离子交换树脂原理
离子交换树脂工作原理
离子交换树脂工作原理离子交换树脂是一种吸附介质,它能够通过交换其固定的离子与溶液中的离子达到去除或吸附某些成分的目的。
其工作原理可以分为吸附、解吸和再生三个过程。
1. 吸附:当溶液通过离子交换树脂时,树脂中固定的离子会与溶液中的离子发生交换反应,树脂上的固定离子释放到溶液中,而溶液中的离子则附着在树脂上。
这个过程可以选择性地去除特定的离子或分子,使溶液中的成分得到富集或去除。
2. 解吸:当树脂吸附达到一定饱和度后,需要对树脂进行解吸,即从树脂上去除吸附的离子或分子。
可以通过改变溶液的性质,如改变酸碱度、浓度等,使溶液中的离子与树脂上的固定离子交换,使树脂上的离子释放到溶液中,达到解吸的目的。
3. 再生:树脂在多次使用后会逐渐失去吸附能力,此时需要对树脂进行再生。
再生的方法有多种,常见的包括用盐水洗涤、用酸或碱洗涤等。
通过这些方法,可以将吸附在树脂上的离子彻底去除,使树脂恢复到初始状态,再次用于吸附过程。
综上所述,离子交换树脂通过固定离子与溶液中的离子交换,达到去除或吸附特定成分的目的。
通过解吸和再生,树脂可以多次使用,提高了其经济性和可持续性。
继续:离子交换树脂的工作原理可以进一步细分为两个方面:固定相和移动相。
1. 固定相:离子交换树脂的固定相是树脂内部的交联聚合物。
交联聚合物中含有特定的离子基团,如偶氮树脂中的-NH2基团或阴离子树脂中的-RSO3H基团,这些基团会与溶液中的离子交换。
2. 移动相:溶液中的离子是离子交换树脂工作的移动相。
当溶液从树脂上流经时,其中的离子会与树脂上的固定离子发生交换,并附着在树脂上。
这个过程中,离子在树脂与溶液之间交换位置,从而实现了溶液中特定成分的去除或富集。
离子交换树脂的选择性是由其固定相的種類或結構所决定的。
例如,阴离子树脂主要用于吸附溶液中的阳离子,而阳离子树脂则用于吸附溶液中的阴离子。
此外,还有具有特定的选择性的离子交换树脂,如特异性吸附镁离子、铝离子等的树脂。
离子交换树脂的原理
离子交换树脂的原理
首先,离子交换树脂的原理基于离子交换作用。
树脂内部的功能基团能够与水中的离子发生化学反应,吸附或释放离子物质。
通常情况下,树脂上带有阳离子交换基团的被称为阴离子交换树脂,而带有阴离子交换基团的被称为阳离子交换树脂。
这些功能基团能够与水中的阳离子或阴离子发生交换,从而实现对水质的净化和离子的分离。
其次,离子交换树脂的结构对其工作原理也有着重要影响。
树脂通常呈现出多孔的结构,具有较大的比表面积,这样能够增加与水中离子物质的接触面积,提高离子交换效率。
此外,树脂的孔隙结构和孔径大小也会影响其对不同离子的吸附选择性,从而实现对水质的精确调控。
离子交换树脂在工作过程中,通常需要进行再生操作。
当树脂吸附饱和或者需要更换吸附物种时,可以通过用盐溶液或酸碱溶液进行再生,将吸附在树脂上的离子物质释放出来,使树脂重新恢复吸附能力。
这样实现了对树脂的循环利用,延长了其使用寿命。
总的来说,离子交换树脂的原理是基于树脂内部的离子交换作
用,通过树脂结构和再生操作来实现对水质的净化和离子的分离。
它具有操作简便、效果显著、经济实用等优点,在水处理、化工、制药等领域有着广泛的应用前景。
希望通过本文的介绍,能够对离子交换树脂的原理有一个更加深入的了解。
离子交换树脂的原理
离子交换树脂的原理首先,离子交换树脂的结构特点。
离子交换树脂通常是由高分子聚合物构成的,其中含有一定数量的功能基团,如硫酸基、羧基、氨基等。
这些功能基团能够与水溶液中的离子发生置换反应,从而实现对离子的吸附和分离。
离子交换树脂的结构特点决定了它具有很强的选择性吸附能力,可以根据需要选择特定的功能基团来实现对目标离子的高效吸附和分离。
其次,离子交换树脂的工作原理。
离子交换树脂的工作原理主要是离子置换反应。
当离子交换树脂与含有离子的水溶液接触时,树脂中的功能基团会与水溶液中的离子发生置换反应,树脂吸附了水溶液中的离子,同时释放出树脂中原有的离子。
这样,离子交换树脂就实现了对水溶液中离子的选择性吸附和分离。
通过控制反应条件和树脂的功能基团类型,可以实现对不同离子的高效吸附和分离。
最后,离子交换树脂的应用领域。
离子交换树脂在水处理、药物分离、金属提取等领域具有广泛的应用。
在水处理领域,离子交换树脂可以用于去除水中的重金属离子、软化水质、去除有机物等。
在药物分离领域,离子交换树脂可以用于药物的纯化和分离。
在金属提取领域,离子交换树脂可以用于金属离子的富集和分离。
离子交换树脂凭借其高效的离子交换能力和广泛的应用领域,成为了化工、环保、医药等领域中不可或缺的重要材料。
总之,离子交换树脂作为一种具有广泛应用前景的化学材料,其原理主要是利用树脂中的功能基团与水溶液中的离子发生置换反应,实现对离子的选择性吸附和分离。
离子交换树脂的结构特点、工作原理和应用领域决定了它在水处理、药物分离、金属提取等多个领域中具有重要的应用价值。
希望本文的介绍能够帮助大家更好地理解离子交换树脂的原理和应用。
离子交换树脂原理
离子交换树脂原理离子交换树脂可分为阳离子交换树脂、阴离子交换树脂和两性离子交换树脂。
它们原理如下:阳离子交换树脂原理:(1) 强酸性阳离子树脂这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。
树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。
这两个反应使树脂中的H+与溶液中的阳离子互相交换。
强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
树脂在使用一段时间后,洛阳宏昌工贸(离子交换树脂厂家)建议要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。
如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。
(2) 弱酸性阳离子树脂这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。
树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。
这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。
这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。
阴离子交换树脂原理:(1) 强碱性阴离子树脂这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。
这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂的离解性很强,在不同pH 下都能正常工作。
它用强碱(如NaOH)进行再生。
(2) 弱碱性阴离子树脂这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。
这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。
离子交换树脂污水净化原理是怎样的呢?
离子交换树脂污水净化原理是怎样的呢?什么是离子交换树脂?离子交换树脂是一种具有特殊结构的高分子化合物,它的分子结构中含有大量的可交换离子基团。
这些基团之间可以与水溶液中的离子发生交换反应,从而将水中的离子分离出来。
离子交换树脂广泛用于水处理、污水处理和工业废水处理等领域,对于实现水质净化、环境保护等具有重要的作用。
离子交换树脂的工作原理离子交换树脂的作用原理是通过吸附和交换两种基本方式来吸附并去除水中的离子。
当水经过离子交换树脂时,树脂中的可交换离子基团与水中的离子发生反应,形成离子交换作用。
通过这种作用,离子可以从水中被吸附到离子交换树脂中,从而达到净化水的目的。
吸附作用离子交换树脂中的可交换基团具有强烈的吸附能力,可以将水中的离子吸附在树脂的表面上。
吸附作用的主要方式是静电吸附和吸附作用,分别是指树脂表面上的正负离子和分子间的吸引力。
吸附作用通常是在离子交换树脂表面发生的,因此是一个非常快速的过程。
交换作用离子交换树脂中的可交换基团可以与水中的离子发生化学反应,从而实现离子交换。
交换作用的原理是必须有两个离子进入树脂同一部位才能实现,其中一个离子需要是树脂中可交换的离子,另一个则是水中的离子。
当这两个离子接触时,将会被交换,进入树脂的离子会被水中的离子替换掉,这样,水中的离子就被去除了。
离子交换树脂的应用离子交换树脂广泛应用于水处理、污水处理和工业废水处理等领域,主要用于去除水中的杂质和有机物。
离子交换树脂在水处理中的应用主要包括以下几个方面:软化水水中的钙、镁和钾等离子会导致水的硬度,而离子交换树脂可以将这些离子去除,从而达到软化水的目的。
除盐离子交换树脂可以去除水中的钠、氯等离子,从而实现去除盐的目的。
这在海水淡化中有着重要的应用。
去除有机物和色度离子交换树脂可以去除水中的有机物和色度,使水更加清澈。
总结离子交换树脂可以通过吸附和交换两种方式去除水中的离子和有机物质,从而达到净化水的目的。
离子交换树脂原理
离子交换树脂原理离子交换树脂是一种聚合物,带有相应的功能基团。
一般情况下,常规的钠离子交换树脂带有大量的钠离子。
当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基团与钙镁离子结合,这样水中的钙镁离子含量降低,水的硬度下降。
硬水就变为软水,这是软化水设备的工作过程。
当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。
由于实际工作的需要,软化水设备的标准工作流程主要包括:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。
不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。
任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。
反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。
反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。
这个过程一般需要5-15分钟左右。
吸盐(再生):即将盐水注入树脂罐体的过程,传统设备是采用盐泵将盐水注入,全自动的设备是采用专用的内置喷射器将盐水吸入(只要进水有一定的压力即可)。
在实际工作过程中,盐水以较慢的速度流过树脂的再生效果比单纯用盐水浸泡树脂的效果好,所以软化水设备都是采用盐水慢速流过树脂的方法再生,这个过程一般需要30分钟左右,实际时间受用盐量的影响。
慢冲洗(置换):在用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程中仍有大量的功能基团上的钙镁离子被钠离子交换,根据实际经验,这个过程中是再生的主要过程,所以很多人将这个过程称作置换。
离子交换树脂原理及使用方法
离子交换树脂原理及使用方法以离子交换树脂原理及使用方法为题,本文将介绍离子交换树脂的基本原理、分类、应用以及使用方法。
一、离子交换树脂的原理离子交换树脂是一种能够与溶液中的离子发生交换反应的高分子材料。
其原理基于离子交换反应,通过树脂中的功能基团与溶液中的离子发生化学反应,将溶液中的离子吸附到树脂上,并释放出与之相对应的离子。
离子交换树脂的功能基团可以是酸性基团或碱性基团,根据功能基团的不同,离子交换树脂可以分为阴离子交换树脂和阳离子交换树脂。
二、离子交换树脂的分类1. 阴离子交换树脂:阴离子交换树脂是具有具有碱性功能基团的树脂,能够吸附溶液中的阴离子。
常见的阴离子交换树脂有强碱性树脂和弱碱性树脂。
强碱性树脂通常是以季胺基或氨基作为功能基团,具有较高的离子交换容量和较强的吸附能力;弱碱性树脂则是以胺基或次胺基作为功能基团,离子交换容量和吸附能力较强碱性树脂较低。
2. 阳离子交换树脂:阳离子交换树脂是具有具有酸性功能基团的树脂,能够吸附溶液中的阳离子。
常见的阳离子交换树脂有强酸性树脂和弱酸性树脂。
强酸性树脂通常是以磺酸基或磷酸基作为功能基团,具有较高的离子交换容量和较强的吸附能力;弱酸性树脂则是以羧基或酚基作为功能基团,离子交换容量和吸附能力较强酸性树脂较低。
三、离子交换树脂的应用离子交换树脂在各个领域都有广泛的应用,主要包括水处理、制药、食品加工、环境保护等方面。
1. 水处理:离子交换树脂可用于去除水中的阳离子或阴离子,从而净化水质。
常见的应用包括软化水、去除重金属离子和放射性核素等。
2. 制药:离子交换树脂可用于药物的分离纯化、药物吸附和药物释放控制等方面。
在制药工业中,离子交换树脂广泛应用于药物的纯化和分离、药物固定化以及药物缓释等方面。
3. 食品加工:离子交换树脂可用于食品加工中的脱色、脱苦味、去除重金属离子等。
例如,可用于提取咖啡因、去除苦味物质和脱色等。
4. 环境保护:离子交换树脂可用于废水处理、废气治理和固体废物处理等方面。
离子交换树脂工作原理
离子交换树脂工作原理
离子交换树脂是一种吸附物质,其工作原理基于离子交换的原理。
离子交换树脂具有特殊的化学结构,可以吸附溶液中的离子并释放其他离子。
以下是离子交换树脂的工作原理:
1. 吸附:离子交换树脂具有一些特殊的化学基团,例如带正电荷的阳离子交换基团(如H+、Na+等)和带负电荷的阴离子
交换基团(如OH-、Cl-等)。
当带电的离子溶液通过离子交
换树脂时,离子交换基团与离子发生静电作用,使得溶液中的离子被吸附到树脂上。
2. 离子交换:当树脂上的吸附位点被饱和,树脂需要进行再生或者更新。
离子交换树脂通过与外部提供的具有更高亲和力的离子溶液接触,使吸附在树脂上的离子被替换出来。
例如,对于阴离子交换树脂,将含有更强亲和力的阴离子的溶液通入树脂床层,替换出树脂上原先吸附的阴离子。
3. 再生:当离子交换树脂的吸附位点被饱和,需要将树脂进行再生以恢复其原有的吸附性能。
再生的方法通常是通过使用更浓的盐溶液洗涤树脂,将吸附在树脂上的离子彻底去除,使树脂变得可再次使用。
离子交换树脂的工作原理可应用于多种应用领域,例如水处理、离子交换层析、电解质制备等。
通过调节树脂的交换基团和再生方法,可实现对溶液中特定离子的选择性吸附和分离。
树脂离子交换原理
树脂离子交换原理树脂离子交换是一种常用的物理化学过程,通过树脂材料上的固定离子与溶液中的离子发生交换作用,实现溶液中离子的去除或富集。
本文将详细介绍树脂离子交换的原理及其应用。
一、树脂离子交换原理树脂离子交换的原理基于树脂材料的特殊结构。
树脂是由具有交联结构的高分子化合物组成,其表面带有固定的功能基团,可以与溶液中的离子发生吸附和交换作用。
树脂材料一般为小颗粒状,具有较大的比表面积,从而增加了与溶液中离子接触的机会。
在树脂离子交换过程中,溶液中的离子与树脂上的固定离子之间发生交换作用。
树脂上的固定离子可以是正离子,也可以是负离子。
当溶液中的阳离子与树脂上的固定阴离子发生交换时,树脂释放出等量的阴离子到溶液中;当溶液中的阴离子与树脂上的固定阳离子发生交换时,树脂释放出等量的阳离子到溶液中。
这种离子交换的过程可以使溶液中的离子浓度发生变化,实现离子的去除或富集。
二、树脂离子交换的应用1. 水处理领域:树脂离子交换广泛应用于水处理领域,用于去除水中的硬度离子(如钙离子和镁离子)、重金属离子、有机物离子等。
通过选择合适的树脂材料和操作条件,可以实现对水质的净化和调控。
2. 医药制造:在医药制造过程中,树脂离子交换被用于药物分离纯化、离子交换色谱等过程。
通过树脂离子交换技术,可以实现对药物成分的纯化和分离,提高药物的纯度和质量。
3. 食品加工:树脂离子交换在食品加工中也有广泛应用。
例如,可以利用树脂离子交换去除食品中的过量盐分、金属离子和有害物质,提高食品的质量和安全性。
4. 生物技术:在生物技术领域,树脂离子交换被用于分离纯化生物大分子(如蛋白质、核酸等)。
通过树脂离子交换技术,可以实现对生物大分子的纯化、富集和分离,为后续的生物学研究和工业应用提供基础。
5. 离子交换色谱:树脂离子交换也是离子交换色谱技术的基础。
离子交换色谱是一种分离和分析离子的方法,广泛应用于环境监测、食品安全、药物分析等领域。
三、树脂离子交换的优缺点树脂离子交换具有以下优点:- 可以选择不同类型的树脂材料,适应不同的应用需求;- 操作简单,可以实现连续或间歇运行;- 成本较低,适用于大规模应用。
离子交换树脂法
离子交换树脂法离子交换树脂法是一种常用的分离纯化技术,广泛应用于工业生产、环境保护、食品加工等领域。
本文将介绍离子交换树脂法的原理、应用以及优缺点。
一、离子交换树脂法的原理离子交换树脂是一种具有离子交换能力的高分子材料,具有很强的吸附能力和选择性。
它由大量的交联聚合物组成,其中含有一些可以与溶液中的离子发生交换反应的官能团。
当溶液通过离子交换树脂时,溶液中的离子会与树脂中的固定离子交换位置,使溶液中的离子被树脂吸附下来,从而实现对离子的分离纯化。
离子交换树脂法的分离过程主要包括吸附、洗脱和再生三个步骤。
首先,将待处理的溶液通过离子交换树脂床层,树脂上的固定离子与溶液中的目标离子发生吸附反应,目标离子被树脂吸附下来。
然后,通过改变溶液的pH值、离子强度或添加特定的洗脱剂等方式,将吸附在树脂上的目标离子洗脱出来,得到纯净的目标物质。
最后,通过再生处理,将树脂中的固定离子再生,使其恢复吸附能力,以便下一轮的分离操作。
离子交换树脂法在许多领域都有广泛的应用。
其中,工业生产是离子交换树脂法的主要应用领域之一。
在化工、制药、电子等行业中,离子交换树脂法被用于分离和纯化目标物质,去除杂质,提高产品的纯度和质量。
例如,离子交换树脂可以用于水处理,去除水中的重金属离子、有机物、硬度物质等。
另外,离子交换树脂还可以用于废水处理,去除废水中的有害离子,净化废水,达到环境保护的目的。
离子交换树脂法还被广泛应用于食品加工领域。
食品加工过程中,离子交换树脂可以用于去除食品中的杂质、色素、异味物质等,提高食品的品质和口感。
例如,离子交换树脂可以用于提取果汁中的杂质,去除苦味物质,改善果汁的口感;还可以用于去除啤酒中的苦味物质,使啤酒更加醇香。
三、离子交换树脂法的优缺点离子交换树脂法具有许多优点。
首先,离子交换树脂法操作简单,设备投资相对较低,适用于各种规模的生产工艺。
其次,离子交换树脂具有很强的选择性,可以根据需要选择合适的树脂和操作条件,实现对目标离子的高效分离。
阳离子交换树脂工作原理
阳离子交换树脂工作原理概述阳离子交换树脂是一种广泛应用于水处理、食品加工和化学工业中的吸附材料。
它具有优秀的吸附能力,能够去除水中的阳离子,使水质得到改善。
本文将详细介绍阳离子交换树脂的工作原理及其应用。
一、阳离子交换树脂的组成阳离子交换树脂通常是由聚合物基质和离子交换基团组成的。
聚合物基质通常是由丙烯酸酯等聚合物构成,具有良好的机械强度和化学稳定性。
离子交换基团是树脂的活性部分,决定了树脂对阳离子的选择性吸附能力。
二、工作原理阳离子交换树脂的工作原理基于离子的电荷吸引力和离子交换原理。
当含有阳离子的溶液通过阳离子交换树脂时,树脂中的交换基团与溶液中的阳离子发生吸附作用。
这个过程可以分为三个步骤:吸附、解吸和再生。
1. 吸附当含有阳离子的溶液接触阳离子交换树脂时,溶液中的阳离子会与树脂表面的交换基团发生作用,使得阳离子从溶液中被吸附到树脂上。
吸附的程度取决于阳离子交换树脂的选择性和树脂上交换基团的数量。
2. 解吸当阳离子被吸附到树脂上后,它可以再次释放回溶液中。
这个过程可以通过使用具有较高亲和力的离子来进行解吸,例如酸溶液。
通过调整pH值或溶液中的离子浓度,可以实现阳离子的解吸。
3. 再生当阳离子交换树脂失去吸附能力时,可以通过再生来恢复其吸附性能。
一般来说,再生方法包括酸洗法、盐洗法和碱洗法。
通过这些方法,可以将树脂上的吸附阳离子去除,使其重新具备吸附能力。
三、阳离子交换树脂的应用阳离子交换树脂广泛应用于水处理和化学工业中的离子交换过程。
以下是一些常见的应用场景:1. 水处理阳离子交换树脂可以用于去除水中的钠、镁、钙等阳离子,从而降低水的硬度。
此外,它还可以去除水中的重金属离子、放射性物质等有害物质,提高水质。
2. 食品加工在食品加工过程中,阳离子交换树脂可以用于去除食品中的杂质、重金属离子和有害物质,提高食品质量和安全性。
3. 化学工业阳离子交换树脂在化学工业中被广泛用于分离和纯化过程中。
它可以用于分离和纯化有机化合物、酸碱盐溶液等。
离子交换树脂原理
离子交换树脂原理
离子交换树脂是一种具有交换功能的高分子材料,其原理基于离子交换的化学反应。
离子交换是指将树脂中的固定离子与溶液中的可交换离子发生反应,通过交换离子的方式实现离子的转移和分离。
离子交换树脂由于其特殊的化学结构,具有许多阴、阳离子交换基团。
当树脂与一定浓度的盐溶液接触时,盐溶液中的离子会与树脂中的固定离子进行交换。
例如,在阴离子交换树脂中,树脂上的固定带负电荷的离子会与溶液中的可交换阳离子发生交换,而在阳离子交换树脂中,则是树脂上的固定带正电荷的离子与溶液中的可交换阴离子发生交换。
这个过程被称为“吸
附-解吸”过程。
离子交换树脂的交换性能与其交换基团的类型和数量有关。
常见的交换基团有氢氧化物、硫酸根、碳酸根等。
交换树脂的选择要根据需要分离或富集的离子特性进行。
当树脂中的交换基团与溶液中的目标离子发生交换时,离子在树脂中会富集或被分离出来,从而实现分离和净化的目的。
离子交换树脂广泛应用于水处理、药物制剂、食品加工、化学分析等领域。
通过调节树脂的交换能力和选择合适的交换基团,可以实现对不同离子的选择性吸附和分离,为各种工业过程提供了高效、可持续的分离和纯化方法。
离子交换树脂的交换原理以及应用
离子交换树脂的交换原理以及应用1. 什么是离子交换树脂?离子交换树脂是一种特殊的高分子化合物,具有交换离子的功能。
它的分子结构中含有一定的正或负电荷,可以与溶液中的离子发生置换反应,使溶液中的离子浓度发生变化。
2. 离子交换树脂的交换原理离子交换树脂的交换原理基于离子的电荷性质。
当溶液中的离子进入离子交换树脂中时,与树脂上的交换位点发生电荷交换,被交换的离子被树脂固定,而溶液中的其他离子则释放出来。
这个过程实质上是离子间的电荷互相作用,使得树脂中的离子浓度逐渐增加或减少。
3. 离子交换树脂的应用离子交换树脂在许多领域都有广泛的应用。
•水处理:离子交换树脂可以用于水处理过程中的去除硬度离子(如钙、镁离子),净化水质。
•工业过程中的分离纯化:离子交换树脂可以用于分离和纯化溶液中的不同离子,例如分离和提取金属离子。
•药物制剂:离子交换树脂可以用于药物制剂中的分离纯化和药物释放控制。
•医疗设备:离子交换树脂可以用于人工肾脏等医疗设备中,对血液进行离子交换,实现体内离子平衡的调节。
4. 离子交换树脂的分类离子交换树脂可以根据其结构和性质进行分类。
•强酸型离子交换树脂:具有强酸性,可以交换出H+离子,常用于去除水中的碱性离子和重金属离子。
•强碱型离子交换树脂:具有强碱性,可以交换出OH-离子,常用于去除水中的酸性离子。
•核型交换树脂:具有特定的功能基团,可以选择性地交换特定的离子。
•高效离子交换树脂:具有较高的离子交换容量和选择性,广泛应用于工业领域。
5. 离子交换树脂的使用注意事项使用离子交换树脂时需要注意以下几点:•pH值:离子交换树脂的交换能力与溶液的pH值有关,一般选择合适的pH范围以保证交换效果。
•温度:离子交换树脂的交换速率随温度升高而增加,但同时也要注意树脂的热稳定性。
•流速:流速的选择应适当,以保证离子与树脂有足够的接触时间。
•冲洗和再生:使用后的离子交换树脂需要进行冲洗和再生,以去除吸附的离子并恢复树脂的交换能力。
离子交换树脂离子交换原理ppt课件
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
3.密度
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(f) H型树脂与水中Ca2+、Mg2+、Na+交换时水质变化 离子交换柱工作过程
进水初期,进水中所用阳离子均交换出H+,生成相当量的无机酸,出水 酸度保持定值。运行至a点时,Na+首先穿透,且迅速增加,同时酸度降低, 当Na+泄漏量增大到与进水中强酸阴离子含量总和相当时,出水开始呈现碱性; 当Na+增加到与进水阳离子含量总和相等时,出水碱度也增加到与进水碱度 相等。至此,H离子交换结束,交换器开始进行Na+交换,稳定运行至b点之 后,硬度离子开始穿透,出水Na+含量开始下降,最后出水硬度接近进水硬 度,出水Na+接近进水Na+,树脂层全部饱和。
化学性能 1.再生:离子交换反应的可逆性交换的逆反应。 2.酸碱性:树脂在水中电离出H+和OH-,表现出酸碱性。树 脂的酸碱性受pH值影响,各种树脂在使用时都有适当 的pH值范围。 3.选择性:树脂对水中某种离子能优先交换的性能称为 选择性,选择性大小用选择性系数来表征。 4.交换容量:表示树脂的交换能力。通常用EV(mmol/ml 湿树脂)表示,也可用EW(mmol/g干树脂)表示。 EV=EW×(1-含水量)×湿视视密度
影响离子交换扩散速度的因素 1.树脂的交联度越大,网孔越小,则内扩散越慢。 2.树脂颗粒越小,由于内扩散距离缩短和液膜扩散的表面
阴离子交换树脂原理
阴离子交换树脂原理一、离子交换反应阴离子交换树脂是一种高分子电解质,具有良好的离子交换性能。
其核心原理是通过离子交换反应,将溶液中的阴离子与树脂上的可交换离子进行交换,以达到去除或富集特定离子的目的。
阴离子交换树脂主要适用于酸性溶液中,能够有效去除溶液中的阳离子。
二、电荷吸附阴离子交换树脂的电荷吸附作用是其工作原理的重要部分。
树脂表面的可交换离子与溶液中的阳离子通过静电作用相互吸引,从而实现离子的交换。
这种电荷吸附作用使得阴离子交换树脂能够有效去除溶液中的阳离子,并通过与不同离子的结合能力差异实现选择性的吸附。
三、平衡与动力学阴离子交换树脂的工作过程受到平衡和动力学的影响。
在一定的反应条件下,树脂与溶液中的离子会达到一定的平衡状态,这种平衡状态决定了离子交换反应的最终效果。
动力学则影响着离子交换的速度和效率,对于快速达到平衡状态和提高处理效率具有重要意义。
四、再生与重复利用阴离子交换树脂可以通过再生处理实现重复利用,降低成本。
再生过程主要是通过化学或电化学方法将树脂上的被吸附离子去除,使其恢复原有的离子交换能力。
经过再生处理的树脂可以再次用于离子的去除和富集,从而实现树脂的重复利用。
五、选择性吸附阴离子交换树脂的选择性吸附是其重要的应用特性之一。
不同离子的结合能力与树脂的种类和反应条件密切相关。
通过选择合适的树脂和反应条件,可以实现对特定离子的选择性吸附,从而达到分离和纯化的目的。
选择性吸附在各种应用领域中都具有重要的意义。
六、物理结构阴离子交换树脂的物理结构主要包括颗粒大小、孔隙率、多孔性以及表面性质等。
这些结构特点直接影响着树脂的离子交换性能、机械强度以及使用寿命。
1. 颗粒大小:树脂颗粒的大小通常在1~10mm之间,对于水处理应用,一般选择2~4mm的颗粒大小较为适宜。
颗粒大小也会影响树脂的床层阻力,进而影响其工作流量。
2. 孔隙率:树脂颗粒内部存在孔隙,孔隙率的大小决定了树脂的内部表面积和离子扩散的速率。
离子交换树脂的原理
离子交换树脂的原理
离子交换树脂的原理可以简单概括为离子在树脂颗粒表面与功能基团发生置换
反应,从而实现离子的吸附和分离。
离子交换树脂通常是以树脂颗粒的形式存在的,其表面具有大量的功能基团,这些功能基团可以与水溶液中的离子发生化学反应。
当水溶液中的离子与树脂表面的功能基团发生置换反应时,水溶液中的离子会被吸附到树脂颗粒表面,从而实现离子的分离和纯化。
离子交换树脂的原理可以进一步分为吸附和解吸两个过程。
在吸附过程中,树
脂颗粒表面的功能基团与水溶液中的离子发生置换反应,离子被吸附到树脂颗粒表面;在解吸过程中,树脂颗粒表面的功能基团与吸附的离子发生置换反应,离子被释放出来。
通过这样的吸附和解吸过程,离子交换树脂可以实现对水溶液中离子的分离和纯化。
离子交换树脂的原理还可以根据功能基团的性质进行分类。
根据功能基团的性
质不同,离子交换树脂可以分为阴离子交换树脂和阳离子交换树脂。
阴离子交换树脂的功能基团通常是带有正电荷的,可以吸附水溶液中的阴离子;而阳离子交换树脂的功能基团通常是带有负电荷的,可以吸附水溶液中的阳离子。
通过这样的分类,离子交换树脂可以实现对不同类型离子的分离和纯化。
总的来说,离子交换树脂的原理是通过树脂颗粒表面的功能基团与水溶液中的
离子发生置换反应,实现离子的吸附和分离。
通过吸附和解吸过程,离子交换树脂可以实现对水溶液中离子的分离和纯化。
同时,根据功能基团的性质不同,离子交换树脂可以分为阴离子交换树脂和阳离子交换树脂,实现对不同类型离子的分离和纯化。
离子交换树脂作为一种重要的功能材料,在化工、环保、医药等领域有着广泛的应用前景。
离子交换树脂的原理
离子交换树脂的原理
离子交换树脂的原理:
离子交换树脂是一类具有离子交换功能的高分子材料。
在溶液中它能将本身的离子与溶液中的同号离子进行交换。
按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。
阳离子交换树脂大都含有磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基团,其中的氢离子能与溶液中的金属离子或其他阳离子进行交换。
例如苯乙烯和二乙烯苯的高聚物经磺化处理得到强酸性阳离子交换树脂,其结构式可简单表示为R—SO3H,式中R代表树脂母体,其交换原理为
2R—SO3H+Ca2+—(R—SO3)2Ca+2H+
这也是硬水软化的原理。
阴离子交换树脂含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亚胺基(—NH2)等碱性基团。
它们在水中能生成OH-离子,可与各种阴离子起交换作用,其交换原理为
R—N(CH3)3OH+Cl- R—N(CH3)3Cl+OH-
由于离子交换作用是可逆的,因此用过的离子交换树脂一般用适当浓度的无机酸或碱进行洗涤,可恢复到原状态而重复使用,这一过
程称为再生。
阳离子交换树脂可用稀盐酸、稀硫酸等溶液淋洗;阴离子交换树脂可用氢氧化钠等溶液处理,进行再生。
离子交换树脂的用途很广,主要用于分离和提纯。
例如用于硬水软化和制取去离子水、回收工业废水中的金属、分离稀有金属和贵金属、分离和提纯抗生素等。
离子交换树脂的交换原理
离子交换树脂的交换原理离子交换树脂是一种广泛应用于水处理、化学工业及生物医药等领域的功能性材料,它具有高吸附效率、可再生利用、易于操作等优点。
其交换原理是通过树脂表面上的功能团与水溶液中的离子进行吸附、释放的过程。
离子交换树脂的结构通常由基础聚合物和功能团组成。
基础聚合物可以是聚丙烯、聚苯乙烯、聚乙烯醇等,而功能团则是树脂表面具有离子吸附性能的活性基团。
常见的功能团包括硫酸基、醋酸基、羧酸基、氨基等,它们可以与水中的离子发生化学反应,通过离子交换的方式将溶液中的离子吸附到树脂表面,达到水质净化、离子分离纯化等目的。
离子交换树脂的交换过程可以分为吸附、洗脱和再生三个步骤。
首先是吸附过程。
当离子交换树脂与水溶液接触时,树脂表面的功能团与水溶液中的离子发生吸附反应,形成固定在树脂表面上的离子。
离子交换树脂的选择性吸附是根据功能团的性质来进行的,不同的功能团对不同离子具有不同的亲和力。
因此,在特定的条件下,离子交换树脂只会吸附对应离子的存在。
吸附后,树脂与水溶液中的离子形成一种新的平衡状态。
在这种平衡状态下,树脂表面吸附的离子与水溶液中的离子之间会发生交换。
当水溶液中的离子浓度较大时,离子交换树脂表面的离子会被水溶液中的离子替换出去,形成离子交换。
当水溶液中的离子浓度较小时,离子交换树脂表面的离子会向水溶液释放出来。
洗脱过程是将吸附在离子交换树脂上的离子从树脂表面洗走的过程。
当吸附在树脂表面上的离子达到一定浓度时,需要将其从树脂上洗脱出来。
这可以通过水流冲洗、酸碱溶液洗脱、盐溶液洗脱等方法来实现。
洗脱过程中,水溶液中的离子与树脂上的离子再次发生交换,将树脂表面的离子释放到洗脱液中。
再生过程是指将洗脱液中的离子与树脂表面的离子进行交换,使树脂恢复到初始吸附状态的过程。
再生过程可以通过将洗脱液中的离子排除并替换为其他离子来实现。
例如,可以使用盐酸溶液将洗脱液中的阳离子排除,再使用盐溶液将盐酸中的阳离子替换为其他所需阳离子。
离子交换树脂的原理
离子交换树脂的原理
离子交换树脂是一种可以用来去除水中离子的材料。
它的原理是通过固态颗粒状的树脂材料表面带有带电团(通常是离子的功能基团),这些带电团可以与水中的离子进行化学吸附或质量分配的交换。
离子交换树脂通常是由合成的有机高分子材料制成的,主要是聚合物。
它的结构可以分为两个主要部分:阳离子交换树脂和阴离子交换树脂。
阳离子交换树脂通常含有带有负电荷的功能基团,如酸基或酸树脂,可以交换掉水中的阳离子。
而阴离子交换树脂则具有带有正电荷的功能基团,如胺基或胺树脂,可以交换掉水中的阴离子。
在水处理中,离子交换树脂常用于软化水和去除水中的杂质。
当水中的硬度离子(如钙离子和镁离子)通过离子交换树脂时,这些硬度离子会与树脂上的带负电荷的功能基团发生吸附和交换反应。
同时,树脂上的带正电荷的功能基团会释放出一定量的钠离子或氢离子,以实现离子的交换。
离子交换树脂的交换效果会随着树脂材料的种类和性能、水中离子的浓度和类型以及操作条件等因素而有所不同。
交换反应的发生速率也与树脂的孔隙结构和表面积有关。
因此,在选择和使用离子交换树脂时,需要考虑到这些因素,以达到预期的水质处理效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子交换树脂原理一、离子交换树脂基础介绍离子交换树脂的全名称由分类名称、骨架(或基因)名称、基本名称组成。
孔隙结构分凝胶型和大孔型两种,凡具有物理孔结构的称大孔型树脂,在全名称前加“大孔”。
分类属酸性的应在名称前加“阳”,分类属碱性的,在名称前加“阴”。
如:大孔强酸性苯乙烯系阳离子交换树脂。
离子交换树脂还可以根据其基体的种类分为苯乙烯系树脂和丙烯酸系树脂。
树脂中化学活性基团的种类决定了树脂的主要性质和类别。
首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。
阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类 (或再分出中强酸和中强碱性类)。
离子交换树脂的命名方式:离子交换产品的型号以三位阿拉伯数字组成,第一位数字代表产品的分类,第二位数字代表骨架的差异,第三位数字为顺序号用以区别基因、交联剂等的差异。
第一、第二位数字的意义,见表8-1。
表8-1 树脂型号中的一、二位数字的意义代号 0 1 2 3 4 5 6分类名称强酸性弱酸性强碱性弱碱性螫合性两性氧化还原性骨架名称苯乙烯系丙烯酸系醋酸系环氧系乙烯吡啶系脲醛系氯乙烯系大孔树脂在型号前加“D”,凝胶型树脂的交联度值可在型号后用“×”号连接阿拉伯数字表示。
如D011×7,表示大孔强酸性苯乙烯系阳离子交换树脂,其交联度为7。
离子交换树脂在国内外都有很多制造厂家和很多品种。
国内制造厂有数十家,主要的有上海树脂有限公司、南开化工厂、浙江争光实业股份有限公司、晨光化工研究院树脂厂、江苏色可赛思树脂有限公司等;国外较著名的如美国Rohm & Hass 公司生产的Amberlite系列、Success公司生产Ionresin系列、Dow化学公司的Dowex系列、法国Duolite系列和Asmit系列、日本的Diaion系列,还有Ionac 系列、Allassion系列等。
树脂的牌号多数由各制造厂或所在国自行规定。
国外一些产品用字母C代表阳离子树脂(C为cation的第一个字母),A代表阴离子树脂(A 为Anion的第一个字母),如Amberlite的IRC和IRA分别为阳树脂和阴树脂,亦分别代表阳树脂和阴树脂。
我国化工部规定(HG2-884-76),离子交换树脂的型号由三位阿拉伯数字组成。
第一位数字代表产品的分类:0 代表强酸性,1代表弱酸性,2代表强碱性,3代表弱碱性,4代表螯合性,5代表两性,6代表氧化还原。
第二位数字代表不同的骨架结构:0代表苯乙烯系,1代表丙烯酸系,2代表酚醛系,3代表环氧系等。
第三位数字为顺序号,用以区别基体、交联基等的差异。
此外大孔型树脂在数字前加字母D。
因此,D001是大孔强酸性苯乙烯系树脂。
二、离子交换树脂的基本类型(1) 强酸性阳离子树脂这类树脂含有大量的强酸性基团,如磺酸基,SO3H,容易在溶液中离解出H+,故呈强酸性。
树脂离解后,本体所含的负电基团,如SO3,,能吸附结合溶液中的其他阳离子。
这两个反应使树脂中的H+与溶液中的阳离子互相交换。
强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。
如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。
(2) 弱酸性阳离子树脂这类树脂含弱酸性基团,如羧基,COOH,能在水中离解出H+ 而呈酸性。
树脂离解后余下的负电基团,如R-COO,(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。
这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5,14)起作用。
这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。
(3) 强碱性阴离子树脂这类树脂含有强碱性基团,如季胺基(亦称四级胺基),NR3OH(R为碳氢基团),能在水中离解出OH,而呈强碱性。
这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂的离解性很强,在不同pH下都能正常工作。
它用强碱(如NaOH)进行再生。
(4) 弱碱性阴离子树脂这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH,而呈弱碱性。
这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。
它只能在中性或酸性条件(如pH1,9)下工作。
它可用Na2CO3、NH4OH进行再生。
(5) 离子树脂的转型以上是树脂的四种基本类型。
在实际使用上,常将这些树脂转变为其他离子型式运行,以适应各种需要。
例如常将强酸性阳离子树脂与NaCl作用,转变为钠型树脂再使用。
工作时钠型树脂放出Na+与溶液中的Ca2+、Mg2+等阳离子交换吸附,除去这些离子。
反应时没有放出H+,可避免溶液pH下降和由此产生的副作用(如蔗糖转化和设备腐蚀等)。
这种树脂以钠型运行使用后,可用盐水再生(不用强酸)。
又如阴离子树脂可转变为氯型再使用,工作时放出Cl,而吸附交换其他阴离子,它的再生只需用食盐水溶液。
氯型树脂也可转变为碳酸氢型(HCO3,)运行。
强酸性树脂及强碱性树脂在转变为钠型和氯型后,就不再具有强酸性及强碱性,但它们仍然有这些树脂的其他典型性能,如离解性强和工作的pH范围宽广等。
三、离子交换树脂基体的组成离子交换树脂(ionresin)的基体(matrix),制造原料主要有苯乙烯和丙烯酸(酯)两大类,它们分别与交联剂二乙烯苯产生聚合反应,形成具有长分子主链及交联横链的网络骨架结构的聚合物。
苯乙烯系树脂是先使用的,丙烯酸系树脂则用得较后。
这两类树脂的吸附性能都很好,但有不同特点。
丙烯酸系树脂能交换吸附大多数离子型色素,脱色容量大,而且吸附物较易洗脱,便于再生,在糖厂中可用作主要的脱色树脂。
苯乙烯系树脂擅长吸附芳香族物质,善于吸附糖汁中的多酚类色素(包括带负电的或不带电的);但在再生时较难洗脱。
因此,糖液先用丙烯酸树脂进行粗脱色,再用苯乙烯树脂进行精脱色,可充分发挥两者的长处。
树脂的交联度,即树脂基体聚合时所用二乙烯苯的百分数,对树脂的性质有很大影响。
通常,交联度高的树脂聚合得比较紧密,坚牢而耐用,密度较高,内部空隙较少,对离子的选择性较强;而交联度低的树脂孔隙较大,脱色能力较强,反应速度较快,但在工作时的膨胀性较大,机械强度稍低,比较脆而易碎。
工业应用的离子树脂的交联度一般不低于4%;用于脱色的树脂的交联度一般不高于8%;单纯用于吸附无机离子的树脂,其交联度可较高。
除上述苯乙烯系和丙烯酸系这两大系列以外,离子交换树脂还可由其他有机单体聚合制成。
如酚醛系(FP)、环氧系(EPA)、乙烯吡啶系(VP)、脲醛系(UA)等。
四、离子交换树脂的物理结构离子树脂常分为凝胶型和大孔型两类。
凝胶型树脂的高分子骨架,在干燥的情况下内部没有毛细孔。
它在吸水时润胀,在大分子链节间形成很微细的孔隙,通常称为显微孔(micro-pore)。
湿润树脂的平均孔径为2,4nm(2×10,6 ,4×10,6mm)。
这类树脂较适合用于吸附无机离子,它们的直径较小,一般为0.3,0.6nm。
这类树脂不能吸附大分子有机物质,因后者的尺寸较大,如蛋白质分子直径为5,20nm,不能进入这类树脂的显微孔隙中。
大孔型树脂是在聚合反应时加入致孔剂,形成多孔海绵状构造的骨架,内部有大量永久性的微孔,再导入交换基团制成。
它并存有微细孔和大网孔(macro-pore),润湿树脂的孔径达100,500nm,其大小和数量都可以在制造时控制。
孔道的表面积可以增大到超过1000m2/g。
江苏色可赛思树脂有限公司整理这不仅为离子交换提供了良好的接触条件,缩短了离子扩散的路程,还增加了许多链节活性中心,通过分子间的范德华引力(van de Waals force)产生分子吸附作用,能够象活性炭那样吸附各种非离子性物质,扩大它的功能。
一些不带交换功能团的大孔型树脂也能够吸附、分离多种物质,例如化工厂废水中的酚类物。
大孔树脂内部的孔隙又多又大,表面积很大,活性中心多,离子扩散速度快,离子交换速度也快很多,约比凝胶型树脂快约十倍。
使用时的作用快、效率高,所需处理时间缩短。
大孔树脂还有多种优点:耐溶胀,不易碎裂,耐氧化,耐磨损,耐热及耐温度变化,以及对有机大分子物质较易吸附和交换,因而抗污染力强,并较容易再生。
五、离子交换树脂的离子交换容量离子交换树脂进行离子交换反应的性能,表现在它的“离子交换容量”,即每克干树脂或每毫升湿树脂所能交换的离子的毫克当量数,meq/g(干)或 meq/mL(湿);当离子为一价时,毫克当量数即是毫克分子数(对二价或多价离子,前者为后者乘离子价数)。
它又有“总交换容量”、“工作交换容量”和“再生交换容量”等三种表示方式。
,、总交换容量,表示每单位数量(重量或体积)树脂能进行离子交换反应的化学基团的总量。
,、工作交换容量,表示树脂在某一定条件下的离子交换能力,它与树脂种类和总交换容量,以及具体工作条件如溶液的组成、流速、温度等因素有关。
,、再生交换容量,表示在一定的再生剂量条件下所取得的再生树脂的交换容量,表明树脂中原有化学基团再生复原的程度。
通常,再生交换容量为总交换容量的50,90%(一般控制70,80%),而工作交换容量为再生交换容量的30,90%(对再生树脂而言),后一比率亦称为树脂的利用率。
在实际使用中,离子交换树脂的交换容量包括了吸附容量,但后者所占的比例因树脂结构不同而异。
现仍未能分别进行计算,在具体设计中,需凭经验数据进行修正,并在实际运行时复核之。
离子树脂交换容量的测定一般以无机离子进行。
这些离子尺寸较小,能自由扩散到树脂体内,与它内部的全部交换基团起反应。
而在实际应用时,溶液中常含有高分子有机物,它们的尺寸较大,难以进入树脂的显微孔中,因而实际的交换容量会低于用无机离子测出的数值。
这种情况与树脂的类型、孔的结构尺寸及所处理的物质有关。
六、离子交换树脂的吸附选择性离子交换树脂对溶液中的不同离子有不同的亲和力,对它们的吸附有选择性。
各种离子受树脂交换吸附作用的强弱程度有一般的规律,但不同的树脂可能略有差异。
主要规律如下:(,) 对阳离子的吸附高价离子通常被优先吸附,而低价离子的吸附较弱。
在同价的同类离子中,直径较大的离子的被吸附较强。
一些阳离子被吸附的顺序如下:Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+(,) 对阴离子的吸附强碱性阴离子树脂对无机酸根的吸附的一般顺序为:SO42,> NO3, > Cl, > HCO3, > OH,弱碱性阴离子树脂对阴离子的吸附的一般顺序如下:OH,> 柠檬酸根3, > SO42, > 酒石酸根2, >草酸根2, > PO43, >NO2, > Cl, >醋酸根, > HCO3,(,) 对有色物的吸附糖液脱色常使用强碱性阴离子树脂,它对拟黑色素(还原糖与氨基酸反应产物)和还原糖的碱性分解产物的吸附较强,而对焦糖色素的吸附较弱。