塔吊计算书讲解
塔吊计算书
塔吊计算书【计算书】矩形板式基础计算书一、塔机属性二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值2、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值三、基础验算矩形板式基础布置图基础及其上土的自重荷载标准值:G k=blhγc=5×5×2×25=1250kN基础及其上土的自重荷载设计值:G=1.2G k=1.2×1250=1500kN荷载效应标准组合时,平行基础边长方向受力:M k''=G1R G1+G2R Qmax-G3R G3-G4R G4+0.9×(M2+0.5F vk H/1.2)=37.4×26+6.2×13-163×6.7-106×11.8+0.9×(630+0.5×17.34×43/1.2)=-443.29kN·mF vk''=F vk/1.2=17.34/1.2=14.45kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×(G1R G1+G2R Qmax-G3R G3-G4R G4)+1.4×0.9×(M2+0.5F vk H/1.2) =1.2×37.4×26+6.2×13-163×6.7-106×11.8)+1.4×0.9×(630+0.5×17.34×43/1.2)=-362.63kN·mF v''=F v/1.2=24.28/1.2=20.23kN基础长宽比:l/b=5/5=1≤1.1,基础计算形式为方形基础。
W x=lb2/6=5×52/6=20.83m3W y=bl2/6=5×52/6=20.83m3相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:M kx=M k b/(b2+l2)0.5=387.37×5/(52+52)0.5=273.91kN·mM ky=M k l/(b2+l2)0.5=387.37×5/(52+52)0.5=273.91kN·m1、偏心距验算相应于荷载效应标准组合时,基础边缘的最小压力值:P kmin=(F k+G k)/A-M kx/W x-M ky/W y=(664.5+1250)/25-273.91/20.83-273.91/20.83=50.28kPa≥0偏心荷载合力作用点在核心区内。
QTZ-315塔吊的计算书
一. 参数信息QTZ-315塔吊天然基础的计算书塔吊型号:QTZ315,自重(包括压重)F1=250.00kN,最大起重荷载F2=30.00kN,塔吊倾覆力距M=315.40kN.m,塔吊起重高度H=28.00m,塔身宽度B=1.40m,混凝土强度等级:C35,基础埋深D=1.30m,基础最小厚度h=1.30m,基础最小宽度Bc=5.00m,二. 基础最小尺寸计算基础的最小厚度取:H=1.30m基础的最小宽度取:Bc=5.00m三. 塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。
计算简图:当不考虑附着时的基础设计值计算公式:当考虑附着时的基础设计值计算公式:当考虑偏心距较大时的基础设计值计算公式:式中F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=1.2×280=336.00kN;G──基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc×D) =1275.00kN;Bc──基础底面的宽度,取Bc=5.00m;W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.83m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×315.40=441.56kN.m;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=5.00/2-441.56/(336.00+1275.00)=2.23m。
经过计算得到:无附着的最大压力设计值 Pmax=(336.00+1275.00)/5.002+441.56/20.83=85.63kPa无附着的最小压力设计值 Pmin=(336.00+1275.00)/5.002-441.56/20.83=43.25kPa有附着的压力设计值 P=(336.00+1275.00)/5.002=64.44kPa偏心距较大时压力设计值Pkmax=2×(336.00+1275.00)/(3×5.00×2.23)=96.50kPa四. 地基基础承载力验算地基基础承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条。
塔吊计算书
附塔机基础及平衡重和塔吊计算书○1基础计算书一、参数信息塔吊型号:QTZ80,塔吊起升高度H:50.00m,塔身宽度B:1.6m,基础埋深d:1.60m,自重G:600kN,基础承台厚度hc:1.00m,最大起重荷载Q:60kN,基础承台宽度Bc:5.50m,混凝土强度等级:C35,钢筋级别:HRB400,基础底面配筋直径:25mm二、塔吊对交叉梁中心作用力的计算1、塔吊竖向力计算塔吊自重:G=600kN;塔吊最大起重荷载:Q=60kN;作用于塔吊的竖向力:Fk=G+Q=600+60=660kN;2、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:Mkmax=960kN·m;三、塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=Mk /(Fk+Gk)≤Bc/3式中 e──偏心距,即地面反力的合力至基础中心的距离; Mk──作用在基础上的弯矩;Fk──作用在基础上的垂直载荷;Gk ──混凝土基础重力,Gk=25×5.5×5.5×1=756.25kN;Bc──为基础的底面宽度;计算得:e=960/(660+756.25)=0.678m < 5.5/3=1.833m;基础抗倾覆稳定性满足要求!四、地基承载力验算依据《建筑地基基础设计规范》(GB50007-2011)第5.2条承载力计算。
计算简图:混凝土基础抗倾翻稳定性计算: e=0.678m < 5.5/6=0.917m 地面压应力计算: P k =(F k +G k )/A P kmax =(F k +G k )/A + M k /W式中:F k ──塔吊作用于基础的竖向力,它包括塔吊自重和最大起重荷载,F k =660kN ; G k ──基础自重,G k =756.25kN ; Bc ──基础底面的宽度,取Bc=5.5m ;M k ──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M k = 960kN ·m ; W ──基础底面的抵抗矩,W=0.118Bc 3=0.118×5.53=19.632m 3; 不考虑附着基础设计值:P k =(660+756.25)/5.52=46.818kPaP kmax =(660+756.25)/5.52+960/19.632=95.717kPa ; P kmin =(660+756.25)/5.52-960/19.632=0kPa ; 实际计算取的地基承载力设计值为:f a =160.000kPa ;地基承载力特征值f a 大于压力标准值P k =46.818kPa ,满足要求!地基承载力特征值1.2×f a 大于无附着时的压力标准值P kmax =95.717kPa ,满足要求!五、基础受冲切承载力验算依据《建筑地基基础设计规范》(GB 50007-2011)第8.2.7条。
塔式起重机6010基础计算书
共 3 页第 3 页
1300
5 基础图
按上述要求的基础见图 3。
共 3 页第 2 页
32- φ 25@190
32- φ 25 @190
150
地脚 螺栓
1500
M4 8
150
32 - φ 25@190
32- φ 25@190 6000 1510±1
11 × 11- φ 16@570
370
37 0
1 510±1
6000
1 2 3 4
塔式起重机独立安装时,基础上所承受 的载荷如图1所示。取其工作状态和非工作状 态中最不利工况进行稳定性校核。 根据塔式起 重机设计规范,塔机稳定的条件为:
M Fh.h b e Fv Fg 3
Fh Fv Fg e
l
M
式中 M—作用在基础上的弯矩 Fv—作用在基础上的垂直载荷 Fh—作用在基础上的水平载荷 Fg—混凝土基础的重力 b—基础宽度 h—基础的高度 e—偏心距,即地面反力的合力至基础 中心距离 塔机QTZ80(臂长60m,臂端起重量1t) 独立安装时,其暴风侵蚀状态为最不利工 况。此时,作用在基础上的弯矩M=213t.m、 垂直载荷Fv =49.1t、水平载荷Fh =8.9t,取 基础宽度b=6m、高度h=1.5m、密度按2.4计 算时,基础重力Fg=130t,则 e=1.3m≤b/3=2m,稳定性验算通过。
b'
q=Fg /b2 Fh Fv
b
图 1 塔机对基础的作用力示意图
M
h
e l
PB
b
Ⅱ -Ⅱ
Ⅰ -Ⅰ
2 地基承载力计算
根据塔机受力情况, 产生的地基反力如 图2所示,地面最大压应力
PB
塔吊吊装计算书
塔吊吊装计算书---一、项目概述本文档旨在提供塔吊吊装计算书,为相关工程项目中的吊装操作提供准确的计算数据。
二、项目要求根据工程项目的具体要求,需要进行以下几方面的计算:1. 安装条件评估:根据工地的场地状况、人员安全等因素,评估塔吊的安装条件。
2. 载重量计算:根据工程需要,计算塔吊的最大吊装载重量。
3. 吊装高度计算:根据工地的实际要求,计算塔吊的最大吊装高度。
三、计算步骤以下是进行塔吊吊装计算的具体步骤:1. 安装条件评估:根据工地的实际情况,评估场地的坚实程度、承重能力以及周围环境的安全因素,以确定塔吊的安装条件。
2. 载重量计算:根据塔吊的额定载重量和工程需求,结合塔吊的腿高、臂长等参数,计算出塔吊的最大吊装载重量。
3. 吊装高度计算:根据工程要求和塔吊的臂长,计算出塔吊的最大吊装高度。
四、计算公式以下是进行塔吊吊装计算时常用的公式:1. 塔吊的最大吊装载重量公式:最大吊装载重量 = 塔吊额定载重量 * 载重系数2. 塔吊的最大吊装高度公式:最大吊装高度 = 塔吊臂长 + 塔身高度五、计算实例以下是一个塔吊吊装计算的实例:1. 安装条件评估:- 场地状况:坚实,承重能力良好,符合安装要求。
- 人员安全:周围无高压电线、建筑物等危险物,安全评估合格。
2. 载重量计算:- 塔吊额定载重量:50吨- 载重系数:0.8- 最大吊装载重量 = 50 * 0.8 = 40吨3. 吊装高度计算:- 塔吊臂长:50米- 塔身高度:30米- 最大吊装高度 = 50 + 30 = 80米六、总结本文档提供了塔吊吊装计算书的相关内容,包括项目概述、项目要求、计算步骤、计算公式和计算实例。
通过按照这些步骤和公式进行计算,可以为工程项目中的塔吊吊装操作提供准确的计算数据,确保施工的安全性和效率性。
以上是塔吊吊装计算书的简要内容,如有更详细的计算需求,请提供具体工程项目的相关要求,以便提供更准确的计算数据。
塔吊_计算书及设计图
塔吊计算书及设计图
一、总体设计
1.塔基部分:
材料:塔架材料为竹材,底板为300mm*300mm*11mm规格的中密度板。
结构:塔架底部与固定底板通过孔相连接构成塔基部分,塔架底部水平投影为正四边形,用热熔胶进行加固,如下图1:
设计要求:题目要求塔架水平投影必须在直径为150mm的圆形阴影范围内,可得出塔基(不包括底板)水平最大投影面积为内切于直径
150mm的圆的正方形,如下图2:
由上图计算可得,塔架底部正四边形边长为106mm。
2.塔架部分:
材料:塔架材料均为题目所给不同尺寸的竹材。
结构:为了降低塔吊重心,增加塔吊的稳定性,塔架采用梯形体结构,即塔架底部水平投影为正四边形,底部以上部分水平投影均为矩形
结构,四根塔架主柱之间通过架设横梁连接,横梁之间则用三角形结构
来连接以达到最稳定结构,如下图3:
设计要求:同塔基相同,塔架水平投影必须在直径为150mm的圆形阴影范围内,由于塔身采用梯形体结构,四根主立柱与地面之间皆有一
个夹角,这四个夹角相等时,才能保证塔身的稳定,我们设每根立柱与
地面之间夹角为 ,。
塔吊计算书
○1基础计算书附塔机基础及平衡重和塔吊计算书一、参数信息塔吊型号:QTZ80,塔身宽度B:1.6m,自重G:600kN,最大起重荷载Q:60kN,混凝土强度等级:C35,塔吊起升高度H:50.00m,基础埋深d:1.60m,基础承台厚度hc:1.00m,基础承台宽度Bc:5.50m,钢筋级别:HRB400,基础底面配筋直径:25mm二、塔吊对交叉梁中心作用力的计算1、塔吊竖向力计算塔吊自重:G=600kN;塔吊最大起重荷载:Q=60kN;作用于塔吊的竖向力:F k=G+Q=600+60=660kN;2、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:M kmax=960kN·m;三、塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=M k/(F k+G k)≤Bc/3式中e──偏心距,即地面反力的合力至基础中心的距离;M k──作用在基础上的弯矩;F k──作用在基础上的垂直载荷;G k──混凝土基础重力,G k=25×5.5×5.5×1=756.25kN;Bc──为基础的底面宽度;计算得:e=960/(660+756.25)=0.678m< 5.5/3=1.833m;基础抗倾覆稳定性满足要求!四、地基承载力验算依据《建筑地基基础设计规范》(GB50007-2011)第5.2条承载力计算。
计算简图:混凝土基础抗倾翻稳定性计算:e=0.678m <5.5/6=0.917m地面压应力计算:P k=(F k+G k)/AP kmax=(F k+G k)/A+M k/W式中:F k──塔吊作用于基础的竖向力,它包括塔吊自重和最大起重荷载, F k=660kN;G k──基础自重,G k=756.25kN;Bc──基础底面的宽度,取Bc=5.5m;M k──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M k=960kN·m;W──基础底面的抵抗矩,W=0.118Bc=0.118×5.5=19.632m;不考虑附着基础设计值:P k=(660+756.25)/5.5=46.818kPaP kmax=(660+756.25)/5.5+960/19.632=95.717kPa;P kmin=(660+756.25)/5. 52-960/19.632=0kPa;3 3 322第 2 页共14页塔吊计算书地基承载力特征值f a大于压力标准值P k=46.818kPa,满足要求!地基承载力特征值1.2×f a大于无附着时的压力标准值P kmax=95.717kPa,满足要求!五、基础受冲切承载力验算依据《建筑地基基础设计规范》(GB50007-2011)第8.2.7条。
塔吊计算书
工作状态下,标准组合的倾覆力矩标准值
M k 5128 0.9 (3027 69493.8) 13696.7KN.m
非工作状态下,标准组合的倾覆力矩标准值
M k 5128 24964 30092KN.m
三、桩竖向力计算 非工作状态下:
Qk ( Fk Gk ) / n (2210 750) / 4 740KN
承台最大负弯矩:
Mx =My =2 (-7564.5) 0.75=-11346.8KN.m
3、配筋计算 根据«混凝土结构设计规程»GB50010-2002 第 7.2.1 条
s =
M =1- 1-2s 2 1f c bh 0
s =1-
2
As =
M s h 0f y
式中 1 --------系数,当混凝土强度不超过 C50 时, 1 取为 1.0,当混凝 土强度等级为 C80 时, 1 取为 0.94,期间按线性内插法确定;
其中 Mx,My-----计算截面处 XY 方向的弯矩设计值(KN.m) Xi,yi------单桩相对承台中心轴的 XY 方向距离(m) Ni------不计承台自重及其上土重,第 i 桩的竖向反力设计值(KN) 由于非工作状态下,承台正弯矩最大:
Mx =My =2 9650.2 0.75=14475.3KN.m
最大拔力
N2 1.35 ( Fk Fqk ) / n-1.35 ( M k Fvk h) / L 1.35 (2210 120) / 4-1.35 ( 13696.7+82.2 1.2)/4.95 =-2976KN
非工作状态下 最大压力
N1 1.35 Fk / n 1.35 (M k Fvk h) / L 1.35 2210 / 4 1.35 (30092+316 1.2)/4.95 =9056.2KN
QTZ125塔吊基础计算书
QTZ125塔吊基础计算书一、参数信息塔吊型号:QTZ125,自重(包括压重)F1=546.84kN,最大起重荷载F2=80.00kN,塔吊倾覆力距M=1200.00kN.m,塔吊起重高度H=40.00m,塔身宽度B=2.00m,混凝土强度等级:C35,基础埋深D=2m,基础承台厚度h=1.45m,基础承台宽度Bc=7.5m。
二、QTZ125塔吊基础最小尺寸计算1.最小厚度计算依据《混凝土结构设计规范》(GB50010-2002)第7.7条受冲切承载力计算。
根据塔吊基础对基础的最大压力和最大拔力,按照下式进行抗冲切计算:其中 F ——塔吊基础对基脚的最大压力和最大拔力;其它参数参照规范。
计算方案:当F取塔吊基础对基脚的最大压力,将h01从0.8m开始,每增加0.01m,至到满足上式,解出一个h01;当F取塔吊基础对基脚的最大拔力时,同理,解出一个h02,最后h01与 h02相加,得到最小厚度H。
经过计算得到:塔吊基础对基脚的最大压力F=200.00kN时,得h01=0.70m;塔吊基础对基脚的最大拔力F=200.00kN时,得h02=0.70m;解得最小厚度 Hc=h01+h02+0.05=1.45m;实际计算取厚度为:Hc=1.45m。
2.最小宽度计算建议保证基础的偏心距小于Bc/4,则用下面的公式计算:其中 F——塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=1.2×626.84=752.21kN;G——基础自重与基础上面的土的自重,G=1.2×(25.0×Bc ×Bc×Hc+20.0 ×Bc×Bc×D) =1180.76kN;M——倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4× 1200.00=1680.00kN.m。
解得最小宽度Bc=3.48m,且还应该满足:Bc>=2h+B=4.90m。
塔吊专项方案计算书
一、工程概况本工程位于我国某城市,项目名称为“XX住宅小区”。
该住宅小区占地面积约12万平方米,总建筑面积约30万平方米,包含多层住宅、小高层住宅和配套设施等。
为确保施工过程中的垂直运输需求,本项目拟采用QTZ80型塔吊进行施工。
二、塔吊选型及基础设计1. 塔吊选型:根据施工现场实际情况,塔吊型号选为QTZ80型,其主要参数如下:- 起重量:80t- 起升高度:120m- 跨度:60m2. 基础设计:- 基础类型:独立基础- 基础尺寸:长×宽×高= 6m×6m×1.5m- 混凝土强度等级:C30- 混凝土用量:约18.6m³三、计算依据1. 《建筑地基基础设计规范》(GB50007-2011)2. 《塔式起重机设计规范》(GB/T5031-2010)3. 《混凝土结构设计规范》(GB50010-2010)四、计算内容1. 地基承载力计算:- 根据地质勘察报告,地基承载力特征值fak=180kPa。
- 基础底面积A = 6m×6m = 36m²。
- 基础埋深d = 0.75m。
- 计算基础承载力Fk = fak × A = 180kPa × 36m² = 6480kN。
2. 塔吊基础配筋计算:- 基础顶面配筋:主筋4Φ20,箍筋Φ10@150。
- 基础底面配筋:主筋4Φ20,箍筋Φ10@150。
- 计算混凝土受压区高度x:- 混凝土强度等级C30,f'c = 14.3N/mm²。
- 抗拉强度设计值f_t = 1.43N/mm²。
- 计算混凝土截面面积A = 6m×6m = 36m²。
- 计算配筋率ρ = (4×4×3.14×20²×1.43) / (36×1000) = 0.033。
- 计算受压区高度x = (0.5 × 14.3 × 36 × 0.033) / (1.43 × 20²) = 0.26m。
塔吊基础计算书
塔吊基础计算书一、塔吊基本参数(按起重臂下自由高度40m计算)1.塔帽、驾驶室、转盘等合计:G1=90KN2.起重臂重合计:G2=75KN3.平衡臂重合计:G3=60KN4.配重合计:G4=120KN5.标准节14节合计:G5=168KN6.起重量1.3—6吨:即Q1=13—60KN7.起升速度:V=1m/秒8.起重机旋转速度:n=0.6r/min9.制动时间:按0.2秒计算10.起重机倾斜按3‰考虑11.Q2 基础自重:5*5*1.35*2450kg*10=827kN12.根据建设单位提供的地质勘察报告地基承载力满足要求二、工作状态下稳定性验算:(倾覆点O1)1、起重机重力矩M1=G4*16.5+G3*9.5+(G1+G5)*2.5-G2*20=120*16.5+60*9.5+(90+168)*2.5+960*2.5-75*20=4095KN.m2、起重力矩M2=870KN.m3、工作力矩M3=M2V/gt=870*1/(900-40*0.62)=770KN.m4、旋转力矩M4=M2n2h/(900-Hn2)=870*0.62*40/(900-40*0.62)=14.14KN.m5、风压力矩M5=10.2*20+5*40=404KN.m6、倾斜力矩M6=(G1+G2+G3+G4+G5+Q2)*3‰*∑G/(Q2+∑G)*40=(90+75+60+120+168+827)*3‰*513/(827+513)*40=61.56KN.m K=(M1-M3-M4-M5-M6)/M2=(4095-770-14.1-404-61.56)/870=3.27>1.15 稳定三、工作状态(倾覆点Q2)1、M=(G1+G5+Q2)*2.5+G2*25-G3*4.5-G4*11.5=2937.5KN.m2、其余同第二节K=(M-M3-M4-M5-M6)/M2=(2937.5-637-14.14-404-61.56)/870=2.09>1.15 稳定四、非工作状态(倾覆点O2)1.M1=2850—2937.5KN.m 取M1=2850KN.m(最低高度)2.M5按0.6KN/m2计算:N1=40.8KN M5=40.8*14.14=576.9KN.m3.M6=61.56KN.m4.K=M1/(M5+M6)=2850/(576.9+61.56)=4.46>1.15 稳定。
塔吊计算书
塔吊天然基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。
一. 参数信息二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值F k1=700kN2) 基础以及覆土自重标准值G k=7.5×7.5×1.4×25=1968.75kN3) 起重荷载标准值F qk=60kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2)=0.8×0.7×1.95×1.54×0.2=0.34kN/m2=1.2×0.34×0.35×1.51=0.21kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.21×70=14.93kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×14.93×70=522.60kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.30kN/m2)=0.8×0.7×1.95×1.54×0.3=0.50kN/m2=1.2×0.50×0.35×1.51=0.32kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.32×70=22.40kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×22.40×70=783.89kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=1930+0.9×(950+522.60)=3255.34kN.m非工作状态下,标准组合的倾覆力矩标准值M k=1930+783.89=2713.89kN.m三. 地基承载力计算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)第4.1.3条承载力计算。
塔吊方案计算书
塔吊方案计算书1. 引言本文档旨在提供一份塔吊方案计算书,用于确定塔吊在施工现场的合适位置和参数设置。
该计算书将涵盖以下内容:1.施工现场概述2.各种塔吊方案的选择和计算3.安全因素考虑4.执行方案和预算估计2. 施工现场概述施工现场位于某某市某某区的建筑工地,地理位置便利,周边环境较为开阔。
计划在该施工现场使用塔吊进行吊装作业,以提高工作效率和安全性。
3. 塔吊方案的选择与计算目前市场上存在多种类型的塔吊,我们需要根据施工现场的具体情况进行选择和计算。
以下是一些建议的方案:3.1 方案一:XX型塔吊•额定起重量:100吨•最大起重距离:80米•最大高度:120米•塔吊自重:50吨•地基承载能力:XXX根据施工现场的具体情况,我们进行了以下计算和选择:1.预计吊装物体重量为50吨,远小于塔吊的额定起重量,因此该塔吊可以满足需求。
2.最大起重距离和最大高度都能够覆盖施工现场的范围。
3.塔吊自重可由塔吊制造商提供的技术参数得知,属于合适范围。
4.地基承载能力需要进行具体的地质勘测和计算,以确保施工现场能够承受塔吊的重量。
4. 安全因素考虑在选择和计算塔吊方案时,安全因素是至关重要的。
以下是我们在考虑安全性方面的一些建议:1.塔吊操作员需要具备相关的资质和经验,以确保吊装作业的安全进行。
2.施工现场需要进行周围环境的分析和评估,以确保塔吊操作不会对周边建筑物和人员造成风险。
3.定期对塔吊设备进行维护和检修,以确保设备的正常运行和安全性。
4.建立紧急预案,以应对突发情况和事故。
5. 执行方案和预算估计在选择和计算塔吊方案之后,需要制定具体的执行方案和预算估计,以确保项目的顺利实施。
1.确定塔吊的放置位置和基础设计,以满足安全和效率要求。
2.与塔吊制造商或供应商协商,制定详细的施工方案,包括起重物体的安装和拆卸过程。
3.制定物料运输和吊装过程的时间表,并考虑可能的风险和延误因素。
4.结合当前市场价格和预计工期,估计项目的总预算和成本。
塔吊桩基础的计算书
塔吊桩基础的计算书1. 参数信息塔吊型号:QTZ63自重(包括压重)F1=750.8 kN最大起重荷载F2=60 kN塔吊倾覆力距M=630kN.m塔吊安装高度H=110m塔身宽度B=1.65m混凝土强度:C30承台长度Lc或宽度Bc=4.5m桩直径或方桩边长d=0.5m承台厚度Hc=1.5m2. 塔吊基础承台顶面的竖向力与弯矩计算1). 塔吊自重(包括压重)F1=750.8kN2). 塔吊最大起重荷载F2=60 kN作用于桩基承台顶面的竖向力F=F1+F2=510.8 kN塔吊的倾覆力矩M=630 kN.m3. 矩形承台弯矩的计算计算简图:图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。
1). 桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第5.1.1条)其中n──单桩个数,n=4F──作用于桩基承台顶面的竖向力设计值,F=510.8 kN;G──桩基承台的自重,G=25.0×Bc×Bc×Hc=25.0×4.5×4.5×1.5=759.38kN;Mx,My──承台底面的弯矩设计值(kN.m),630 kN.m;xi,yi──单桩相对承台中心轴的XY方向距离(m);Ni──单桩桩顶竖向力设计值(kN)。
经计算得到单桩桩顶竖向力设计值:最大压力:(M为塔吊的倾覆力矩,a为桩间距)2). 矩形承台弯矩的计算(依据《建筑桩技术规范》JGJ94-94的第5.6.1条)其中Mx1,My1──计算截面处XY方向的弯矩设计值(kN.m);xi,yi──单桩相对承台中心轴的XY方向距离(m);Ni1──扣除承台自重的单桩桩顶竖向力设计值(kN),Ni1=Ni-G/n。
经过计算得到弯矩设计值:Mx1=My1= 2×(N-G/n) ×(a/1.414)MX1=My1= 2×(497.5-759.38/4)×(2.5÷1.414)=1089.1KN.m4、矩形承台截面主筋的计算依据《混凝土结构设计规范》(GB50010-2002)第7.5条受弯构件承载力计算。
塔吊基础计算书
配重高度hp(m)
0.70
基础混凝土强度
C35
3、计算简图
二、计算过程:
1. 修正地基承载力设计值:(本基础设计不考虑上部覆土)
f = fk+ηb×r×( b-3)+ηd×rm×( d-0.5)=
208.12
kN/m2
其中:
基础宽度的地基承载力修正系数ηb=
0.3
基础深度的地基承载力修正系数ηd=
fy为钢筋的抗拉、抗压强度设计值查规范
fy=
300
N/mm2
最小配筋面积
Asmin=ρbh=
9375
mm2
其中:
ρ为基础最小配筋率
0.0015
查表得配筋
Φ28 @ 125双向
截面积As(mm2)
13816
mm2
满足要求
冲击承载力Fl≤0.7βhpft×bm×ho=
3512507
N
其中:
βhp为受冲切承载力截面高度影响系数
0.94
ft为混凝土的抗拉强度设计值查表得ft=
1.57
N/mm2
c的取值:
1.6
m
bm为冲切破坏最不利一侧计算长度
bm=(c+bb)/2=
2.81
m
bb==c+2h0=
4.02
m
h0为截面有效高度h0=h-as=
Pmax=2×(F2+G1+G2+G3)/(3×l×a)=
165.01
kN/m2
Pmax
<
1.2f=
249.75
kN/m2
基础底面处的平均压力值Pk
Pk=Pmax/2=
82.50
塔机计算书-完整版
一.臂架计算_______________________________________________________ 3 1.1俯仰变幅臂架________________________________________________________ 31.1.1 载荷____________________________________________________________________ 31.1.2 臂架计算________________________________________________________________ 3 1.2小车变幅臂架计算(单吊点三角截面)__________________________________ 91.2.1 载荷____________________________________________________________________ 91.2.2臂架计算 ________________________________________________________________ 9 1.3小车变幅臂架计算(双吊点三角截面)_________________________________ 221.3.1 载荷___________________________________________________________________ 221.3.2臂架计算 _______________________________________________________________ 22二塔式起重机塔身结构计算_________________________________________ 402.1塔身受力计算_______________________________________________________ 402.1.1塔身在臂根铰接截面受力计算:___________________________________________ 412.1.2 塔身内力计算工况_______________________________________________________ 41 2.2桁架塔身整体强度和稳定性计算_______________________________________ 432.2.1塔身截面几何性质 _______________________________________________________ 432.2.2塔身的长细比 ___________________________________________________________ 462.2.3塔身强度与整体稳定性 ___________________________________________________ 48 2.3桁架塔身主肢计算___________________________________________________ 48 2.4腹杆计算___________________________________________________________ 49 2.5塔身位移计算_______________________________________________________ 51 2.6塔身的扭转角_______________________________________________________ 51 2.7塔身的连接_________________________________________________________ 53三整机稳定性的计算_______________________________________________ 553.1 第一种工况(无风,验算前倾): _____________________________________ 56 3.2 第二种工况(无风,验算后倾) _______________________________________ 57 3.3 第三种工况(最大风力作用下,验算前倾) _____________________________ 57 3.4 第四种工况(最大风力作用下,验算后倾) _____________________________ 57 3.5 第五种工况(45度转角)____________________________________________ 58 3.6 第六种工况(非工作状态、暴风侵袭) _________________________________ 583.7 第七种工况(突然卸载,验算后倾) ___________________________________ 59四变幅机构计算___________________________________________________ 604.1正常工作时变幅机构的作用力_________________________________________ 60 4.2最大变幅力_________________________________________________________ 61 4.3 机构的参数计算 _____________________________________________________ 62五回转机构_______________________________________________________ 655.1 回转阻力矩计算 _____________________________________________________ 65六起升机构的计算_________________________________________________ 686.1钢丝绳与卷筒的选择_________________________________________________ 68 6.2选择电动机_________________________________________________________ 68 6.3 选择减速器 _________________________________________________________ 69 6.4选择制动器_________________________________________________________ 70 6.5 选择联轴器 _________________________________________________________ 70 6.6 起制动时间验算 _____________________________________________________ 71七行走机构的计算_________________________________________________ 727.1 运行阻力的计算 _____________________________________________________ 72 7.2 电动机的选择 _______________________________________________________ 73 7.3 减速器的选择 _______________________________________________________ 75 7.4 制动器的选择 _______________________________________________________ 75 7.5 联轴器的选择 _______________________________________________________ 76 7.6 运行打滑验算 _______________________________________________________ 76一.臂架计算1.1俯仰变幅臂架1.1.1 载荷起重臂架的主要载荷为起升载荷、臂架自重载荷、物品偏摆水平力、各种惯性力和风力。
9#塔吊基础计算书
9塔吊计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-2011一、塔机属性二、塔机荷载1、塔机传递至基础荷载标准值2、塔机传递至基础荷载设计值三、桩顶作用效应计算承台底标高(m) -6.15基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=5×5×(1.2×25+0×19)=750kN承台及其上土的自重荷载设计值:G=1.35G k=1.35×750=1012.5kN 桩对角线距离:L=(a b2+a l2)0.5=(3.52+3.52)0.5=4.95m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k+G k)/n=(357+750)/4=276.75kN荷载效应标准组合偏心竖向力作用下:Q kmax=(F k+G k)/n+(M k+F Vk h)/L=(357+750)/4+(1193.9+56.8×1.2)/4.95=531.725kNQ kmin=(F k+G k)/n-(M k+F Vk h)/L=(357+750)/4-(1193.9+56.8×1.2)/4.95=21.775kN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F+G)/n+(M+F v h)/L=(481.95+1012.5)/4+(1611.765+76.68×1.2)/4.95=717.828kN Q min=(F+G)/n-(M+F v h)/L=(481.95+1012.5)/4-(1611.765+76.68×1.2)/4.95=29.397kN 四、桩承载力验算1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14×0.8=2.513m桩端面积:A p=πd2/4=3.14×0.82/4=0.503m2R a=ψuΣq sia·l i+q pa·A p=0.8×2.513×(2.23×10+3.2×65+2.8×60+2×45+8.4×65+2×70+1.22×60)+0×0.503=2508.2 48kNQ k=276.75kN≤R a=2508.248kNQ kmax=531.725kN≤1.2R a=1.2×2508.248=3009.897kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=21.775kN≥0不需要进行桩基竖向抗拔承载力计算!3、桩身承载力计算纵向普通钢筋截面面积:A s=nπd2/4=16×3.142×202/4=5027mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=717.828kNψc f c A p+0.9f y'A s'=(0.85×17×0.503×106 + 0.9×(360×5026.548))×10-3=8944.743kN Q=717.828kN≤ψc f c A p+0.9f y'A s'=8944.743kN满足要求!(2)、轴心受拔桩桩身承载力Q kmin=21.775kN≥0不需要进行轴心受拔桩桩身承载力计算!4、桩身构造配筋计算A s/A p×100%=(5026.548/(0.503×106))×100%=1%≥0.65%满足要求!五、承台计算1、荷载计算承台有效高度:h0=1200-50-22/2=1139mmM=(Q max+Q min)L/2=(717.828+(29.397))×4.95/2=1849.288kN·mX方向:M x=Ma b/L=1849.288×3.5/4.95=1307.644kN·mY方向:M y=Ma l/L=1849.288×3.5/4.95=1307.644kN·m2、受剪切计算V=F/n+M/L=481.95/4 + 1611.765/4.95=446.113kN受剪切承载力截面高度影响系数:βhs=(800/1139)1/4=0.915塔吊边缘至角桩内边缘的水平距离:a1b=(a b-B-d)/2=(3.5-1.6-0.8)/2=0.55ma1l=(a l-B-d)/2=(3.5-1.6-0.8)/2=0.55m 剪跨比:λb'=a1b/h0=550/1139=0.483,取λb=0.483;λl'= a1l/h0=550/1139=0.483,取λl=0.483;承台剪切系数:αb=1.75/(λb+1)=1.75/(0.483+1)=1.18αl=1.75/(λl+1)=1.75/(0.483+1)=1.18βhsαb f t bh0=0.915×1.18×1.57×103×5×1.139=9659.776kNβhsαl f t lh0=0.915×1.18×1.57×103×5×1.139=9659.776kNV=446.113kN≤min(βhsαb f t bh0, βhsαl f t lh0)=9659.776kN满足要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=1.6+2×1.139=3.878ma b=3.5m≤B+2h0=3.878m,a l=3.5m≤B+2h0=3.878m角桩位于冲切椎体以内,可不进行角桩冲切的承载力验算!4、承台配筋计算(1)、承台底面长向配筋面积αS1= M y/(α1f c bh02)=1307.644×106/(1.03×16.7×5000×11392)=0.012ζ1=1-(1-2αS1)0.5=1-(1-2×0.012)0.5=0.012γS1=1-ζ1/2=1-0.012/2=0.994A S1=M y/(γS1h0f y1)=1307.644×106/(0.994×1139×360)=3208mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/360)=max(0.2,0.196)=0.2% 梁底需要配筋:A1=max(A S1, ρbh0)=max(3208,0.002×5000×1139)=11391mm2 承台底长向实际配筋:A S1'=13052mm2≥A1=11391mm2满足要求!(2)、承台底面短向配筋面积αS2= M x/(α2f c bh02)=1307.644×106/(1.03×16.7×5000×11392)=0.012ζ2=1-(1-2αS2)0.5=1-(1-2×0.012)0.5=0.012γS2=1-ζ2/2=1-0.012/2=0.994A S2=M x/(γS2h0f y1)=1307.644×106/(0.994×1139×360)=3208mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/360)=max(0.2,0.196)=0.2% 梁底需要配筋:A2=max(3208, ρlh0)=max(3208,0.002×5000×1139)=11391mm2 承台底短向实际配筋:A S2'=13052mm2≥A2=11391mm2满足要求!(3)、承台顶面长向配筋面积承台顶长向实际配筋:A S3'=13052mm2≥0.5A S1'=0.5×13052=6526mm2 满足要求!(4)、承台顶面短向配筋面积承台顶长向实际配筋:A S4'=13052mm2≥0.5A S2'=0.5×13052=6526mm2 满足要求!(5)、承台竖向连接筋配筋面积承台竖向连接筋为双向Φ10@500。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
QTZ80塔吊格构基础设计计算书基本参数1、塔吊基本参数塔吊型号:QTZ80;塔吊自重Gt:490kN;最大起重荷载Q:60kN;塔吊起升高度H:40.50m;塔身宽度B: 1.6m;2、格构柱基本参数格构柱计算长度lo:5.9m;格构柱缀件类型:缀板;格构柱缀件节间长度a1:0.6m;格构柱分肢材料类型:L160x14;格构柱基础缀件节间长度a2:0.6m;格构柱钢板缀件参数:宽420mm,厚10mm;格构柱截面宽度b1:0.50m;格构柱基础缀件材料类型:L160x14;3、基础参数桩中心距a:2.8m;桩直径d:0.9m;桩入土深度l:18.5m;桩型与工艺:泥浆护壁钻(冲)孔灌注桩;桩混凝土等级:C30;桩钢筋型号:HRB400;桩钢筋直径:25mm;承台宽度Bc:4.6m;承台厚度h:1.35m;承台混凝土等级为:C35;承台钢筋等级:HRB400;承台钢筋直径:25;承台保护层厚度:100mm;承台箍筋间距:200mm;4、塔吊计算状态参数地面粗糙类别:B类田野乡村;风荷载高度变化系数: 2.09;主弦杆材料:角钢/方钢;主弦杆宽度c:140mm;非工作状态:所处城市:福建莆田市,基本风压ω0:0.70 kN/m2;额定起重力矩Me:800kN·m;基础所受水平力P:74kN;塔吊倾覆力矩M:1712kN·m;工作状态:所处城市:福建莆田市,基本风压ω0:0.7 kN/m2,额定起重力矩Me:800kN·m;基础所受水平力P:18.9kN;塔吊倾覆力矩M:1718kN·m;非工作状态下荷载计算一、塔吊受力计算1、塔吊竖向力计算承台自重:G c=25×Bc×Bc×h=25×4.60×4.60×1.35=714.15kN;作用在基础上的垂直力:F k=Gt+Gc=490.00+714.15=1204.15kN;2、塔吊倾覆力矩总的最大弯矩值M kmax=1712.00kN·m;3、塔吊水平力计算挡风系数计算:φ = (3B+2b+(4B2+b2)1/2)c/Bb挡风系数Φ=0.46;0×1.60×40.50×0.46+74.00=94.87kN;水平力:V k=ω×B×H×Φ+P=0.74、每根格构柱的受力计算作用于承台顶面的作用力:F k=1204.15kN;M kmax=1712.00kN·m;V k=94.87kN;图中x轴的方向是随时变化的,计算时应按照倾覆力矩Mmax最不利方向进行验算。
(1)、桩顶竖向力的计算N ik=(F k+G k)/n±M xk x i/Σxj2式中:n-单桩个数,n=4;F k-作用于桩基承台顶面的竖向力标准值;G k-桩基承台的自重标准值;M xk-承台底面的弯矩标准值;x i-单桩相对承台中心轴的X方向距离;N ik-单桩桩顶竖向力标准值;经计算得到单桩桩顶竖向力标准值最大压力:N kmax=F k/4+(M kmax×a×2-0.5)/(2×(a×2-0.5)2)=1204.15/4+(1712.00×2.80×2-0.5)/(2×(2.80×2-0.5)2)=733.24kN;最小压力:N kmin=F k/4-(M kmax×a×2-0.5)/(2×(a×2-0.5)2)=1204.15/4-(1712.00×2.80×2-0.5)/(2×(2.80×2-0.5)2)=-131.46kN;需要验算桩基础抗拔力。
(2)、桩顶剪力的计算V0=1.2V k/4=1.2×94.87/4=28.46kN;二、承台验算1、承台弯矩的计算依据《建筑桩技术规范》(JGJ94-2008 )的第5.9.1条。
M x = ∑N i y iM y = ∑N i x i其中 M x,M y-计算截面处XY方向的弯矩设计值;x i,y i-单桩相对承台中心轴的XY方向距离,取(a-B)/2=(2.80-1.60)/2=0.60m;N i1-单桩桩顶竖向力设计值;经过计算得到弯矩设计值:M x=M y=2×0.60×554.70×1.2=798.77kN·m。
2、承台配筋计算(1)承台梁底部配筋依据《混凝土结构设计规范》(GB50010-2010)第6.2条受弯构件承载力计算。
αs= M/(α1f c bh02)ζ = 1-(1-2αs)1/2γs = 1-ζ/2A s = M/(γs h0f y)式中:αl-系数,当混凝土强度不超过C50时,α1取为1.0,当混凝土强度等级为C80时,α1取为0.94,期间按线性内插法得 1.00 ;f c-混凝土抗压强度设计值查表得16.70N/mm2;h o-承台的计算高度h o=1350.00-100.00=1250.00mm;f y-钢筋受拉强度设计值,f y=360N/mm2;经过计算得:αs=798.77×106/(1.000×16.700×4.600×103×(1250.000)2)=0.006;ξ=1-(1-2×0.008)0.5=0.006;γs =1-0.008/2=0.997;A sx =A sy=798.77×106/(0.997×1250.000×360)=1780.386mm2;由于最小配筋率为0.20%,所以最小配筋面积为:900×1250×0.20%=2250mm2;建议配筋值:HRB400钢筋,825。
实际配筋值3927mm2。
(2)承台梁顶部配筋0.5×3927=1963.5 mm2;最小配筋率为0.20%,所以最小配筋面积为:900×1250×0.20%=2250mm2;建议配筋值:HRB400钢筋,825。
实际配筋值3927mm2。
(3)承台梁腰筋配筋HRB400,10@400,按梅花状布置。
3、承台斜截面抗剪切计算依据《建筑桩技术规范》(JGJ94-2008)的第5.9.10条。
桩对矩形承台的最大剪切力为V=1064.42kN。
我们考虑承台配置箍筋的情况,斜截面受剪承载力满足下面公式:V≤βhsαf t b0h0其中,b0──承台计算截面处的计算宽度,b0=4600.00mm;λ-计算截面的剪跨比,λ=a/h o,此处,a=(2800.00-1600.00)/2=600.00mm,当λ<0.25时,取λ=0.25;当λ>3时,取λ=3,得λ=0.48;βhs──受剪切承载力截面高度影响系数,当h0<800mm时,取h0=800mm,h0>2000mm时,取h0=2000mm,其间按内插法取值,βhs=(600/1250)1/4=0.832;α──承台剪切系数,α=1.75/(0.480+1)=1.182;h o-承台计算截面处的计算高度,h o=1350.00-100.00=1250.00mm;879.89kN≤0.832×1.182×1.57×4600×1250/1000=8877.86kN;经过计算承台已满足抗剪要求,只需构造配箍筋!三、单肢格构柱截面验算1、格构柱力学参数L160x14A =43.30cm2 i =4.92cm I =1048.36cm4 z0 =4.47cm每个格构柱由4根角钢L160x14组成,格构柱力学参数如下:I x1=[I+A×(b1/2-z0)2] ×4=[1048.36+43.30×(50.00/2-4.47)2]×4=77193.93cm4;A n1=A×4=43.30×4=173.20cm2;W1=I x1/(b1/2-z0)= 77193.93/(50.00/2-4.47)=3760.06cm3;i x1=(I x1/A n1)0.5=(77193.93/173.20)0.5=21.11cm;2、格构柱平面内整体强度N max/A n1=879.89×103/(173.20×102)=50.80N/mm2<f=215N/mm2;格构柱平面内整体强度满足要求。
3、格构柱整体稳定性验算L0x1=l o=5.90m;λx1=L0x1×102/i x1=5.90×102/21.11=27.95;单肢缀板节间长度:a1=0.60m;λ1=L1/i v=60.00/3.16=18.99;λ0x1=(λx12+λ12)0.5=(27.952+18.992)0.5=33.79;查表:Φx=0.82;N max/(Φx A)=879.89×103/(0.82×173.20×102)=61.95N/mm2<f=215N/mm2;格构柱整体稳定性满足要求。
4、刚度验算λmax=λ0x1=33.79<[λ]=150 满足;单肢计算长度:l01=a1=60.00cm;单肢回转半径:i1=4.92cm;单肢长细比:λ1=l o1/i1=60/4.92=12.20<0.7λmax=0.7×33.79=23.65;因截面无削弱,不必验算截面强度。
分肢稳定满足要求。
四、整体格构柱基础验算1、格构柱基础力学参数单肢格构柱力学参数:I x1=77193.93cm4 A n1=173.20cm2W1=3760.06cm3 i x1=21.11cm格构柱基础是由四个单肢的格构柱组成的,整个基础的力学参数:I x2=[I x1+A n1×(b2×102/2-b1×102/2)2]×4=[77193.93+173.20×(2.80×102/2-0.50×102/2)2]×4=9471055.72cm4;A n2=A n1×4=173.20×4=692.80cm2;W2=I x2/(b2/2-b1/2)= 9471055.72/(2.80×102/2-0.50×102/2)=82357.01cm3;i x2=(I x2/A n2)0.5=(9471055.72/692.80)0.5=116.92cm;2、格构柱基础平面内整体强度1.2N/A n+1.4M x/(γx×W)=1444.98×103/(692.80×82357.102)+2396.80×106/(1.0×01×103)=49.95N/mm2<f=215N/mm2;格构式基础平面内稳定满足要求。