福建省福州市高职单招数学模拟试卷(一)

合集下载

2022年福建省福州市普通高校高职单招数学测试题(含答案)

2022年福建省福州市普通高校高职单招数学测试题(含答案)

2022年福建省福州市普通高校高职单招数学测试题(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.若集合M={3,1,a-1},N = {-2,a2},N为M的真子集,则a的值是( )A.-1B.1C.0D.2.袋中有大小相同的三个白球和两个黑球,从中任取两个球,两球同色的概率为()A.1/5B.2/5C.3/5D.4/53.函数A.1B.2C.3D.44.下列句子不是命题的是A.B.C.D.5.正方形ABCD的边长为12,PA丄平面ABCD,PA=12,则点P到对角线BD的距离为()A.12B.12C.6D.66.A.11B.99C.120D.1217.A.B.{-1}C.{0}D.{1}8.若将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期后,所得图象对应的函数为()A.y=2sin(2x+π/4)B.y=2sin(2x+π/3)C.3;=2sin(2x-π/4)D.3;=2sin(2x-π/3)9.A.(5, 10)B.(-5, -10)C.(10, 5)D.(-10, -5)10.若x2-ax+b<0的解集为(1,2),则a+b=( )A.5B.-5C.1D.-111.函数y=log2x的图象大致是()A.B.C.D.12.A.B.C.D.13.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数14.已知函数f(x)=x2-x+1,则f(1)的值等于()A.-3B.-1C.1D.215.袋中装有4个大小形状相同的球,其中黑球2个,白球2个,从袋中随机抽取2个球,至少有一个白球的概率为()A.B.C.D.16.若102x=25,则10-x等于()A.B.C.D.17.一条线段AB是它在平面a上的射景的倍,则B与平面a所成角为()A.30°B.45°C.60°D.不能确定18.A ≠ф是A∩B=ф的( )A.充分条件B.必要条件C.充要条件D.无法确定19.椭圆x2/16+y2/9的焦点坐标为()A.(,0)(-,0)B.(4,0)(-4,0)C.(3,0)(-3,0)D.(7,0)(-7,0)20.贿圆x2/7+y2/3=1的焦距为()A.4B.2C.2D.2二、填空题(20题)21.从含有质地均匀且大小相同的2个红球、N个白球的口袋中取出一球,若取到红球的概率为2/5,则取得白球的概率等于______.22.23.24.25.长方体中,具有公共顶点A的三个面的对角线长分别是2,4,6,那么这个长方体的对角线的长是_____.26.已知_____.27.数列{a n}满足a n+1=1/1-a n,a2=2,则a1=_____.28.设AB是异面直线a,b的公垂线段,已知AB=2,a与b所成角为30°,在a上取线段AP=4,则点P到直线b的距离为_____.29.不等式(x-4)(x + 5)>0的解集是。

2021年福建省福州市普通高校高职单招数学一模测试卷(含答案)

2021年福建省福州市普通高校高职单招数学一模测试卷(含答案)

2021年福建省福州市普通高校高职单招数学一模测试卷(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.设为双曲线的两个焦点,点P在双曲线上,且满足,则的面积是()A.1B.C.2D.2.已知A={x|x+1>0},B{-2,-1,0,1},则(C R A)∩B=( )A.{-2,-1}B.{-2}C.{-1,0,1}D.{0,1}3.如图所示的程序框图中,输出的a的值是()A.2B.1/2C.-1/2D.-14.直线2x-y+7=0与圆(x-b2)+(y-b2)=20的位置关系是()A.相离B.相交但不过圆心C.相交且过圆心D.相切5.若a<b<0,则下列结论正确的是( )A.a2<b2B.a3<b<b3</bC.|a|<|b|D.a/b<16.执行如图的程序框图,那么输出S的值是( )A.-1B.1/2C.2D.17.已知a=(4,-4),点A(1,-1),B(2,-2),那么()A.a=ABB.a⊥ABC.|a|=|AB|D.a//AB8.顶点坐标为(-2,-3),焦点为F(-4,3)的抛物线方程是()A.(y-3)2=-4(x+2)B.(y+3)2=4(x+2)C.(y-3)2=-8(x+2)D.(y+3)2=-8(x+2)9.若sinα=-3cosα,则tanα=()A.-3B.3C.-1D.110.已知互相垂直的平面α,β交于直线l若直线m,n满足m⊥a,n⊥β则()A.m//LB.m//nC.n⊥LD.m⊥n11.x2-3x-4<0的等价命题是()A.x<-1或x>4B.-1<x<4C.x<-4或x>1D.-4<x<112.若输入-5,按图中所示程序框图运行后,输出的结果是()A.-5B.0C.-1D.113.设函数f(x) = x2+1,则f(x)是( )A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数14.展开式中的常数项是()A.-20B.-15C.20D.1515.函数y=1/2x2-lnx的单调递减区间为().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)16.设a>b>0,c<0,则下列不等式中成立的是A.ac>bcB.C.D.17.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数小于十位数的共有()A.210B.360C.464D.60018.设A-B={x|x∈A且x B},若M={4,5,6,7,8},N={7,8,9,10}则M-N等于()A.{4,5,6,7,8,9,10}B.{7,8}C.{4,5,6,9,10}D.{4,5,6}19.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-1,+∞)D.(1,-∞)20.已知等差数列中{an }中,a3=4,a11=16,则a7=( )A.18B.8C.10D.12二、填空题(20题)21.设A(2,-4), B(0,4),则线段AB的中点坐标为。

2022年福建省福州市普通高校高职单招数学一模测试卷(含答案)

2022年福建省福州市普通高校高职单招数学一模测试卷(含答案)

2022年福建省福州市普通高校高职单招数学一模测试卷(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.直线x+y+1=0的倾斜角为()A.B.C.D.-12.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法3.已知a=(1,2),则|a|=()A.1B.2C.3D.4.5.函数的定义域为()A.(0,1]B.(0,+∞)C.[1,+∞)D.(—∞,1]6.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1/x2B.f(x)=x2+1C.f(x)=x3D.f(x)-2-x7.设函数f(x) = x2+1,则f(x)是( )A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数8.A.B.C.9.直线4x+2y-7=0和直线3x-y+5=0的夹角是()A.30°B.45°C.60°D.90°10.下列函数中,在区间(0,)上是减函数的是( )A.y=sinxB.y=cosxC.y=xD.y=lgx11.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.712.已知直线L过点(0,7),且与直线y=-4x+2平行,则直线L的方程为()A.y=-4x-7B.y=4x—7C.y=-4x+7D.y=4x+713.在等差数列{a n}中,a5=9,则S9等于( )A.95B.81C.64D.4514.A=,是AB=的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件15.设i是虚数单位,则复数(1-i)(1+2i)=( )A.3+3iB.-1+3iC.3+iD.-1+i16.函数的定义域为()A.(0,2)B.(0,2]C.(2,+∞)D.[2,+∞)17.设复数z=1+i(i为虚数单位),则2/z+z2=()A.l+iB.l-iC.-l-iD.-l+i18.下列函数中,是增函数,又是奇函数的是(〕A.y=B.y=1/xC.y=x2D.y=x1/319.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2B.2C.D.20.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1丄l2,l2丄l3,l1//l3B.l1丄l2,l2//l3,l1丄l3C.l1//l2//l3,l1,l2,l3共面D.l1,l2,l3共点l1,l2,l3共面二、填空题(20题)21.22.若事件A与事件互为对立事件,则_____.23.24.25.方程扩4x-3×2x-4=0的根为______.26.若向量a=(2, -3)与向量b= (-2, m)共线,则m = 。

福建省福州市高职单招2022-2023学年职业技能第一次模拟卷(附答案)

福建省福州市高职单招2022-2023学年职业技能第一次模拟卷(附答案)

福建省福州市高职单招2022-2023学年职业技能第一次模拟卷(附答案) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(100题)1.下列关于黄埔军校的描述,正确的是()。

A.比起军事训练,更注重政治教育B.蒋介石任校长,周恩来任党代表C.注重培养学生爱国思想和革命精神D.黄埔军校于1924年在武汉建立2.经济学家有一个假设:用直升机在一个封闭的“迷你国”上空抛撒现金,使这个“迷你国”中的每个人持有的现金都增加了1倍,结果不是每个人都多得到1倍的商品,而是该国的物价总水平上涨1倍。

上述假设告诉我们的经济生活道理是()①该国货币升值②纸币的购买力取决于政府的意志③国家过多发行纸币会导致通货膨胀④纸币发行必须以流通中所需要的货币量为限度A.①②B.①③C.②④D.③④3.“水则载舟,水则覆舟”是谁的名言?()A.老子B.荀子C.庄子4.中国古代最大的百科全书是()。

A.《山海经》B.《天工开物》C.《梦溪笔谈》D.《永乐大典》5.下列诗句,不是描写乞巧节(七夕节)的一项是()A.两情若是久长时,又岂在朝朝暮暮。

B.天阶夜色凉如水,坐看牵牛织女星。

C.借问酒家何处有?牧童遥指杏花村。

D.终日不成章,泣涕零如雨;河汉清且浅,相去复几许!6.将一些相同的“”按如图所示摆放,观察每个图形中的“”的个数,若第n个图形中“”的个数是78,则n的值是()A.11B.12C.13D.147.孙中山建立的兴中会的纲领是()。

A.驱除鞑虏,恢复中华,建立合众政府B.养成尚武精神,实行民族主义C.驱除鞑虏,恢复中国,创立民国,平均地权D.民族、民生、民权8.经过公证的赠与合同,赠与人不交付赠与财产的,受赠人()。

A.可以要求其交付B.不可以要求其交付C.协商支付价金后要求其交付D.任意撤销赠与9.关于日常生活用品,下列说法正确的是()。

A.牙膏的成分中包括摩擦剂B.添加了高级脂肪酸的肥皂,质量更好一些C.加碘盐应注意防潮,保存在有阳光照射、干燥通风的地方D.“生抽”是酿造酱油,而“老抽”是配制酱油10.下列不属于自然资源的是()A.天然森林B.阳光C.水泥D.土地11.“黄梅时节家家雨,青草池塘处处蛙”。

2017年福建高职招考数学考前仿真模拟试题(附答案)

2017年福建高职招考数学考前仿真模拟试题(附答案)

考单招上高职单招网---- 根据历年单招考试大纲出题俯视图主视图左视图频率组距0.00.036 0.024 2017年福建高职招考数学考前仿真模拟试题(附答案)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数1+2ii (i 是虚数单位)的实部是 ( )A .25B .25-C .15D .15-2.已知等差数列{}n a 的公差为()0d d ≠,且36101332a a a a +++=,若8m a =,则m 为( )A .12B .8C .6D .43.已知直线l ⊥平面α,直线m ⊂平面β,下面有三个命题:①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β; 则真命题的个数为 ( )A .0B .1C .2D . 34.如右图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其 体积是 ( )A .36B .423C .433D .835.设点()2,102t P t t ⎛⎫+> ⎪⎝⎭,则OP (O 为坐标原点)的最小值是 ( )A .5B .3C .5D .3 6.学校为了调查学生在课外读物方面的支出情况,考单招上高职单招网---- 根据历年单招考试大纲出题开始1,0n S ==① 否 2nS S =+1n n =+是输出S 结束抽出了一个容量为n 的样本,其频率分布直 方图如图所示,其中支出在[50,60)元的同 学有30人,则n 的值为 ( ) A .100 B .1000 C .90D .9007.已知21()nx x+的二项展开式的各项系数和为32,则二项展开式中x 的系数为 ( ) A .5 B .10 C .20 D .408.若右面的程序框图输出的S 是126,则①应为( ) A .5n ≤? B .6n ≤?C .7n ≤?D .8n ≤?9.已知a ∈R ,则“2a <”是“|2|||x x a -+>恒成立”的 ( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.设函数()sin(2)3f x x π=+,则下列结论正确的是 ( )考单招上高职单招网---- 根据历年单招考试大纲出题A .()f x 的图像关于直线3x π=对称B .()f x 的图像关于点(,0)4π对称C .把()f x 的图像向左平移12π个单位,得到一个偶函数的图像 D .()f x 的最小正周期为π,且在[0,]6π上为增函数11.已知点F 、A 分别为双曲线C :22221x y a b -=(0,0)a b >>的左焦点、右顶点,点(0,)B b 满足0FB AB ⋅=,则双曲线的离心率为( )A .2B .3C .132+ D .152+ 12.已知直线2x =及4x =与函数2log y x =图像的交点分别为,A B ,与函数lg y x=图像的交点分别为,C D ,则直线AB 与CD( ) A .相交,且交点在第I 象限 B .相交,且交点在第II 象限 C .相交,且交点在第IV 象限D .相交,且交点在坐标原点第Ⅱ卷(非选择题 共90分)二、填空:本大题共4小题,每小题4分,共16分. 13.2(2)x x e dx -=⎰;14.已知3sin()45x π-=,则sin 2x 的值为;15.已知集合2{120,Z A x x x x =--≤∈},从集合A 中任选三个不同的元素,,a b c 组成集合{,,}M a b c =,则能够满足0a b c ++=的集合M 的概率为=;考单招上高职单招网---- 根据历年单招考试大纲出题16.定义:区间[]()1212,x x x x <的长度为21x x -.已知函数||2x y =的定义域为[],a b ,值域为[]1,2,则区间[],a b 的长度的最大值与最小值的差为_________.三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,c b a ,,分别是C B A ∠∠∠,,的对边长,已知A A cos 3sin 2=. (I )若mbc b c a -=-222,求实数m 的值; (II )若3=a ,求ABC ∆面积的最大值.18.(本小题满分12分)在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有.放回..地先后抽得两张卡片的标号分别为x 、y ,设O 为坐标原点,点P 的坐标为(2,)x x y --,记2OP ξ= .(I )求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率; (II )求随机变量ξ的分布列和数学期望.考单招上高职单招网---- 根据历年单招考试大纲出题19.(本小题满分12分)已知函数()32331f x ax x a=-+-(R a ∈且0)a ≠,求函数)(x f 的极大值与极小值.20.(本小题满分12分)在四棱锥ABCD P -中,⊥PA 平面ABCD ,底面ABCD 为矩形,1(0)AB PA BC a a==>. (I )当1a =时,求证:BD PC ⊥;(II )若BC 边上有且只有一个点Q ,使得QD PQ ⊥,求此时二面角QPD A --的余弦值.A DP考单招上高职单招网---- 根据历年单招考试大纲出题21.(本小题满分12分)已知C B A ,,均在椭圆)1(1:222>=+a y a x M 上,直线AB 、AC 分别过椭圆的左右焦点1F 、2F ,当120AC F F ⋅= 时,有21219AF AF AF =⋅. (I )求椭圆M 的方程;(II )设P 是椭圆M 上的任一点,EF 为圆()12:22=-+y x N 的任一条直径,求PF PE ⋅的最大值.22.(本小题满分14分)已知等比数列{}n a 的前n 项和为23(R,N )n n S k k n *=⋅+∈∈ (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 满足4(5)n n a b n a k =+,n T 为数列{}n b 的前n 项和,试比较316n T - 与14(1)n n b ++的大小,并证明你的结论.考单招上高职单招网---- 根据历年单招考试大纲出题参考答案一、选择题:ABCCA ABBCC DD 二、填空题:13.25e -; 14.725;15.328;16.1; 17.解:(I )由A A cos 3sin 2=两边平方得:A A cos 3sin 22=即0)2)(cos 1cos 2(=+-A A 解得: 21cos =A …………………………3分 而mbc b c a -=-222可以变形为22222mbc a c b =-+ 即212cos ==m A ,所以1m =…………………………6分 (II )由(Ⅰ)知 21cos =A ,则23sin =A …………………………7分 又212222=-+bc a c b …………………………8分 所以22222a bc a c b bc -≥-+=即2a bc ≤…………………………10分 故433232sin 22=⋅≤=∆a A bc S ABC………………………………12分 18.解:(Ⅰ)x 、y 可能的取值为1、2、3,12≤-∴x ,2≤-x y ,22(2)()5x x y ξ∴=-+-≤,且当3,1==y x 或1,3==y x 时,5ξ=. 因此,随机变量ξ的最大值为5…………………………4分有放回抽两张卡片的所有情况有933=⨯种,2(5)9P ξ∴==…………………6分考单招上高职单招网---- 根据历年单招考试大纲出题(II )ξ的所有取值为0,1,2,5.0=ξ 时,只有2,2==y x 这一种情况.1ξ=时,有1,1==y x 或1,2==y x 或3,2==y x 或3,3==y x 四种情况, 2ξ=时,有2,1==y x 或2,3==y x 两种情况.91)0(==∴ξP ,4(1)9P ξ==,2(2)9P ξ==…………………………8分 则随机变量ξ的分布列为:ξ0 1 2 5P9194 92 92 ………………10分因此,数学期望1422012529999E ξ=⨯+⨯+⨯+⨯=…………………………12分 19.解:由题设知)2(363)(,02ax ax x ax x f a -=-='≠令2()00,f x x x a'===得 或……………………………2分 当0a >时,随x 的变化,()'f x 与()f x 的变化如下:x(),0-∞20,a ⎛⎫ ⎪⎝⎭2a2,a ⎛⎫+∞ ⎪⎝⎭)(x f ' + 0 - 0 + )(x f极大极小∴()()301f x f a ==-极大,()22431f x f a a a ⎛⎫==--+ ⎪⎝⎭极小………6分 当0a <时,随x 的变化,()'f x 与()f x 的变化如下:考单招上高职单招网---- 根据历年单招考试大纲出题x2,a ⎛⎫-∞ ⎪⎝⎭2a2,0a ⎛⎫ ⎪⎝⎭()0,+∞)(x f '- 0 + 0 - )(x f极小极大∴()()301f x f a ==-极大,()22431f x f a a a ⎛⎫==--+ ⎪⎝⎭极小…………11分 总之,当0a >时,()()301f x f a ==-极大,()22431f x f a a a ⎛⎫==--+ ⎪⎝⎭极小; 当0a <时,()()301f x f a ==-极大,()22431f x f a a a ⎛⎫==--+ ⎪⎝⎭极小……12分 20.解:(I )当1a =时,底面ABCD 为正方形,∴BD AC ⊥又因为BD PA ⊥,BD ∴⊥面PAC …………………………2分 又PC ⊂面PACBD PC ∴⊥…………………………3分(II )因为AP AD AB ,,两两垂直,分别以它们所在直线为x 轴、y 轴、z 轴建立坐标系,如图所示,令1AB =,可得BC a = 则)1,0,0(),0,,1()0,,0(),0,0,1(P a C a D B …………………4分 设m BQ =,则)0)(0,,1(a m m Q ≤≤要使QD PQ ⊥,只要0)(1=-+-=⋅m a m QD PQ 即210m am -+=………6分 由0∆=2a ⇒=,此时1m =。

2021年福建省福州市普通高校高职单招数学测试题(含答案)

2021年福建省福州市普通高校高职单招数学测试题(含答案)

2021年福建省福州市普通高校高职单招数学测试题(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.已知椭圆的一个焦点为F(0,1),离心率e=1/2,则该椭圆的标准方程为()A.x2/3+y2/4=1B.x2/4+y2/3=1C.x2/2+y2=1D.y2/2+x2=12.在等差数列中,若a3+a17=10,则S19等于()A.75B.85C.95D.653.下列各组数中成等比数列的是()A.B.C.4,8,12D.4.已知向量a(3,-1),b(1,-2),则他们的夹角是()A.B.C.D.5.已知,则点P(sina,tana)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.A.(-2.3)B.(2,3]C.[2,3)D.[-2,3]7.下列函数为偶函数的是A.B.y=7xC.y=2x+18.下列命题中,假命题的是()A.a=0且b=0是AB=0的充分条件B.a=0或b=0是AB=0的充分条件C.a=0且b=0是AB=0的必要条件D.a=0或b=0是AB=0的必要条件9.若lgx<1,则x的取值范围是()A.x>0B.x<10C.x>10D.0<x<1010.实数4与16的等比中项为A.-8B.C.811.垂直于同一个平面的两个平面()A.互相垂直B.互相平行C.相交D.前三种情况都有可能12.下列各组数中,表示同一函数的是()A.B.C.D.13.直线2x-y+7=0与圆(x-b2)+(y-b2)=20的位置关系是()A.相离B.相交但不过圆心C.相交且过圆心D.相切14.A.B.C.D.15.A.B.C.D.16.已知等差数列{a n}满足a2+a4=4,a3+a5=它的前10项的和S n()A.138B.135C.95D.2317.A.B.C.D.U18.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-l,+∞)D.(1,+∞)19.有四名高中毕业生报考大学,有三所大学可供选择,每人只能填报一所大学,则报考的方案数为()A.B.C.D.20.两个三角形全等是两个三角形面积相等的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件二、填空题(20题)21.已知直线l1:ax-y+2a+1=0和直线l2:2x-(a-l)y+2=0(a∈R)则l1⊥l2的充要条件是a=______.22.已知数列{a n}是各项都是正数的等比数列,其中a2=2,a4=8,则数列{a n}的前n项和S n=______.23.设全集U=R,集合A={x|x2-4<0},集合B={x|x>3},则_____.24.己知等比数列2,4,8,16,…,则2048是它的第()项。

考数学高职单招模拟试题(1)

考数学高职单招模拟试题(1)

福建省高考高职单招数学模拟试题班级: 姓名: 座号:一、选择题(本大题有15小题,每小题3分,共45分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}{}0,1,2,0,1M N ==,则MN =A .{}2B .{}0,1C .{}0,2D .{}0,1,2 2.某几何体的三视图如下图所示,则该几何体是A .圆柱B .圆锥C .三棱柱D .三棱锥3.当输入a 的值为1,b 的值为3-时,右边程序运行的结果是 A .1 B .2- C .3- D .2 4.函数2sin(2)6y x π=-的最小正周期是A .4πB .2πC .πD .2π 5.下列函数中,在()0,+∞上是减函数的是A .1y x =B .21y x =+C .2xy = D .()()00x x y x x >⎧⎪=⎨-≤⎪⎩6.不等式组101x y x -+≥⎧⎨≤⎩表示的平面区域是7.函数x y sin 1+=的部分图像如图所示,则该函数在[]π2,0的单调递减区间是A.[]0,πB .3,22ππ⎡⎤⎢⎥⎣⎦C .30,2π⎡⎤⎢⎥⎣⎦D .,22ππ⎡⎤⎢⎥⎣⎦2π π 32π2πDC B A正视图8.方程320x -=的根所在的区间是A .()2,0-B .()0,1C .()1,2D .()2,3 9.已知向量a (2,1)=,b (3,)λ=,且a ⊥b ,则λ=A .6-B .6C .32D .32- 10.函数()2log 1y x =-的图像大致是11.不等式230x x ->的解集是A .{}03x x ≤≤ B .{}0,3x x x ≤≥或 C .{}03x x << D .{}0,3x x x <>或 12.下列几何体的下底面面积相等,高也相等,则体积最大的是DC B A13.如图,边长为2的正方形内有一内切圆.在图形上随机撒一粒黄豆,则黄豆落到圆内的概率是A .4π B .4πC .44π-D .π14.已知()3cos 5πα-=-,则cos 2a =A .1625 B .1625- C .725D .725-15.在某五场篮球比赛中,甲、乙两名运动员得分的茎叶图如下.下列说法正确的是A .在这五场比赛中,甲的平均得分比乙好,且甲比乙稳定B .在这五场比赛中,甲的平均得分比乙好,但乙比甲稳定C .在这五场比赛中,乙的平均得分比甲好,且乙比甲稳定D .在这五场比赛中,乙的平均得分比甲好,但甲比乙稳定二、填空题(本大题有5小题,每小题3分,共15分。

高职单招《数学》模拟试题(一)

高职单招《数学》模拟试题(一)

高职单招《数学》模拟试题(一)-CAL-FENGHAI.-(YICAI)-Company One1高职单招《数学》模拟试题(一)(考试时间120分钟,满分150分)班级___________ 座号______ 姓名__________ 成绩_____一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干后的括号内。

本大题共12小题,每小题4分,共48分):1、设全集I={}210,,,集合M={}21,,N={}0,则C I M ∩N 是( ) A 、φ B 、M C 、N D 、I2、下列各组函数中,哪一组的两个函数为同一函数( )A 、y=lgx 2与y=2lgxB 、y=2x 与y=xC 、y=Sinx 与y=-Sin(-x)D 、y=Cosx 与y=-Cos(-x)3、设定义在R 上的函数f(x)=3x x ,则f(x)是( )A 、偶函数,又是增函数B 、偶函数,又是减函数C 、奇函数,又是减函数D 、奇函数,又是增函数4、若log 4x=3,则log 16x 的值是( )A 、23 B 、9 C 、3 D 、64 5、函数y=5-Sin2x 的最大值与周期分别是( )A 、4,πB 、6,2π C 、5,π D 、6,π 6、若Cosx=-23,x ∈)2,(ππ,则x 等于( ) A 、67π B 、34π C 、611π D 、35π 7、已知△ABC ,∠B=45°,C=23,b=22,那么∠C=( )A 、60°B 、120°C 、60°或120°D 、75°或105°8、下列命题:①若两个平面都垂直于同一个平面,则这两个平面平行。

②两条平行直线与同一个平面所成的角相等。

③若一个平面内不共线的三点到另一个平面的距离相等,则这两个平面平行。

④若一条直线一个平面相交,并且和这个平面内无数条直线垂直,则这条直线和这个平面垂直。

2023年高职单独招生考试数学试卷(答案) (1)

2023年高职单独招生考试数学试卷(答案) (1)
2023 年对口单独招生统一考试
数学试卷
(满分 120 分,考试时间 120 分钟)
一、选择题:(本题共 20 小题,每小题 3 分,共 60 分)

(
OB
OC ) (OB OC 2OA) 0 , 则 ABC 的形状为

ABC
1、若 O 为
D. 内必存在直线与 m 平行, 不一定存在直线与 m 垂直。
2
S n 1 an
3 , 则其各项和 S(
3、已知数列 an 的前 n 项和 Sn 满足
Hale Waihona Puke A.13B. 2
5
C. 3

2
D. 3
4、当圆锥的侧面积与底面积的比值是 2 时, 圆锥的轴截面的顶角是(
A. 30
B. 45
C. 90
积的最小值是____.
3、过点 p(2,1) 且与直线 x 2 y 10 0 平行的直线方程是______
4、在 ABC 中,已知 B= 30 , C= 135 ,AB=4,则 AC=______
1
7
y sin x b
3
5、已知函数
的最大值是 9 ,则 b=______
A. A′C⊥平面 DBC′
B. 平面 AB′D′//平面 BDC′
C. BC′⊥AB′
D. 平面 AB′D′⊥平面 A′AC
13. 已知集合 A={-1,0,1},集合 B={-3,-1,1,3},则 A∩B=(

)
A. {-1,1}
B. {-1}
14. 不等式 x2-4x≤0 的解集为(
A. [0,4]
当 t>1 时,S′>0,当 0<t<1 时,S′<0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省福州市高职单招数学模拟试卷(一)(考试时间120分钟,满分150分)班级__________座号____________姓名__________成绩___________一、 单项选择题(42分)1、由平方为1的数所组成的集合为( )A .﹛1﹜B .﹛-1﹜C .﹛1,-1﹜D . 1 2、不等式2x 2+5x-3<0的解( ) A .全体实数 B .空集 C .-3<x <21 D .x <-3或x >213、不等式|X-2|>5的解集为( )A .{x|x >5或 x <-5 ﹜B .{x|-5<x <5﹜C .{x|x >7或 x <-3 ﹜D .{x|-3<x <5﹜ 4、抛物线2112y x =-+的开口方向和顶点坐标为( ) A .开口向上,顶点(0,-1) B .开口向上,顶点(0,1) C .开口向下,顶点(0,-1) D .开口向下,顶点(0,1) 5、下列各函数是偶函数的是( )A .y=3sin3xB . y=2sinx+1C .y=3tanxD . y=2cosx-16、若l 是平面α的斜线,直线m ⊂平面α,且l 在平面α上的射影与直线m 平行,则( ) A .m ⊥l B .m//l C .m 与l 是相交直线 D . m 与l 是异面直线7、等差数列{an }中,a 3+a 5+a 10+a 12=36,则S 14=( ) A . 126 B. 63 C.36 D.188、已知a =(-1,3),b =(x,-1),且a//b ,则x=( ) A . 3 B .31-C .31D .-3 9、直线01=+-y x 的斜率和倾斜角分别是( ) A .045,1 B.0135,1- C.0135,1 D.045,1-10、以()2,3-为圆心,2为半径的圆的方程是( )A .()()22322=+++y x B.()()22322=++-y xC.()()22322=-++y x D. ()()22322=++-y x11、长轴长为10,短轴长为6的椭圆方程为( )A .192522=+y x B.192522=+x yC.192519252222=+=+x y y x 或 D.192522=-y x 12、用0,1,2,3,4,5组成没有重复数字的二位数,共有( )个 A .15 B .20 C. 25 D. 3013.函数22cos sin y x x =-的周期T= ( )A .πB .2πC .2π D .14π 14、一枚硬币连续抛掷3次,至少两次正面向上的概率是( ) A .21 B . 32 C . 83 D .43二、填空题(40分)15、函数 y=()4log 24-x π的定义域为16、y=54+-x x ()5-≠x 的反函数为 17、不等式x 2+5x+m >0的解集为R ,实数m 的取值范围18、和式818414212+++……+64164= 19、设1e ,2e 是两个单位向量,它们的夹角是60°,则(1e -2e )(-31e +22e)= ___20、在(xx 2-)6展开式中,常数项为21、若ABCD 为矩形,DE 垂直于平面ABCD, 点E 到顶点A,B,C 的距离分别为3,4,10, 则DE 的长为____________22、若双曲线线上一点到两个焦点),(),,(050521F F -的距离的差的绝对值为8,则双曲线的虚轴长为_________ 23、焦点到准线的距离为23,且焦点在x 轴正半轴上的抛物线的方程为 . 24、直线082=-+y x 和012=+-y x 的交点为 . 三、解答题(68分,写出详细的解答过程)1、 已知集合A={x|x 2-3x+2>0},B={x|x-a <0}若A ⊃B ,求实数a 取值范围(8分)2、已知:二次函数f(x)=ax 2+bx+c 的图象对称轴为直线x=-3,且过点p(-2,-4)和Q (0,4) ①求a,b,c 的值 ②若f(x)不小于11,求对应x 的取值范围(9分)3、求证:(tan cot )sin cos 1θθθθ+=(8分)4、设{n a }为等差数列,且公差d 为正数,已知 432432115a a a a a a ,,,又-=++ 成等比数列,求1a 和d (8分)5、求椭圆141622=+y x 中,过点M (2,1)且平分于这点的的弦所在的直线方程(11分)6、从圆11122=-+-)()(y x 外一点P (2,3)向该圆引切线,求切线的方程。

(12分)7、在某块地上种植苹果,若种50株苹果树,每株苹果树将产出70kg 苹果。

若多种1株苹果树,每株产量平均下降1kg。

试问在这块地上种多少株苹果树才能使产量达到最大,并求出这个最大值。

(12分)答案卷班级__________座号____________姓名__________成绩___________二填空题15__________________ 16__________________17__________________ 18__________________ 19__________________ 20__________________ 21__________________ 22__________________ 23__________________ 24__________________ 三解答题(1)(2)(3)(4)(5)(6) (7)标准答案一.选择题,每题3分,共42分。

1.C 2 C 3.C 4.D 5.D 6.D 7.A 8.C 9.A 10.B 11.C 12.C 13. A 14.A 二.填空题,每题4分,共40分。

15.{}5225|≤-≤-x x x 或 16.y=x x -+154(x ≠1)17.m 425 18.126646319.-25 20.-160 21.3 22.6 23.x y 342= 24.(3,2)三.解答题,共68分,要写出必要的解答过程。

1.解:()(){}{}21|012| x x x x x x 或=--=A ,{}a x x |=B --------------------------4分又B ⊃A ----------------------------1分1≤∴a ----------------------------2分 2.解:① 依条件得: 32-=-ab-------------1分 a ()22-+b (-2)+c=-4 -------------1分 c=4 -------------1分 解得:a=1 b=6c=4 --------------2分 ② 由①得f (x )=462++x x ,()11不小于x f ----2分11462≥++∴x x ,即0762≥-+x x ---------2分 ()()017≥-+x x ,17≥-≤∴x x 或 ------------2分3.证明:等式左边=θθθθθθcos sin sin cos cos sin ⎪⎭⎫⎝⎛+-----------2分 =()()θθθθθθcos sin sin cos cos sin 22+-----------2分 =()()1cos sin 2=+θθ=右边-----------2分 ∴等式得证。

-------------1分4.解: { n a }为等差数列,∴ 1533432==++a a a a 53=∴a -------------------2分有 521=+d a---------------------4分)(d a +=124)(d a 31+解得 3=d3-=d或 (舍去) -----2分11-=a 111-=a5. 解:设以M(2,1)为中点的弦的直线方程为y -1=k (x -2) --------------------------2分椭圆和这条直线交于A (11y x ,) , B (22y x ,) 两点,M 为中点则 141622=+y x ----------------2分 12+-=k kx y 消元化简得0121616168412222=--+-++k k x k k x k )()(--------2分 由韦达定理得 224116821k kk x x +--=+ 又有2221=+x x -----------2分 ∴44116822=+--k k k 得21-=k -------------2分 ∴直线方程为: x+2y-4=0---------------------1分6.解:设过点P(2,3)的圆的切线为: y-3=k(x-2) ------------2分即 kx-y-2k+3=0 --------------1分 圆心 (1,1) 半径r=1 -------------------2分 由相切得113212=++--=k k k d1122=+-k k------2分化简得43=k ---------1分 此时切线为: 3x-4y+6=0 -----------------1分 ∵点P(2,3)在圆外∴还有一切线为x=2 --------------------2分 ∴过点P (2,3)的圆的切线方程为: 3x-4y+6=0或x=2 --------1分 7. 解设多种x 株苹果树时产量为y ----------------------2分 则 y=(50+x)(70-x) ----------------------2分 =2203500x x -+ ----------------------1分=3500202+--)(x x ----------------------1 分 =3600102+--)(x ----------------------2分 ∴当 x=10时,产量最大为3600 ----------------------2分 即在地上种60株树时,产量最大,且最大产量为3600kg. ----------------------2分。

相关文档
最新文档