20%,丙数是()。
6、一张精密零件图纸的比例尺是5∶1,在图纸上量得某个零件的长度是25毫米,这个零件的实际长度是()。
7、某药店经营的抗病毒药品,在市场紧缺的情况下提价100%,物价部门查处后,限定其提价的幅度只能是原价的10%,则该药品现在需降价()%。
8、一个圆扩大后,面积比原来多8倍,周长比原来多50.24厘米,这个圆原来的面积是()平方厘米。
9、一根木料,锯成4段要付费1.2元,如果要锯成12段要付费()元。
10、两个高相等,底面半径之比是1∶2的圆柱与圆锥,它们的体积之比是()。
11、6千克减少13千克后是()千克,6千克减少它的13后是( )千克。
12、如图,在平行四边形中,甲的面积是36平方厘米,乙的面积是63平方厘米,则丙的面积是()平方厘米。
13、用8个棱长1厘米的立方体拼成一个长方体,其中表面积最大的与最小的相差()平方厘米。
二、反复比较,择优录取。
(10%)1、一根绳子分成两段,第一段长米,第二段占全长的,比较两段绳子的长度是( )。
A、第一段长B、第二段长C、一样长D、无法比较2、一个真分数的分子和分母同时加上同一个非零自然数,得到的分数值一定()。
A、与原分数相等B、比原分数大C、比原分数小D、无法确定3、a、b和c是三个非零自然数,在a=b×c中,能够成立的说法是()。
A、b和c是互质数B、b和c都是a的质因数C、b和c都是a的约数D、b一定是c的倍数4、把一段圆柱形的木料削成一个体积最大的圆锥,削去部分的体积是圆锥体积的()。
2011年小升初数学综合模拟试卷(三)及答案
2011年小升初系列数学综合模拟试卷三班级 姓名 成绩一、 填空题(每题4分)。
1、=++++20032002200332003220031 。
2、将五个数4930,3320,2315,1912,1710按从小到大的顺序排列,最大的数是 。
3、二月份的一个星期日,有三批学生看望老师,这三批学生的人数不等,且没有单独一人看望老师的,这三批学生的人数的积恰好等于这一天的日期数,那么二月一日是星期 。
4、家禽场里鸡、鸭、鹅三种家禽中的公禽与母禽数量之比是2:3,已知鸡、鸭、鹅数量之比是8:7:5,公、母鸡数量之比是1:3,公、母鸭数量之比是3:4。
公、母鹅数量之比是 。
5、在钟面上7点多的时候,时针与分针成直线和重合的时刻分别是 成直线; 重合。
6、右图中圆的面积等于长方形面积, 圆的周长是16.4厘米,那么图中阴影部分的周长是 厘米。
7、甲、乙都是两位数,将甲的十位数与个位数对调得丙(甲≠丙),将乙的十位数与个位数对调得丁(乙≠丁),甲、乙、丙、丁都是偶数。
丙和丁的乘积等于甲和乙的乘积,则甲、乙两数之和是 。
8、把一个棱长是3厘米的正方体分割成若干个小的正方体,这些小正方体的棱长必须是整厘米数。
如果这些小正方体的体积不要求都相等,那么最少可以分割成 块。
9、半圆及其直径上共有12个点(下图),以这些点为顶点可画出 个三角形。
B CD EFGHIJ K LA10、今年爸爸43岁,三个儿子分别是14、11、6岁。
年后,爸爸的年龄恰好等于三个儿子年龄之和。
二、应用题(每题15分)。
1、如图1,一个闹钟内圆的面积是30平方厘米,阴影部分的积是多少平方厘米?2、高丽营第二小学举行《迎春》环保知识大赛,一共有100名男、女选手参加初赛。
经过初赛、复赛,最后确定了参加决赛的人选。
已知参加决赛的男选手的人数,占初赛的男选手人数的20%;参加决赛的女选手的人数,占初赛的女选手人数的12.5%,而且比参加决赛的男选手的人数多。
名校小升初数学模拟试题及答案六篇
小升初模拟试卷(一)时间:80分钟姓名分数一填空题(6分×10=60分)1.是的因数,自然数最大可以是。
2.恰好有两位数字相同的三位数共有个。
3.有许多边长是3 cm,2 cm,1 cm的正方形纸板.用这些正方形纸板拼成一个长5 cm,宽3 cm的长方形,一共有种不同的拼法。
(通过翻转能相互得到的拼法算一种拼法)4.某厂计划全年完成1600万元产值,上半年完成了全年计划的,下半年比上半年多完成,这样全年产值可超过计划吨。
5.一件工程甲单独做要6小时完成,乙单独做要10小时完成,如果按照甲、乙、甲、乙……顺序交替工作,每次工作1小时,那么要分钟才能完成。
6.一个数的20倍减去1能被153整除,这样的自然数中最小的是________。
7.有一个长方体,长、宽、高都是整厘米数。
它的相邻三个面的面积分别是96平方厘米,40平方厘米和60平方厘米。
这个长方体的体积是立方厘米。
8.某校2001年的学生人数是个完全平方数,2002年的学生人数比上一年多101人,这个数字也是一个完全平方数。
该校2002年的学生人数是_______。
9.一个铁路工人在路基下原地不动,一列火车从他身边驶过用了40秒,如果这个工人以每小时6千米的速度迎着火车开来的方向行走,则这列火车从他身边驶过只用37。
5秒,则这列火车每小时行千米。
10.假设某星球的一天只有6小时,每小时36分钟,那么3点18分时,时针和分针所形成的锐角是度。
二解答题(10分×4=40分)1.正义路小学共有1000名学生,为支援“希望工程”,同学们纷纷捐书,有一半男生每人捐了9本书,另一半男生每人捐了5本书;一半女生每人捐了8本书,另一半女生每人捐了6本书。
全校学生共捐了多少本书?2.在A医院,甲种药有20人接受试验,结果6人有效;乙种药有10人接受试验,结果只有2人有效.在B医院,甲种药有80人接受试验,结果40人有效;乙种药有990人接受试验,结果有478人有效。
小升初数学模拟试卷(附答案解析)
小升初数学模拟试卷(附答案解析)一、填空题。
(每题2分,共24分)1.某次地震,我国有关接收机构共接收国内外社会各界捐赠款物139.25亿元.改写成用元作单位的数写作元,省略亿位后面的尾数约亿元.2.0.75=÷=9:=%3.第24届冬奥会今年在我国北京举办,按每4年举办一次,那么第40届冬奥会应在年举办。
4.把0.25、125%、、2.5按从大到小的顺序排列:.5.2.4:化成最简整数比是,比值是。
6.一辆汽车以每小时50千米的速度从甲地开往乙地,走了t小时,离乙地还有a千米.用式子表示甲乙两地的距离千米.7.在比例尺为1:2000000的广东地图上,量得港城到广州的距离为23厘米,则港城到广州的实际距离有千米。
8.一个三角形的三个内角的比是1:2:3,其中大角的度数是.9.一只挂钟的时针长5cm,分针长8cm.从上午9时到12时,分针的尖端走了厘米,时针扫过的面积是平方厘米.10.一个长方体,一个圆柱和一个圆锥,它们的底面积和体积分别相等,如果长方体的高是3厘米,圆柱的高是厘米,圆锥的高是厘米。
11.甲2小时做14个零件,乙做一个零件小时,丙每小时做8个零件,这三个人中工作效率最高的是。
12.我们知道对于糖水来说,如果再往糖水中加入一些糖,它将变得更甜,你能结合这个事实,说明,(填“>”、“<”或“=”;b>a>0)二、火眼金睛,细心判断。
(对的打“√”,错的打“×”)(共6分)13.教室的面积一定,所需方砖的块数与每块方砖的面积成正比例。
14.一次捐款救灾活动中,某班人平均捐款16元,这个班不可能出现捐款50元的人。
15.六年级5个班进行篮球比赛,每两个班都要赛一场,一共要赛10场。
16.气温﹣17℃〜10℃是冬奥会的最理想温度,最低温度与最高温度相差7℃。
17.100个零件中有5个不合格,合格率为95%。
18.用2cm、3cm、5cm长的三根小棒可以围成一个三角形..三、静心分辨,精挑细选。
六年级数学小升初模拟卷(附答案)
小升初全真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________一.填空题(共15小题)1.如图,将两个三角形拼在一起,∠1=55°,那么∠2=°.2.4个边长是10厘米的正方形,首尾相接拼成一个长方形成一个正方形,拼成的长方形周长比正方形周长长厘米.3.小明和小红用边长1厘米的小正方形纸片做拼图游戏,如图是他们拼出来的图形.拼的图形周长短一些,是厘米.4.如图,∠1+∠2=135°,那么∠2=°,∠3=°.5.一个平行四边形,如图所示,它的面积是米2.6.如图,春光小学的伸缩门应用了平行四边形的特点.7.下面是某小学各年级参加学校运动会的报名情况统计表.一年级二年级三年级四年级五年级六年级年级/人数/性别男生223337484735女生263325424450(1)年级的男生参加运动会的人数最多.(2)年级的女生参加运动会的人数最多.(3)年级参加运动会的人数最多,是人.8.红红收集了自己班级女生1分钟仰卧起坐的成绩(如表).序号成绩/个序号成绩/个序号成绩/个序号成绩/个142433735103423852883211253196499361240成绩在40个或40个以上为优秀,21个以下为不合格.这个班级女生有人的成绩达到优秀,有人不合格,最好成绩和最差成绩相差个.9.学生标准体重的估算方法是:体重=年龄×3﹣2(单位:千克).《学生体质健康标准》体重等级评价表实际体重比标准体重轻(重)轻6kg以上轻4~6kg轻3kg~重3kg重4~6kg重6kg以上等级营养不良偏瘦正常偏胖肥胖刘涛今年13岁,体重43千克,他的标准体重应该是千克.刘涛超过标准体重千克,他属于级别,应该.10.口袋里有6个黑球和4个白球.(如图)(1)从中任意摸一个球,摸到球的可能性大.(2)再增加个球,摸到两种球的可能性相同.11.三个连续偶数的平均数是28.那么这三个连续偶数分别是,..12.三个和尚去河边打一桶水,他们轮流把一桶水抬到距离河边450米的寺庙里,平均每人要抬 米.(每次需2人一起抬)13.在一条长990米的绿荫大道的一侧,从头至尾等距离的共竖了10根电线杆(两端都有),每相邻两根电线杆之间的距离是 米.14.3÷11的商是 小数,用简便方法表示为 ,保留一位小数约是 . 15.在1.38457…,23.465,9.166…,5.2中, 是有限小数, 是无限小数, 是循环小数. 二.选择题(共8小题)16.已知A=a ×b ×c(a 、b 、c 为不同的质数),那么A 的因数共有( )个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
场,最少得4分,又C队名次在D队之后,所以D队得5分,C队得4分。由
D对得5分,且负B队,平A、C队,推知D队胜E队;又E队负B队,平A、C
队,所以E队得2分。各队相互比赛得分情况见下表:
A
B
C
D
E 总分
A
3
1
1
1
6
B
0
1
3
3
7
C
1
1
1
1
4
D
1
0
1
3
5
E
1
0
1
0
2
4、雨水注满这些容器各需1、3、3、1.5、2小时。
二、应用题(每题15分)。
年后,爸爸的年
1、 如图1,一个闹钟内圆的面积是30平方厘米,阴影部分的积是多 少平方厘米?
2、高丽营第二小学举行《迎春》环保知识大赛,一共有100名男、女选 手参加初赛。经过初赛、复赛,最后确定了参加决赛的人选。已知参 加决赛的男选手的人数,占初赛的男选手人数的20%;参加决赛的女选 手的人数,占初赛的女选手人数的12.5%,而且比参加决赛的男选手的 人数多。参加决赛的男、女选手各有多少人?
提示:今年爸爸的年龄比三个儿子的年龄和大 43-(14+11+6)=12(岁),每过一年,爸爸增长1岁,三个儿子 共增长3岁,所以所求时间为12÷(3-1)=6(年)。
二、应用题。 1、 阴影面积为15平方厘米。
分析与解答:阴影部分是由三个完全一样的小阴影组成,我们只考虑其 中一个的面积。
在图2中:Ⅱ+ Ⅳ=
3、A、B、C、D、E五个足球队两两各赛一场,胜一场得3分,负一场得0 分,平一场两队各得1分。十场球赛完后,五个队的得分各不相同。A 队未败一场,且打败了B队,可B队得了冠军;C队也未败一场,名次却 在D队之后。求E队得了多少分?
4、雨哗哗地不停地下着。如在雨地里放一个如图1那样的长方体的容 器,雨水将它注满要用1小时。有下列A—E五个不同的容器(如图 2),雨水注满这些容器各需多长时间?(阴影部分为接雨面) 图1
2011年小升初系列数学综合模拟试卷三
班级
姓名
成绩
1、 填空题(每题4分)。 1、
。 2、将五个数
按从小到大的顺序排列,最大的数是
。
3、二月份的一个星期日,有三批学生看望老师,这三批学生的人数不
等,且没有单独一人看望老师的,这三批学生的人数的积恰好等于这
一天的日期数,那么二月一日是星期
。
4、家禽场里鸡、鸭、鹅三种家禽中的公禽与母禽数量之比是2:3,已知
分析与解:这道题可以利用不定方程的知识解答。
由于参加决赛的男选手的人数,占初赛的男选手人数的20%;参加决赛
的女选手的人数,占初赛时女选手人数的12.5%,所以参加初赛的男选
手应是5的倍数,参加初赛的女选手应是8的倍数。
设参加初赛的男生为5x人,参加初赛的女生为8y人。
根据题意可列方程 5x+8y=100
分析与解:题中“雨哗哗地不停地下着”这一条件,也可以理解 为雨均匀地下。(这与日常生活中的降雨略有不同,生活中降雨可能 会时大时小,并不均匀。)雨水从敞口部分垂直落入到容器内,我们 就可以把“敞开面”(即图中所示的阴影面)叫做“接雨面”。图中 所示的长方体容器,“接雨面”与底面大小相同,雨水将它下满需要 1小时,也就是说1小时后该容器内雨水的深度是10cm。如果容器的高 度不止10cm,而是无限的,那么2小时后容器内雨水的深度将会是 20cm,以后每过1小时雨水的深度就会增加10cm;如果在长方体容器 中垂直放入一个很薄的挡板(其厚度忽略不计),将大容器分成两个 小容器(如图所示)。小容器的“接雨面”变小了,但每个小容器 的“接雨面”与底面大小仍然相同。那么1小 时后,每个小容器内雨 水的深度还是10cm。(因为忽略了挡板的厚度,它不占原来长方体容 器的容积。)通过上述分析与假设,我们可得出如下结论:只要容器 的“接雨面”与底面大小相同,1小时后容器内雨水的深度就是 10cm。
x=12
x=4
解得 y=5
或 y=10
又因为参加决赛的女选手的人数,比参加决赛的男选手的人数
多。所以x=12 、 y=5 不成立;那么只能是 x=4、y=10。
3、E队得了2分。
分析与解:B队负A队,平C队,最多得7分;A队不可能胜2场,否
则分将高于B队,所以A队胜B队,其余三场都平,得6分;C队未负一
提示:根据题意设甲为ab,乙为cd,丙为ba,丁为dc。由于甲、乙
两数的数字全是偶数,所以这两个数的各位数字只能从2、4、6、8四
个数中选择。甲、乙、丙、丁只能是:24、26、28、42、46、48、
62、64、68、82、84、86中的数。把这些数分解质因数,得到:
24=2×2×2×3 42=2×3×7
鸡、鸭、鹅数量之比是8:7:5,公、母鸡数量之比是1:3,公、母鸭数量
之比是3:4。公、母鹅数量之比是
。
5、在钟面上7点多的时候,时针与分针成直线和重合的时刻分别是
成直线;
重合。
6、右图中圆的面积等于长方形面积,
圆的周长是16.4厘米,那么图中
阴影部分的周长是 厘米。
7、甲、乙都是两位数,将甲的十位数与个位数对调得丙(甲≠丙),将 乙的十位数与个位数对调得丁(乙≠丁),甲、乙、丙、丁都是偶
数。丙和丁的乘积等于甲和乙的乘积,则甲、乙两数之和是
。
8、把一个棱长是3厘米的正方体分割成若干个小的正方体,这些小正方
体的棱长必须是整厘米数。如果这些小正方体的体积不要求都相等,
那么最少可以分割成
块。
9、半圆及其直径上共有12个点(下图),以这些点为顶点可画出 个
三角形。
10、今年爸爸43岁,三个儿子分别是14、11、6岁。 龄恰好等于三个儿子年龄之和。
内圆的面积; Ⅰ+小阴影+Ⅲ=
内圆的面积; 又因为:Ⅰ=Ⅱ;Ⅲ=Ⅳ, 所以Ⅰ+Ⅲ=Ⅱ+Ⅳ=
内圆的面积。 那么小阴影面积=
内圆的面积-
内圆的面积=
内圆的面积。 原题中阴影部分的面积为
×3=
内圆的面积,闹钟内圆的面积是30平方厘米,所以阴影面积为30×
=15(平方厘米)。
2、参加决赛的男选手为4人,女选手的为10人。
)=
。 6、20.5厘米。
提示:设圆的半径为r,则圆的面积为
,那么长方形的面积也是
,因为长方形的宽正好是圆的半径,所以,AB=
,BC= r,CD=
-r,又因为弧AD的长为16.4÷4=4.1,所以阴影部分的周长为:
+r+
-r+4.1=2
+4.1=16.4+4.1=20.5(厘米)。
7、甲、乙两数之和是24+84=108或42+48=90。
根据结论,观察图2所示的五种容器。其中A、B、E三种容器的“接 雨面”与底面大小相同。
A容器高10cm,雨水下满该容器需要1小时; B容器高30cm,雨水下满该容器需要3小时;E容器高20cm,雨水下 满该容器需要2小时。 剩下C、D两种容器,它们的“接雨面”与底面大小不同,可先将其 转化为“接雨面”与底面大小相同的容器(如图所示)。此时,C容器 的高变为30cm,雨水下满需3小时;D容器的高变为15cm,雨水下满需 1.5小时。
A B C D E
图2
一、填空题。 1、1001。 提示:
ቤተ መጻሕፍቲ ባይዱ
参考答案
。 2、
。 提示:将分子换成相同的数,分子的最小公倍数是60,给出的5个
分数依次等于
。分子相同,分母越小,分数越大,最大的是
,即
。 3、星期五。
提示:因为二月份的天数不超过29天,而3个大于1的不同整数的 积不超过29,只能是2,3,4,所以看望老师这天是 2×3×4=24(号)。由2月24日是星期日,推知二月一日是星期五。 4、3:2。 提示:公鸡为
,母鸡为
; 公鸭为
,母鸭为
; 公鹅为
,母鹅为
, 公、母鹅数量之比为
:
=3:2。 5、7点
分成直线,7点
分重合。 提示:利用追及问题,把钟面分成60个小格。设分针的速度是1,
时针的速度是
。要想成直线,分针应追上时针5个小格,追及时间为5÷(1-
)=
。要想重合,分针应追上时针35个小格,追及时间为35÷(1-
8、最少分割成20个。
提示:由于大正方体的棱长是3厘米, 所以分割成的小正方体的棱长只能是 2厘米或1厘米。 如图,分割成1个棱长是2厘米的正 方体,其余的分割成棱长是1厘米的 小正方体,这是符合题目要求的
情况,所以最少分割成:1+(33-23)÷13=20个。 9、一共有三角形210个。
提示:可以从整体考虑,一共有12个点,第一个点有12种选择, 第二个点有11种选择,第三个点有10种选择,并且每个点重复选择了6 次,(例如:FGH是一个三角形,还有FHG、GFH、GHF、HGF、HFG)。 所以有12×11×10÷6=220种选法,其中三个点都在直径上的有: 5×4×3÷6=10种选法,这10种选法选出的三个点不能画出三角形。那 么,一共有三角形 220-10=210个。 10、6年后。
26=2×13
62=2×31
28=22×7
82=2×41
46=2×23
64=26
48=24×3
84=22×3×7
68=22×17
86=2×43
经过筛选,甲、乙、丙、丁四个数的范围是:24、42、48、84。组
合后得到:
甲×乙=24×84,丙×丁=42×48或甲×乙=42×48,丙×丁=24×84
所以,甲、乙两数之和是24+84=108或42+48=90。