高考数学一轮复习 第六章 数列 6.5 数列通项公式的求法 文

合集下载

第一轮复习数列通项公式求法

第一轮复习数列通项公式求法

第一轮复习数列通项公式求法
数列通项公式是指可以用一个公式来表示数列中任意一项的公式。

数列通项公式的求法主要有以下几种方法:
1.通过找规律:观察数列中项之间的关系,找出数列中的规律,然后推断出通项公式。

常见的数列规律包括等差数列的公差、等比数列的比率等。

2. 直接计算:对于一些简单的数列,可以通过直接计算数列中的一些项来推断出通项公式。

例如,对于等差数列an = a1 + (n-1)d,可以通过计算数列的前几项得到通项公式。

3.数学归纳法:数学归纳法是一种证明数列性质的方法,也可以用来求解数列通项公式。

首先证明数列的第一项满足通项公式,然后假设数列的前n项满足通项公式,再证明数列的第n+1项也满足通项公式。

4.利用递推关系:对于一些递推数列,可以通过递推关系来求解数列通项公式。

例如,斐波那契数列的通项公式可以表示为
Fn=(1/√5)*[(1+√5)/2]^n-(1/√5)*[(1-√5)/2]^n。

需要注意的是,求解数列通项公式时,并不是所有的数列都能找到通项公式。

有些数列可能只能通过递归或者递推的方式来计算。

此外,还需要注意计算过程中的精度问题,避免舍入误差对计算结果的影响。

总的来说,求解数列通项公式需要观察数列规律、进行数学推理和采用适当的数学方法。

不同的数列可能需要不同的方法来求解其通项公式。

通过掌握以上方法,我们可以更好地理解和分析数列,从而应用数列的性质解决数学问题。

2025届高考数学一轮总复习第六章数列第一节数列的概念与简单表示法

2025届高考数学一轮总复习第六章数列第一节数列的概念与简单表示法
第六章
第一节 数列的概念与简单表示法
课标
1.了解数列的概念和表示方法(表格、图象、通项公式、递推公式).
解读
2.了解数列是一种特殊的函数.
强基础 增分策略
知识梳理
1.数列的有关概念
概念
含义
数列的项
按照 确定的顺序 排列的一列数
数列中的 每一个数
数列的通项
数列{an}的第n项an
数列
通项公式
前n项和
如果数列{an}的递推公式满足an+1-an=f(n)的形式,且f(n)可求和,那么就可
以运用累加法an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a2-a1)+a1,求出数列
{an}的通项公式.
对点训练
1
3 数列{an}中,a1=0,an+1-an= + +1,且
√ √
an=9,则 n=
.
答案 100
1
解析∵an+1-an= + +1
√ √
= √ + 1 − √,
∴an=an-an-1+an-1-an-2+…+a2-a1+a1=√ − -1 + -1 − -2+…+√2 −
√1+0=√-1.∵an=9,即√-1=9,解得 n=100.
考向2.累乘法
-1
· ··
…·
2 3 4
+1
1
1
1
1
1
∴S30=1- + − +…+ −
2
2
3
30

2025版高考数学全程一轮复习第六章数列高考大题研究课五数列的综合课件

2025版高考数学全程一轮复习第六章数列高考大题研究课五数列的综合课件
((12))求记数数列列{{an−}的12 通an }项的公前式n;项和为Tn,若s≤Tn-T1n≤t恒成立,求t-s 的最小值.
50项和S50.
题型三 数列与不等式的综合 例 3 (12 分 )[2023·新 课 标 Ⅱ 卷 ] 已 知 {an} 为 等 差 数 列 , bn = ൝an2a−n,6,n为n为偶奇数数.记Sn,Tn分别为数列{an},{bn}的前n项和,S4=32, T3=16. (1)求{an}的通项公式; (2)证明:当n>5时,Tn>Sn.
巩固训练1
[2024·安徽马鞍山模拟]已知数列{an},a1=3,a2=5,数列{bn}为等 比数列,满足bn+1=an+1bn-anbn,且b2,2a4,b5成等差数列.
(1)求数列{an}和{bn}的通项公式;
(2)记数列{cn}满足:cn=൝bann,,
n为奇数 n为偶数
,中的新定义数列问题的一般步骤
巩固训练2 [2024·河 南 郑 州 模 拟 ] 已 知 数 列 {an} 的 前 n 项 之 积 为 Tn =
n n−1
2 2 (n∈N*). (1)求数列{an}的通项公式; (2)记bm为{an}在区间(0,m](m∈N*)中的项的个数,求数列{bm}的前
题型二 数列中的新定义数列问题 例 2 [2024·河 北 石 家 庄 模 拟 ] 已 知 等 差 数 列 {an} 的 前 n 项 和 记 为 Sn(n∈N*),满足3a2+2a3=S5+6. (1)若数列{Sn}为单调递减数列,求a1的取值范围; (2)若a1=1,在数列{an}的第n项与第n+1项之间插入首项为1,公比 为2的等比数列的前n项,形成新数列{bn},记数列{bn}的前n项和为Tn, 求T95.

2024年高考数学一轮复习(新高考版)《数列求和》课件ppt

2024年高考数学一轮复习(新高考版)《数列求和》课件ppt

跟踪训练2 (2023·重庆模拟)在①a1=1,nan+1=(n+1)·an,② 2a1 + 2a2 +…+2an =2n+1-2这两个条件中任选一个,补充在下面的问题中并作答. 问题:在数列{an}中,已知________. 注:如果选择多个条件分别解答,按第一个解答计分. (1)求{an}的通项公式;
(2)若bn=
2an 1 3an
,求数列{bn}的前n项和Sn.
由(1)可知 bn=2n3-n 1,
则 Sn=311+332+…+2n3-n 1,

13Sn=312+333+…+2n3-n 3+23nn-+11.

两式相减得23Sn=13+322+323+…+32n-23nn-+11=13+2911--313n1-1-23nn-+11
教材改编题
2.数列{an}的前 n 项和为 Sn.若 an=nn1+1,则 S5 等于
A.1
√B.56
C.16
D.310
因为 an=nn1+1=1n-n+1 1, 所以 S5=a1+a2+…+a5=1-12+12-13+…-16=56.
教材改编题
3.Sn=12+12+38+…+2nn等于
2n-n-1 A. 2n
第六章 数 列
§6.5 数列求和
考试要求
1.熟练掌握等差、等比数列的前n项和公式. 2.掌握非等差数列、非等比数列求和的几种常用方法.
内容索引
第一部分
落实主干知识
第二部分
探究核心题型
第三部分
课时精练

一 部 分
落实主干知识
知识梳理
数列求和的几种常用方法
1.公式法
直接利用等差数列、等比数列的前n项和公式求和.

2024年高考数学一轮复习课件(新高考版) 第6章 §6.3 等比数列

2024年高考数学一轮复习课件(新高考版)  第6章 §6.3 等比数列

2024年高考数学一轮复习课件(新高考版)第六章 数 列§6.3 等比数列考试要求1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.等比数列有关的概念(1)定义:如果一个数列从第 项起,每一项与它的前一项的比都等于 常数,那么这个数列叫做等比数列,这个常数叫做等比数列的,公比通常用字母q (q ≠0)表示.(2)等比中项:如果在a 与b 中间插入一个数G ,使 成等比数列,那么G 叫做a 与b 的等比中项,此时,G 2= .2同一个公比a ,G ,b ab2.等比数列的通项公式及前n项和公式a1q n-1(1)若等比数列{a n}的首项为a1,公比是q,则其通项公式为a n=.(2)等比数列通项公式的推广:a n=a m q n-m.(3)等比数列的前n项和公式:当q=1时,S n=na1;当q≠1时,S n=________= .3.等比数列性质(1)若m +n =p +q ,则,其中m ,n ,p ,q ∈N *.特别地,若2w =m +n ,则 ,其中m ,n ,w ∈N *.(2)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为 (k ,m ∈N *).a m a n =a p a q q mS2n-S n S3n-S2n(4)等比数列{a n}的前n项和为S n,则S n,,仍成等比数列,其公比为q n.(n为偶数且q=-1除外)增减常用结论1.等比数列{a n}的通项公式可以写成a n=cq n,这里c≠0,q≠0.2.等比数列{a n}的前n项和S n可以写成S n=Aq n-A(A≠0,q≠1,0).3.数列{a n}是等比数列,S n是其前n项和.判断下列结论是否正确(请在括号中打“√”或“×”)(1)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(2)当公比q >1时,等比数列{a n }为递增数列.( )(3)等比数列中所有偶数项的符号相同.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( )√×××1.设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A.充分不必要条件√B.必要不充分条件C.充要条件D.既不充分也不必要条件若a,b,c,d成等比数列,则ad=bc,数列-1,-1,1,1.满足-1×1=-1×1,但数列-1,-1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.2.设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6等于√A.31B.32C.63D.64根据题意知,等比数列{a n}的公比不是-1.由等比数列的性质,得(S4-S2)2=S2·(S6-S4),即122=3×(S6-15),解得S6=63.3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数1,3,9或9,3,1为____________.∴这三个数为1,3,9或9,3,1.第二部分例1 (1)(2022·全国乙卷)已知等比数列{a n}的前3项和为168,a2-a5=42,则a6等于√A.14B.12C.6D.3方法一 设等比数列{a n}的公比为q,易知q≠1.所以a6=a1q5=3,故选D.方法二 设等比数列{a n}的公比为q,所以a6=a1q5=3,故选D.(2)(2023·桂林模拟)朱载堉(1536~1611)是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中阐述了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一√设第一个音的频率为a ,相邻两个音之间的频率之比为q ,那么a n =aq n -1,根据最后一个音的频率是最初那个音的2倍,得a 13=2a =aq 12,即q = ,1122思维升华等比数列基本量的运算的解题策略(1)等比数列中有五个量a1,n,q,a n,S n,一般可以“知三求二”,通过列方程(组)可迎刃而解.(2)解方程组时常常利用“作商”消元法.(3)运用等比数列的前n项和公式时,一定要讨论公比q=1的情形,否则会漏解或增解.跟踪训练1 (1)设正项等比数列{a n}的前n项和为S n,若S2=3,S4=15,则公比q等于√A.2B.3C.4D.5∵S2=3,S4=15,∴q≠1,(2)在1和2之间插入11个数使包含1和2的这13个数依次成递增的等比数列,记插入的11个数之和为M,插入11个数后这13个数之和为N,则依此规则,下列说法错误的是A.插入的第8个数为B.插入的第5个数是插入的第1个数的倍C.M>3√D.N<7设该等比数列为{a n},公比为q,则a1=1,a13=2,插入的第5个数为a6=a1q5,插入的第1个数为a2=a1q,112112-要证M >3,即证-1- >3,112112-112121-即证 >4,1122N =M +3.1122112121 所以 >5,所以-1- >4,即M >4,112112 所以N =M +3>7,故D 错误.例2 已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等比数列;②数列{S n+a1}是等比数列;③a2=2a1.注:如果选择不同的组合分别解答,则按第一个解答计分.选①②作为条件证明③:设S n+a1=Aq n-1(A≠0),则S n=Aq n-1-a1,当n=1时,a1=S1=A-a1,所以A=2a1;当n≥2时,a n=S n-S n-1=Aq n-2(q-1),解得q=2,所以a2=2a1.选①③作为条件证明②:因为a2=2a1,{a n}是等比数列,所以公比q=2,选②③作为条件证明①:设S n+a1=Aq n-1(A≠0),则S n=Aq n-1-a1,当n=1时,a1=S1=A-a1,所以A=2a1;当n≥2时,a n=S n-S n-1=Aq n-2(q-1),因为a2=2a1,所以A(q-1)=A,解得q=2,所以当n≥2时,a n=S n-S n-1=Aq n-2(q-1)=A·2n-2=a1·2n-1,所以{a n}为等比数列.思维升华(3)前n项和公式法:若数列{a n}的前n项和S n=k·q n-k(k为常数且k≠0,q≠0,1),则{a n}是等比数列.跟踪训练2 在数列{a n}中,+2a n+1=a n a n+2+a n+a n+2,且a1=2,a2=5.(1)证明:数列{a n+1}是等比数列;所以(a n+1+1)2=(a n+1)(a n+2+1),因为a1=2,a2=5,所以a1+1=3,a2+1=6,所以数列{a n+1}是以3为首项,2为公比的等比数列.(2)求数列{a n}的前n项和S n.由(1)知,a n+1=3·2n-1,所以a n=3·2n-1-1,√∵a1,a13是方程x2-13x+9=0的两根,∴a1+a13=13,a1·a13=9,又数列{a n}为等比数列,等比数列奇数项符号相同,可得a7=3,(2)已知正项等比数列{a n}的前n项和为S n且S8-2S4=6,则a9+a10+a1124+a12的最小值为______.由题意可得S8-2S4=6,可得S8-S4=S4+6,由等比数列的性质可得S4,S8-S4,S12-S8成等比数列,则S4(S12-S8)=(S8-S4)2,当且仅当S4=6时等号成立.综上可得,a9+a10+a11+a12的最小值为24.思维升华(1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.跟踪训练3 (1)(2023·六安模拟)在等比数列{a n}中,若a1+a2=16,a3+a4=24,则a7+a8等于√A.40B.36C.54D.81在等比数列{a n}中,a1+a2,a3+a4,a5+a6,a7+a8成等比数列,∵a1+a2=16,a3+a4=24,(2)等比数列{a n}共有奇数个项,所有奇数项和S奇=255,所有偶数项和S偶=-126,末项是192,则首项a1等于√A.1B.2C.3D.4∵a n=192,√∵a1a2…a8=16,∴a1a8=a2a7=a3a6=a4a5=2,第三部分1.(2023·岳阳模拟)已知等比数列{a n}满足a5-a3=8,a6-a4=24,则a3等于√A.1B.-1C.3D.-3设a n=a1q n-1,∵a5-a3=8,a6-a4=24,2.数列{a n}中,a1=2,a m+n=a m a n,若a k+1+a k+2+…+a k+10=215-25,则k等于√A.2B.3C.4D.5令m=1,则由a m+n=a m a n,得a n+1=a1a n,所以a n=2n,所以a k+1+a k+2+…+a k+10=2k (a1+a2+…+a10)=215-25=25×(210-1),解得k=4.3.若等比数列{a n}中的a5,a2 019是方程x2-4x+3=0的两个根,则log3a1+log3a2+log3a3+…+log3a2 023等于√。

2025版高考数学全程一轮复习第六章数列专题培优课构造法求数列的通项公式课件

2025版高考数学全程一轮复习第六章数列专题培优课构造法求数列的通项公式课件

3×5n,则数列{an}的通项an=( )
A.-3×2n-1
B.3×2n-1
C.5nபைடு நூலகம்3×2n-1
D.5n-3×2n-1
答案:D
解析:在递推


an+
1
=2an

3×5n



同时除以
5n
+1


an+1 5n+1
=25
×
an 5n
+
3 5
①,令bn=5ann,则①式变为bn+1=25bn+35,即bn+1-1=25(bn-1),所以数列{bn-1}
则a2 023=(
)
A.-42 023+2
B.-42 023-2
C.-42 022+2
D.-42 022-2
答案:C 解析:由an+1=4an-6,得an+1-2=4(an-2),而a1-2=-1,因此数列{an-2} 是首项为-1,公比为4的等比数列,则an-2=-1×4n-1,即an=-4n-1+2,所 以a2 023=-42 022+2.故选C.
题型二 形如an+1=pan+qan-1(a≥2,n∈N*) 例4 已知数列{an}满足a1=1,a2=2,且an+1=2an+3an-1(n≥2, n∈N*),求数列{an}的通项公式.
题后师说
形如an+1=pan+qan-1求an的一般步骤
巩固训练2
已知数列{an}满足:a1=a2=2,an=3an-1+4an-2(n≥3),则a9+a10 =( )
2(n≥3),则S10=( )
A.4105−1
B.4115−1
C.410-1 D.411-1
答案:A 解析:因为an=3an-1+4an-2(n≥3),所以an+an-1=4(an-1+an-2),又a1+a2= 3≠0,所以aann−+1+aann−−12=4(n≥3),所以{an+an+1}是等比数列,公比为4,首项为3, 则数列{a2n-1+a2n}也是等比数列,公比为42=16,首项为3.所以S10=3×11−−11665 = 4105−1.故选A.

2025届高考数学一轮总复习第六章数列第四节数列求和

2025届高考数学一轮总复习第六章数列第四节数列求和
4×3
41 + 2 ×
= 32,
1 = 5,
S4=32,T3=16,得
解得
所以
= 2.
(1 -6) + 2(1 + ) + (1 + 2-6) = 16,
an=a1+(n-1)d=2n+3.
(2)证明 由(1)可得
[5+(2+3)]
Sn=
=n2+4n.
2
当 n 为奇数时,Tn=a1-6+2a2+a3-6+2a4+a5-6+2a6+…+an-2-6+2an-1+an-6
×…× ×a2= × ×…× ×1=n-1.
-2
2
1
-2 -3
显然 a1=0 满足,∴an=n-1(n∈N*).
(2)由(1)可知 an=n-1(n∈N*),
+1
1
1 1
1 2
1 3
1
∴an+1=n,∴ =n· ,∴Tn=1×
+2×
+3×
+…+n· ,
2
2
2
2
2
2
1
1 2
1 3
1
2
2
+(
1
2
2

1
2 )+…+
3
1
1
1
2 - 2 =1-81
8 9
=
80
.
81
=
1
2

1
(+1)
2,
增素能 精准突破

2023届高三数学一轮复习专题 数列通项公式的十三种求法 讲义 (解析版)

2023届高三数学一轮复习专题  数列通项公式的十三种求法  讲义 (解析版)

数列通项公式的十三种方法数列的通项公式是数列的核心概念之一,它如同函数中的解析式一样,有解析式便可研究其性质;而有了数列的通项公式则可求出其任意一项以及前项和等.因而求数列的通项公式往往是解题的突破口、关键点.本文总结出几种求解数列通项公式的方法,希望对大家有所帮助.一、观察法根据数列的前几项求通项公式时,常用“观察、归纳、猜想、验证”的思想方法,即先找出各项相同的部分,再找出不同的部分与序号之间的关系,并用n 表示出来.{}{}{}{}{}.2,12,,)1(,,;;,.:.232)1()2(.)12)(12(2.1212,,75,53,31,2)1(:;6461,3229,1613,85,41,21)2(;9910,638,356,154,32)1(.,:11等如列要注意联系一些基本数进行验证或调整再次是写出通项公式后号的联系与序其次要分析变化的因素而变化哪些因素随序号的变化与序号无关而保持不变首先要观察哪些因素其规律之间的对应关系中发现与序号要善于从数值点评的通项公式为别考虑可以得出此数列将符号、分子、分母分式为故此数列的一个通项公的积和是两个连续奇数分母为分子为偶数列解通项公式写出下面各数列的一个根据数列的前几项例----•-=+-=+-⋅⋅⋅⨯⨯⨯⋅⋅⋅--⋅⋅⋅n n n n n nn n n n n a a n n na n n n 二、定义法.)0,(.11的数列为常数且或递推公式为这种方法适用于式的方法叫定义法比数列的定义求通项公直接利用等差数列或等≠=+=++q q d qa a d a a n n n n 三、累加法).()1()3()2(),2()3()1()(,).2(),3(,),1(),(:),(11122321111n f n f f f a a f f n f n f a a f a a f a a n f a a n f a a n f a a a n n n n n n n n +-+⋅⋅⋅+++=++⋅⋅⋅+-+=-=-=-⋅⋅⋅-=-=-=-----即得相加所有等式左右两边分别即可以用“累加法”且已知.22,2)1(1,1),1(321112........................321,:,1,:22111223322111111+-=∴-=-∴=-+⋯⋯+++=--⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=-=--=--=--=-=-+==+=-----+++n n a n n a a n a a n a a a a n a a n a a n a a n a a a n a a a a n a n n n n n n n n n n n n n n n n 又得个式子相加所以得由解求已知例.,)1(,)1(,,2,1)(,)1()2()1(:1称为累加法个等式累加而求可得个代入以中就可以将的和是可求的只要点评n n n a n n n n n f a a n f f f --⋅⋅⋅=+=-+⋅⋅⋅+++四、累乘法).()1()3()2(),2()3()1()(,).2(),3(,),1(),(:),(11122321111n f n f f f a a f f n f n f a a f a af a a n f a a n f a a n f a a a n nn n n n n n•-•⋅⋅⋅•••=••⋅⋅⋅•-•===⋅⋅⋅-===----即得相乘所有等式左右两边分别即可以用“累乘法”且已知{}{}.,)(:.2,2,21122232........................32221212,1222)22(:.,)22(,2,:31111223322111111n n n n nn n n n n n n n n n n n n n a n n f n a a n a a n a a a a n n a a n n a a n n a a n n n a a a n a a a na a a 可用累乘法求项积可求前数列点评又得个式子相乘所以得由解求通项公式中已知数列例•=∴=•=-⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫•=•=--•=--•=-•=∴+•=+=+=+==------+++五、构造法(构造成等比数列).,)1(1.,11),1(1),1(1,)1(,,)1(),(:)1(.)01(:111111111n n n n n n n n n n n n n n a p p qa p q a p p qa p q a p q a p p q a p p qq p q pa a p pa a a p a q p q pa a 从而求出所以为公比的等比数列以为首项是以因此数列所以所以比较系数得与题设得设构造法项相减法”可用“构造法”或“逐且类型-+++++•-+=-+-+⎭⎬⎫⎩⎨⎧-+-+=-+≠-==-+=-+=+=+≠≠+=λλλλλ{}.,,),(),2(),1(:)(.21211111n n n n n n n n n n n a a a p a a a a p a a q pa a q pa a 从而求出为首项的等比数列公比为是以从而得数列两式相减得得由阶差法逐项相减法---=-+=+=+-+-+{}{}{}.213,313,13,33331)113(,3).(3,1313:1.,131,.4111121111-111-=∴=-+∴+==•=-∴=-+⨯=---=-+=+=+==+-++-+++n n nn n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a a a a a 其首项为的等比数列是公比为因此数列两式相减得得由解法的通项公式求数列且满足中在数列例{}.3,33331)113(,31:2111121n n n n n n n n n n a a a a a a a a a 可用“累加法”求出已知其首项为的等比数列是公比为得数列由解法解法=-=•=-∴=-+⨯=--+-++.,31:.213,32321,2321,321),21(32121,21,23),(313:3111111但殊途同归构造出的等比数列不同与解法解法点评首项为的等比数列是公比为数列即可化为设递推公式解法-=∴•=+∴=+⎭⎬⎫⎩⎨⎧+∴+=+∴=∴=∴+=+=++=-++++n n n n n n n n n n n n n a a a a a a a a a a a a λλλλλ.1,1.1,,).0,10(:2111111即类型的数列则转化形如令得两边同除以由且类型+•==+•=+=≠≠≠+=+--+++n n n n n n nn n n n n n n n n b q pb q a b qa q p q a q q pa a q p p q pa a {}{}.133,3133.3,232,323313),3(313,23313,32:.),2(32,6,:511111111111的等比数列首项为为公比是数列即令得由解的通项公式求数列满足中已知数列例-=-⎭⎬⎫⎩⎨⎧-∴-=∴=-∴-•=+•=+∴+•=⨯+=≥⨯+==--------a a k k k a a k a k a a a a a a n a a a a n n n n n n n n n n n n n n n n n n n n n n.1.1,,)0,10(:.33)31(33,)31(33,)31(1331111111111的数列则转化形如令得可先在其两边同除以的数列且对形如点评+•==+•=≠≠≠+=-=•-=∴-=∴⨯-=-∴+--+++-+--n n n n n n n n n n n n n n n n n n n n n n n n b qpb q a b q a q p q a q q p p q pa a a a a ..,,,)1()2(),2(),1(.:3211211的通项公式从而分奇偶项求出数列偶数项分别是等比数列所以奇数项得由得由类型q a a q a a q a a q a a nn n n n n n n n n n ==•=•=•++++++{}{}⎪⎩⎪⎨⎧=∴=•=•==•=∴=∴=•⋅⋅⋅⋅⋅⋅∴==•=•=•=------++++++.,2,,22222;22,2,2;,,,;,,,,2)1()2(),2(2,)1(2:.,2,1,:6221112211112212864275312112111为偶数为奇数又成等比数列成等比数列得由得由解的通项公式求数列满足中已知数列例n n a a a a a a a a a a a a a a a a a a a a a a a a a a a nn n nn n n n n n nn n n n n n n n n n n n .,)()1(,)1()2(),2( )1(),1( )()(:21211项公式分奇偶项求出数列的通得由得由数列形如点评n f n f a a n f a a n f a a n f a a n n n n n n n n +=+=•=•=•+++++六、待定系数法{}.,,.)1()1(,)1()1(,),()1()0,1,(:11111n n n n n n n n n n n n n a b B An a b bA B P k A P b kn pa A B P An P Pa a PB PAn Pa B A An a B An a P B n A a k p b k b kn pa a 求出通项是等比数列从而构造了数列令比较系数得设是常数且类型++=⎩⎨⎧=--=-++=--+-+=∴++=+++∴++=+++≠≠++=++++{}{}{}.132136,361.611,31,1.1,1,.123,22,,1232323,3333],)1([3:.),2(123,4,:7111111111--•=--•=∴•=++∴=++++∴++=++∴⎩⎨⎧==⎩⎨⎧-=+-=-+=+-+=∴+-+=++∴+-+=++≥-+==-------n n a n a a n a n a B An a B A B A A n a B A An a a B A An a B An a B n A a B An a a n n a a a a n n n n n n n n n n n n n n n n n n n 的等比数列首项为是公比为数列解得比较系数得设解的通项公式求数列满足中已知数列例{}.,.,),()1(,)0,1,(:11n n n n n n a p B An a B A B An a P B n A a k p b k b kn pa a 从而求出通项的等比数列是公比为则构造了数列比较系数相等求出设的数列是常数且递推公式为点评++++=+++≠≠++=++{}.,,.2,)2()(,2),()1()1()0,1,,(:2222122122121n n n n n n n n n n n n n a b C Bn An a b c C B A pC b A B PB aA pA c bn an pa CB A pC n A B PB n A pA Pa a pC PBn PAn Pa C B Bn A An An a C Bn An a P C n B n A a a p c b a c bn an pa a 求出通项是等比数列从而构造了数列令比较系数得设是常数且类型+++=⎪⎩⎪⎨⎧=---=--=-+++=---+--+-+=∴+++=++++++∴+++=+++++≠≠+++=++++{}{}{}.181032,18103218103232,23218103.321811013,218103.18103,18103,5242232,54322)22()2(2,22222),(2)1()1(:.,1,5432:82424211221222221221221121---=---=---•=∴•=+++∴=+⨯+⨯+++++++=+++∴⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧=---=--=-+++=---+--+-+=∴+++=++++++∴+++=+++++=+++=++--++++n n a n n n n a n n a a n n a n n a C Bn An a C B A C B A C A B B A A n n a C B A C n A B B n A A a a C Bn An a C B Bn A An An a C Bn An a C n B n A a a a n n a a a n n n n n n n n n n n n n n n n n n n n n 为首项的等比数列为公比是所以数列解得比较系数得设解的通项公式求数列满足已知数列例{}.,,.,,),()1()1(,)0,1,,(:222121n n n n n n n n a b C Bn An a b C B A C Bn An a P C n B n A a a p c b a c bn an pa a 从而求出通项是等比数列则构造了数列令比较系数得设的数列是常数且形如点评+++=+++=+++++≠≠+++=++七、特征方程法{}.,,,,)(),().,(:1121121212的等比数列是公比为于是解得比较系数得所以可以变形为设为常数类型βαβααββααββααβαn n n n n n n n n n n n n n n a a qpa a a a a a a qa pa a q p qa pa a -⎩⎨⎧-==+-+=-=-+=+=++++++++++{}{}.)31(:1.),3731,3731231,131:2(.1,31:1.131311,3132,)(),(3132:.,3132,2,1,:9111112112112112121221-++++++++++++++-=-∴+==+∴=+=+⎭⎬⎫⎩⎨⎧+=---∴⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧-==⎪⎪⎩⎪⎪⎨⎧-==+-+=∴-=-+=+===n n n n n n n n n n n n n n n n n n n n n n n n n n a a q pa a a a a a a a a a a a a a a a a a a a a a a a a a a a a 法类型从而变成的等比数列首项为是公比为数列法的等比数列首项为是公比为数列法或解得比较系数得可以变形为设解求中已知数列例βαβααββααββααβα.314347]311[431,311311313131,)1(,)1(,2,13111121111-----+⎪⎭⎫ ⎝⎛-⨯-=⎪⎭⎫⎝⎛--+=∴+⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=---⋯⋯=⎪⎭⎫⎝⎛-=-n n n n n n n n n a a a n n n n a a 得个等式累加再把代入以中将八、公式法{}.2,1,.,11求解利用公式法”的通项公式可用“公式求数列的关系与项和若已知数列前⎩⎨⎧≥-==-n s s n s a a a s n n n n n n n{}{}.,,1),2(,,:.2,261,5,51113,1,26)353(13]1)1()1(3[13,2:.,13:101111211222212否则要用分段函数表示才是通项公式相等时求得的与由时的当其方法是利用求数列的通项公式项和公式已知数列的前点评所以不符合上式时当时当解的通项公式求数列的前项和已知数列例n n n n n n n n n n n n a s a s a n n s s a n n n n a s a n n n n n n n n n n s s a n a n n s a ==≥-=⎩⎨⎧≥-===++•===-=+--++=+-+--++=-=≥++=--{}{}{}.,,:.12,122)1(3,2,320),(2))((,422:)2()1(),2(342,2),1(342,3,0,342,1:..342,0..11111111121211212111221的式子与含将所给关系式转化为只因此需利用已知条件中含点评的等差数列公差为是首项为数列,又式得式时当解得时当解的通项公式求数列已知的前项和为数列例------------=+=∴+=⨯-+=∴∴=-∴+=-+∴=--+-⋅⋅⋅⋅⋅⋅+=+≥∴⋅⋅⋅⋅⋅⋅+=+=+=+=+=+n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n a a s s a a s n a n n a a a a a a a a a a a a a a a a s a a n s a a a a a a a n a s a a a a s n九、数学归纳法{}{}{}{}.,,:.)1(),1(,)2)(1(.,1.)2()1()2()1(),2)(1()1()1(22,1,)1(),1(,)2(.,1)1(:.)1(),1(.25,20,16,12,9,6.,2:.,,,,,,)(,,,,,,4,2,,:122222221121224433221211432432*11111然后用数学归纳法证明其通项公式根据前几项的规律猜测前几项关键是准确求出数列的证明”求解数列问题的—猜测—使用“归纳点评对一切正整数都成立可知由结论也成立时所以当时那么当即时结论成立假设当由上知结论成立时当用数学归纳法证明猜测由此可得由条件得解的通项公式求数列的值及求成等比数列成等差数列且中在数列例+=+=+=+=+++==++=+-+=-=+=+=+===+=+========+=∈==+++++++++n b n n a k n k k k k b a b k k k k k a b a k n k b k k a k n n n b n n a b a b a b a b b a a a b b a b b b a a a N n b a b a b a b a b a n n k k k k k k k k n n n n n n n n n n n n n n n n n n 十、重新构造新方程组求通项法{}{}{}{}{}{}.,,,:.)311(21)311(21,)31(1.)31()()31()()31()(31,1.,2),(31,),2(31),2(31:.,),2(31),2(31,2,0,,1,.13.,,111111122211112211*11111111111111n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n b a b a b a b a b a b a b a b a b a b a b a b a N n n b a b a b a b a b a b b a a b a b a b b a a n b b a a b a b a b a b a 出从而再通过解方程组求等差或等比数列相加或相减后恰好构成观察两个式子结构特征点评解得所以所以都成立对得由解求时当中数列中已知数列例和然后解方程组求得的方程组和关于必须重新构造与要想求出给出的通项以方程组的形式和有时数列⎪⎪⎩⎪⎪⎨⎧-=+=⎪⎩⎪⎨⎧=-=+=-=⋅⋅⋅=-=-=-=+=⋅⋅⋅=+=+=+∈≥-=-+=++=+=+=+=≥==-------------------------十一、取倒数法{}{}.121,122)1(11,11,21,211,121,12:.,12,2,1,:1411111111-=∴-=⨯-+=∴=⎭⎬⎫⎩⎨⎧∴=-+=+=+=≥=------n a n n a a a a a a a a a a a a a a n a a n n n n n n n n n n n n n n n 的等差数列首项为是公差为数列两边取倒数得将解的通项公式求数列时且当满足中已知数列例.1,11,,)0,0(:111111cbb c d b b a a c d c b ca d ba a a bcd d ba ca a n n n n n n n n n nn +•==•+=+=≠≠+=+++++则令型即转化为构造新数列可用两边取倒数的方法型数列的通项公式求点评十二、取对数法{}{}{}.,lg ,lg lg lg ),0,0(:.13,31,3lg 23lg )1lg(.3lg )1lg(,2)1lg()1lg(2)1lg(,)1lg()1lg(,)1(121,2:.,2,2,:151112221112122121211111类型则变成令两边取对数得形如点评的等比数列首项为是公比为数列两边取对数得得由解的通项公式求数列满足中已知数列例q pb b a b a r c a a c ca a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n r n n n n n n n n n n n n n n n n n n n n n n n n n n+==+==-=∴=+=•=+∴=++∴+=+∴+=++=++=++=+==+++-+++++---十三、平方(开方)法{}{}{}.,,),,0(:.13,0.133)1(4.3,4,3,3:.),2(3,2,:161222121221221221211类型则变成令则两边平方得为常数形如点评又为公差的等差数列为首项是以数列两边平方整理得将解的通项公式求数列满足中已知数列例q pb b a b da c a c d da c a n a a n n a a a a a a a a n a a a a n n n n n n n n n n n n n n n n n n n n +==+=≠+=+=∴>+=⨯-+=∴=∴=-+=≥+==+++---。

2025年高考数学一轮复习 第六章 数列-第一节 数列的概念及简单表示法【课件】

2025年高考数学一轮复习 第六章 数列-第一节 数列的概念及简单表示法【课件】

数列的项
每一个数
数列中的__________
数列的通项
数列{ }的第项
通项公式
数列{ }的前项和
数列{ }的第项 与它的序号之间的对应关系可以用一个式子来
表示,这个式子叫作这个数列的通项公式
1 + 2 + ⋯ +
数列{ }中, =________________叫作数列的前项和
第六章 数列
第一节 数列的概念及简单表示法
1
1 强基础 知识回归
2
2 研考点 题型突破
课标解 通过日常生活和数学中的实例,了解数列的概念和表示方法(列表、图象、通项公

式),了解数列是一种特殊函数.
01
强基础 知识回归
知识梳理
一、数列的有关概念
概念
数列
含义
确定的顺序
按照____________排列的一列数
2
2
3
1
, 4 = 2 ;五边形数: , 5 = 2 − ;六边形数: , 6 = 22 − ,可以推
2
2
测 , 的表达式,由此计算 20,23 =( B )
A.4 020
B.4 010


C.4 210


D.4 120








[解析] 由题意可得 , = + , , = + , , = − ,
[解析] 当 = 时, = = ;当 ≥ 时,
= − − = + − [ −

+ ] = − , = 不满足上式,所以
, = ,
, = ,

2023年高考数学(文科)一轮复习课件——等比数列及其前n项和

2023年高考数学(文科)一轮复习课件——等比数列及其前n项和
索引
(2)求a1a2-a2a3+…+(-1)n-1anan+1. 解 易知(-1)n-1anan+1=(-1)n-1·22n+1, 则数列{(-1)n-122n+1}公比为-4. 故a1a2-a2a3+…+(-1)n-1·anan+1 =23-25+27-29+…+(-1)n-1·22n+1 =23[1-1(+-4 4)n]=85[1-(-4)n] =85-(-1)n·225n+3.
索引
感悟提升
1.证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于 选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存 在连续三项不成等比数列即可. 2.在利用递推关系判定等比数列时,要注意对n=1的情形进行验证.
索引
训练1 已知数列{an}的前n项和为Sn,且an+Sn=n. (1)设cn=an-1,求证:{cn}是等比数列; 证明 ∵an+Sn=n①, ∴an+1+Sn+1=n+1②. ②-①得an+1-an+an+1=1, 所以2an+1=an+1, ∴2(an+1-1)=an-1,又a1+a1=1, 因所为以aaan+1n=-1-1211,=∴12,a1-∴1c=cn+n1-=2112≠. 0, 故{cn}是以 c1=a1-1=-21为首项,12为公比的等比数列.
(2)等比中项:如果 a,G,b 成等比数列,那么 G 叫做 a 与 b 的等比中项.那么Ga =Gb ,
即 G2=__a_b_.
索引
2. 等比数列的通项公式及前n项和公式 (1)若等比数列{an}的首项为a1,公比是q,则其通项公式为an=__a_1q_n_-_1__; 通项公式的推广:an=amqn-m. a1(1-qn) (2)等比数列的前 n 项和公式:当 q=1 时,Sn=na1;当 q≠1 时,Sn=____1_-__q___ =a11--aqnq.

高三一轮复习数列通项公式的求法课件(共23张PPT)

高三一轮复习数列通项公式的求法课件(共23张PPT)
或利用等差、等比数列的通项公式)
S1 (n=1) Sn-Sn-1(n≥2)
三、叠加法(形如an+1=an+ f(n)型)
an an an1 an1 an2 a2 a1 a1
四、累乘法
an

an an1
(a形n如1 an+1 an2
=(n

1)+(n
-2)+
•••+2+1+1

n-1 n
1
n2
n2
2
2
12
注:
递推公式形如an+1=an+ f(n)型的数列其中f(n)可以是 关于n的一次函数、二次函数、指数函数、分式函数, 求通项. ①若f(n)是关于n的一次函数,累加后可转化为等差数列 求和; ②若f(n)是关于n的二次函数,累加后可分组求和; ③若f(n)是关于n的指数函数,累加后可转化为等比数列 求和; ④若f(n)是关于n的分式函数,累加后可裂项求和。
1且an 的通项公式为
分析 : an1 n 得 a2 a3 a4 an 1 2 3 4 n-1
an n 2 a1 a2 a3
an1 3 4 5 6
n 1

an a1

1 2 n(n 1)

a1
a1 S1 3不合上式
故an

3 2n
(n 1) (n N ) (n 2)
1100
思考: 已知数列{an}的前n项和sn=2-an.
求数列{an}的通项公式。
解:当n≥2时an=sn-sn-1=(2-an)-(2-an-1)=an-1-an,

2025数学大一轮复习讲义人教版 第六章 数列中的构造问题

2025数学大一轮复习讲义人教版  第六章  数列中的构造问题
∵an+1=3an+2,∴an+1+1=3(an+1), ∴aan+n+1+11=3,∴数列{an+1}为等比数列,公比 q=3, 又a1+1=2,∴an+1=2·3n-1, ∴an=2·3n-1-1.
命题点2 an+1=pan+qn+c(p≠0,1,q≠0) 例2 若a1=1,an+1=2an-3n,n∈N+,求数列{an}的通项公式.
当n≥2时,an+1=4an, 则a3=4a2=12,a4=4a3=48, 故 S4=13+3+12+48=1390,故 B 正确; 由an+1=3Sn+2, 得Sn+1-Sn=3Sn+2, 所以Sn+1=4Sn+2, 令Sn+1+λ=4(Sn+λ),
1 2 3 4 5 6 7 8 9 10
则Sn+1=4Sn+3λ, 所以 3λ=2,即 λ=23, 所以 Sn+1+23=4Sn+23,即SSn+n+1+2332=4, 故Sn+23是首项为 S1+23=a1+23=1, 公比为4的等比数列,故D正确.
则a2=3S1+2=3a1+2,
所以 a1=13,故 A 正确;
因为an+1=3Sn+2,

所以当n≥2 时,an=3Sn-1+2,

①-②得,an+1-an=3an,即an+1=4an, 当 n=1 时,a1=13,不满足 a2=4a1,
故数列{an}不是等比数列,故C错误;
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
3.已知数列{an}中,a1=1,2an+1an=(n+1)an-nan+1,则数列{an}的 通项公式为
A.an=2n1-1
B.an=2n1+1
√C.an=2nn-1
D.an=2nn+1
1 2 3 4 5 6 7 8 9 10

高考数学复习专题讲座 数列通项公式的求法

高考数学复习专题讲座 数列通项公式的求法

高考数学复习专题讲座 数列通项公式的求法各种数列问题在很多情形下,就是对数列通项公式的求解。

特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。

本文总结出几种求解数列通项公式的方法,希望能对大家有帮助。

一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d ∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。

二、公式法若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解。

例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。

解:由1121111=⇒-==a a S a当2≥n 时,有,)1(2)(211nn n n n n a a S S a -⨯+-=-=-- 1122(1),n n n a a --∴=+⨯-,)1(22221----⨯+=n n n a a ……,.2212-=a a 11221122(1)2(1)2(1)n n n n n a a ----∴=+⨯-+⨯-++⨯- ].)1(2[323])2(1[2)1(2)]2()2()2[()1(21211211--------+=----=-++-+--+=n n n nn n n n n经验证11=a 也满足上式,所以])1(2[3212---+=n n n a 点评:利用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-211n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能合写时一定要合并.三、由递推式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。

高三数学一轮复习 第六章《数列》63精品课件

高三数学一轮复习 第六章《数列》63精品课件

二、分类讨论思想 当 q=1 时,{an}的前 n 项和 Sn=na1;当 q≠1 时,{an} a11-qn a1-anq 的前 n 项和 Sn= = .等比数列的前 n 项和公式 1-q 1-q 涉及对公比 q 的分类讨论,此处是常考易错点.
三、解题技巧 1.等比数列的设项技巧 a a (1)对于连续奇数项的等比数列,通常可设为…,q2,q, a,aq,aq2,…; (2)对于连续偶数项且公比为正的等比数列,通常可设 a a 为…,q3,q,aq,aq3,….
an (2){an}{bn}均为等比数列⇒{an· bn}、b 是等比数列. n
am m-n (3){an}为等比数列,则 a = q n
.
(4)若 m、 n、 p、 q∈N*且 m+n=p+q, 则 am· an=ap· aq. 特别地,a1an=a2an-1=a3an-2=…
(5)等间隔的 k 项和(或积)仍成等比数列. 例如:{an}是等比数列,则 ①a1, a3, a5, …, a2n-1; ②a1+a2, a2+a3, a3+a4, …; ③a1a2,a2a3,a3a4,…;④a1+a2,a3+a4,a5+a6……均 成等比数列. (6)an2=an-k· an+k (1≤k<n,n、k∈N*).
1 1 3 解析:a4=a1 2 = a1, 8
15 S4 S4= = a1,∴ =15. 1 8 a4 1-2 答案:15
1 a11-24
• (理)(09·全国Ⅱ)设等比数列{an}的前n项和为Sn.若a1=1, S6=4S3,则a4=________.
解析:设等比数列的公比为 q. 当 q=1 时,由 S6=4S3 得,6a1=4×3a1⇒a1=0(舍). a11-q6 a11-q3 当 q≠1 时,由 S6=4S3⇒ =4· ⇒ 1-q 1-q • 答案: 3 3 1+q =4⇒q3=3⇒a4=a1q3=3.

2025高考数学一轮复习-6.1-数列的概念与简单表示方法【课件】

2025高考数学一轮复习-6.1-数列的概念与简单表示方法【课件】

『变式训练』 1.设 Sn 为数列{an}的前 n 项和,若 2Sn=3an-3,则 a4 等于( B ) A.27 B.81 C.93 D.243
【解析】 根据 2Sn=3an-3,可即 an+1=3an,当 n=1 时,2S1=3a1-3,解得 a1=3,所以数列{an}是以 3 为首项,3 为公 比的等比数列,所以 a4=a1q3=34=81.故选 B.
【解析】 ∵Sn=3+2n, ∴Sn-1=3+2n-1(n≥2),an=Sn-Sn-1=2n-1(n≥2). 而 a1=S1=5,∴an=52, n-1n,=n1≥,2.
易错点睛:(1)数列是特殊的函数,注意其自变量为正整数. (2)求数列前 n 项和 Sn 的最值时,注意项为零的情况. (3)使用 an=Sn-Sn-1 求 an 时注意 n≥2 这一条件,要验证 n=1 时是否成立.
满足条件
有穷数列 无穷数列
项数 项数
有限 无限
递增数列 递减数列
常数列
an+1 an+1 an+1
> an < an = an
其中 n∈N*
从第 2 项起,有些项大于它的前一项,有些项小
于它的前一项的数列
3.数列的表示法 数列有三种表示法,它们分别是列表法、图象法和 解析法 . 4.数列与函数的关系 数列{an}是从正整数集 N*(或它的有限子集{1,2,…,n})到实数集 R 的函数,其自变 量是序号 n,对应的函数值是数列的第 n 项 an,记为 an=f(n).也就是说,当自变量从 1 开始,按照从小到大的顺序依次取值时,对应的一列函数值 f(1),f(2),…,f(n),…就是 数列{an}.
同理令2nn-+11=15,得 n=2,∴15为数列{an}的项;

高三一轮复习专题:数列通项公式与求和方法总结(精编文档).doc

高三一轮复习专题:数列通项公式与求和方法总结(精编文档).doc

【最新整理,下载后即可编辑】专题一:数列通项公式的求法详解(八种方法)关键是找出各项与项数n 的关系.) 4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 答案:(1)110-=nn a(2);122++=n n n a n(3);12+=n a n (4)1)1(1+⋅-=+n n a n n .公式法1:特殊数列例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1例3. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )(A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n (D)例 4. 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式.简析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,易得)1()1(1+=⋅+=-q q q q q b n n n .点评:当数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求首项及公差公比. 公式法2: 知n s 利用公式 ⎩⎨⎧≥-==-2,1,11n S S n s a n n n .例5:已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式.(1)13-+=n n S n .(2)12-=n s n答案:(1)n a =3232+-n n ,(2)⎩⎨⎧≥-==)2(12)1(0n n n a n 点评:先分n=1和2≥n 两种情况,然后验证能否统一.【型如)(1n f a a n n +=+的地退关系递推关系】a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ② 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n 的二次函数,累加后可分组求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和各式相加得 例5:已知数列6,9,14,21,30,…求此数列的一个通项. .答案:)(52N n n a n ∈+=例6. 若在数列{}n a 中,31=a ,n n n a a 21+=+,求通项n a .答案:n a =12+n例7.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式. 答案:a n12-=【 形如1+n a =f (n)·n a 型】(1)当f(n)为常数,即:q a a nn =+1(其中q 是不为0的常数),此时数列为等比数列,n a =11-⋅n q a .(2)当f(n)为n 的函数时,用累乘法.例8:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式. 例9: 已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-=,试求通项公式n a . .答案:.)12(12(1-+=n n a n思考题1:已知1,111->-+=+a n na a n n ,求数列{a n }的通项公式.分析:原式化为 ),1(11+=++n n a n a 若令1+=n n a b ,则问题进一步转化为n n nb b =+1形式,累积得解.构造1:【形如0(,1≠+=+c d ca a n n ,其中a a =1)型】 (1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法如下:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得)0(,1≠-=c c dλ,所以:)1(11-+=-+-c d a c c d a n n ,即⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列.例10:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项na .答案:12-=n n a构造2:相邻项的差为特殊数列例11:在数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求na .提示:变为)(31112n n n n a a a a --=-+++.构造3:倒数为特殊数列【形如sra pa a n n n +=--11】 例12: 已知数列{n a }中11=a 且11+=+n nn a a a (N n ∈),,求数列的通项公式. 答案nb a n 11==}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解析:设1)1(-+-+=n n bq d n a c 建立方程组,解得.点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{n a 为等差数列:则c bn a n +=,cn bn s n +=2(b 、c为常数),若数列}{a 为等比数列,则1-=n n Aq a ,)1,0(≠≠-=q Aq A Aq s n n .:(1)数列{n a }满足01=a ,且)1(2121-=++++-n a a a a n n ,求数列{a n }的通项公式. 解析:由题得 )1(2121-=++++-n a a a a n n ① 2≥n 时, )2(2121-=+++-n a a a n ②由①、②得⎩⎨⎧≥==2,21,0n n a n .(2)数列{n a }满足11=a ,且2121n a a a a nn =⋅⋅- ,求数列{a n }的通项公式(3)已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a . 八、【讨论法-了解】(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为其通项分为奇数项和偶数项来讨论. (2)形如)(1n f a a n n =⋅+型①若p a a n n =⋅+1(p 为常数),则数列{n a }为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;②若f(n)为n 的函数(非常数)时,可通过逐差法得)1(1-=⋅-n f a a n n ,两式相除后,分奇偶项来分求通项.例15: 数列{n a }满足01=a ,21=++n n a a ,求数列{a n }的通项公式. 专题二:数列求和方法详解(六种方法)1、等差数列求和公式:d n n na a a n a a n a a n S n n n n 2)1(2)(2)(2)(123121-+==+=+=+=-- 2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn [例1]已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 答案xx x s n n --=1)1([例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.答案n =8时,1)(max =n f n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①(1≠x )解析:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积:设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=…②①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:nn n x n xx x S x )12(1121)1(1----⋅+=--.∴21)1()1()12()12(x x x n x n S n n n -+++--=+.试一试1:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.答案: 124-+-=n n n Sn 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +,然后再除以2得解.[例4] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值 .答案S =44.5当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组; [例5] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 答案2)13(11n n a a a s n n -+--=-.试一试1 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和 .简析:由于与n kka =-=⋅⋅⋅⨯=⋅⋅⋅)110(9199999111111个、分别求和. . 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项及分母有理化)如:(1))()1(n f n f a n -+= ; (2)11++=n n a n =n n -+1;(3)n n n n tan )1tan()1cos(cos 1sin -+=+;4)111)1(1+-=+=n n n n a n(5))121121(211)12)(12()2(2+--+=+-=n n n n n a n . [例6] 求数列⋅⋅⋅++⋅⋅⋅++,21,,421,311n n 的前n 项和. [例7] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.试一试1:已知数列{a n }:)3)(1(8++=n n a n ,求前n 项和. 试一试2:1003211321121111+++++++++++ ..方法简介:针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例8] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.答案 0[例9] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.(周期数列)[例10] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值; 答案 10。

数列

数列

数列一、等差数列 1、定义:如果一个数列{a n }从第二项开始每一项和它前面一项的差是一个固定的常数d ,我们就称数列{a n }是以d 为公差的等差数列。

累推公式:a n -a n-1=d 2、通项公式① a n =a 1+(n-1)d(n ∈N +) ---------------------------------------------已知首项和公差求通项 ②a n =a m +(n-m)d (m ˂n,m ∈N +,n ∈N +) --------------------------------已知任一项和公差求通项 例.已知{a n }是以2为公差的等差数列,a 7=19,求a 36的值。

解析:由公式 a n =a m +(n-m)d 可得 a 36=a 7+(36-7)×2=19+29×2=77 提醒:结合我们在平时的做题实践和以上例题,我们不难看出公式②在解题过程更加便捷和更具备广泛的操作性。

3、求公差1)由公式① a n =a 1+(n-1)d(n ∈N +) 可得,)(11+∈--=N n n a a d n2)由公式②a n =a m +(n-m)d (m ˂n,m ∈N +,n ∈N +) 可得,),(+∈--=N m n mn a a d n m4、等差中项1)在等差数列{a n }中,a n-1,a n ,a n+1为连续的三项,则有a n -a n-1=a n+1-a n ,或者a n-1+a n+1=2a n ; 2)在等差数列{a n }中,若有m+n=p,则有a m +a n =2a p ; 3)在等差数列{a n }中,若有m+n=p+q,则有a m +a n =a p +a q5、等差数列的求和公式,2)(1n a a n Sn +∙=,或者d n n n a Sn ∙-+=2)1(1 6.等差数列与函数之间的关系(1)通项{a n }与一次函数f(x)=kx+b 的关系B An n f d a n d d n a a n +=⇔-+∙=-+=)()()1(11(其中A=d ,B=a 1-d )由上式可知:①当d >0时,数列{a n }为递增数列;当d ˂0时,数列{a n }为递减数列;当d=0时,数列数列{a n }为常数列;②判断一个数列为等差数列的简单方法为:观察数列{a n }的通项公式是否为an=An+B 的形式 (2)数列和Sn 与二次函数f(x)=ax 2+bx 的关系Bn An n f n da n d d n n n a Sn +=⇔∙-+=∙-+=2121)()2(22)1( (其中2,21da B d A -==)7、证明等差数列的方法(1)定义法:{a n }为等差数列⇔a n =a 1+(n-1)d (2)等差中项法{a n }为等差数列⇔a n -a n-1=a n+1-a n ,或者a n-1+a n+1=2a n(3){a n }为等差数列⇔a n =An+B (其中A=d ,B=a 1-d ) (4){a n }为等差数列⇔Sn=An 2+Bn (其中2,21d a B d A -==) 8.求Sn 的最值问题 (1)当a 1>0,d ˂0时,Sn 有最大值 求法:法①:不等式法 a n >0a n+1<0 确定n 的值 n +∈N法②:利用二次函数的图象性质求最值Sn=An 2+Bn=AB A B n A 4)2(22-+ 1)当A B 2-为正整数时,取x=A B 2-可直接求出Sn 的最大值为AB 42-2)当A B 2-不是正整数时,x 可取与AB 2-相近的正整数,这是一般有一大一小两个正数同时满足条件(2)当a 1˂0,d>0时,Sn 有最小值 求法:法①:不等式法 a n ≤0an+1≥0 确定n 的值 n +∈N法②:利用二次函数的图象性质求最值(方法原理同上)9.若{a n }为等差数列,Sn 为其前n 项和,则数列:S n ,S 2n -S n ,S 3n -S 2n ,S 3n -S 2n ,······也成等差数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案
(3)若{an}、{bn}为等比数列,则{λan}(λ≠0)、{|an|}、a1n、{a2n}、{manbn}(m≠0) 仍为等差数列.
(4){an}是等差数列⇔{(cn)a} (c>0,c≠1)是等比数列. {an}是正项等比数列⇔{logcan} (c>0,c≠1)是等差数列. {an}既是等差数列又是等比数列⇔{an}是各项不为零的常数列.
思考辨析
判断下面结论是否正确(请在括号中打“√”或“×”) (1)如果数列{an}的通项公式an=3n+2,则数列{an}是递增数列.( √ ) (2)数列{an}的前n项和为Sn=n2-1,则其通项公式为an=Sn-Sn-1=2n -1.( × ) (3)若已知数列{an}的递推公式为 an+1=2an1-1,且 a2=1,则可以写出数 列{an}的任何一项.( √ )
答案
2
考点自测
2n+1
1.数列 1,13,395,1673,3939,…的一个通项公式是 an=__2_n_-__1__2_n_+__1____.
12345
答案
2.已知数列{an}的通项公式为 an=
1 n+
n+1,若
am=3-2
2,则
m=____8____+1- n n+1+ n n+1-
n
= n+1- n,
∴am= m+1- m=3-2 2= 9- 8.
∴m=8.
12345
解析答案
3.(教材改编)已知数列{an}的前n项和Sn=n2+2n+1 (n∈N*),
4,
n=1,
则an=___2_n_+__1_,____n_≥__2_________.
12345
答案
4.数列{an}是公差不为零的等差数列,且a7,a10,a15是等比数列{bn}的 连续三项,若该等比数列的首项b1=3,则bn=__3_·_53__n-_1_. 解析 ∵a210=a7·a15,∴(a1+9d)2
解析答案
(3)1-12,12-13,13-14,14-15,…; 解 数列的每项可看成两数之差,前一数是自然数的倒数1n,后一数为n+1 1, ∴通项公式 an=1n-n+1 1.
解析答案
(4)3,5,3,5,….
解 数列中的奇数项为3,偶数项为5.
∴通项公式 an=35, ,
n为奇数, n为偶数.
解析 由流程图,知a1=0+1=1, a2=a1+2=1+2, a3=a2+3=1+2+3,…, an=an-1+n, 即 an=1+2+3+…+(n-1)+n=nn2+1,
1 2 3 4 5 解析答案
返回
题型分类 深度剖析
题型一 利用观察法求通项公式
例 1 写出下列数列的一个通项公式: (1)2,52,143,383,8116,…; 解 原数列可改写成 1+210,2+211,3+212,4+213,…. 故其通项公式为 an=n+2n1-1.
思维升华
解析答案
跟踪训练1
(1)-1,12,-13,14,…; 解 不看符号,数列可看作自然数列的倒数,正负相间隔用(-1) 的n次幂进行调整, ∴通项公式 an=(-1)n·1n.
解析答案
(2) 3,3, 15, 21,3 3,…; 解 数列可化为 3, 9, 15, 21, 27,…, 即 3×1, 3×3, 3×5, 3×7, 3×9,…. 每个根号内可看作3与2n-1的乘积. ∴通项公式 an= 3·2n-1= 6n-3.
答案
(4)若三个数成等比数列,那么这三个数可以设为aq,a,aq (a≠0).( √ ) (5)指数函数 f(x)=2x 图象上一系列点的横坐标构成数列{xn},对应的纵坐 标构成数列{yn}.若数列{xn}是等差数列,则数列{yn}是等比数列.( √ )
1+-1n+1 (6)数列 1,0,1,0,1,0,…的通项公式只能是 an= 2 .( × )
=(a1+6d)·(a1+14d),∴a1=-32d,
∴an=a1+(n-1)d=n-52d,
15 q=aa170= 229dd=53,∴bn=3·53n-1.
12345
解析答案
5.数列{an}的前20项由如图所示的流程图依次输出的a值构成,则数列 nn+1
{an}的一个通项公式an=____2____(n∈N*,n≤20).
解析答案
(2)27,141,12,45,2,…; 解 这个分数数列中分子、分母的规律都不明显,不妨把分子变成4, 然后看分母, 从而有144,141,48,45,…,分母正好构成等差数列, 从而原数列的通项公式为 an=17-4 3n.
解析答案
(3)1,3,3,5,5,7,7,9,9,….
解 注意到此数列的特点:奇数项与项数相等,偶数项比项数大1. 故它可改写成1+0,2+1,3+0,4+1,5+0,6+1,…, 所以原数列的通项公式为 an=n+12+-21n.
第六章 数列
§6.5 数列通项公式的求法
内容 索引
基础知识 自主学习 题型分类 深度剖析 思想与方法系列 思想方法 感悟提高 练出高分
基础知识 自主学习
1
知识梳理
1.等差数列的通项公式 (1)若等差数列的首项为a1,公差为d,则其通项an= a1+(n-1)d .
(2)等差数列通项公式的推广:在等差数列{an}中,已知 a1,d,am,an (m≠n),
3+5 此数列还可以这样考虑,3 与 5 的算术平均数为 2 =4
4加1便是5,4减1便是3,而加1与减1也就是(-1)n. 因此数列的通项公式还可以写成 an=3+2 5+(-1)n=4+(-1)n.
则 d=ann--a11=ann--mam,从而有 an=am+ (n-m)d
.
(3){an}的公差为d,则d>0⇔{an}为 递增 数列;d<0⇔{an}为 递减 数 列;d=0⇔{an}为常数列.
答案
2.等比数列的通项公式 (1)首项为a1,公比为q,则an= a1qn-1 . (2)推广形式:an=am·qn-m或am=an·qm-n. 3.常用结论 (1)若{an}是等差数列,k∈N*,则{kan}也是等差数列. (2)若{bn}是等差数列,公差为D,{an}为等差数列,公差为d,则{an±bn} 仍为等差数列,其公差为d±D.
相关文档
最新文档