算法分析与设计习题答案
算法设计与分析习题答案
算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。
以下是一些典型的算法设计与分析习题及其答案。
习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。
答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。
这个过程会不断重复,直到找到目标值或搜索范围为空。
```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。
答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。
```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。
算法分析与设计作业参考答案
算法分析与设计作业参考答案《算法分析与设计》作业参考答案作业⼀⼀、名词解释:1.递归算法:直接或间接地调⽤⾃⾝的算法称为递归算法。
2.程序:程序是算法⽤某种程序设计语⾔的具体实现。
⼆、简答题:1.算法需要满⾜哪些性质?简述之。
答:算法是若⼲指令的有穷序列,满⾜性质:(1)输⼊:有零个或多个外部量作为算法的输⼊。
(2)输出:算法产⽣⾄少⼀个量作为输出。
(3)确定性:组成算法的每条指令清晰、⽆歧义。
(4)有限性:算法中每条指令的执⾏次数有限,执⾏每条指令的时间也有限。
2.简要分析分治法能解决的问题具有的特征。
答:分析分治法能解决的问题主要具有如下特征:(1)该问题的规模缩⼩到⼀定的程度就可以容易地解决;(2)该问题可以分解为若⼲个规模较⼩的相同问题,即该问题具有最优⼦结构性质;(3)利⽤该问题分解出的⼦问题的解可以合并为该问题的解;(4)该问题所分解出的各个⼦问题是相互独⽴的,即⼦问题之间不包含公共的⼦问题。
3.简要分析在递归算法中消除递归调⽤,将递归算法转化为⾮递归算法的⽅法。
答:将递归算法转化为⾮递归算法的⽅法主要有:(1)采⽤⼀个⽤户定义的栈来模拟系统的递归调⽤⼯作栈。
该⽅法通⽤性强,但本质上还是递归,只不过⼈⼯做了本来由编译器做的事情,优化效果不明显。
(2)⽤递推来实现递归函数。
(3)通过Cooper 变换、反演变换能将⼀些递归转化为尾递归,从⽽迭代求出结果。
后两种⽅法在时空复杂度上均有较⼤改善,但其适⽤范围有限。
三、算法编写及算法应⽤分析题: 1.冒泡排序算法的基本运算如下: for i ←1 to n-1 dofor j ←1 to n-i do if a[j]交换a[j]、a[j+1];分析该算法的时间复杂性。
答:排序算法的基本运算步为元素⽐较,冒泡排序算法的时间复杂性就是求⽐较次数与n 的关系。
(1)设⽐较⼀次花时间1;(2)内循环次数为:n-i 次,(i=1,…n ),花时间为:∑-=-=in j i n 1)(1(3)外循环次数为:n-1,花时间为:2.设计⼀个分治算法计算⼀棵⼆叉树的⾼度。
算法分析与设计 第1章习题答案 1-1,1-2,1-3,1-6
第一章习题(1-1,1-2,1-3,1-6)1-1 求下列函数的渐进表达式3n2+10n = O(n2)n2/10+2n = O(2n)21+1/n = O(1)logn3 = O(logn)10log3n = O(n)知识点:如果存在正的常数C和自然数N0,使得:当N>=N0时有f(N)<=Cg(N),则称f(N)当N充分大时上有界,且g(N)是它的一个上界,记为f(N)=O(g(N)).这时,可以说f(N)的阶不高于g(N)的阶。
1-2 论O(1)和O(2)的区别O(1)和O(2)差别仅在于其中的常数因子,根据渐进上界记号O的定义可知,O(1)=O(2)。
1-3 从低到高排列以下表达式(按渐进阶排列以下表达式)结果:2 logn n2/320n 4n23n n! 分析:当n>=1时,有logn< n2/3当n>=7时,有3n < n!补充:当n>=4时,有logn> n1/31-6 对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=Θ(g(n))。
知识点:f(n)的阶不高于g(n)的阶:f(n)=O(g(n));f(n)的阶不低于g(n)的阶:f(n)=Ω(g(n));f(n)与g(n) 同阶:f(n)=Θ(g(n)) (1)f(n)= logn2 ; g(n)= logn+5f(n)与g(n)同阶,故f(n)=Θ(g(n)) (2) f(n)= logn2 ; g(n)= n1/2当n>=8时,f(n)<=g(n),故f(n)=O(g(n))分析:此类题目不易直接看出阶的高低,可用几个数字代入观察结果。
如依次用n=1, 21, 22, 23, 26, 28, 210 (3) f(n)= n ; g(n)= log2nf(n)=Ω(g(n))(4) f(n)= nlogn+n; g(n)= lognf(n)=Ω(g(n))(5) f(n)= 10 ; g(n)= log10f(n)=Θ(g(n))(6) f(n)= log2n ; g(n)= lognf(n)=Ω(g(n))(7) f(n)= 2n ; g(n)= 100 n2f(n)=Ω(g(n))(8) f(n)= 2n ; g(n)= 3nf(n)=O(g(n))。
算法分析与设计
(1)下面命名规则中,哪项不是现在比较常用的命名规则()。
•A匈牙利命名法•B骆驼命名法•C下划线命名法•D图灵命名法正确答案:D(2)十进制的123,1的位权是()。
•A1•B2•C10•D100正确答案:D(3)按F5开始调试,程序便会直接运行到断点处。
接下来可以逐行来运行程序,查看各个变量的值,也可以直接运行到下一个断点或程序结束,这样过程被称作()。
•A设置断点•B单步调试•C程序编译•D程序调试正确答案:B(4)下列说法错误的是()•A使用高级计算机语言,如C、C++、Java,编写的程序,都需要经过编译器编译或解释,才能转化成机器能够识别并能执行的二进制代码。
•B如何一步步的跟踪代码,找到问题,搞明白为何程序不能正常运行,这个过程称为调试程序。
•C自动化的工具同样也能够帮助你跟踪程序,尤其当程序很复杂时效果更加明显,这种工具叫做调试器。
•D调试器并能解决程序中出现的问题。
正确答案:D(5)()是用户在程序中使用的名字,它是一种用于命名一些具有特定含义的对象的符号,通常用来标识程序中的变量,常量,函数,语句块。
•A对象•B符号•C标识符•D命名规则正确答案:C(6)数制也称计数制,是用一组固定的符号和统一的规则来表示()的方法。
•A数值•B字母•C文字•D信息正确答案:A(7)二进制数1101.0101转换为十进制数是()。
•A11.3225•B12.3125•C13.0125•D13.3125正确答案:D(8)十六进制数C1B转换为二进制数是()。
•A1100101101011•B110000011011•C10110101010•D11101001011正确答案:B(9)一个算法的评价主要从时间复杂度和()来考虑。
•A空间复杂度•B算法有效性•C算法有穷性•D算法可读性正确答案:A(10)下面4句话中,最准确的表述是()。
•A程序=算法+数据结构•B程序是使用编程语言实现算法•C程序的开发方法决定算法设计•D算法是程序设计中最关键的因素正确答案:A(11)十六进制的213,1的位权是()。
算法设计与分析-习题参考答案
算法设计与分析基础习题1.15..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d一定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.7.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—山羊C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5.描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法DectoBin(n)//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.31.考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表‖60,35,81,98,14,47‖排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表‖60,35,81,98,14,47‖排序的过程如下所示:b.该算法不稳定.比如对列表‖2,2*‖排序c.该算法不在位.额外空间for S and Count[] 4.(古老的七桥问题)习题1.41.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i 个元素(1<=i<=n)b.删除有序数组的第i 个元素(依然有序) hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array ’s element(e.g., 0 for an array of positive numbers ) to mark the i th position is empty. (―lazy deletion ‖)第2章 习题2.17.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n )∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断言是正确的。
《算法设计与分析》考试题目及答案(DOC)
Hanoi 塔
D. void hanoi(int n, int C, int A, int B) { if (n > 0) { hanoi(n-1, A, C, B); move(n,a,b); hanoi(n-1, C, B, A); }
3. 动态规} 划算法的基本要素为(C) A. 最优子结构性质与贪心选择性质 B.重叠子问题性质与贪心选择性质 C.最优子结构性质与重叠子问题性质 D. 预排序与递归调用
(排列树)算法框架。 8. 用回溯法解 0/1 背包问题时,该问题的解空间结构为(子集树)结构。 9.用回溯法解批处理作业调度问题时,该问题的解空间结构为(排列树)结
构。 10.用回溯法解 0/1 背包问题时,计算结点的上界的函数如下所示,请在空
格中填入合适的内容:
Typep Knap<Typew, Typep>::Bound(int i) {// 计算上界
B. f (n) O(g(n)), g(n) O(h(n)) h(n) O(f (n)) C. O(f(n))+O(g(n)) = O(min{f(n),g(n)}) D. f (n) O(g(n)) g(n) O(f (n))
6. 能采用贪心算法求最优解的问题,一般具有的重要性质为:(A) A. 最优子结构性质与贪心选择性质 B.重叠子问题性质与贪心选择性质
《算法分析与设计》期末复习 法则的流水作业调度采用的算法是(D)
A. 贪心算法
B. 分支限界法 C.分治法
D. 动态规划算法
2.Hanoi 塔问题如下图所示。现要求将塔座 A 上的的所有圆盘移到塔座 B 上, 并仍按同样顺序叠置。移动圆盘时遵守 Hanoi 塔问题的移动规则。由此设计出 解 Hanoi 塔问题的递归算法正确的为:(B)
计算机算法设计和分析习题及答案解析
计算机算法设计与分析习题及答案一.选择题1、二分搜索算法是利用 A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是 A ;A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是A 的一搜索方式;A、分支界限法B、动态规划法C、贪心法D、回溯法4. 回溯法解旅行售货员问题时的解空间树是 A ;A、子集树B、排列树C、深度优先生成树D、广度优先生成树5.下列算法中通常以自底向上的方式求解最优解的是B ;A、备忘录法B、动态规划法C、贪心法D、回溯法6、衡量一个算法好坏的标准是 C ;A 运行速度快B 占用空间少C 时间复杂度低D 代码短7、以下不可以使用分治法求解的是 D ;A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题8. 实现循环赛日程表利用的算法是A ;A、分治策略B、动态规划法C、贪心法D、回溯法9.下面不是分支界限法搜索方式的是D ;A、广度优先B、最小耗费优先C、最大效益优先D、深度优先10.下列算法中通常以深度优先方式系统搜索问题解的是D ;A、备忘录法B、动态规划法C、贪心法D、回溯法11.备忘录方法是那种算法的变形; BA、分治法B、动态规划法C、贪心法D、回溯法12.哈夫曼编码的贪心算法所需的计算时间为B ;A、On2nB、OnlognC、O2nD、On13.分支限界法解最大团问题时,活结点表的组织形式是B ;A、最小堆B、最大堆C、栈D、数组14.最长公共子序列算法利用的算法是B;A、分支界限法B、动态规划法C、贪心法D、回溯法15.实现棋盘覆盖算法利用的算法是A ;A、分治法B、动态规划法C、贪心法D、回溯法16.下面是贪心算法的基本要素的是C ;A、重叠子问题B、构造最优解C、贪心选择性质D、定义最优解17.回溯法的效率不依赖于下列哪些因素 DA.满足显约束的值的个数B. 计算约束函数的时间C.计算限界函数的时间D. 确定解空间的时间18.下面哪种函数是回溯法中为避免无效搜索采取的策略BA.递归函数 B.剪枝函数 C;随机数函数 D.搜索函数19. D是贪心算法与动态规划算法的共同点;A、重叠子问题B、构造最优解C、贪心选择性质D、最优子结构性质20. 矩阵连乘问题的算法可由 B 设计实现;A、分支界限算法B、动态规划算法C、贪心算法D、回溯算法21. 分支限界法解旅行售货员问题时,活结点表的组织形式是 A ;A、最小堆B、最大堆C、栈D、数组22、Strassen矩阵乘法是利用A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法23、使用分治法求解不需要满足的条件是 A ;A 子问题必须是一样的B 子问题不能够重复C 子问题的解可以合并D 原问题和子问题使用相同的方法解24、下面问题 B 不能使用贪心法解决;A 单源最短路径问题B N皇后问题C 最小生成树问题D 背包问题25、下列算法中不能解决0/1背包问题的是 AA 贪心法B 动态规划C 回溯法D 分支限界法26、回溯法搜索状态空间树是按照 C 的顺序;A 中序遍历B 广度优先遍历C 深度优先遍历D 层次优先遍历27.实现合并排序利用的算法是A ;A、分治策略B、动态规划法C、贪心法D、回溯法28.下列是动态规划算法基本要素的是D ;A、定义最优解B、构造最优解C、算出最优解D、子问题重叠性质29.下列算法中通常以自底向下的方式求解最优解的是 B ;A、分治法B、动态规划法C、贪心法D、回溯法30.采用广度优先策略搜索的算法是A ;A、分支界限法B、动态规划法C、贪心法D、回溯法31、合并排序算法是利用 A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法32、背包问题的贪心算法所需的计算时间为 BA、On2nB、OnlognC、O2nD、On33.实现大整数的乘法是利用的算法C ;A、贪心法B、动态规划法C、分治策略D、回溯法34.0-1背包问题的回溯算法所需的计算时间为AA、On2nB、OnlognC、O2nD、On35.采用最大效益优先搜索方式的算法是A;A、分支界限法B、动态规划法C、贪心法D、回溯法36.贪心算法与动态规划算法的主要区别是B;A、最优子结构B、贪心选择性质C、构造最优解D、定义最优解37. 实现最大子段和利用的算法是B ;A、分治策略B、动态规划法C、贪心法D、回溯法38.优先队列式分支限界法选取扩展结点的原则是 C ;A、先进先出B、后进先出C、结点的优先级D、随机39.背包问题的贪心算法所需的计算时间为 B ;A、On2nB、OnlognC、O2nD、On40、广度优先是A 的一搜索方式;A、分支界限法B、动态规划法C、贪心法D、回溯法41. 一个问题可用动态规划算法或贪心算法求解的关键特征是问题的 B ;A、重叠子问题B、最优子结构性质C、贪心选择性质D、定义最优解42.采用贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间复杂度为 B ;A 、On2nB 、OnlognC 、O2nD 、On43. 以深度优先方式系统搜索问题解的算法称为 D ;A 、分支界限算法B 、概率算法C 、贪心算法D 、回溯算法44. 实现最长公共子序列利用的算法是B ;A 、分治策略B 、动态规划法C 、贪心法D 、回溯法45. Hanoi 塔问题如下图所示;现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置;移动圆盘时遵守Hanoi 塔问题的移动规则;由此设计出解Hanoi 塔问题的递归算法正确的为:B46. 动态规划算法的基本要素为 CA. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用 47. 能采用贪心算法求最优解的问题,一般具有的重要性质为: AA. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用48. 回溯法在问题的解空间树中,按 D 策略,从根结点出发搜索解空间树;A.广度优先B. 活结点优先C.扩展结点优先D. 深度优先49. 分支限界法在问题的解空间树中,按 A 策略,从根结点出发搜索解空间树;A.广度优先B. 活结点优先C.扩展结点优先D. 深度优先50. 程序块 A 是回溯法中遍历排列树的算法框架程序;A.B. C. D. 51. 常见的两种分支限界法为DA. 广度优先分支限界法与深度优先分支限界法;B. 队列式FIFO 分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式FIFO 分支限界法与优先队列式分支限界法;1.算法的复杂性有 时间 复杂性和 空间 ;2、程序是 算法用某种程序设计语言的具体实现;3、算法的“确定性”指的是组成算法的每条 指令 是清晰的,无歧义的;4. 矩阵连乘问题的算法可由 动态规划 设计实现;5、算法是指解决问题的 一种方法 或 一个过程 ;6、从分治法的一般设计模式可以看出,用它设计出的程序一般是 递归算法 ;7、问题的 最优子结构性质 是该问题可用动态规划算法或贪心算法求解的关键特征;8、以深度优先方式系统搜索问题解的算法称为 回溯法 ;9、计算一个算法时间复杂度通常可以计算 循环次数 、 基本操作的频率 或计算步; Hanoi 塔A. void hanoiint n, int A, int C, int B{ if n > 0{ hanoin-1,A,C, B;moven,a,b; hanoin-1, C, B, A; }} B. void hanoiint n, int A, int B, int C { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } }C. void hanoiint n, int C, int B, int A { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } }D. void hanoiint n, int C, int A, int B { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } } void backtrack int t{ if t>n outputx; else for int i=t;i<=n;i++ { swapxt, xi; if legalt backtrackt+1; swapxt, xi; } } void backtrack int t { if t>n outputx;elsefor int i=0;i<=1;i++ { xt=i; if legalt backtrackt+1; } }void backtrack int t { if t>n outputx; else for int i=0;i<=1;i++ { xt=i; if legalt backtrackt-1; } }voidbacktrack int t{ if t>n outputx; else for int i=t;i<=n;i++ { swapxt, xi; if legalt backtrackt+1;}}10、解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中不需要排序的是动态规划 ,需要排序的是回溯法 ,分支限界法 ;11、使用回溯法进行状态空间树裁剪分支时一般有两个标准:约束条件和目标函数的界,N皇后问题和0/1背包问题正好是两种不同的类型,其中同时使用约束条件和目标函数的界进行裁剪的是 0/1背包问题 ,只使用约束条件进行裁剪的是 N皇后问题 ;12、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别;13、矩阵连乘问题的算法可由动态规划设计实现;14.贪心算法的基本要素是贪心选择性质和最优子结构性质 ;15. 动态规划算法的基本思想是将待求解问题分解成若干子问题 ,先求解子问题 ,然后从这些子问题的解得到原问题的解;16.算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有限性四条性质;17、大整数乘积算法是用分治法来设计的;18、以广度优先或以最小耗费方式搜索问题解的算法称为分支限界法 ;19、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别;20.快速排序算法是基于分治策略的一种排序算法;21.动态规划算法的两个基本要素是. 最优子结构性质和重叠子问题性质 ;22.回溯法是一种既带有系统性又带有跳跃性的搜索算法;23.分支限界法主要有队列式FIFO 分支限界法和优先队列式分支限界法;24.分支限界法是一种既带有系统性又带有跳跃性的搜索算法;25.回溯法搜索解空间树时,常用的两种剪枝函数为约束函数和限界函数 ;26.任何可用计算机求解的问题所需的时间都与其规模有关;27.快速排序算法的性能取决于划分的对称性 ;28.所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到 ;29.所谓最优子结构性质是指问题的最优解包含了其子问题的最优解 ;30.回溯法是指具有限界函数的深度优先生成法 ;31.用回溯法解题的一个显着特征是在搜索过程中动态产生问题的解空间;在任何时刻,算法只保存从根结点到当前扩展结点的路径;如果解空间树中从根结点到叶结点的最长路径的长度为hn,则回溯法所需的计算空间通常为 Ohn ;32.回溯法的算法框架按照问题的解空间一般分为子集树算法框架与排列树算法框架;33.用回溯法解0/1背包问题时,该问题的解空间结构为子集树结构;34.用回溯法解批处理作业调度问题时,该问题的解空间结构为排列树结构;35.旅行售货员问题的解空间树是排列树 ;三、算法填空1.背包问题的贪心算法void Knapsackint n,float M,float v,float w,float x{//重量为w1..n,价值为v1..n的 n个物品,装入容量为M的背包//用贪心算法求最优解向量x1..nint i; Sortn,v,w;for i=1;i<=n;i++ xi=0;float c=M;for i=1;i<=n;i++{if wi>c break;xi=1;c-=wi;}if i<=n xi=c/wi;}2.最大子段和: 动态规划算法int MaxSumint n, int a{int sum=0, b=0; //sum存储当前最大的bj, b存储bjfor int j=1; j<=n; j++{ if b>0 b+= aj ;else b=ai; ; //一旦某个区段和为负,则从下一个位置累和 ifb>sum sum=b;}return sum;}3.贪心算法求活动安排问题template<class Type>void GreedySelector int n, Type s, Type f, bool A{A1=true;int j=1;for int i=2;i<=n;i++if si>=fj{ Ai=true;j=i;}else Ai=false;}4.快速排序template<class Type>void QuickSort Type a, int p, int r{if p<r{int q=Partitiona,p,r;QuickSort a,p,q-1; //对左半段排序QuickSort a,q+1,r; //对右半段排序}}5. 回溯法解迷宫问题迷宫用二维数组存储,用'H'表示墙,'O'表示通道int x1,y1,success=0; //出口点void MazePathint x,int y{//递归求解:求迷宫maze从入口x,y到出口x1,y1的一条路径mazexy=''; //路径置为if x==x1&&y==y1 success=1; //到出口则成功else{if mazexy+1=='O' MazePathx,++y;//东邻方格是通路,向东尝试if success&&mazex+1y=='O' MazePath++x,y;//不成功且南邻方格是通路,向南尝试if success&&mazexy-1=='O' MazePathx,--y;//不成功且西邻方格是通路,向西尝试if success&&mazex-1y=='O' MazePath--x,y;//不成功且北邻方格是通路,向北尝试}if success mazexy=''; //死胡同置为}四、算法设计题1. 给定已按升序排好序的n个元素a0:n-1,现要在这n个元素中找出一特定元素x,返回其在数组中的位置,如果未找到返回-1;写出二分搜索的算法,并分析其时间复杂度;template<class Type>int BinarySearchType a, const Type& x, int n{//在a0:n中搜索x,找到x时返回其在数组中的位置,否则返回-1Int left=0; int right=n-1;While left<=right{int middle=left+right/2;if x==amiddle return middle;if x>amiddle left=middle+1;else right=middle-1;}Return -1;}时间复杂性为Ologn2. 利用分治算法写出合并排序的算法,并分析其时间复杂度void MergeSortType a, int left, int right{if left<right {//至少有2个元素int i=left+right/2; //取中点mergeSorta, left, i;mergeSorta, i+1, right;mergea, b, left, i, right; //合并到数组bcopya, b, left, right; //复制回数组a}}算法在最坏情况下的时间复杂度为Onlogn;3.N皇后回溯法bool Queen::Placeint k{ //检查xk位置是否合法for int j=1;j<k;j++if absk-j==absxj-xk||xj==xk return false;return true;}void Queen::Backtrackint t{if t>n sum++;else for int i=1;i<=n;i++{xt=i;if 约束函数 Backtrackt+1;}}4.最大团问题void Clique::Backtrackint i // 计算最大团{ if i > n { // 到达叶结点for int j = 1; j <= n; j++ bestxj = xj;bestn = cn; return;}// 检查顶点 i 与当前团的连接int OK = 1;for int j = 1; j < i; j++if xj && aij == 0 // i与j不相连{OK = 0; break;}if OK { // 进入左子树xi = 1; cn++;Backtracki+1;xi = 0; cn--; }if cn+n-i>bestn { // 进入右子树xi = 0;Backtracki+1; }}5. 顺序表存储表示如下:typedef struct{RedType rMAXSIZE+1; //顺序表int length; //顺序表长度}SqList;编写对顺序表L进行快速排序的算法;int PartitionSqList &L,int low,int high //算法10.6b{//交换顺序表L中子表L.rlow..high的记录,枢轴记录到位,并返回其所在位置, //此时在它之前后的记录均不大小于它.int pivotkey;L.r0=L.rlow; //用子表的第一个记录作枢轴记录pivotkey=L.rlow.key; //枢轴记录关键字while low<high //从表的两端交替地向中间扫描{while low<high&&L.rhigh.key>=pivotkey --high;L.rlow=L.rhigh; //将比枢轴记录小的记录移到低端while low<high&&L.rlow.key<=pivotkey ++low;L.rhigh=L.rlow; //将比枢轴记录大的记录移到高端}L.rlow=L.r0; //枢轴记录到位return low; //返回枢轴位置}void QSortSqList &L,int low,int high{//对顺序表L中的子序列L.rlow..high作快速排序int pivotloc;if low<high //长度>1{pivotloc=PartitionL,low,high; //将L.rlow..high一分为二QSortL,low,pivotloc-1; //对低子表递归排序,pivotloc是枢轴位置 QSortL,pivotloc+1,high; //对高子表递归排序}}void QuickSortSqList &L{//对顺序表L作快速排序QSortL,1,L.length; }。
算法分析与设计试题及答案
算法分析与设计试题及答案一、选择题1. 下列哪个是属于分治算法的例子?A. 冒泡排序B. 归并排序C. 顺序查找D. 选择排序答案:B2. 在排序算法中,时间复杂度最优的是:A. 冒泡排序B. 插入排序C. 归并排序D. 快速排序答案:C3. 哪个不是动态规划的特点?A. 具有重叠子问题B. 通过递归求解C. 需要保存子问题的解D. 具有最优子结构答案:B4. 在图的广度优先搜索算法中,使用的数据结构是:A. 栈B. 队列C. 数组D. 堆栈答案:B5. 在最小生成树算法中,下列哪个不属于贪心策略?A. Kruskal算法B. Prim算法C. Dijkstra算法D. Prim-Kruskal混合算法答案:C二、简答题1. 请简述分治算法的思想和应用场景。
答案:分治算法的思想是将原问题分解成若干个规模较小且类似的子问题,然后解决子问题,最后将子问题的解合并得到原问题的解。
其应用场景包括排序算法(如归并排序、快速排序)、搜索算法(如二分查找)等。
2. 什么是动态规划算法?请给出一个动态规划算法的示例。
答案:动态规划算法是一种通过将问题分解成子问题并解决子问题来解决复杂问题的方法。
它的特点是具有重叠子问题和最优子结构性质。
以斐波那契数列为例,可以使用动态规划算法求解每一项的值,而不需要重复计算。
3. 图的深度优先搜索和广度优先搜索有什么区别?答案:图的深度优先搜索(Depth First Search,DFS)是一种先访问子节点再访问兄弟节点的遍历算法,通常使用递归或者栈实现。
而广度优先搜索(Breadth First Search,BFS)则是以层次遍历的方式展开搜索,使用队列来实现。
DFS更适合用于搜索路径,BFS则适用于寻找最短路径等。
4. 请简述贪心算法的特点及其应用场景。
答案:贪心算法的特点是每一步都采取当前状态下最优的选择,以期望得到全局最优解。
然而,贪心算法并不一定能求解所有问题的最优解,但对于一些特定问题,贪心算法往往能得到近似最优解。
算法分析与设计习题答案
算法分析与设计习题答案《算法分析与设计》期末复习题及答案⼀、简要回答下列问题:1.算法重要特性是什么?2.算法分析的⽬的是什么?3.算法的时间复杂性与问题的什么因素相关?4.算法的渐进时间复杂性的含义?5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?6.简述⼆分检索(折半查找)算法的基本过程。
7.背包问题的⽬标函数和贪⼼算法最优化量度相同吗?8.采⽤回溯法求解的问题,其解如何表⽰?有什么规定?9.回溯法的搜索特点是什么?10.n皇后问题回溯算法的判别函数place的基本流程是什么?11.为什么⽤分治法设计的算法⼀般有递归调⽤?12.为什么要分析最坏情况下的算法时间复杂性?13.简述渐进时间复杂性上界的定义。
14.⼆分检索算法最多的⽐较次数?15.快速排序算法最坏情况下需要多少次⽐较运算?16.贪⼼算法的基本思想?17.回溯法的解(x1,x2,……x n)的隐约束⼀般指什么?18.阐述归并排序的分治思路。
19.快速排序的基本思想是什么。
20.什么是直接递归和间接递归?消除递归⼀般要⽤到什么数据结构?21.什么是哈密顿环问题?22.⽤回溯法求解哈密顿环,如何定义判定函数?23.请写出prim算法的基本思想。
参考答案:1. 确定性、可实现性、输⼊、输出、有穷性2. 分析算法占⽤计算机资源的情况,对算法做出⽐较和评价,设计出额更好的算法。
3. 算法的时间复杂性与问题的规模相关,是问题⼤⼩n的函数。
4.当问题的规模n趋向⽆穷⼤时,影响算法效率的重要因素是T(n)的数量级,⽽其他因素仅是使时间复杂度相差常数倍,因此可以⽤T(n)的数量级(阶)评价算法。
时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。
5. 最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输⼊实例下的算法所耗时间。
最坏情况下的时间复杂性取的输⼊实例中最⼤的时间复杂度:W(n) = max{ T(n,I) } , I∈Dn平均时间复杂性是所有输⼊实例的处理时间与各⾃概率的乘积和:A(n) =∑P(I)T(n,I) I∈Dn6. 设输⼊是⼀个按⾮降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x⽐较,如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]回溯法的搜索特点是什么7. 不相同。
算法分析与设计作业及参考答案
算法分析与设计作业及参考答案作业题目1、请分析冒泡排序算法的时间复杂度和空间复杂度,并举例说明其在实际中的应用场景。
2、设计一个算法,用于在一个未排序的整数数组中找到第二大的元素,并分析其时间复杂度。
3、比较贪心算法和动态规划算法的异同,并分别举例说明它们在解决问题中的应用。
参考答案1、冒泡排序算法时间复杂度:冒泡排序的基本思想是通过相邻元素的比较和交换,将最大的元素逐步“浮”到数组的末尾。
在最坏情况下,数组完全逆序,需要进行 n 1 轮比较和交换,每一轮比较 n i 次(i 表示当前轮数),所以总的比较次数为 n(n 1) / 2,时间复杂度为 O(n^2)。
在最好情况下,数组已经有序,只需要进行一轮比较,时间复杂度为 O(n)。
平均情况下,时间复杂度也为 O(n^2)。
空间复杂度:冒泡排序只在原数组上进行操作,不需要额外的存储空间,空间复杂度为 O(1)。
应用场景:冒泡排序算法简单易懂,对于规模较小的数组,或者对算法的简单性要求较高而对性能要求不是特别苛刻的场景,如对少量数据进行简单排序时,可以使用冒泡排序。
例如,在一个小型的学生成绩管理系统中,需要对一个班级的少量学生成绩进行排序展示,冒泡排序就可以满足需求。
2、找到第二大元素的算法以下是一种使用遍历的方法来找到未排序整数数组中第二大元素的算法:```pythondef find_second_largest(arr):largest = arr0second_largest = float('inf')for num in arr:if num > largest:second_largest = largestlargest = numelif num > second_largest and num!= largest:second_largest = numreturn second_largest```时间复杂度分析:这个算法需要遍历数组一次,所以时间复杂度为O(n)。
中科院计算机算法分析与设计_习题1-2_答案
2)证明:除结点v外,只有当结点w满足s[w]=0时才被压入栈中,因此每 个结点至多有一次被压入栈中,搜索不会出现重叠和死循环现象,对于每
template<class T> bool MinMax(T a[], int n, int& Min, int& Max) { if(n<1) return false; Min=Max=0; //初始化 for(int i=1; i<n; i++){ if(a[Min]>a[i]) Min=i; if(a[Max]<a[i]) Max=i; } return true; } 最好,最坏,平均比较次数都是 2*(n-1)
2-连通
割点
4 5
D E
4 5
(1,2,3,4,0,0,0) (1,1,1,4,1,0,0)
{(C,D)};
C
6
F
6
(1,1,1,4,1,6,0)
7
G
7
(1,1,1,4,1,5,5)
(E,A), {(G,E),(F,G), (E,F)} (B,C), (A,B) {(E,A),(B,C),(A,B)}
3.设G是具有n个顶点和m条边的无向图,如果G是连通的,而且满足m = n-1,
证明G是树。 4.假设用一个n×n的数组来描述一个有向图的n×n邻接矩阵,完成下面工作
:
1)编写一个函数以确定顶点的出度,函数的复杂性应为 2)编写一个函数以确定图中边的数目,函数的复杂性应为 3)编写一个函数删除边(i,j),并确定代码的复杂性。 5.实现图的D-搜索算法。要求用ALGEN语言写出算法的伪代码, 或者用一种计算机高级语言写出程序。 ; (n)
《算法分析与设计》练习题一答案.docx
《算法分析与设计》练习题一答案1.程序书写格式应该遵循哪四个原则?参考答案:(1)正确使用缩进:一定要有缩进,否则代码的层次不明显。
(2)在一行内只写一条语句。
(3), '}'位置不可随意放置。
(4)变量和运算符之间最好加1个空格2.什么是算法?参考答案:用计算机解决问题的过程可以分成三个阶段:分析问题、设计算法和实现算法。
算法可以理解为冇基本运算及规定的运算顺序所构成的完整的解题步骤,它是求解问题类的、机械的、统一的方法,它由有限多个步骤组成,对于问题类屮每个给定的具体问题,机械地执行这些步骤就可以得到问题的解答。
或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
3.什么是线性结构?什么是非线性结构?参考答案:线性结构:数据逻辑结构屮的一类。
它的特征是若结构为非空集,则该结构有且只有一个开始结点和一个终端结点,并且所冇结点都冇R只冇一个直接前趋和一个直接后继。
线性表就是一个典型的线性结构。
栈、队列、串等都是线性结构。
非线性结构:数据逻辑结构中的另一大类,它的逻辑特征是一个结点可能有多个直接而趋和直接后继。
数组、广义表、树和图等数据结构都是非线性结构。
4.已知二叉树后序遍丿力序列是DABEC,屮序遍丿力序列是DEBAC,则前序遍历序列是什么?参考答案:前序遍历序列是CEDBA5.什么是数制?参考答案:数制是人们利用符号进行计数的一种科学方法。
数制也称计数制,是用一组固定的符号和统一的规则來表示数值的方法。
6.如果将十进制数106转换为八进制数,结果是多少?参考答案:1527.请问查找算法的效率用什么进行度量?参考答案:平均查找长度ASL:在查找其关键字等于给定值的过程小,需要和给定值进行比较的关键字个数的期望值称为查找成功吋的平均查找长度。
AS厶=£皿/=1其屮,n是结点的个数;是杳找第i个结点的概率,是找到第i个结点所需要的比较次数。
算法分析与设计(习题答案)
算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。
频率计数是指计算机执行程序中的某一条语句的执行次数。
多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。
指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。
2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。
3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。
4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。
5. 解:①n=11; ②n=12; ③n=982; ④n=39。
第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。
2. 解:通过分治算法的一般设计步骤进行说明。
3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(−−=n n f n② )log *()(n n n f O =6. 解:算法略。
《算法分析与设计》作业答案
《算法分析与设计》作业1、考虑,10≤≤i x 而不是x i ∈{0,1}的连续背包问题。
一种可行的贪婪策略是:按价值密度非递减的顺序检查物品,若剩余容量能容下正在考察的物品,将其装入;否则,往背包内装如此物品的一部分。
(a) 对于n=3,w=[100,10,10],p=[20,15,15],以及c=105,上述装入法获得结果是什么?(b)证明这种贪婪算法总能获得最优解。
(c) 用伪代码描述此算法。
答:(a )利用贪婪算法,按价值密度考察的背包为w2,w3,w1;背包w2和w3重20,还可以容纳85,由于10≤≤i x ,背包w1还可以装入x1=0.85,则背包内物品总价值为15+15+20*0.85=47.(b )假设已按价值密度排好序,考察w1,w2,……,wi ,……,对应的价值为p1,p2,……,pi,……如果装到pi-1再装pi 时,恰好要取xi 个wi 。
(,10≤≤i x ) 因为比它价值密度大的都已装载完,所以此时获得的为最优解。
(c )算法描述如下: template <class T>int ContainerLoading( int x[], T w[], T c, int n ) {int *t = new int[n+1]; IndirectSort(w, t, n); for( int i=1; i<=n; i++) x[i] = 0;for(i=1; i<=n && w[t[i]]<=c; i++){ x[t[i]] = 1; c += w[t[i]]; } delete []t; }2、证明当且仅当二分图没有覆盖时,下述算法找不到覆盖。
m=0; //当前覆盖的大小对于A中的所有i,New[i]=Degree[i]对于B中的所有i,Cov[i]=falsewhile(对于A中的某些i,New[i]>0) {设v是具有最大的New[i]的顶点;C[m++]=v;for(所有邻接于v的顶点j) {If(!Cov[j]) {Cov[j] = true;对于所有邻接于j的顶点,使其New[k]减1}}}if (有些顶点未被覆盖) 失败else 找到一个覆盖2)给出一个具有覆盖的二分图,使得上述算法找不到最小覆盖。
算法分析与设计作业(一)及参考答案
《算法分析与设计》作业(一)本课程作业由两部分组成。
第一部分为“客观题部分”,由15个选择题组成,每题1分,共15分。
第二部分为“主观题部分”,由简答题和论述题组成,共15分。
作业总分30分,将作为平时成绩记入课程总成绩。
客观题部分:一、选择题(每题1分,共15题)1、递归算法:(C )A、直接调用自身B、间接调用自身C、直接或间接调用自身D、不调用自身2、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的字问题,这些子问题:(D )A、相互独立B、与原问题相同C、相互依赖D、相互独立且与原问题相同3、备忘录方法的递归方式是:(C )A、自顶向下B、自底向上C、和动态规划算法相同D、非递归的4、回溯法的求解目标是找出解空间中满足约束条件的:(A )A、所有解B、一些解C、极大解D、极小解5、贪心算法和动态规划算法共有特点是:( A )A、最优子结构B、重叠子问题C、贪心选择D、形函数6、哈夫曼编码是:(B)A、定长编码B、变长编码C、随机编码D、定长或变长编码7、多机调度的贪心策略是:(A)A、最长处理时间作业优先B、最短处理时间作业优先C、随机调度D、最优调度8、程序可以不满足如下性质:(D )A、零个或多个外部输入B、至少一个输出C、指令的确定性D、指令的有限性9、用分治法设计出的程序一般是:(A )A、递归算法B、动态规划算法C、贪心算法D、回溯法10、采用动态规划算法分解得到的子问题:( C )A、相互独立B、与原问题相同C、相互依赖D、相互独立且与原问题相同11、回溯法搜索解空间的方法是:(A )A、深度优先B、广度优先C、最小耗费优先D、随机搜索12、拉斯维加斯算法的一个显著特征是它所做的随机选性决策有可能导致算法:( C )A、所需时间变化B、一定找到解C、找不到所需的解D、性能变差13、贪心算法能得到:(C )A、全局最优解B、0-1背包问题的解C、背包问题的解D、无解14、能求解单源最短路径问题的算法是:(A )A、分支限界法B、动态规划C、线形规划D、蒙特卡罗算法15、快速排序算法和线性时间选择算法的随机化版本是:( A )A、舍伍德算法B、蒙特卡罗算法C、拉斯维加斯算法D、数值随机化算法主观题部分:二、写出下列程序的答案(每题2.5分,共2题)1、请写出批处理作业调度的回溯算法。
算法分析与设计第二版习题答案-第三章到第五章
int bool=1;
int min;
int j;
int i;
int k;
int flag;
for(i=0;i<count;i++)
{
if(buf[i]=='(')
push(buf[i],i);
if(buf[i]==')')
{
flag=pop();
算法设计与分析(第二版)习题答案 主编:吕国英
算法设计与分析(第二版)习题答案(第三章)
第三章:
1.#include<stdlib.h>#include<stdio.h>int main(int argc,char **argv){int n;int i,j,k;int *buf;printf("请输入n的数值:");
;}for(i=0;i<N;i++){ for(j=0;j<N;j++) printf("]",buf[i][j]); printf("\n");}return
0;}6.#include<stdio.h>#include<stdlib.h>typedef struct s_node s_list;typedef s_list *link;struct s_node{char ch;int flag;link next;};link top;void push(char ch,int flag){link newnode;newnode=(link)malloc(sizeof(s_list));newnode->ch=ch;newnode- >flag=flag;newnode-
算法分析与设计中国大学mooc课后章节答案期末考试题库2023年
算法分析与设计中国大学mooc课后章节答案期末考试题库2023年1.任何多项式时间算法都是好算法,都是有效的。
参考答案:错误2.选择排序的时间复杂度是O(____)参考答案:n^23.子集生成方法有()参考答案:增量构造法_位向量法_二进制法4.冒泡排序的时间复杂度为W(n^2)参考答案:错误5.二进制法生成子集,子集与运算可以生成并集参考答案:错误6.下面不是证明贪心算法证明方法的有()。
参考答案:优化7.使目标函数最大(小)的解是问题的()参考答案:最优解8.对于稠密图,使用()算法计算MST更适合参考答案:Prim9.区间调度问题贪心算法的时间复杂度是()参考答案:O(nlogn)10.最小生成树问题可以使用的算法有()参考答案:Kruskal_Solim_Prim11.问题的可行解是满足约束条件的解参考答案:正确12.贪心算法的思想是寻求局部最优解,逐步达到全局最优解参考答案:正确13.贪心算法总能找到可行解,并且是最优解。
参考答案:错误14.负权的最短路问题可以使用Dijkstra算法计算。
参考答案:错误15.设S是顶点子集,e是正好一个端点在S中的边中的最小边,那么最小生成树中肯定包含e.参考答案:正确16.递归函数的要素是()参考答案:边界条件_递归方程17.T(n) = T(n-1) + n ,T(1)=1,则 T(n) =()参考答案:n(n+1)/2_W(n^2)_Q(n^2)_(n^2)18.递归算法是直接或间接地调用自身的算法。
参考答案:正确19.递归是从简单问题出发,一步步的向前发展,最终求得问题,是正向的。
参考答案:错误20.每个递归算法原则上总可以转换成与它等价的迭代算法,反之不然。
参考答案:错误21.设有5000个无序的元素,希望用最快的速度挑选出其中前10个最大的元素,最好选用( )法。
参考答案:冒泡排序22.找n个元素的中位数的分治算法的时间复杂度为O(___).参考答案:n23.军事上迂回包围、穿插分割、各个歼灭是()思想。
田翠华著《算法设计与分析》课后习题参考答案
参考答案第1章一、选择题1. C2. A3. C4. C A D B5. B6. B7. D 8. B 9. B 10. B 11. D 12. B二、填空题1. 输入;输出;确定性;可行性;有穷性2. 程序;有穷性3. 算法复杂度4. 时间复杂度;空间复杂度5. 正确性;简明性;高效性;最优性6. 精确算法;启发式算法7. 复杂性尽可能低的算法;其中复杂性最低者8. 最好性态;最坏性态;平均性态9. 基本运算10. 原地工作三、简答题1. 高级程序设计语言的主要好处是:(l)高级语言更接近算法语言,易学、易掌握,一般工程技术人员只需要几周时间的培训就可以胜任程序员的工作;(2)高级语言为程序员提供了结构化程序设计的环境和工具,使得设计出来的程序可读性好,可维护性强,可靠性高;(3)高级语言不依赖于机器语言,与具体的计算机硬件关系不大,因而所写出来的程序可移植性好、重用率高;(4)把复杂琐碎的事务交给编译程序,所以自动化程度高,发用周期短,程序员可以集中集中时间和精力从事更重要的创造性劳动,提高程序质量。
2. 使用抽象数据类型带给算法设计的好处主要有:(1)算法顶层设计与底层实现分离,使得在进行顶层设计时不考虑它所用到的数据,运算表示和实现;反过来,在表示数据和实现底层运算时,只要定义清楚抽象数据类型而不必考虑在什么场合引用它。
这样做使算法设计的复杂性降低了,条理性增强了,既有助于迅速开发出程序原型,又使开发过程少出差错,程序可靠性高。
(2)算法设计与数据结构设计隔开,允许数据结构自由选择,从中比较,优化算法效率。
(3)数据模型和该模型上的运算统一在抽象数据类型中,反映它们之间内在的互相依赖和互相制约的关系,便于空间和时间耗费的折衷,灵活地满足用户要求。
(4)由于顶层设计和底层实现局部化,在设计中出现的差错也是局部的,因而容易查找也容易2 算法设计与分析纠正,在设计中常常要做的增、删、改也都是局部的,因而也都容易进行。
算法分析与设计试题答案
算法分析与设计习题第一章算法引论一、填空题:1、算法运行所需要的计算机资源的量,称为算法复杂性,主要包括时间复杂度和空间复杂度。
2、多项式10()m m A n a n a n a =+++的上界为O(n m )。
3、算法的基本特征:输入、输出、确定性、有限性。
4、如何从两个方面评价一个算法的优劣:时间复杂度、空间复杂度。
5、计算下面算法的时间复杂度记为: O(n 3) 。
for(i=1;i<=n;i++)for(j=1;j<=n;j++){c[i][j]=0;for(k=1;k<=n;k++)c[i][j]= c[i][j]+a[i][k]*b[k][j];}6、描述算法常用的方法:自然语言、伪代码、程序设计语言、流程图、盒图、PAD 图。
7、算法设计的基本要求:正确性 和 可读性。
8、计算下面算法的时间复杂度记为: O(n 2) 。
for (i =1;i<n; i++){ y=y+1;for (j =0;j <=2n ;j++ )x ++;}9、计算机求解问题的步骤:问题分析、数学模型建立、算法设计与选择、算法表示、算法分析、算法实现、程序调试、结果整理文档编制。
10、算法是指解决问题的 方法或过程 。
二、简答题:1、按照时间复杂度从低到高排列:O( 4n 2)、O( logn)、O( 3n )、O( 20n)、O( 2)、O( n 2/3),O( n!)应该排在哪一位?答:O( 2),O( logn),O( n 2/3),O( 20n),O( 4n 2),O( 3n ),O( n!)2、什么是算法?算法的特征有哪些?答:1)算法:指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程。
通俗讲,算法:就是解决问题的方法或过程。
2)特征:1)算法有零个或多个输入;2)算法有一个或多个输出; 3)确定性 ; 4)有穷性3、给出算法的定义?何谓算法的复杂性?计算下例在最坏情况下的时间复杂性?for(j=1;j<=n;j++) (1)for(i=1;i<=n;i++) (2) {c[i][j]=0; (3)for(k=1;k<=n;k++) (4)c[i][j]= c[i][j]+a[i][k]*b[k][j]; } (5)答:1)定义:指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程。
算法分析与设计(参考题及答案
A、找出最优解的性质 B、构造最优解
C、算出最优解 D、定义最优解
答案:A
27.对完全二叉树自顶向下,从左向右给节点编号,节点编号为10的父节点编号为( ).
A、0 B、2 C、4 D、6
答案:C
28.下面哪种函数是回溯法中为避免无效搜索采取的策略()
3.贪婪技术并不能够总是找到最优解。
A、正确 B、错误 答案:正确
4.对于任何权重的图,Dijkstra算法总能产生一个正确的解。
A、正确 B、错误 答案:错误
5.对于给定的字符表及其出现的概率,哈夫曼编码是唯一的。
A、正确 B、错误 答案:错误
6.贪婪算法是在每一步中,“贪婪”地选择最佳操作,并希望通过一系列局部的最优选择, 能产生一个整个问题的最优解。
一、单选题 1.下列函数关系随着输入量增大增加最快的是( )
A、log2n B、n2 C、2n D、n!
答案:C
2.实现循环赛日程表利用的算法是()。
A、分治策略 B、动态规划法 C、贪心法 D、回溯法
答案:A
3.最长公共子序列算法利用的算法是()。
A、分支界限法 B、动态规划法 C、贪心法 D、回溯法
答案:某个问题的最优解包含着其子问题的最优解。这种性质称为最优子结构性质。
3.简述动态规划方法所运用的最优化原理。
答案:“最优化原理”用数学化的语言来描述:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这 个决策序列是最优的,对于任何一个整数k,1<k<n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定 的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《算法分析与设计》期末复习题及答案一、简要回答下列问题:1.算法重要特性是什么?2.算法分析的目的是什么?3.算法的时间复杂性与问题的什么因素相关?4.算法的渐进时间复杂性的含义?5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?6.简述二分检索(折半查找)算法的基本过程。
7.背包问题的目标函数和贪心算法最优化量度相同吗?8.采用回溯法求解的问题,其解如何表示?有什么规定?9.回溯法的搜索特点是什么?10.n皇后问题回溯算法的判别函数place的基本流程是什么?11.为什么用分治法设计的算法一般有递归调用?12.为什么要分析最坏情况下的算法时间复杂性?13.简述渐进时间复杂性上界的定义。
14.二分检索算法最多的比较次数?15.快速排序算法最坏情况下需要多少次比较运算?16.贪心算法的基本思想?17.回溯法的解(x1,x2,……x n)的隐约束一般指什么?18.阐述归并排序的分治思路。
19.快速排序的基本思想是什么。
20.什么是直接递归和间接递归?消除递归一般要用到什么数据结构?21.什么是哈密顿环问题?22.用回溯法求解哈密顿环,如何定义判定函数?23.请写出prim算法的基本思想。
参考答案:1. 确定性、可实现性、输入、输出、有穷性2. 分析算法占用计算机资源的情况,对算法做出比较和评价,设计出额更好的算法。
3. 算法的时间复杂性与问题的规模相关,是问题大小n的函数。
4.当问题的规模n趋向无穷大时,影响算法效率的重要因素是T(n)的数量级,而其他因素仅是使时间复杂度相差常数倍,因此可以用T(n)的数量级(阶)评价算法。
时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。
5. 最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输入实例下的算法所耗时间。
最坏情况下的时间复杂性取的输入实例中最大的时间复杂度:W(n) = max{ T(n,I) } , I∈Dn平均时间复杂性是所有输入实例的处理时间与各自概率的乘积和:A(n) =∑P(I)T(n,I) I∈Dn6. 设输入是一个按非降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x比较,如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]<x,则A[i:(i+j)/2-1]找x,否则在A[ (i+j)/2+1:j] 找x。
上述过程被反复递归调用。
回溯法的搜索特点是什么7. 不相同。
目标函数:获得最大利润。
最优量度:最大利润/重量比。
8. 问题的解可以表示为n元组:(x1,x2,……x n),x i∈S i, S i为有穷集合,x i∈S i, (x1,x2,……x n)具备完备性,即(x1,x2,……x n)是合理的,则(x1,x2,……x i)(i<n)一定合理。
9. 在解空间树上跳跃式地深度优先搜索,即用判定函数考察x[k]的取值,如果x[k]是合理的就搜索x[k]为根节点的子树,如果x[k]取完了所有的值,便回溯到x[k-1]。
10. 将第K行的皇后分别与前k-1行的皇后比较,看是否与它们相容,如果不相容就返回false,测试完毕则返回true。
11 . 子问题的规模还很大时,必须继续使用分治法,反复分治,必然要用到递归。
12 最坏情况下的时间复杂性决定算法的优劣,并且最坏情况下的时间复杂性较平均时间复杂性游可操作性。
13 .T(n)是某算法的时间复杂性函数,f(n)是一简单函数,存在正整数No和C,n〉No,有T(n)<f(n),这种关系记作T(n)=O(f(n))。
14 .二分检索算法的最多的比较次数为 log n 。
15..最坏情况下快速排序退化成冒泡排序,需要比较n2次。
16. 是一种依据最优化量度依次选择输入的分级处理方法。
基本思路是:首先根据题意,选取一种量度标准;然后按这种量度标准对这n个输入排序,依次选择输入量加入部分解中。
如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。
17.回溯法的解(x1,x2,……x n)的隐约束一般指个元素之间应满足的某种关系。
18. 讲数组一分为二,分别对每个集合单独排序,然后将已排序的两个序列归并成一个含n个元素的分好类的序列。
如果分割后子问题还很大,则继续分治,直到一个元素。
19.快速排序的基本思想是在待排序的N个记录中任意取一个记录,把该记录放在最终位置后,数据序列被此记录分成两部分。
所有关键字比该记录关键字小的放在前一部分,所有比它大的放置在后一部分,并把该记录排在这两部分的中间,这个过程称作一次快速排序。
之后重复上述过程,直到每一部分内只有一个记录为止。
20.在定义一个过程或者函数的时候又出现了调用本过程或者函数的成分,既调用它自己本身,这称为直接递归。
如果过程或者函数P调用过程或者函数Q,Q又调用P,这个称为间接递归。
消除递归一般要用到栈这种数据结构。
21.哈密顿环是指一条沿着图G的N条边环行的路径,它的访问每个节点一次并且返回它的开始位置。
22.当前选择的节点X[k]是从未到过的节点,即X[k]≠X[i](i=1,2,…,k-1),且C(X[k-1], X[k])≠∞,如果k=-1,则C(X[k], X[1]) ≠∞。
23. 思路是:最初生成树T为空,依次向内加入与树有最小邻接边的n-1条边。
处理过程:首先加入最小代价的一条边到T,根据各节点到T的邻接边排序,选择最小边加入,新边加入后,修改由于新边所改变的邻接边排序,再选择下一条边加入,直至加入n-1条边。
二、复杂性分析1、MERGESORT(low,high)if low<high;then mid←(low,high)/2;MERGESORT(low,mid);MERGESORT(mid+1,high);MERGE(low,mid,high);endifend MERGESORT答: 1、递归方程设n=2k解递归方程:2、procedure S1(P,W,M,X,n)i←1; a←0while i≤ n doif W(i)>M then return endifa←a+ii←i+1 ;repeatend解: i←1 ;s←0 时间为:O(1)while i≤ n do 循环n次循环体内所用时间为 O(1)所以总时间为:T(n)=O(1)+ nO(1)= O(n)3.procedure PARTITION(m,p)Integer m,p,i;global A(m:p-1)v←A(m);i←mlooploop i←i+1 until A(i) ≥v repeatloop p←p-1 until A(p) ≤v repeatif i<pthen call INTERCHANGE(A(i),A(p)) else exitendifrepeatA(m) ←A(p);A(p) ←vEnd PARTITION解:最多的查找次数是p-m+1次4.procedure F1(n)if n<2 then return(1)else return(F2(2,n,1,1))endifend F1procedure F2(i,n,x,y)if i≤nthen call F2(i+1,n,y,x+y)endifreturn(y)end F2解:F2(2,n,1,1)的时间复杂度为:T(n)=O(n-2); 因为i≤n时要递归调用F2,一共是n-2次当n=1时F1(n)的时间为 O(1)当n>1时F1(n)的时间复杂度与F2(2,n,1,1)的时间复杂度相同即为为 O(n)5.procedure MAX(A,n,j)xmax←A(1);j←1for i←2 to n doif A(i)>xmax then xmax←A(i); j←i;endifrepeatend MAX解:xmax←A(1);j←1 时间为:O(1)for i←2 to n do 循环最多n-1次所以总时间为:T(n)=O(1)+ (n-1)O(1)= O(n)6.procedure BINSRCH(A,n,x,j)integer low,high,mid,j,n;low←1;high←nwhile low≤high domid←|_(low+high)/2_|case:x<A(mid):high←mid-1:x>A(mid):low←mid+1:else:j←mid; returnendcaserepeatj←0end BINSRCH解:log2n+1三、算法理解2写出maxmin算法对下列实例中找最大数和最小数的过程。
数组 A=(48,12,61,3,5,19,32,7)解:写出maxmin算法对下列实例中找最大数和最小数的过程。
数组 A=()1、 48,12,61,3, 5,19,32,72、48,12 61,3 5,19 32,73、 48~61, 12~3 19~32,5~74、 61~32 3~55、 61 33、快速排序算法对下列实例排序,算法执行过程中,写出数组A第一次被分割的过程。
A=(65,70,75,80,85,55,50,2)解:第一个分割元素为654、归并排序算法对下列实例排序,写出算法执行过程。
A=(48,12,61,3,5,19,32,7)解: 48,12,61,3 5,19,32,748,12 61,3 5,19 32,712,48 3,61 5,19 7,323, 12, 48, 61 5, 7, 19,323,5, 7,12,19,32,48,615、写出图着色问题的回溯算法的判断X[k]是否合理的过程。
解:i←0while i<k doif G[k,i]=1 and X[k]= X[i] thenreturn falsei←i+1repeatif i= k then return true6、对于下图,写出图着色算法得出一种着色方案的过程。
解:K←1X[1] ←1 , 返回 trueX[2]←1,返回false; X[2]←X[2]+1=2, 返回 trueX[3]←1 ,返回false; X[3]←X[3]+1=2, 返回false;X[3]←X[3]+1=3, 返回 true X[4]←1, 返回false; X[4]←X[4]+1=2, 返回false;X[4]←X[4]+1=3, 返回 true 找到一个解(1,2,3,3)7、写出第7题的状态空间树。
解:8、写出归并排序算法对下列实例排序的过程。
(6,2,9,3,5,1,8,7)解:调用第一层次 6,2,9,3 5,1,8,7 分成两个子问题调用第二层次 6,2 9,3 5,1 8,7 分成四个子问题调用第三层次 6 2 9 3 5 1 8 7 分成八个子问题调用第四层次只有一个元素返回上一层第三层归并 2 ,6 3, 9 1,5 7,8 返回上一层第二层归并 2 ,3,6, 9 1,5,7,8 返回上一层第一层归并 1, 2 ,3, 5 ,6, 7, 8,9 排序结束,返回主函数9、写出用背包问题贪心算法解决下列实例的过程。