二进制数和十进制数的相互转换
二进制八进制十进制十六进制之间的进制转换
二进制八进制十进制十六进制之间的进制转换详情可参考百度百科:进制转换这个词条【主要搞懂1和2两条,其他的进制之间的转化就迎刃而解,很好懂了】1. 十进制-> 二进制:将这个十进制数连续除以2的过程,第一步除以2,得到商和余数,将商再继续除以2,得到又一个商和余数,直到商为0。
最后将所有余数倒序排列,得到的数就是转换成二进制的结果。
2. 二进制-> 十进制:二进制数第1位的权值是2的0次方,第2位的权值是2的1次方,第3位的权值是2的2次方。
(例如1258这个十进制数,实际上代表的是:1x1000+2x100+5x10+8x1=1258)那么1011这个二进制数,实际上代表的是:1x8+0x4+1x2+1x1=11(十进制数11)。
(这里的8就是2的3次方,4就是2的2次方,2就是2的1次方,1就是2的0次方)3. 十进制-> 八进制:十进制数转换成八进制的方法,和转换为二进制的方法类似,唯一变化:除数由2变成8。
4. 八进制-> 十进制和转换为二进制的方法类似,唯一变化是,底数变成8,第1位表示8的0次方,第二位表示8的一次方,第三位表示8的2次方,第四位表示8的3次方。
例如1314这个八进制数,十进制数就是1x512+3x64+1x8+4x1=716(十进制)5. 十进制-> 十六进制10进制数转换成16进制的方法,和转换为2进制的方法类似,唯一变化:除数由2变成16。
十六进制是0123456789ABCDEF这十六个字符表示。
那么单独一个A就是10,单独一个B就是11,CDEF,就分表表示12,13,14,15。
而10这个十六进制数,实际就是十进制中的16。
6. 十六进制-> 十进制和转换为二进制的方法类似,唯一变化是,底数变成16,第1位表示16的0次方,第二位表示16的一次方,第三位表示16的2次方,第四位表示16的3次方。
7. 二进制<--->八进制,之间的相互转换,更简单一些,因为8本身是2的三次方。
各进制数相互转换大全
0001 = 1 = 1 = 1
(3)十进制与十六进制的相互转化。
十--->十六:方法同上,以后不再赘述
例: 589(10)--->24D(16)
商 余数
589/16 36 13(用16进制的D表示)
0100 = 4 = 4 = 4
0101 = 5 = 5 = 5
1110 = 14 = E = 16
1111 = 15 = F = 17
... 4*16^2=1024
15*16^3= 61440
3*16^4=196608
10*16^5=10485760
结果10744845
(4)二进制、八进制、十进制、十六进制之间相互转化对照表
二进制数(仅4位的2进制数) = 十进制数 = 十六进制数 = 八进制数
385/8 48 1
48/8 6 0
6/8 0 6
1111=F
1101=D
1010=A
0101=5
1001=9
1011=B
那么它所对应的16进制数就是“FDA59B”
十六---->二
FD5(16)--->1111 1101 0101(2)
Part I 整型部分
(1)十进制与二进制的相互转化。
十---->二:十进制数除以2,得到一个商和余数(余数无非 0/1),余数单单保存。
拿得到的商继续除以2,又得到一个商和余数。保存余数。继续除以2...
直到除得的商为0.把除得的余数按先后顺寻从低位到高位排起(个位开始),
余数按先后顺寻从低到高排列。得到的就是二进制数1011001 。
十进制与其他进制数的转换
十进制与其他进制数的转换在数字的世界里,我们经常会遇到不同进制数的表示和转换。
十进制是我们最常用的进制方式,但还有其他进制形式,如二进制、八进制和十六进制。
本文将探讨十进制数与其他进制数之间的转换方法,以帮助读者更好地理解和应用这些进制数。
一、二进制转换为十进制二进制是最基本的进制形式,仅由数字0和1组成。
将一个二进制数转换为十进制数的方法是,从二进制数的最右边开始,将每一位的值乘以2的对应次幂,然后将得到的结果相加。
例如,将二进制数1101转换为十进制数:1 * 2^0 + 0 * 2^1 + 1 * 2^2 + 1 * 2^3 = 1 + 0 +4 + 8 = 13二、八进制转换为十进制八进制由数字0-7组成,每一位的权重是2的3次幂。
将一个八进制数转换为十进制数的方法是,从八进制数的最右边开始,将每一位的值乘以8的对应次幂,然后将得到的结果相加。
例如,将八进制数573转换为十进制数:3 * 8^0 + 7 * 8^1 + 5 * 8^2 = 3 + 56 + 320 = 379三、十六进制转换为十进制十六进制由数字0-9和字母A-F组成,每一位的权重是16的对应次幂。
将一个十六进制数转换为十进制数的方法是,从十六进制数的最右边开始,将每一位的值乘以16的对应次幂,然后将得到的结果相加。
例如,将十六进制数3A7转换为十进制数:7 * 16^0 + 10 * 16^1 + 3 * 16^2 = 7 + 160 + 768 = 935四、十进制转换为二进制将一个十进制数转换为二进制数的方法是,不断地将该数除以2,直到商为0。
然后从下往上依次写下每一步的余数,即为二进制数的表示。
例如,将十进制数26转换为二进制数:26 / 2 = 13 余 013 / 2 = 6 余 16 / 2 = 3 余 03 / 2 = 1 余 11 /2 = 0 余 1所以,26的二进制表示为11010。
五、十进制转换为八进制将一个十进制数转换为八进制数的方法是,不断地将该数除以8,直到商为0。
二进制 八进制 十进制 的转化关系
二进制八进制十进制的转化关系二进制、八进制和十进制是常见的数制系统,用于表示数字和进行数值计算。
它们之间有着特定的转化关系,可以相互转换。
本文将介绍二进制、八进制和十进制的概念以及它们之间的转换方法。
一、二进制(Binary System)二进制是一种使用0和1表示数字的数制系统。
每一位数字称为一个比特(bit),可以表示两种状态:0或1。
二进制数从右往左依次表示2^0、2^1、2^2、2^3...的权值。
例如,二进制数1101表示:1 * 2^0 + 0 * 2^1 + 1 * 2^2 + 1 * 2^3 = 13。
二、八进制(Octal System)八进制是一种使用0-7表示数字的数制系统。
每一位数字称为一个八进制位。
八进制数从右往左依次表示8^0、8^1、8^2、8^3...的权值。
例如,八进制数27表示:7 * 8^0 + 2 * 8^1 = 23。
三、十进制(Decimal System)十进制是我们常用的数制系统,使用0-9表示数字。
每一位数字称为一个十进制位。
十进制数从右往左依次表示10^0、10^1、10^2、10^3...的权值。
例如,十进制数123表示:3 * 10^0 + 2 * 10^1 + 1 * 10^2 = 123。
四、二进制和八进制的转换二进制和八进制之间的转换比较简单。
将二进制数从右往左每3位分组,每组转换为一个八进制位。
不足3位的在左边补0。
例如,二进制数110101011转换为八进制:001 101 010 11,即转换为八进制数1523。
反之,将八进制数每一位转换为3位的二进制数即可。
五、二进制和十进制的转换二进制和十进制之间的转换也比较简单。
将二进制数从右往左每一位与对应的权值相乘,然后求和。
例如,二进制数1101转换为十进制:1 * 2^0 + 0 * 2^1 + 1 * 2^2 + 1 * 2^3 = 13。
反之,将十进制数不断除以2,直到商为0,然后将每一步的余数从下往上排列即可得到二进制数。
二进制_八进制_十进制_十六 进制之间的相互转换
二进制,八进制,十进制,十六进制之间的相互转换和相关概念二进制:计算机只认识0或1,也就是高电平和低电平.所以所有的数据格式最终会转化为2进制形式,计算机硬件才能识别。
二进制逢二进一,八进制逢八进一,十进制逢十进一,十六进制逢十六进一。
下边是各进制之间的转换公式.二进制转十进制0110 0100(2) 换算成十进制第0位 0 * 2^0 = 0第1位 0 * 2^1 = 0第2位 1 * 2^2 = 4第3位 0 * 2^3 = 0第4位 0 * 2^4 = 0第5位 1 * 2^5 = 32第6位 1 * 2^6 = 64第7位 0 * 2^7 = 0 +---------------------------100二进制转八进制可采用8421法1010011(2)首先每三位分割即: 001,010,011不足三位采用0补位.然后采用8421法: 001=1010=2011=3所以转换成8进制是123二进制转十六进制1101011010100(2)首先每四位分割即: 0001,1010,1101,0100不足四位采用0补位.然后采用8421法: 0001:11010:A1101:D0100:4所以转换成十六进制是1AD4十六进制当数字超过9后将采用A代替10,B代替11,C代替12,D代替13,E 代替14,F代替15;下边是十进制的各种转换:十进制转二进制6(10)10进制数转换成二进制数,这是一个连续除2的过程:把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。
最后将所有余数倒序排列,得到数就是转换结果。
商余数6/2 3 03/2 1 11/2 0 1最后把余数从下向上排列写出110即是转换后的二进制.十进制转换八进制10进制数转换成八进制数,这是一个连续除8的过程:把要转换的数,除以8,得到商和余数,将商继续除以8,直到商为0。
最后将所有余数倒序排列,得到数就是转换结果。
120(10)商余数120/8 15 015/8 1 71/8 0 1最后把余数从下向上排列写出170即是转换后的八进制.十进制转换十六进制10进制数转换成十六进制数,这是一个连续除16的过程:把要转换的数,除以16,得到商和余数,将商继续除以16,直到商为0。
[考试]二进制和十进制转换
二进制和十进制转换?000 0十进制与二进制转换之相互算法000 0十进制转二进制:000 0用2辗转相除至结果为1 0000将余数和最后的1从下向上倒序写就是结果0000 例如302 0000302/2 = 151 余0 0000151/2 = 75 余1 000075/2 = 37 余1 000 037/2 = 18 余1 000 018/2 = 9 余0 00009/2 = 4 余1 00004/2 = 2 余0 00002/2 = 1 余0 0000故二进制为100101110 000 0二进制转十进制0000从最后一位开始算,依次列为第0、1、2...位000 0 第n位的数(0或1)乘以2的n次方0000得到的结果相加就是答案000 0例如:01101011.转十进制: 0000第0位:1乘2的0次方=1 00001乘2的1次方=2 00000乘2的2次方=0 0001乘2的3次方=8 0000乘2的4次方=0 0001乘2的5次方=32 00001乘2的6次方=64 00000乘2的7次方=0 000然后:1+2+0 +8+0+32+64+0=107.0000二进制01101011=十进制107.-----------------------二进制中最后一个数字是一,转换成十进制则是基数。
000 0一、二进制数转换成十进制数000 0由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。
这种做法称为"按权相加"法。
0000二、十进制数转换为二进制数000 0十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。
00001. 十进制整数转换为二进制整数0000十进制整数转换为二进制整数采用"除2取余,逆序排列"法。
具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。
二进制、十进制、八进制、十六进制四种进制之间相互的转换
二进制、十进制、八进制、十六进制四种进制之间相互的转换一.在计算机应用中,二进制使用后缀b表示;十进制使用后缀d表示八制使用后缀Q表示,十六制使用后缀H表示。
二.二进制,十六进制与十进制的计算转换1.二进制转换为十进制计算公式:二进制数据X位数字乘以2的X-1次方的积的总和例:10101011b=( )d相应的十进制值即为:27 +25+23+21+20=128+32+8+2+1=1712.十六进制转换十进制计算公式:二进制数据X位数字乘以16的X-1次方的积的总和(与二进制转换十制进同理的,将底数换为16)注意:在十六进制中,10-15依次用A,B,C,D,E,F表示例:1F3E H=()d计算:1*16的3次方+15*16的2次方+3*16的1次方+14*16的0次方=1*4096+15*256+3*16+14=7998三.十进制与二进制,十六制的计算转换1.十进制转换为二进制十进制数据数字除以2的余数的逆序组合例:404d=( )b2|404余02|202余02|101余02|50余12|25余02|12余12|6余02|3余12|1计算结果便是:1101010002.十进制转换十六进制。
与上面同理,注意的是10以上的数字用字母表示,除数是16十六进制与二进制的转换,建议通过十进制来进行中转。
带小数点的十进制转换为二进制时同理,小数店后的数位指数为负指数===================================================================== =================关于“进制之间的转换”问题的分析指导在计算机文化一书中,在其中一个章节里面详细介绍了进制之间的转换,而且在考试中进制转换也占了一定的比例,虽然分数不是很多,但是因为平时大家接触的不多,并且有点繁复,所以很多学员在做这种题目,要么选择猜答案,要么选择放弃。
笔者觉得只要掌握了方法,其实这些题目也很简单的,下面我就对进制的转换进行具体的分析和讲解,以供大家参考。
二进制与十进制、八进制、十六进制之间的转换
3.八进制 使用的符号:0、1、2、3、4、5、6、7; 运算规则:逢八进一; 基为:8 在八进制数据后加英文字母“O”,
4.十六进制 使用的符号:采用0~9和A、B、C、D、E、F六个英文 字母一起共十六个代码。 运算规则:逢十六进一 基为:16 在十六进制数据后加英文字母“H”以示分别。
各数制的权
各数制中整数部分不同位的权为“基的n-1次方(n为数 值所在的位数,n的最小值取1)”,小数部分不同位的权 值为“基的-n次方”。
一个十进制数(135.7)01+5×100+7×10-1 如:十进制中,各位的权为10n-1
二进制中,各位的权为2n-1 十六进制中,各位的权为16n-1
制数时,从小数点开始,将二进制数的整数和 小数部分每四位分为一组,不足四位的分别在 整数的最高位前和小数的最低位后加“0”补足, 然后每组用等值的十六进制码替代,即得目的 数。十六进制数转换成二进制数时正好相反, 一位十六进制数用四位二进制数来替换。对于 有小数的数,要分小数和整数部分处理。
例: (111011.10101)2=(3B.A8)H
【例1】将(236)D转换成二进制。 转换过程如图1所示。
2 2 36 2 118 2 59 2 29 2 14 27 23 21 0
…………… 0 …………… 0 …………… 1 …………… 1 …………… 0 …………… 1 …………… 1 …………… 1
二进制数的低位 二进制数的高位
图1 将十进制数转变成二进制数
如(0.8125D)转成二进制的过程是:
二进制,八进制,十进制,十六进制之间的相互转换
16进制 0 1 2 3 4 5 6 7
2进制 1000 1001 1010 1011 1100 1101 1110 1111
16进制 8 9 a(10) b(11) c(12) d(13) e(14) f(15)
有一个公式:二进制数、八进制数、十六进制数的各位数字分别乖以各自的基数的(N-1)次方,其和相加之和便是相应的十进制数。个位,N=1;十位,N=2...举例:
110B=1*2的2次方+1*2的1次方+0*2的0次方=0+4+2+0=6D
110Q=1*8的2次方+1*8的1次方+0*8的0次方=64+8+0=72D
=(11.25)10
(2)十进制转二进制
· 十进制整数转二进制数:"除以2取余,逆序输出"
例: (89)10=(1011001)2
2 89
2 44 …… 1
2 22 …… 0
2 11 …… 0
2 5 …… 1
2 2 …… 1
2 1 …… 0
0 …… 1
2.十进制小数转换为二进制小数
十进制小数转换成二进制小数采用"乘2取整,顺序排列"法。具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。
然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。
例:10101011b=( )d
二进制八进制十进制十六进制之间转换详解
二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换1 十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数.下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,2分析:第一步,将168除以2,商84,余数为0.第二步,将商84除以2,商42余数为0.第三步,将商42除以2,商21余数为0.第四步,将商21除以2,商10余数为1.第五步,将商10除以2,商5余数为0.第六步,将商5除以2,商2余数为1.第七步,将商2除以2,商1余数为0.第八步,将商1除以2,商0余数为1.第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即2 小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止.如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位.换句话说就是0舍1入.读数要从前面的整数读到后面的整数,下面举例:例1:将换算为二进制得出结果:将换算为二进制2分析:第一步,将乘以2,得,则整数部分为0,小数部分为;第二步, 将小数部分乘以2,得,则整数部分为0,小数部分为;第三步, 将小数部分乘以2,得,则整数部分为1,小数部分为;第四步,读数,从第一位读起,读到最后一位,即为.例2,将转换为二进制保留到小数点第四位大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是,那么小数部分继续乘以2,得,又乘以2的,到这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入.这个也是计算机在转换中会产生误差,但是由于保留位数很多,精度很高,所以可以忽略不计.那么,我们可以得出结果将转换为二进制约等于上面介绍的方法是十进制转换为为二进制的方法,需要大家注意的是:1 十进制转换为二进制,需要分成整数和小数两个部分分别转换2 当转换整数时,用的除2取余法,而转换小数时候,用的是乘2取整法3 注意他们的读数方向因此,我们从上面的方法,我们可以得出十进制数转换为二进制为.001,或者十进制数转换为二进制数约等于.0111.3 二进制转换为十进制不分整数和小数部分方法:按权相加法,即将二进制每位上的数乘以权,然后相加之和即是十进制数.例将二进制数转换为十进制数.得出结果:2=10大家在做二进制转换成十进制需要注意的是1 要知道二进制每位的权值2 要能求出每位的值二、二进制与八进制之间的转换首先,我们需要了解一个数学关系,即2^3=8,2^4=16,而八进制和十六进制是用这关系衍生而来的,即用三位二进制表示一位八进制,用四位二进制表示一位十六进制数.接着,记住4个数字8、4、2、12^3=8、2^2=4、2^1=2、2^0=1.现在我们来练习二进制与八进制之间的转换.1 二进制转换为八进制方法:取三合一法,即从二进制的小数点为分界点,向左向右每三位取成一位,接着将这三位二进制按权相加,得到的数就是一位八位二进制数,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的八进制数.如果向左向右取三位后,取到最高最低位时候,如果无法凑足三位,可以在小数点最左边最右边,即整数的最高位最低位添0,凑足三位.例①将二进制数转换为八进制得到结果:将转换为八进制为②将二进制数转换为八进制得到结果:将转换为八进制为2 将八进制转换为二进制方法:取一分三法,即将一位八进制数分解成三位二进制数,用三位二进制按权相加去凑这位八进制数,小数点位置照旧.例:①将八进制数转换为二进制因此,将八进制数转换为二进制数为,即大家从上面这道题可以看出,计算八进制转换为二进制首先,将八进制按照从左到右,每位展开为三位,小数点位置不变然后,按每位展开为22,21,20即4、2、1三位去做凑数,即a×22+ b×21 +c ×20=该位上的数a=1或者a=0,b=1或者b=0,c=1或者c=0,将abc排列就是该位的二进制数接着,将每位上转换成二进制数按顺序排列最后,就得到了八进制转换成二进制的数字.以上的方法就是二进制与八进制的互换,大家在做题的时候需要注意的是1 他们之间的互换是以一位与三位转换,这个有别于二进制与十进制转换2 大家在做添0和去0的时候要注意,是在小数点最左边或者小数点的最右边即整数的最高位和小数的最低位才能添0或者去0,否则将产生错误三、二进制与十六进制的转换方法:与二进制与八进制转换相似,只不过是一位十六与四位二进制的转换,下面具体讲解1 二进制转换为十六进制方法:取四合一法,即从二进制的小数点为分界点,向左向右每四位取成一位,接着将这四位二进制按权相加,得到的数就是一位十六位二进制数,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的十六进制数.如果向左向右取四位后,取到最高最低位时候,如果无法凑足四位,可以在小数点最左边最右边,即整数的最高位最低位添0,凑足四位.①例:将二进制.1011转换为十六进制得到结果:将二进制.1011转换为十六进制为②例:将转换为十六进制因此得到结果:将二进制转换为十六进制为2将十六进制转换为二进制方法:取一分四法,即将一位十六进制数分解成四位二进制数,用四位二进制按权相加去凑这位十六进制数,小数点位置照旧.①将十六进制转换为二进制数因此得到结果:将十六进制转换为二进制为即四、八进制与十六进制的转换方法:一般不能互相直接转换,一般是将八进制或十六进制转换为二进制,然后再将二进制转换为十六进制或八进制,小数点位置不变.那么相应的转换请参照上面二进制与八进制的转换和二进制与十六进制的转五、八进制与十进制的转换1八进制转换为十进制方法:按权相加法,即将八进制每位上的数乘以位权,然后相加之和即是十进制数.例:①将八进制数转换为十进制2十进制转换为八进制十进制转换成八进制有两种方法:1间接法:先将十进制转换成二进制,然后将二进制又转换成八进制2直接法:前面我们讲过,八进制是由二进制衍生而来的,因此我们可以采用与十进制转换为二进制相类似的方法,还是整数部分的转换和小数部分的转换,下面来具体讲解一下:①整数部分方法:除8取余法,即每次将整数部分除以8,余数为该位权上的数,而商继续除以8,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数起,一直到最前面的一个余数.②小数部分方法:乘8取整法,即将小数部分乘以8,然后取整数部分,剩下的小数部分继续乘以8,然后取整数部分,剩下的小数部分又乘以8,一直取到小数部分为零为止.如果永远不能为零,就同十进制数的四舍五入一样,暂取个名字叫3舍4入.例:将十进制数转换为八进制数解:先将这个数字分为整数部分796和小数部分整数部分小数部分因此,得到结果十进制转换八进制为上面的方法大家可以验证一下,你可以先将十进制转换,然后在转换为八进制,这样看得到的结果是否一样六、十六进制与十进制的转换十六进制与八进制有很多相似之处,大家可以参照上面八进制与十进制的转换自己试试这两个进制之间的转换.通过上面对各种进制之间的转换,我们可以将前面的转换图重新完善一下:本文介绍了二进制、十进制、八进制、十六进制四种进制之间相互的转换,大家在转换的时候要注意转换的方法,以及步骤,特别是十进制转换为期于三种进制之间,要分为整数部分和小数部分,最后就是小数点的位置.但是要保证考试中不出现错误还是需要大家经常练习,这样才能熟能生巧.二进制,八进制,十进制,十六进制转换99 :二进制是1100011 八进制是143 十六进制是63113: 110001 161 71127: 1 447 127192: 300 C0324: 0 504 144算法:十进制与二进制转换之相互算法十进制转二进制:用2辗转相除至结果为1将余数和最后的1从下向上倒序写就是结果例如302302/2 = 151 余0151/2 = 75 余175/2 = 37 余137/2 = 18 余118/2 = 9 余09/2 = 4 余14/2 = 2 余02/2 = 1 余0故二进制为0二进制转十进制从最后一位开始算,依次列为第0、1、2...位第n位的数0或1乘以2的n次方得到的结果相加就是答案例如:01101011.转十进制:第0位:1乘2的0次方=11乘2的1次方=20乘2的2次方=01乘2的3次方=80乘2的4次方=01乘2的5次方=321乘2的6次方=640乘2的7次方=0然后:1+2+0+8+0+32+64+0=107.二进制01101011=十进制107.一、二进制数转换成十进制数由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和.这种做法称为"按权相加"法.二、十进制数转换为二进制数十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并.1. 十进制整数转换为二进制整数十进制整数转换为二进制整数采用"除2取余,逆序排列"法.具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来.2.十进制小数转换为二进制小数十进制小数转换成二进制小数采用"乘2取整,顺序排列"法.具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止.然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位.回答者:HackerKinsn - 试用期一级 2-24 13:311.二进制与十进制的转换1二进制转十进制<BR>方法:"按权展开求和"例:2 =1×23+0×22+1×21+1×20+0×2-1+1×2-210 =8+0+2+1+0+10=102十进制转二进制·十进制整数转二进制数:"除以2取余,逆序输出" 例: 8910=101100122 892 44 (1)2 22 02 11 02 5 (1)2 2 (1)2 1 00 (1)·十进制小数转二进制数:"乘以2取整,顺序输出"例:0.62510= 0.10120.625X 21.25X 20.5X 21.02.八进制与二进制的转换例:将八进制的转换成二进制数:37 . 4 1 6011 111 .100 001 110即:8 =11111.2例:将二进制的转换成八进制:0 1 0 1 1 0 . 0 0 1 1 0 02 6 . 1 4即:2 =83.十六进制与二进制的转换<BR>例:将十六进制数转换成二进制:5 D F . 90101 1101 1111.1001即:16 =.10012例:将二进制数转换成十六进制:0110 0001 . 11106 1 . E即:2 =16。
二进制与十进制数的转换方法
二进制与十进制数的转换方法
二进制和十进制之间的转换可以通过以下方法进行:
1. 二进制转十进制:
将二进制数每一位上的数字乘以对应的权值(从右往左,权值为2的n次方,n从0开始递增),然后将各位上的结果相加,即为十进制数。
例如,二进制数转换为十进制数的计算过程为:
$0 \times 2^{7} + 1 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$ $= 0 + 64 + 0 + 16 + 0 + 4 + 0 + 0$
$= 84$
因此,二进制数转换为十进制数是84。
2. 十进制转二进制:
将十进制数不断除以2,并将余数按从下往上的顺序排列,即可得到对应的二进制数。
例如,十进制数84转换为二进制数的计算过程为:
84 / 2 = 42 余 0
42 / 2 = 21 余 0
21 / 2 = 10 余 1
10 / 2 = 5 余 0
5 / 2 = 2 余 1
2 / 2 = 1 余 0
1 /
2 = 0 余 1
因此,十进制数84转换为二进制数是。
二进制数与十进制数的相互转换
二进制数与十进制数的相互转换文章标题:深度探讨二进制数与十进制数的相互转换一、引言在日常生活和工作中,我们经常会接触到二进制数和十进制数。
二进制数是计算机中使用的一种数制,而十进制数则是我们常见的数学表示方法。
本文将深入探讨二进制数与十进制数的相互转换,帮助读者更深入地了解这两种数制的关系。
二、二进制数与十进制数的基本概念1. 二进制数的表示方法二进制数是由0和1组成的数字系统,每一位上的数称为一个二进制位。
1011表示十进制的11。
2. 十进制数的表示方法十进制数是由0到9组成的数字系统,每一位上的数表示对应的数量级。
123表示1*100 + 2*10 + 3*1。
三、二进制数转换为十进制数1. 从右向左的求和方法以二进制数1011为例,按照2的幂次方从右向左求和,即1*2^3 + 0*2^2 + 1*2^1 + 1*2^0,得到十进制数11。
2. 通用公式转换对于任意长度的二进制数,可以使用通用公式进行转换,即将每一位上的二进制数乘以2的对应次方再求和。
四、十进制数转换为二进制数1. 除2取余法以十进制数11为例,通过反复除2取余的方法可以得到二进制数1011。
即11÷2=5余1,5÷2=2余1,2÷2=1余0,1÷2=0余1。
2. 通用公式转换对于任意十进制数,同样可以使用通用公式进行转换,即反复除2取余直至商为0,再将余数倒序排列得到二进制数。
五、总结与回顾通过本文的深度探讨,我们了解了二进制数与十进制数之间的转换方法。
无论是从二进制数转换为十进制数,还是相反,都可以通过简单的算法和公式来实现。
这种转换方法在计算机领域具有重要意义,同时也有助于我们对数制间的转换有更深刻的理解。
六、个人观点与理解在我看来,二进制数与十进制数的转换虽然在表面上涉及了不同的数制与算法,但本质上都是在不同的进位制下表示和计算数值。
通过学习和掌握转换方法,我们可以更好地理解计算机运行原理,以及更灵活地处理数字计算和逻辑运算。
2进制、10进制和16进制的相互转换
整数时十进制与二进制相互转换:二进制的1101转化成十进制1101(2)=1*2^0+0*2^1+1*2^2+1*2^3=1+0+4+8=13转化成十进制要从右到左用二进制的每个数去乘以2的相应次方,不过次方要从0开始。
相反,用十进制的13除以2,每除一下将余数就记在旁边,最后按余数从下向上排列就可得到1101。
由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。
这种做法称为“按权相加”法。
2的0次方是12的1次方是22的2次方是42的3次方是82的4次方是162的5次方是322的6次方是642的7次方是1282的8次方是2562的9次方是5122的10次方是10242的11次方是20482的12次方是40962的13次方是81922的14次方是163842的15次方是32768有小数点的十进制与二进制之间的转换:十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。
例如19.95 转2进制分为两个步骤:(1) 小数点前:19/2=9余19/2=4 余14/2=2 余02/2=1 余01/2=0 余1由下往上取余数10011(2) 小数点后0.95*2 = 1.9 取整1(1.9-1)*2 = 1.8 取整1(1.8-1)*2 = 1.6 取整1(1.6-1)*2 = 1.2 取整1(1.2-1)*2 = 0.4 取整0(0.4-0)*2 = 0.8 取整0(0.8-0)*2 = 1.6 取整1(1.6-1)*2 = 1.2 取整1假设小数精度为8位,从上往下去则小数点后为0.11110011故19.95 转化为二进制为10011.11110011整数时八进制数转换为十进制数:八进制就是逢8进1。
八进制数采用0~7这八数来表达一个数。
八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方,以此类推。
二进制 十进制 十六进制转换
二进制数转换成十进制数二进制的1101转化成十进制1101(2)=1*2^0+0*2^1+1*2^2+1*2^3=1+0+4+8=13 转化成十进制要从右到左用二进制的每个数去乘以2的相应次方不过次方要从0开始相反用十进制的数除以 2 每除一下将余数就记在旁边最后按余数从下向上排列就可得到1101或者用下面这种方法:13=8+4+0+1=8+4+1(算出等于13就行了)由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。
这种做法称为"按权相加"法。
例如二进制数1000110转成十进制数可以看作这样:数字中共有三个1 即第二位一个,第三位一个,第七位一个,然后十进制数即2的2-1次方+2的3-1次方+2的7-1次方即2+4+64=70 次方数即1的位数减一。
2的0次方是1 2的1次方是2 2的2次方是4 2的3次方是8 2的4次方是16 2的5次方是32 2的6次方是64 2的7次方是128 2的8次方是256 2的9次方是512 2的10次方是1024 2的11次方是2048 2的12次方是4096 2的13次方是8192 2的14次方是16384 2的15次方是32768 2的16次方是65536 2的17次方是131072 2的18次方是262144 2的19次方是524288 2的20次方是1048576编辑本段十进制数转换为二进制数十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。
1. 十进制整数转换为二进制整数十进制整数转换为二进制整数采用"除2取余,逆序排列"法。
具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。
二进制数与十进制数的转换
小数部分第n位的位权是2-n
( 1 1 0 1 )2
1*23 1*22 0*21 1*20
3 二进制如数何转换成十进制数?
方法:按照位权依次展开相加。 例:(11001)2
=1*24+1*23+0*22+0*21+1*20 =16+8+0+0+1 =33
4 十进制数如何转换成二进制数?
方法:除二取余,倒序排列
例:将57转化为二进制数
2 57 2 28 2 14
27 23 21
0
1
0
0
1
1
1Leabharlann (57)10=(111001)2
二进制数与 十进制数的转换
泰兴市第三高级中学 程巧兰
学习目标
这节课的内容是信息技术最基本的知识, 也是学习网络技术的必备知识。通过本节课 的学习,同学们将理解什么是二进制,学会 二进制数与十进制数的转换方法。
学习目录
1 为什么计算机内部采用二进制?
2
什么是二进制数?
3 二进制数如何转换成十进制数? 4 十进制数如何转换成二进制数?
1 为什么计算机内部采用二进制?
计算机内部由逻辑电路组成,逻辑电路 通常只有两个状态,开关的接通与断开,这 两种状态正好可以用“1”和“0”表示,技术实 现比较容易,同时运算规则也比较简单,有 利于提高运算速度。
2
什么是二进制数?
定义:二进制数是用0和1两个数码来表示的数。 基数:数制所使用数码的个数 2 运算规则:逢二进一 位权:各个数位上代表的数值
二进制与十进制数间的转换、二进制数的四则运算
一、二进制数与十进制数间的转换方法1、正整数的十进制转换二进制:要点:除二取余,倒序排列解释:将一个十进制数除以二,得到的商再除以二,依此类推直到商等于一或零时为止,倒取将除得的余数,即换算为二进制数的结果例如把52换算成二进制数,计算结果如图:52除以2得到的余数依次为:0、0、1、0、1、1,倒序排列,所以52对应的二进制数就是110100。
由于计算机内部表示数的字节单位都是定长的,以2的幂次展开,或者8位,或者16位,或者32位....。
于是,一个二进制数用计算机表示时,位数不足2的幂次时,高位上要补足若干个0。
本文都以8位为例。
那么:(52)10=(00110100)22、负整数转换为二进制要点:取反加一解释:将该负整数对应的正整数先转换成二进制,然后对其“取补”,再对取补后的结果加1即可例如要把-52换算成二进制:1.先取得52的二进制:001101002.对所得到的二进制数取反:110010113.将取反后的数值加一即可:11001100即:(-52)10=(11001100)23、小数转换为二进制要点:乘二取整,正序排列解释:对被转换的小数乘以2,取其整数部分(0或1)作为二进制小数部分,取其小数部分,再乘以2,又取其整数部分作为二进制小数部分,然后取小数部分,再乘以2,直到小数部分为0或者已经去到了足够位数。
每次取的整数部分,按先后次序排列,就构成了二进制小数的序列例如把0.2转换为二进制,转换过程如图:0.2乘以2,取整后小数部分再乘以2,运算4次后得到的整数部分依次为0、0、1、1,结果又变成了0.2,若果0.2再乘以2后会循环刚开始的4次运算,所以0.2转换二进制后将是0011的循环,即:(0.2)10=(0.0011 0011 0011 .....)2循环的书写方法为在循环序列的第一位和最后一位分别加一个点标注4、二进制转换为十进制:整数二进制用数值乘以2的幂次依次相加,小数二进制用数值乘以2的负幂次然后依次相加!比如将二进制110转换为十进制:首先补齐位数,00000110,首位为0,则为正整数,那么将二进制中的三位数分别于下边对应的值相乘后相加得到的值为换算为十进制的结果如果二进制数补足位数之后首位为1,那么其对应的整数为负,那么需要先取反然后再换算比如11111001,首位为1,那么需要先对其取反,即:-0000011000000110,对应的十进制为6,因此11111001对应的十进制即为-6换算公式可表示为:11111001=-00000110=-6如果将二进制0.110转换为十进制:将二进制中的三位数分别于下边对应的值相乘后相加得到的值为换算为十进制的结果二、二进制的四则运算二进制四则运算和十进制四则运算原理相同,所不同的是十进制有十个数码,“满十进一”,二进制只有两个数码0和1,“满二进一”。
二进制数字1001转换为十进制
二进制数字1001转换为十进制二进制数是一种只有0和1两个数字的计数系统,而十进制数是我们最常用的计数系统,使用0到9十个数字进行计数。
在理解二进制数转换为十进制数的过程之前,我们需要先了解二进制和十进制数的表示方式及其数值的含义。
二进制数由0和1两个数字组成,每个数字位(位数)从右向左依次为2^0、2^1、2^2、2^3......2^n,其中n表示二进制数的位数。
这些位数所对应的数字称为权值。
例如,二进制数1001有4个位数,从右到左的权值分别是2^0(单位位)、2^1、2^2和2^3。
因此,1001的值可以计算为:1*2^3(=8)+ 0*2^2(=0)+ 0*2^1(=0)+ 1*2^0(=1),最后的结果是9。
十进制数是我们平时使用的计数系统,它由0到9这10个数字组成。
每个数字位(位数)从右向左依次为10^0(个位)、10^1(十位)、10^2(百位)、10^3(千位)......10^n,其中n表示十进制数的位数。
这些位数所对应的数字称为权值。
例如,十进制数9有1个位数,所以它的值就是9*10^0(=9)。
在将二进制数转换为十进制数时,我们可以按照上述的权值计算方法,将每个位上的数字乘以对应的权值,然后将它们相加即可得到结果。
下面,我们通过一个例子来进行演示。
考虑二进制数1001的转换过程:1.从右到左,最右边的位是2^0,也就是个位。
这个位上的数字是1,所以我们将1乘以2^0得到1。
2.继续向左移动一位,这一位是2^1,也就是十位。
这个位上的数字是0,所以我们将0乘以2^1得到0。
3.继续向左移动一位,这一位是2^2,也就是百位。
这个位上的数字是0,所以我们将0乘以2^2得到0。
4.最后一位是2^3,也就是千位。
这个位上的数字是1,所以我们将1乘以2^3得到8。
将每个位的计算结果相加,1 + 0 + 0 + 8 = 9。
所以,二进制数1001转换为十进制数的结果是9。
以上就是二进制数1001转换为十进制数的简单说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回答:
二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……所以,设有一个二进制数:0110 0100,转换为10进制为:
下面是竖式:
0110 0100 换算成十进制
第0位 0 * 20 = 0
第1位 0 * 21 = 0
第2位 1 * 22 = 4
第3位 0 * 23 = 0
第4位 0 * 24 = 0
第5位 1 * 25 = 32
第6位 1 * 26 = 64
第7位 0 * 27 = 0 +
---------------------------
100
用横式计算为:
0 * 20 + 0 * 21 + 1 * 22 + 1 * 23 + 0 * 24 + 1 * 25 + 1 * 26 + 0 * 27 = 100
0乘以多少都是0,所以我们也可以直接跳过值为0的位:
1 * 2
2 + 1 * 2
3 + 1 * 25 + 1 * 26 = 100
将一个十进制数(D)装换成r进制数,其整数部分与小数部分是不一样的,需要分别转换:
整数部分:除r取余数。
即用整数部分不断地除以r,取其余数,直到商为0.余数按反向排列。
小数部分:乘r取整。
即用小数部分不断地乘以r取整数,直到小数部分积大于1.整数依序排列在小数点右边。
十进制换成二进制(B),将上面规则中r换成2就好。
r还可以有八进制(O)的8 十六进制(H)的16
小数部分可能较为难理解,例如:将(100.345)D转换成二进制
100/2=50...0 50/2=25...0 25/2=12...1 12/2=6...0 6/2=3 0
3/2=1 (1)
0.345*2=0.690 0.690*2=1.380 0.380*2=0.760 0.760*2=1.520 0.520*2=1.04 则(100.345)D=(100100.01011)B。