北京中考考试说明解读:数学

合集下载

北京中考考试说明详细解读之数学

北京中考考试说明详细解读之数学

北京中考考试说明详细解读之数学
认物体的阴影,了解视点、视角的涵义,并能在简单的平面图和立体图中表示﹔删除“多边形”这个知识点的b层次要求:能用正三角形、正方形、正六边形进行简单的镶嵌设计﹔删除了“图形的轴对称”这个知识点a层次要求:了解物体的镜面对称。

第一点变化将““整数指数幂”知识点的b层要求:能用幂的性质解决简单问题改為能用幂的性质解决简单计算问题,这里相当於降低了幂的性质在中考中的考察难度,所以同学们在復习的时候,这部分幂的性质有关的简单计算问题就可以了。

第二点变化是在“方程的解”知识点的a层要求:新增一条:能根据具体问题的实际意义,检验方程的解是否合理,那麼对於方程应用题来说,相信狠多同学应该都不会陌生。

今年考纲的变化当中,它既然是做了一个调整,要求检验方程的解是否合理。

对於应用题的话,希望同学们注意检查方程的解是否合理,是够满足实际意义。

(。

名师解读:北京中考说明之数学

名师解读:北京中考说明之数学

名师解读:2019年北京中考说明之数学一、2019年北京数学中考的变化1.一个降低:平方根、算术平方根、立方根、近似数和科学记数法等部分降低了考试要求2.一个删除:删除了“圆锥的侧面积和全面积”的部分要求以及“角与角平分线”要求中的“估计角的大小”等内容;3.一个调整:相反数的要求、整式的加法和减法的要求、二次函数的要求、图形的轴对称的要求等内容有所调整。

二、2019年中考的分析与预测1.从中考说明的变化可以看出几个细节:①算术平方根、科学记数法出现的“偏、难、怪题”,比如根号4的算术平方根是多少、1015万用科学计数法表示保留2位有效数字是多少,等等这样的题2019年可能不再考察;②已知圆锥的底面半径和母线求圆锥侧面积等,与圆锥侧面积全面积相关的题目不再考察;③从变化中的“降低”、“删除”、“调整”(调整不增加难度)可预测,2019年中考整体难度可能会下降。

2.从中考说明及近三年中考试题的变化可以看出:①中档题的难度在下降,比如2019年第20题圆的两问小综合题的难度降低了,同时第19题也从考察梯形转变到考察平行四边形;②从2019-2019年连续三年,压轴题第25题均综合考察了圆的知识,尤其对于线与圆的位置关系比较侧重,综合压轴题中圆的考察仍会持续;③中考整体难度可能会下降,主要体现在第8题、第12题、第22题的难度可能会有所下降,同时为了体现中考的分层选拔作用,仍会保持第23、24、25题这三道压轴题最后一问的难度;三.2019年中考数学的复习建议1.注重基础,全面突破中考仍注重考查初中数学的基本知识、基本技能和基本思想方法,同时注重各个知识点的综合运用,因此,同学们在复习时不能有任何知识点上的漏洞,我们的中考一轮复习就是对初中数学基础知识的全面把握,同时体现各个知识点的综合运用;2.加强对“圆”的理解与运用加强对圆的概念、性质、圆周角、线圆位置关系等知识点的掌握与运用,我们的中考一轮二轮复习的课程均对“圆”作了重点讲解与剖析;3.加强对压轴题的训练压轴题最能体现能力差异与分数层次,其难度与地位“江山不倒”,同学们不仅要反复练习,还应该多总结方法,针对自己的薄弱环节逐个击破,我们的中考二轮复习及点睛冲刺等课程均以压轴题为核心,真正解决同学们中考数学的关键问题。

2023年北京市中考数学真题(含答案解析)

2023年北京市中考数学真题(含答案解析)

2023年北京市中考数学真题学校:___________姓名:___________班级:___________考号:___________.....如图,90AOC ∠=∠=︒,126AOD ∠=,则BOC ∠的大小为(A .36︒B .44︒54︒4.已知10a ->,则下列结论正确的是(A .11a a -<-<<11a a -<-<<C .11a a -<-<<11a a-<-<<5.若关于x 的一元二次方程23x x m -+=有两个相等的实数根,A .9-B .94-946.十二边形的外角和...为()A .30︒B .150︒360︒7.先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是()A .14B .138.如图,点A 、B 、C 在同一条线上,点上述结论中,所有正确结论的序号是(A .①②B .①③二、填空题9.若代数式52x -有意义,则实数10.分解因式:23x y y -=11.方程31512x x=+的解为12.在平面直角坐标系xOy 中,若函数则m 的值为.13.某厂生产了1000只灯泡.为了解这灯泡进行检测,获得了它们的使用寿命(单位:小时)使用寿命1000x <1000x ≤<灯泡只数510根据以上数据,估计这1000只灯泡中使用寿命不小于只.14.如图,直线AD ,BC 交于点O 的值为.15.如图,OA 是O 的半径,BC 是 交OC 的延长线于点E .若45AOC ∠=︒16.学校组织学生参加木艺艺术品加工劳动实践活动.A ,B ,C ,D ,E ,F ,G 七道工序,加工要求如下:①工序C ,D 须在工序A 完成后进行,工序在工序C ,D 都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;③各道工序所需时间如下表所示:工序A B C D E 所需时间/分钟99797在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要三、解答题17.计算:114sin602123-⎛⎫︒++-- ⎪⎝⎭18.解不等式组:23535x x x x+⎧>⎪⎨⎪-<+⎩.19.已知210x y +-=,求代数式x(1)求证:四边形AECF 是矩形;(2)AE BE =,2AB =,1tan 2ACB ∠=21.对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是的宽相等,均为天头长与地头长的和的宽为27cm .若要求装裱后的长是装裱后的宽的自《启功法书》)22.在平面直角坐标系xOy 中,函数y kx =+与过点()0,4且平行于x 轴的线交于点C .(1)求该函数的解析式及点C 的坐标;(2)当3x <时,对于x 的每一个值,函数23y =小于4,直接写出n 的值.23.某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:如下:a .16名学生的身高:(1)求证DB 平分ADC ∠,并求BAD ∠(2)过点C 作CF AD ∥交AB 的延长线于点25.某小组研究了清洗某种含污物品的节约用水策略.部分内容如下.每次清洗1个单位质量的该种含污物品,清洗前的清洁度均为度为0.990方案一:采用一次清洗的方式.结果:当用水量为19个单位质量时,清洗后测得的清洁度为结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为位质量(精确到个位)时,总用水量最小.根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比、可节水约______个单位质量(结果保留小数点后一位)(2)当采用两次清洗的方式时,若第一次用水量为围.参考答案:【详解】如图,所有结果有4种,满足要求的结果有1种,故概率为【点睛】本题考查概率的计算,运用树状图或列表工具是解题的关键.【分析】如图,过D 作DF AE ⊥于F ,则四边形,可得a b c +<,进而可判断①的正误;由a =,AE BC b ==,ABE CDB ∠=∠,∴DF AC a b ==+,∵DF DE <,∴a b c +<,①正确,故符合要求;∵EAB BCD ≌△△,∴BE BD =,CD AB a ==,AE =∵90CBD CDB ∠+∠=︒,∴90∠+∠=︒CBD ABE ,EBD ∠=∴BDE △是等腰直角三角形,由勾股定理得,22BE AB AE =+∵AB AE BE +>,【点睛】本题考查了一次函数的图象和性质,特征,利用数形结合的思想是解题的关键.23.(1)166m =,165n =;(2)甲组(3)170,172【分析】(1)根据中位数和众数的定义求解即可;(2)计算每一组的方差,根据方差越小数据越稳定进行判断即可;(3)根据要求,身高的平均数尽可能大且方差小于【详解】(1)解:将这组数据按照从小到大的顺序排列为:165,166,166,167,168,168,170出现次数最多的数是165,出现了3次,即众数由图象可得,当第一次用水量约为4个单位质量(精确到个位)时,总用水量最小;(1)当采用两次清洗的方式并使总用水量最小时,用水量为19-7.7=11.3,即可节水约11.3个单位质量;(2)由图可得,当第一次用水量为6个单位质量,总用水量超过的清洁度能达到0.990,第一次用水量为6个单位质量,总用水量为7.5故答案为:<.【点睛】本题考查了函数图象,根据数据描绘函数图象、26.(1)32t =(2)12t ≤【分析】(1)根据二次函数的性质求得对称轴即可求解;(2)根据题意可得()11,x y 离对称轴更近,1x 右侧,根据对称性求得1213222x x +<<,进而根据【详解】(1)解:∵对于11x =,22x =有1y =∴抛物线的对称轴为直线12322x x x +==,∵抛物线的对称轴为x t =.【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,题的关键.28.(1)1C ,2C ;2OC =(2)2313t ≤≤或2633t ≤≤.a、若12C B与O相切,AC经过点O,①当S 位于点()0,3M 时,MP 为O 的切线,作PJ OM ⊥∵()0,3M ,O 的半径为1,且MP 为O 的切线,∴OP MP ⊥,。

【附2套中考卷】2020年北京市中考《考试说明》解读:数学

【附2套中考卷】2020年北京市中考《考试说明》解读:数学

2020年北京市中考《考试说明》解读:数学2019年北京市中考《考试说明》发布。

今年中考考试说明与去年相比总体稳定,局部有微调,突出了对中华优秀传统文化和法治的考查。

如语文学科依据《课程标准》增加对书法内容的考查,道德与法治学科将《青少年法治教育大纲》的内容要求纳入考试范围等。

下面就让我们来看看中考各科《考试说明》有哪些重要修订吧~指导思想全面贯彻党的教育方针,落实立德树人根本任务,从适应首都城市战略定位对多样化高素质人才的需求出发,认真总结经验,突出问题导向,深化考试内容改革,坚持正确育人导向,促进学生健康成长,培养德智体美劳全面发展的社会主义建设者和接班人。

基本原则1、依据《义务教育课程标准(2011年版)》,贯彻落实《国务院关于深化考试招生制度改革的实施意见》,做到科学、公平、准确、规范。

2、重视发挥考试的育人功能,在考试内容中融入社会主义核心价值观和中华优秀传统文化;注重考查学生九年义务教育学习的积累;注重考查基础知识、基本技能、基本思想和基本能力;注重考查学生独立思考、运用所学知识分析问题和解决问题的能力。

3、体现学科特点,重视学科素养和思维方法的培养,有利于激发学生的学习兴趣和潜能。

学科修订情况数学2019年北京市中考数学学科《考试说明》(以下简称“2019年《考试说明》”)确定了《义务教育数学课程标准(2011年版)》规定的“课程目标”与“课程内容”为考试范围,明确了“考查目标与要求”和“考试内容的知识要求层次”,通过阐述“试卷的内容、题型及分数分配”体现了2019年中考数学学科的试卷结构,通过调整“参考样题”体现了近几年命题指导思想和考试内容改革成果。

1、调整部分考试内容的知识层次要求依据《义务教育数学课程标准(2011年版)》的课程内容要求,对“考试内容的知识层次要求”进行优化,体现出知识结构体系的整体性与内在联系。

例如,将“数轴”的A级要求调整到“实数”的A级要求,B级要求调整到“有理数”的B级要求;将“科学记数法和近似数”的A级要求“会用科学记数法表示数”调整到“整式”的A级要求等。

北京市中考数学 考试说明及详细解读 新人教版

北京市中考数学 考试说明及详细解读 新人教版

一、考试范围数学学科考试以教育部颁布的《全日制义务教育数学课程标准(实验稿)》的“课程目标”与“内容标准”的规定为考试范围,参考《义务教育数学课程标准(2011年版)》的理念和精神,适当兼顾北京市现行不同版本教材和教学实际情况。

二、考试内容和要求考试内容是指《全日制义务教育数学课程标准(实验稿)》中所规定的学习内容。

关于考试内容的要求划分为A、B、C三个层次。

A:能对所学知识有基本的认识,能举例说明对象的有关特征,并能在具体情境中进行辨认,或能描述对象的特征,并能指出此对象与有关对象的区别和联系。

B:能在理解的基础上,把知识和技能运用到新的情境中,解决有关的数学问题和简单的实际问题。

C:能通过观察、实验、推理和运算等思维活动,发现对象的某些特征及与其他对象的区别和联系;能综合运用知识,灵活、合理地选择与运用有关的方法,实现对特定的数学问题或实际问题的分析与解决。

数学学科中考注重考查初中数学的基础知识、基本技能和基本思想方法;考查数感、符号感、空间观念、统计观念、运算能力、推理能力、发现问题和分析解决问题的能力,以及应用意识等。

考试内容和考试要求细目表考试内容考试要求A B C数与代数数与式有理数理解有理数的意义能比较有理数的大小无理数了解无理数的概念能根据要求用有理数估计一个无理数的大致范围平方根、算术平方根了解开方与乘方互为逆运算,了解平方根及算术平方根的概念,会用根号表示非负数的平方根及算术平方根会用平方运算的方法,求某些非负数的平方根立方根了解立方根的概念,会用根号表示数的立方根会用立方运算的方法,求某些数的立方根实数了解实数的概念会进行简单的实数运算数轴能用数轴上的点表示有理数;知道实数与数轴上的点一一对应相反数会用有理数表示具有相反意义的量,借助数轴理解相反数的意掌握相反数的性质义,会求实数的相反数绝对值借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题和计算问题有理数运算理解乘方的意义掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题能运用的有理数的运算解决简单问题运算律理解有理数运算律能用运算律简化有理数运算近似数和科学记数法了解近似数的概念;会用科学记数法表示数在解决实际问题中,能按问题的要求对结果取近似值代数式了解代数式,理解用字母表示数的意义能分析简单问题的数量关系,并用代数式表示;能解释一些简单代数式的实际意义或几何意义代数式的值了解代数式的值的概念会求代数式的值;能根据代数式的值或特征,推断这些代数式反映的规律能根据特定的问题所提供的资料,合理选用知识和方法,通过代数式的适当变形求代数式的值整式了解整式的有关概念整式的加减运算理解整式加法和减法运算的法则会进行简单的整式加法和减法运算能运用整式的加法和减法运算对多项式进行变形,进一步解决有关问题整数指数幂了解整数指数幂的意义和基本性质能用幂的性质解决简单问题整式的乘法理解整式乘法的运算法则,会进行简单的整式乘法运算会进行简单的整式乘法与加法的混合运算能选用恰当的方法进行相应的代数式的变形平方差公式、完全平方公式理解平方差公式、完全平方公式,了解其几何背景能利用平方差公式、完全平方公式进行简单计算能根据需要,运用公式进行相应的代数式的变形因式分解了解因式分解的意义及其与整式乘法之间的关系会用提公因式、公式法(直接利用公式不超过两次)进行因式分解(指数是正整数)能运用因式分解的知识进行代数式的变形,解决有关问题分式的概了解分式的概念,能能确定使分式的值为一元二次方程了解一元二次方程的概念,理解配方法,会用直接开平方法、配方法、公式法、因式分解法解简单的数字系数的一元二次方程,理解各种解法的依据能由一元二次方程的概念确定二次项系数中所含字母的取值范围;能选择适当的方法解一元二次方程;会用一元二次方程根的判别式判断根的情况能利用根的判别式说明含有字母系数的一元二次方程根的情况及由方程根的情况确定方程中待定系数的取值范围;会运用一元二次方程解决简单的实际问题不等式(组)了解不等式的意义能根据具体问题中的数量关系列出不等式(组)不等式的性质理解不等式的基本性质会利用不等式的性质比较两个实数的大小解一元一次不等式(组)了解一元一次不等式(组)的解的意义,会在数轴上表示或判定其解集会解一元一次不等式和由两个一元一次不等式组成的不等式组能根据具体问题中的数量关系,列出一元一次不等式解决简单问题函数函数及其图象了解常量和变量的意义;了解函数的概念和三种表示方法;能举出函数的实例;会确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求函数值能用适当的函数表示法刻画简单问题中变量之间的关系能探索具体问题中的数量关系和变化规律,并用函数加以表示;结合函数关系的分析,能对变量的变化趋势进行初步推测;能结合图象对简单实际问题中的函数关系进行分析一次函数理解正比例函数;了解一次函数的意义,会画出一次函数的图像;理解一次函数的性质会根据已知条件确定一次函数的解析式;会根据一次函数的解析式求其图象与坐标轴的交点坐标;能根据一次函数的图象求二元一次方程组的近似解能用一次函数解决实际问题反比例函数了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题二次函数了解二次函数的意义;会用描点法画出二次函数的图象能通过分析实际问题的情境确定二次函数的解析式;能从图象上认识二次函数的能用二次函数解决简单的实际问题;能解决二次函数与其他知识综合的有关性质;会根据二次函数的解析式求其图象与坐标轴的交点坐标,会确定图象的顶点、开口方向和对称轴;会利用二次函数的图象求一元二次方程的近似解问题空间与图形图形与证明命题了解定义、命题、定理的含义,会区分命题的条件和结论;了解逆命题的概念,会识别两个互逆命题,并知道原命题成立时其逆命题不一定成立;了解反例的作用,知道列举反例可以判断一个命题是假命题推理与证明理解证明的必要性;了解反证法的含义掌握用综合法证明的格式,证明的过程要步步有据会用归纳和类比进行简单的推理图形与坐标平面直角坐标系认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标;了解特殊位置的点的坐标特征能在方格纸上建立适当的直角坐标系,描述物体的位置;会由点的特殊位置,求点的坐标中相关字母的范围;会求点到坐标轴的距离;在同一直角坐标系中,会求图形变换后点的坐标灵活运用不同的方式确定物体在坐标平面内的位置图形的认识立体图形、视图和展开图会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图);能根据三视图描述基本几何体;了解直棱柱、圆锥的侧面展开图;了解基本几何体与其三视图、展开图(球除外)三者之间的关系;观察与现实生活有关的图片,并能对其几何图形的形状、大小和相互位置会判断简单物体的三视图,能根据三视图描述实物原型;能根据直棱柱、圆锥的展开图判断立体图形作简单的描述中心投影与平行投影了解中心投影和平行投影线段、射线和直线会表示点、线段、射线、直线,知道它们之间的联系与区别;结合图形理解两点之间距离的概念;会比较两条线段的大小,并能进行与线段有关的简单计算会用尺规作图:作一条线段等于已知线段,作线段的垂直平分线;会用线段中点的知识解决简单问题;结合图形认识线段间的数量关系会运用两点之间的距离解决有关问题注:对于尺规作图题,要求会写已知、求作和作法。

北京中考《考试说明》数学解读

北京中考《考试说明》数学解读

北京中考《考试说明》数学解读点评:计算能力的重要性提升了,小伙伴们计算题一定要稳住。

②“会按实际问题的要求对结果取近似值” → “会按问题的要求对结果取近似值”;点评:取近似值问题的宽泛性增加。

③“理解正比例函数和一次函数的意义” → “理解正比例函数;了解一次函数的意义”;④“一次函数结合图象与表达式,理解当k0和k0时,一次函数图象的变化情况”由A级要求(理解)调整为B级要求(掌握);点评:一次函数的两个改动,弱化了一次函数意义的考察,强调了k值对一次函数图像的变化,对于前面的简单函数题目可能会表现出一个难度的略微增加,而对于代几综合大题来说影响不是很大,总体来说一次函数仍然是需要孩子们熟练掌握的。

⑤“了解角平分线的概念” → “理解角平分线的概念”;点评:角平分线的概念很可能将会以作图的形式考查,小伙伴们看完后请在心里默背一遍角平分线的画法!⑥“了解三角形中位线的概念” → “理解三角形中位线的概念”;点评:中位线会带来相似三角形的问题,几何题注重积累,历年真题中用到中位线的问题相对不是很多,所幸中位线的概念并不难理解,产生的位置和数量关系也并不难发现,运用的不够熟练的小伙伴,一定把中位线加入自己的解题工具箱。

⑦“了解解直角三角形的概念” → “理解解直角三角形的概念”。

点评:基础题中解直角三角形的题型可能会增加难度,勾股定理经常与实际问题结合,小伙伴们一定要注意练习这类题型总评:经过了去年的试水,北京中考数学已经进入了阅读时代。

与生活实际结合,与传统文化结合的问题将会越来越热;作图题这种形式的几何题目增加了要求,同时一次函数和解直角三角形的简单题目略微提升了难度。

总体来说,难度稍有上浮,阅读继续推进。

我们该怎么做①作图题没有掌握的很好的小伙伴们,现在还有机会,基础的角平分线和垂直平分线一定要画的很熟练。

②无论是一次函数的改动还是中位线解三角形的改动,指向的都是比较简单的题目,第一轮复习中一定要注重基础,特别是以上三点。

北京市中考数学24题解法说明

北京市中考数学24题解法说明
4.总结和运用综合分析法、结合联想法、特 殊图形法、辅助图形法等一般方法。
5.教学中多总结归纳基本图形,分类整合出 一些基本模型和基本题型。
谢谢大家!
A
D E
B
C
图3
(3)解法六、七:辅助圆及方程思想和转化思想 的运用。
A
A
D
E
B
C
图3
D E
B
C
图3
综上所述,讲与解几何综合题要:
1.具有平移、轴对称、旋转、相似等变换观念。
2.注意运用转化与化归思想、方程与函数思想、 数形结合思想、分类与整合思想。
3.渗透联系与变化、特殊与一般、螺旋式上 升等哲学观点。
北京市中考数学 第24题解法说明
(1)由等腰三角形ABC已知顶角求出底角∠ABC, 减去60度,得∠ABD.
(2)解法一至三:综合题的结合分析思想——条 件与条件结合,条件与结论结合,结论与结论结 合。(哲学的联系的观点)
A
① 由同一端点的两条线段旋转60
度,结合要证的等边三角形ABE,
联想△BCE和△BDA旋转全等。
D
②利用轴对称图形寻找全等条件,
两种变换结合分析。(综合分析法)
B
E 图2 C
要重视中垂线、三线合一的教学要求
(2)解法四:割补法证明全等,是把一般化为特 殊的思想。

D
E
B
F
C
G 图2
(2)解法五、六:辅助圆的思想。辅助图形与辅 助未知数(元)类比。
A D
E
B
C
A D
G
E
B
F
C
(3)解法一至五:由线段等导角等,由角等或角 的和差倍分列方程。注意转化思想的运用。

薛老师——2022年北京市中考数学试题深度解析

薛老师——2022年北京市中考数学试题深度解析

薛老师——2022年北京市中考数学试题深度解析2022年北京中考数学试卷直到昨天(7月1日)才姗姗来迟,之前已经解析了最后三道题,和原卷对比,除了极个别语言描述之外,题意都是完全符合的:2022北京中考几何压轴题解析2022北京中考新定义试题解析2022北京中考数学压轴试题解析本文对其余试题进行简要的解析。

所用试题来自网络,可能存在图片不清晰导致的错误,如有发生,请以官方版本为准。

2018年的北京中考数学试卷分值分布格式已经有所调整:全卷满分100分,28道题目。

其中选择题8道题,每题2分,共16分;填空题8道题,每题2分,共16分;解答题12道题,共计68分。

今年依然沿袭这样的分值分布。

所有解析均为原创,转载/引用请注明出处。

严禁抄袭。

时间仓促,知识与能力有限,错误之处在所难免,敬请批评指正。

第〇部分概述2022年中考试题的一个显著变化是,新函数图象或者函数应用类型的图目,重新回到试卷中来。

而21年20,北京中考试卷格式则经历了一次小小的波折,春节前明确21年20北京中考数学试卷将从28题改为25题,期末考试各城区多是按照25题命制试卷,春节后下达新消息,要求按照年2020试卷格式,28道题不变,但是取消了新函数图象这个类型的题目。

第一部分选择题选择题每题2分,8道题,共16分。

选择题第1题几何体【解析】小学题,简单几何题,选B。

选择题第2题科学计数法【解析】必考题,科学计数法,不用计算,选B。

选择题第3题角度【解析】对顶角相等。

选A。

选择题第4题数轴【解析】选D。

数轴的理解与应用。

选择题第5题概率【解析】4种情况,红绿、红红、绿红、绿绿,选A。

选择题第6题判别式应用【解析】判别式的应用,选C。

选择题第7题估值【解析】选D。

选择题第8题函数图象题【解析】选A。

与前两年的试题相比,本题由一个函数关系变为三个函数关系,算是稍微有了一些变化。

第二部分填空题填空题每题2分,8道题,共16分。

填空题第9题二次根式【解析】答案:x≥8.看看去年的题目:填空题第10题估值计算【解析】答案:x(y+1)(y-1). 看看去年的题目:填空题第11题分式方程【解析】口算就行,x=5,记得检验. 看看去年的题目:填空题第12题反比例函数【解析】>。

北京初中数学考试要求-概述说明以及解释

北京初中数学考试要求-概述说明以及解释

北京初中数学考试要求-概述说明以及解释1.引言1.1 概述北京初中数学考试要求,旨在对初中阶段学生的数学水平进行全面评估,确保他们掌握必要的数学知识和技能,为他们今后的学习和发展打下扎实的基础。

这项考试要求学生熟练掌握基本数学概念、计算技巧和解题方法,培养学生的逻辑思维和问题解决能力。

在北京初中数学考试中,重点考察的领域包括数与代数、几何与空间、函数与图像、概率与统计等。

学生需要熟悉数的运算、整式与分式、方程与不等式等数学基础知识,能够灵活应用它们解决各类实际问题。

同时,他们还需理解几何形状的性质,掌握几何变换和几何证明的方法,能够利用几何知识解决实际问题。

此外,初中数学考试还注重培养学生的数据分析和统计能力。

学生需要理解概率和统计的基本概念,能够收集和整理数据,进行简单的数据分析和统计,从而得出合理的结论。

这些能力不仅在数学学科中有重要价值,也对学生今后的社会生活和职业发展有积极影响。

总的来说,北京初中数学考试的要求是全面的、系统的。

它要求学生掌握数学的基本概念和技能,能够运用数学方法解决实际问题,培养学生的逻辑思维和问题解决能力,在培养学生的数学素养的同时,也为他们今后的学习和发展提供了坚实的基础。

1.2 文章结构文章结构部分主要是为了给读者提供一个清晰的呈现文章内容的框架。

在这一部分,我们将介绍本篇长文的组织结构和各个章节的主题。

本篇长文的文章结构分为引言、正文和结论三个主要部分。

引言部分包括概述、文章结构和目的三个小节。

其中,概述部分将简要介绍北京初中数学考试的背景和重要性,为读者提供一定的背景信息。

文章结构部分则是本篇长文的目录,将详细列出各个章节和小节的标题,帮助读者更好地理解文章内容的组织方式。

目的部分则明确了本篇长文的写作目的,例如探讨北京初中数学考试的要求。

正文部分是本篇长文的核心内容,将围绕着北京初中数学考试的要求展开。

正文部分分为三个主要要点:第一要点、第二要点和第三要点。

2024年北京市中考数学试题含参考答案

2024年北京市中考数学试题含参考答案

2024年北京市初中学业水平考试数学试卷考生须知:1.本试卷共6页,共两部分.三道大题,28道小题。

满分100分。

考试时间120分钟。

2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上.选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D. 2. 如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=°,则EOB ∠大小为( )A. 29°B. 32°C. 45°D. 58°3. 实数a ,b 在数轴上对应点的位置如图所示,下列结论中正确的是( )A. 1b >−B. 2b >C. 0a b +>D. 0ab > 4. 若关于x 的一元二次方程240x x c −+=有两个相等的实数根,则实数c 的值为( )A. 16−B. 4−C. 4D. 165. 不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( ) A. 34 B. 12 C. 13 D. 146. 为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410×Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的的的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A. 16810×B. 17210×C. 17510×D. 18210×7. 下面是“作一个角使其等于AOB ∠”的尺规作图方法. (1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A ′′,以点O ′为圆心,OC 长为半径画弧,交O A ′′于点C ′;以点C ′为圆心,CD 长为半径画弧,两弧交于点D ';(3)过点D '作射线O B ′′,则A O B AOB ′′′∠=∠.上述方法通过判定C O D COD ′′′△≌△得到A O B AOB ′′′∠=∠,其中判定C O D COD ′′′△≌△的依据是( )A. 三边分别相等的两个三角形全等B. 两边及其夹角分别相等的两个三角形全等C. 两角及其夹边分别相等的两个三角形全等D. 两角分别相等且其中一组等角的对边相等的两个三角形全等8. 如图,在菱形ABCD 中,60BAD ∠=°,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90°得到菱形A B C D ′′′′,两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ′′给出下面四个结论: ①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。

北京中考数学考查内容及分值分布

北京中考数学考查内容及分值分布

北京中考数学考查内容及分值分布一、考试范畴与考试要求数学学科考试以教育部颁布的《全日制义务教育数学课程标准(实验稿)》的"课程目标"与"内容标准"的规定为考试范畴,参考《义务教育数学课程标准(2021年版)》的理念和精神,适当兼顾北京市现行不同版本教材和教学实际情形。

数学学科中考注重考查初中数学的基础知识、差不多技能和差不多思想方法;考查数感、符号感、空间观念、统计观念、运算能力、推理能力、发觉问题和分析解决问题的能力,以及应用意识等。

二、试题的差不多结构整个试卷五道大题,25个题目,考试时刻120分钟,总分120分,其中选择题共8道,共32分,填空题共4道,共16分,解答题(包括运算题,证明题,应用题和综合题)共13道,共72分。

1.题型与题量2.考查的内容及分布从试卷考查的内容来看,几乎涵盖了数学《课程标准》所列的要紧知识点,并对初中数学的要紧内容都作了重点考查。

3.每道题目所考查的知识点三、重难点易错点点评易错题目难题总体来看,2021年并没有显现一点儿都无从下手的题目,表达了专门好的梯度,让学生上手容易拿全难,有比较好的区分,这是北京中考题的一大特点,相信2021年也会是如此。

您对那个问题如何看?请加入那个地点新东方社区进行讨论更多中考信息数学网中考频道宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

事实上“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,专门是汉代以后,关于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

新东方报名系统新东方中考培训课程与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

2024年北京市中考数学试题+答案详解

2024年北京市中考数学试题+答案详解

2024年北京市中考数学试题+答案详解(试题部分)考生须知:1.本试卷共6页,共两部分.三道大题,28道小题。

满分100分。

考试时间120分钟。

2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上.选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D. 2. 如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A. 29︒B. 32︒C. 45︒D. 58︒3. 实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. 1b >−B. 2b >C. 0a b +>D. 0ab > 4. 若关于x 的一元二次方程240x x c −+=有两个相等的实数根,则实数c 的值为( )A. 16−B. 4−C. 4D. 165. 不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( ) A. 34 B. 12 C. 13 D. 146. 为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A. 16810⨯B. 17210⨯C. 17510⨯D. 18210⨯7. 下面是“作一个角使其等于AOB ∠”的尺规作图方法.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A. 三边分别相等的两个三角形全等B. 两边及其夹角分别相等的两个三角形全等C. 两角及其夹边分别相等的两个三角形全等D. 两角分别相等且其中一组等角的对边相等的两个三角形全等8. 如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论: ①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。

2023北京市中考数学题试卷真题+答案解析

2023北京市中考数学题试卷真题+答案解析

2023北京中考数学试卷考生须知1.本试卷共6页,共两部分,三道大题,28道小题.满分100分.考试时间120分钟.2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.第一部分 选择题一、选择题(共16分,每题2分)第1—8题均有四个选项,符合题意的选项只有一个.1. 截至2023年6月11日17时,全国冬小麦收款2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )A. 723.910⨯B. 82.3910⨯C. 92.3910⨯D. 90.23910⨯ 2. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D. 3. 如图,90AOC BOD ∠=∠=︒,126AOD ∠=︒,则BOC ∠的大小为( )A. 36︒B. 44︒C. 54︒D. 63︒ 4. 已知10a −>,则下列结论正确的是( )A. 11a a −<−<<B. 11a a −<−<<C. 11a a −<−<<D. 11a a −<−<<5. 若关于x 的一元二次方程230x x m −+=有两个相等的实数根,则实数m 的值为( )A. 9−B. 94−C. 94D. 96. 十二边形的外角和...为( ) A. 30︒ B. 150︒ C. 360︒ D. 1800︒ 7. 先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( )A. 14B. 13C. 12 D. 348. 如图,点A 、B 、C 在同一条线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,AB BC <,90A C ∠=∠=︒,EAB BCD ≌△△,连接DE ,设AB a =,BC b =,DE c =,给出下面三个结论:①a b c +<;②a b +>)a b c +>;上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③第二部分 非选择题二、填空题(共16分,每题2分)9. 若代数式52x −有意义,则实数x 的取值范围是______. 10. 分解因式:23x y y −=__________________.11. 方程31512x x=+的解为______. 12. 在平面直角坐标系xOy 中,若函数()0k y k x =≠的图象经过点()3,2A −和(),2B m −,则m 的值为______.13. 某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:14. 如图,直线AD ,BC 交于点O ,AB EF CD ∥∥.若2AO =,1OF =,2FD =.则BE EC的值为______.15. 如图,OA 是O 的半径,BC 是O 的弦,OA BC ⊥于点D ,AE 是O 的切线,AE 交OC 的延长线于点E .若45AOC ∠=︒,2BC =,则线段AE 的长为______.16. 学校组织学生参加木艺艺术品加工劳动实践活动.已知某木艺艺术品加工完成共需A ,B ,C ,D ,E ,F ,G 七道工序,加工要求如下:①工序C ,D 须在工序A 完成后进行,工序E 须在工序B ,D 都完成后进行,工序F 须在工序C ,D 都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;______分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要______分钟.三、解答题(共68分,第17—19题,每题5分,第20—21题,每题6分,第22—23题,每题5分,第24题6分,第25题5分,第26题6分;第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:114sin6023−⎛⎫︒++− ⎪⎝⎭ 18. 解不答式组:23535x x x x+⎧>⎪⎨⎪−<+⎩.19. 已知210x y +−=,求代数式222444x y x xy y +++的值. 20. 如图,在ABCD Y 中,点E ,F 分别在BC ,AD 上,BE DF =,AC EF =.(1)求证:四边形AECF 是矩形;(2)AE BE =,2AB =,1tan 2ACB ∠=,求BC 的长. 21. 对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的110.某人要装裱一幅对联,对联的长为100cm ,宽为27cm .若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)22. 在平面直角坐标系xOy 中,函数()0y kx b k =+≠的图象经过点()0,1A 和()1,2B ,与过点()0,4且平行于x 轴的线交于点C .(1)求该函数的解析式及点C 的坐标;(2)当3x <时,对于x 的每一个值,函数23y x n =+的值大于函数()0y kx b k =+≠的值且小于4,直接写出n 的值.23. 某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm ),数据整理如下:a .16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175b .16名学生的身高的平均数、中位数、众数:(1)写出表中m ,n 的值;(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好.据此推断:在下列两组学生中,舞台呈现效果更好的是______(填“甲组”或“乙组”);(3)该舞蹈队要选五名学生参加比赛.已确定三名学生参赛,他们的身高分别为168,168,172,他们的身高的方差为329.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于329,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为______和______.4. 如图,圆内接四边形ABCD 的对角线AC ,BD 交于点E ,BD 平分ABC ∠,BAC ADB ∠=∠.(1)求证DB 平分ADC ∠,并求BAD ∠的大小;(2)过点C 作CF AD ∥交AB 的延长线于点F .若AC AD =,2BF =,求此圆半径的长.25. 某小组研究了清洗某种含污物品的节约用水策略.部分内容如下.每次清洗1个单位质量的该种含污物品,清洗前的清洁度均为0.800要求清洗后的清洁度为0.990 方案一:采用一次清洗的方式.结果:当用水量为19个单位质量时,清洗后测得的清洁度为0.990.方案二:采用两次清洗的方式.记第一次用水量为1x 个单位质量,第二次用水量为2x 个单位质量,总用水量为()12x x +个单位质量,两次清洗后测得的清洁度为C .记录的部分实验数据如下:(Ⅰ)选出C 是0.990的所有数据组,并划“√”;(Ⅱ)通过分析(Ⅰ)中选出的数据,发现可以用函数刻画第一次用水量1x 和总用水量12x x +之间的关系,在平面直角坐标系xOy 中画出此函数的图象;结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为______个单位质量(精确到个位)时,总用水量最小.根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比、可节水约______个单位质量(结果保留小数点后一位);(2)当采用两次清洗的方式时,若第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度C ______0.990(填“>”“=”或“<”).26. 在平面直角坐标系xOy 中,()11,M x y ,()22,N x y 是抛物线()20y ax bx c a =++>上任意两点,设抛物线的对称轴为x t =.(1)若对于11x =,22x =有12y y =,求t 的值;(2)若对于101x <<,212x <<,都有12y y <,求t 的取值范围.27. 在ABC 中、()045B C αα∠=∠=︒<<︒,AM BC ⊥于点M ,D 是线段MC 上的动点(不与点M ,C 重合),将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1,当点E 在线段AC 上时,求证:D 是MC 的中点;(2)如图2,若在线段BM 上存在点F (不与点B ,M 重合)满足DF DC =,连接AE ,EF ,直接写出AEF ∠的大小,并证明.28. 在平面直角坐标系xOy 中,O 的半径为1.对于O 的弦AB 和O 外一点C 给出如下定义:若直线CA ,CB 中一条经过点O ,另一条是O 的切线,则称点C 是弦AB 的“关联点”.(1)如图,点()1,0A −,122B ⎛− ⎝⎭,222B ⎛⎫− ⎪ ⎪⎝⎭①在点()11,1C −,20()C ,(中,弦1AB 的“关联点”是______.②若点C 是弦2AB 的“关联点”,直接写出OC 的长;(2)已知点()0,3M ,5N ⎛⎫ ⎪ ⎪⎝⎭.对于线段MN 上一点S ,存在O 的弦PQ ,使得点S 是弦PQ 的“关联点”,记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.2023北京中考参考答案第一部分 选择题一、选择题(共16分,每题2分)第1—8题均有四个选项,符合题意的选项只有一个.1. 【答案】B【分析】用科学记数法表示绝对值较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:8239000000 2.3910=⨯,故选:B .【点睛】本题考查了科学记数法的表示方法,用科学记数法表示绝对值较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,解题的关键是要正确确定a 和n 的值. 2. 【答案】A【分析】根据轴对称图形,中心对称图形的定义进行判断即可.【详解】解:A 既是轴对称图形又是中心对称图形,故符合要求;B 不是轴对称图形,是中心对称图形,故不符合要求;C 是轴对称图形,不是中心对称图形,故不符合要求;D 是轴对称图形,不是中心对称图形,故不符合要求;故选:A .【点睛】本题考查了轴对称图形,中心对称图形,解题的关键在于熟练掌握:在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形.3. 【答案】C【分析】由90AOC BOD ∠=∠=︒,126AOD ∠︒=,可求出COD ∠的度数,再根据角与角之间的关系求解.【详解】∵=90AOC ∠︒,126AOD ∠︒=,∴36COD AOD AOC ∠=∠−∠=︒,∵90BOD ∠=︒,∴903654BOC BOD COD ∠=∠−∠=︒−︒=︒.故选:C .【点睛】本题考查的知识点是角的计算,注意此题的解题技巧:两个直角相加和AOD ∠相比,多加了BOC ∠.4. 【答案】B【分析】由10a −>可得1a >,则0a >,根据不等式的性质求解即可.【详解】解:10a −>得1a >,则0a >,∴1a −<−,∴11a a −<−<<,故选:B .【点睛】本题考查了不等式的性质,注意:当不等式两边同时乘以一个负数,则不等式的符号需要改变. 5. 【答案】C【分析】根据一元二次方程有两个相等的实数根,可得Δ0=,进而即可求解.【详解】解:∵关于x 的一元二次方程230x x m −+=有两个相等的实数根,∴24940b ac m ∆=−=−=. 解得:94m =. 故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.6. 【答案】C【分析】根据多边形的外角和为360°进行解答即可.【详解】解:∵多边形的外角和为360°∴十二边形的外角和是360°.故选:C .【点睛】本题考查多边形的内角和与外角和的求法,掌握多边形的外角和为360°是解题的关键. 7. 【答案】A【分析】整个实验分两步完成,每步有两个等可能结果,用列表法或树状图工具辅助处理.【详解】如图,所有结果有4种,满足要求的结果有1种,故概率为14. 故选:A 【点睛】本题考查概率的计算,运用树状图或列表工具是解题的关键.8. 【答案】D【分析】如图,过D 作DF AE ⊥于F ,则四边形ACDF 是矩形,则DF AC a b ==+,由DF DE <,可得a b c +<,进而可判断①的正误;由EAB BCD ≌△△,可得BE BD =,CD AB a ==,AE BC b ==,ABE CDB ∠=∠,则90EBD ∠=︒,BDE △是等腰直角三角形,由勾股定理得,BE ==,由AB AE BE +>,可得a b +>,进而可判断②的正误;由勾股定理得222DE BD BE =+,即()2222c a b =+,则)c a b =<+,进而可判断③的正误.【详解】解:如图,过D 作DF AE ⊥于F ,则四边形ACDF 是矩形,∴DF AC a b ==+,∵DF DE <,∴a b c +<,①正确,故符合要求;∵EAB BCD ≌△△,∴BE BD =,CD AB a ==,AE BC b ==,ABE CDB ∠=∠,∵90CBD CDB ∠+∠=︒,∴90∠+∠=︒CBD ABE ,90EBD ∠=︒,∴BDE △是等腰直角三角形,由勾股定理得,BE ==, ∵AB AE BE +>,∴a b +>,②正确,故符合要求;由勾股定理得222DE BD BE =+,即()2222c a b =+,∴)c a b =<+,③正确,故符合要求;故选:D .【点睛】本题考查了矩形的判定与性质,全等三角形的性质,勾股定理,等腰三角形的判定,不等式的性质,三角形的三边关系等知识.解题的关键在于对知识的熟练掌握与灵活运用.第二部分 非选择题二、填空题(共16分,每题2分)9. 【答案】2x ≠【分析】根据分式有意义的条件列不等式求解即可. 【详解】解:若代数式52x −有意义,则20x −≠, 解得:2x ≠,故答案为:2x ≠.【点睛】本题考查了分式有意义的条件,熟知分式有意义,分母不为零是解题的关键.10. 【答案】()()y x y x y +−【详解】试题分析:原式提公因式得:y (x 2-y 2)=()()y x y x y +−考点:分解因式点评:本题难度中等,主要考查学生对多项式提公因式分解因式等知识点的掌握.需要运用平方差公式. 11. 【答案】1x =【分析】方程两边同时乘以()251x x +化为整式方程,解整式方程即可,最后要检验.【详解】解:方程两边同时乘以()251x x +,得651x x =+,解得:1x =,经检验,1x =是原方程的解,故答案为:1x =.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.12. 【答案】3【分析】先把点A 坐标代入求出反比例函数解析式,再把点B 代入即可求出m 的值. 【详解】解:∵函数()0k y k x=≠的图象经过点()3,2A −和(),2B m − ∴把点()3,2A −代入得326k =−⨯=−, ∴反比例函数解析式为6y x−=, 把点(),2B m −代入得:62m −−=, 解得:3m =,故答案为:3.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,熟知反比例函数图象上的点的坐标一定满足函数解析式是解题的关键.13. 【答案】460【分析】用1000乘以抽查的灯泡中使用寿命不小于2200小时的灯泡所占的比例即可.【详解】解:估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为176100046050+⨯=(只),故答案为:460.【点睛】本题考查了用样本估计总体,用样本估计总体时,样本容量越大,样本对总体的估计也就越精确.14. 【答案】32【分析】由平行线分线段成比例可得,21BO AO OE OF ==,12OE OF EC FD ==,得出2BO OE =,2EC OE =,从而2322BE OE OE EC OE +==. 【详解】AB EF CD , 2AO =,1OF =,21BO AO OE OF ∴==, 2BO OE ∴=,12OE OF EC FD ==, 2EC OE ∴=,2322BE OE OE EC OE +∴==; 故答案为:32. 【点睛】本题考查了平行线分线段成比例的知识点,根据平行线分线段成比例找出线段之间的关系是解决本题的关键.15.【分析】根据OA BC ⊥,得出90ODC ∠=︒,112DC BC ==,根据等腰直角三角形的性质得出OC ==,即OA OC ==,根据90OAE ∠=︒,45AOC ∠=︒,得出AOE △为等腰直角三角形,即可得出AE OA ==【详解】解:∵OA BC ⊥,∴90ODC ∠=︒,112DC BC ==. ∵45AOC ∠=︒,∴ODC 为等腰直角三角形,∴OC ==∴OA OC == ∵AE 是O 的切线,∴90OAE ∠=︒,∵45AOC ∠=︒,∴AOE △为等腰直角三角形,∴AE OA ==.【点睛】本题主要考查了垂径定理,等腰直角三角形的判定和性质,切线的性质,解题的关键是熟练掌握垂径定理,得出112DC BC ==. 16. 【答案】 ①. 53 ②. 28【分析】将所有工序需要的时间相加即可得出由一名学生单独完成需要的时间;假设这两名学生为甲、乙,根据加工要求可知甲学生做工序A ,乙学生同时做工序B ;然后甲学生做工序D ,乙学生同时做工序C ,乙学生工序C 完成后接着做工序G ;最后甲学生做工序E ,乙学生同时做工序F ,然后可得答案.【详解】解:由题意得:9979710253++++++=(分钟),即由一名学生单独完成此木艺艺术品的加工,需要53分钟;假设这两名学生为甲、乙,∵工序C ,D 须在工序A 完成后进行,工序E 须在工序B ,D 都完成后进行,且工序A ,B 都需要9分钟完成,∴甲学生做工序A ,乙学生同时做工序B ,需要9分钟,然后甲学生做工序D ,乙学生同时做工序C ,乙学生工序C 完成后接着做工序G ,需要9分钟, 最后甲学生做工序E ,乙学生同时做工序F ,需要10分钟,∴若由两名学生合作完成此木艺艺术品的加工,最少需要991028++=(分钟),故答案为:53,28;【点睛】本题考查了逻辑推理与时间统筹,根据加工要求得出加工顺序是解题的关键.三、解答题(共68分,第17—19题,每题5分,第20—21题,每题6分,第22—23题,每题5分,第24题6分,第25题5分,第26题6分;第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 【答案】5【分析】代入特殊角三角函数值,利用负整数指数幂,绝对值和二次根式的性质化简,然后计算即可.【详解】解:原式432=+−32=++−5=.【点睛】本题考查了实数的混合运算,牢记特殊角三角函数值,熟练掌握负整数指数幂,绝对值和二次根式的性质是解题的关键.18. 【答案】12x <<【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集. 【详解】23535x x x x +⎧>⎪⎨⎪−<+⎩①②解不等式①得:1x >解不等式②得:2x <∴不等式的解集为:12x <<【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键. 19. 【答案】2【分析】先将分式进行化简,再将210x y +−=变形整体代入化简好的分式计算即可.【详解】解:原式()()222222x y x yx y =+++=, 由210x y +−=可得21x y +=,将21x y +=代入原式可得,原式221==. 【点睛】本题考查了分式的化简求值,注意整体代入思想的应用.20. 【答案】(1)见解析 (2)【分析】(1)利用平行四边形的性质求出AF EC =,证明四边形AECF 是平行四边形,然后根据对角线相等的平行四边形是矩形得出结论;(2)证明ABE 是等腰直角三角形,可得AE BE ==,然后再解直角三角形求出EC 即可. 【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AD BC =,AD BC ∥,∵BE DF =,∴AF EC =,∴四边形AECF 是平行四边形,∵AC EF =,∴平行四边形AECF 是矩形;【小问2详解】解:由(1)知四边形AECF 是矩形,∴90AEC AEB ∠=∠=︒,∵AE BE =,2AB =,∴ABE 是等腰直角三角形,∴2AE BE AB === 又∵1tan 2AE ACB EC ∠==,∴12EC =,∴EC =∴BC BE EC =+==【点睛】本题考查了平行四边形的判定和性质,矩形的判定和性质以及解直角三角形,熟练掌握相关判定定理和性质定理是解题的关键.21.【答案】边的宽为4cm ,天头长为24cm【分析】设天头长为cm x ,则地头长为2cm 3x ,边的宽为121cm cm 1036x x x ⎛⎫+= ⎪⎝⎭,再分别表示础装裱后的长和宽,根据装裱后的长是装裱后的宽的4倍列方程求解即可.【详解】解:设天头长为cm x ,由题意天头长与地头长的比是6:4,可知地头长为2cm 3x , 边的宽为121cm cm 1036x x x ⎛⎫+= ⎪⎝⎭, 装裱后的长为cm cm 2510010033x x x ⎛⎫⎛⎫+++⎪⎝⎭⎝⎭=⎪, 装裱后的宽为cm cm 1112727663x x x =⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭, 由题意可得:5110027433x x ⎛⎫+=+⨯ ⎪⎝⎭ 解得24x =, ∴146x =, 答:边的宽为4cm ,天头长为24cm .【点睛】本题考查了一元一次方程的应用,题中的数量关系较为复杂,需要合理设未知数,找准数量关系.22. 【答案】(1)1y x =+,()3,4C ;(2)2n =.【分析】(1)利用待定系数法可求出函数解析式,由题意知点C 的纵坐标为4,代入函数解析式求出点C 的横坐标即可;(2)根据函数图象得出当23y x n =+过点()3,4时满足题意,代入()3,4求出n 的值即可. 【小问1详解】 解:把点()0,1A ,()1,2B 代入()0y kx b k =+≠得:12b k b =⎧⎨+=⎩,解得:11k b =⎧⎨=⎩, ∴该函数的解析式为1y x =+,由题意知点C 的纵坐标为4,当14y x =+=时,解得:3x =,∴()3,4C ;【小问2详解】解:由(1)知:当3x =时,14y x =+=,因为当3x <时,函数23y x n =+的值大于函数1y x =+的值且小于4, 所以如图所示,当23y x n =+过点()3,4时满足题意, 代入()3,4得:2433n =⨯+, 解得:2n =.【点睛】本题考查了一次函数的图象和性质,待定系数法的应用,一次函数图象上点的坐标特征,利用数形结合的思想是解题的关键.23. 【答案】(1)166m =,165n =;(2)甲组 (3)170, 172【分析】(1)根据中位数和众数的定义求解即可;(2)计算每一组的方差,根据方差越小数据越稳定进行判断即可;(3)根据要求,身高的平均数尽可能大且方差小于329,结合其余学生的身高即可做出选择. 【小问1详解】解:将这组数据按照从小到大的顺序排列为:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175,出现次数最多的数是165,出现了3次,即众数165n =,16个数据中的第8和第9个数据分别是166,166, ∴中位数1661661662m +==, ∴166m =,165n =;【小问2详解】 解:甲组身高的平均数为()1162165165166166164.85++++=, 甲组身高的方差为()()()()()222221162164.8165164.8165164.8166164.8166164.8 2.165⎡⎤−+−+−+−+−=⎣⎦ 乙组身高的平均数为()1161162164165175165.45++++=, 乙组身高的方差为()()()()()222221161165.4162165.4164165.4165165.4175165.425.045⎡⎤−+−+−+−+−=⎣⎦, ∵25.04 2.16>∴舞台呈现效果更好的是甲组,故答案为:甲组;【小问3详解】解:168,168,172的平均数为)1116933168168172=++ ∵所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于329, ∴数据的差别较小,数据才稳定,可供选择的有:170, 172,且选择170, 172时,平均数会增大,故答案为:170, 172.【点睛】本题考查了平均数、众数、中位数和方差,熟记方差的计算公式以及方差的意义:方差越小数据越稳定是解题的关键.24. 【答案】(1)见解析,90BAD ∠=︒(2)4【分析】(1)根据已知得出AB BC =,则ADB CDB ∠=∠,即可证明DB 平分ADC ∠,进而根据BD 平分ABC ∠,得出AD CD =,推出BAD BCD =,得出BD 是直径,进而可得90BAD ∠=︒;(2)根据(1)的结论结合已知条件得出,90F ∠=︒,ADC △是等边三角形,进而得出1302CDB ADC ∠=∠=︒,由BD 是直径,根据含30度角的直角三角形的性质可得12BC BD =,在Rt BFC △中,根据含30度角的直角三角形的性质求得BC 的长,进而即可求解.【小问1详解】解:∵BAC ADB ∠=∠∴AB BC =,∴ADB CDB ∠=∠,即DB 平分ADC ∠.∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∴AD CD =,∴AB AD BC CD +=+,即BAD BCD =,∴BD 是直径,∴90BAD ∠=︒;【小问2详解】解:∵90BAD ∠=︒,CF AD ∥,∴180F BAD ∠+∠=︒,则90F ∠=︒.∵AD CD =,∴AD DC =.∵AC AD =,∴AC AD CD ==,∴ADC △是等边三角形,则60ADC ∠=︒.∵BD 平分ADC ∠, ∴1302CDB ADC ∠=∠=︒. ∵BD 是直径, ∴90BCD ∠=︒,则12BC BD =. ∵四边形ABCD 是圆内接四边形,∴180ADC ABC ∠+∠=︒,则120ABC ∠=︒,∴60FBC ∠=︒,∴906030FCB ∠=︒−︒=︒, ∴12FB BC =. ∵2BF =,∴4BC =,∴28BD BC ==.∵BD 是直径, ∴此圆半径的长为142BD =. 【点睛】本题考查了弧与圆周角的关系,等弧所对的圆周角相等,直径所对的圆周角是直角,含30度角的直角三角形的性质,等边三角形的性质与判定,圆内接四边形对角互补,熟练掌握以上知识是解题的关键.25. 【答案】(Ⅰ)见解析;(Ⅱ)见解析,4;(1)11.3;(2)<【分析】(Ⅰ)直接在表格中标记即可;(Ⅱ)根据表格中数据描点连线即可做出函数图象,再结合函数图象找到最低点,可得第一次用水量约为4个单位质量时,总用水量最小;(1)根据表格可得,用两次清洗的方式并使总用水量最小时,用水量为7.7个单位质量,计算即可; (2)根据表格可得当第一次用水量为6个单位质量,总用水量超过8个单位质量,则清洗后的清洁度能达到0.990,若总用水量为7.5个单位质量,则清洁度达不到0.990.【详解】(Ⅰ)表格如下:由图象可得,当第一次用水量约为4个单位质量(精确到个位)时,总用水量最小;(1)当采用两次清洗的方式并使总用水量最小时,用水量为7.7个单位质量,19-7.7=11.3,即可节水约11.3个单位质量;(2)由图可得,当第一次用水量为6个单位质量,总用水量超过8个单位质量,则清洗后的清洁度能达到0.990,第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度0.990C <,故答案为:<.【点睛】本题考查了函数图象,根据数据描绘函数图象、从函数图象获取信息是解题的关键.26. 【答案】(1)32t =(2)12t ≤ 【分析】(1)根据二次函数的性质求得对称轴即可求解;(2)根据题意可得()11,x y 离对称轴更近,12x x <,则()11,x y 与()22,x y 的中点在对称轴的右侧,根据对称性求得1213222x x +<<,进而根据122x x t +>,即可求解. 【小问1详解】解:∵对于11x =,22x =有12y y =, ∴抛物线的对称轴为直线1232x x x +==, ∵抛物线的对称轴为x t =. ∴32t =; 【小问2详解】解:∵当101x <<,212x <<, ∴1213222x x +<<,12x x <, ∵12y y <,0a >,∴()11,x y 离对称轴更近,12x x <,则()11,x y 与()22,x y 的中点在对称轴的右侧, ∴122x x t +>, 即12t ≤. 【点睛】本题考查了二次函数的性质,熟练掌握二次函数的对称性是解题的关键.27. 【答案】(1)见解析 (2)90AEF ∠=︒,证明见解析【分析】(1)由旋转的性质得DM DE =,2MDE α∠=,利用三角形外角的性质求出C DEC α∠=∠=,可得DE DC =,等量代换得到DM DC =即可;(2)延长FE 到H 使FE EH =,连接CH ,AH ,可得DE 是FCH V 的中位线,然后求出B ACH ∠∠=,设DM DE m ==,CD n =,求出2BF m CH ==,证明()SAS ABF ACH ≅,得到AF AH =,再根据等腰三角形三线合一证明AE FH ⊥即可.【小问1详解】证明:由旋转的性质得:DMDE =,2MDE α∠=,∵C α∠=,∴D DEC M E C α∠−∠∠==,∴C DEC ∠=∠,∴DE DC =,∴DM DC =,即D 是MC 的中点;【小问2详解】90AEF ∠=︒; 证明:如图2,延长FE 到H 使FE EH =,连接CH ,AH ,∵DF DC =,∴DE 是FCH V 的中位线,∴DE CH ∥,2CH DE =,由旋转的性质得:DMDE =,2MDE α∠=,∴2FCH α∠=,∵B C α∠=∠=,∴ACH α∠=,ABC 是等腰三角形,∴B ACH ∠∠=,AB AC =,设DM DE m ==,CD n =,则2CH m =,CM m n =+,∴DF CD n ==,∴FM DF DM n m =−=−,∵AM BC ⊥,∴BM CM m n ==+,∴()2BF BM FM m n n m m =−=+−−=,∴CH BF =, 在ABF △和ACH 中,AB AC B ACH BF CH =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABF ACH ≅,∴AF AH =,∵FE EH =,∴AE FH ⊥,即90AEF ∠=︒.【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.28. 【答案】(1)1C ,2C ;OC =(2)1t ≤≤t ≤≤ 【分析】(1)根据题目中关联点的定义并分情况讨论计算即可;(2)根据()0,3M ,N ⎫⎪⎪⎝⎭两点来求最值情况,S 共有2种情况,分别位于点M 和经过点O 的MN 的垂直平分线上,运用相似三角形计算即可.【小问1详解】解:①由关联点的定义可知,若直线CACB ,中一经过点O ,另一条是O 的切线,则称点C 是弦AB的“关联点”,∵点()1,0A −,1,22B ⎛− ⎝⎭,()11,1C −,20()C ,(3C ,∴直线2AC 经过点O ,且2BC 与O 相切,∴2C 是弦1AB 的“关联点”,又∵()11,1C −和()1,0A −横坐标相等,与122B ⎛− ⎝⎭都位于直线y x =−上, ∴1AC 与O 相切,11B C 经过点O ,∴1C 是弦1AB 的“关联点”.②∵()1,0A −,2,22B ⎛⎫− ⎪ ⎪⎝⎭,设()C a b ,,如下图所示,共有两种情况,a 、若12C B 与O 相切,AC 经过点O ,则12C B 、1AC 所在直线为: 0y x y ⎧=−⎪⎨=⎪⎩,解得:)1C 0,∴1OC =,b 、若2AC 与O 相切,22C B 经过点O ,则22C B 、2AC 所在直线为:1x y x =−⎧⎨=−⎩, 解得:()211C −,,∴2OC =,综上,OC =【小问2详解】解:∵线段MN 上一点S ,存在O 的弦PQ ,使得点S 是弦PQ 的“关联点”,又∵弦PQ 随着S 的变动在一定范围内变动,且()0,3M ,5N ⎛⎫ ⎪ ⎪⎝⎭,OM ON >,∴S 共有2种情况,分别位于点M 和经过点O 的MN 的垂直平分线上,如图所示,①当S 位于点()0,3M 时,MP 为O 的切线,作PJ OM ⊥,∵()0,3M ,O 的半径为1,且MP 为O 的切线,∴OP MP ⊥,∵PJ OM ⊥,∴MPO POJ ∽, ∴OP OM OJ OP =,即13OJ=, 解得13OJ =,∴根据勾股定理得,3PJ ==,123Q J =根据勾股定理,1PQ ==2PQ ==,∴当S 位于点()0,3M 时,1PQ . ②当S 位于经过点O 的MN 的垂直平分线上即点K 时,∵点()0,3M ,5N ⎛⎫ ⎪ ⎪⎝⎭,∴MN == ∴2OK OM ON MN =⨯÷=,又∵O 的半径为1,∴30OKZ ∠=︒,∴三角形OPQ 为等边三角形,∴在此情况下,1PQ =,PQ =∴当S 位于经过点O 的MN 的垂直平分线上即点K 时,1PQ 的临界值为1∴在两种情况下,PQ 的最小值在13t ≤≤内,最大值在3t ≤≤综上所述,t 的取值范围为13t ≤≤或3t ≤≤ 【点睛】本题主要考查最值问题,题目较为新颖,要灵活运用知识点,明确新概念时解答此题的关键.。

名师解读:北京中考说明之数学-精选学习文档

名师解读:北京中考说明之数学-精选学习文档

名师解读:2019年北京中考说明之数学一、2019年北京数学中考的变化1.一个降低:平方根、算术平方根、立方根、近似数和科学记数法等部分降低了考试要求2.一个删除:删除了“圆锥的侧面积和全面积”的部分要求以及“角与角平分线”要求中的“估计角的大小”等内容;3.一个调整:相反数的要求、整式的加法和减法的要求、二次函数的要求、图形的轴对称的要求等内容有所调整。

二、2019年中考的分析与预测1.从中考说明的变化可以看出几个细节:①算术平方根、科学记数法出现的“偏、难、怪题”,比如根号4的算术平方根是多少、1015万用科学计数法表示保留2位有效数字是多少,等等这样的题2019年可能不再考察;②已知圆锥的底面半径和母线求圆锥侧面积等,与圆锥侧面积全面积相关的题目不再考察;③从变化中的“降低”、“删除”、“调整”(调整不增加难度)可预测,2019年中考整体难度可能会下降。

2.从中考说明及近三年中考试题的变化可以看出:①中档题的难度在下降,比如2019年第20题圆的两问小综合题的难度降低了,同时第19题也从考察梯形转变到考察平行四边形;②从2019-2019年连续三年,压轴题第25题均综合考察了圆的知识,尤其对于线与圆的位置关系比较侧重,综合压轴题中圆的考察仍会持续;③中考整体难度可能会下降,主要体现在第8题、第12题、第22题的难度可能会有所下降,同时为了体现中考的分层选拔作用,仍会保持第23、24、25题这三道压轴题最后一问的难度;三.2019年中考数学的复习建议1.注重基础,全面突破中考仍注重考查初中数学的基本知识、基本技能和基本思想方法,同时注重各个知识点的综合运用,因此,同学们在复习时不能有任何知识点上的漏洞,我们的中考一轮复习就是对初中数学基础知识的全面把握,同时体现各个知识点的综合运用;2.加强对“圆”的理解与运用加强对圆的概念、性质、圆周角、线圆位置关系等知识点的掌握与运用,我们的中考一轮二轮复习的课程均对“圆”作了重点讲解与剖析;3.加强对压轴题的训练压轴题最能体现能力差异与分数层次,其难度与地位“江山不倒”,同学们不仅要反复练习,还应该多总结方法,针对自己的薄弱环节逐个击破,我们的中考二轮复习及点睛冲刺等课程均以压轴题为核心,真正解决同学们中考数学的关键问题。

北京中考数学试题分析

北京中考数学试题分析

北京中考数学试题分析一、题型与题量全卷共有三种题型,25个小题,其中选择题8个,填空题4个,解答题13个图示二、试卷考查内容及分值分布从试卷考查内容来看,几乎涵盖了数学《课程标准》所要求的要紧知识点,同时对初中数学的要紧内容:数与代数、函数、三角形、四边形、圆、统计与概率都作了考查。

图示视频:2021年北京中考数学解析媒体来源:学而思教育三、试卷整体特点1. 突出对基础知识、差不多技能和差不多数学思想方法的考查。

2. 整体难度适中。

3. 注重联系生活实际及应用。

4. 紧扣教材,多数题目源于教材。

5. 第25题压轴题较之于2021年容易一些,第(3)小问对同学们几何思维能力要求较高。

四、试题重点题目分析图示图示图示图示图示图示图示五、针对2021届考生中考数学的复习建议1. 回来课本,注重基础。

2. 加强几何变换及函数图像变换的研究和学习课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。

什么缘故?依旧没有完全“记死”的缘故。

要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。

能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。

3. 预备错题档案,为自己预备错题本方便后期的复习4. 抓住考试说明不放松“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。

只是更早的“先生”概念并非源于教书,最初显现的“先生”一词也并非有传授知识那般的含义。

《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。

2022年北京中考数学试题及答案详解

2022年北京中考数学试题及答案详解

2022年北京中考数学试题及答案详解(试题部分)一、选择题(共16分,每题2分)第1—8题均有四个选项,符合题意的选项只有一个。

1.下面几何体中,是圆锥的为()A B C D2.截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2 628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨。

将262 883 000 000用科学记数法表示应为() A.26.288 3×1010B.2.628 83×1011C.2.628 83×1012D.0.262 883×10123.如图,利用工具测量角,则∠1的大小为()A.30°B.60°C.120°D.150°4.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a<―2B.b<1C.a>bD.―a>b5.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.14B.13C.12D.346.若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为()A .―4B .―14C .14D .47. 图中的图形为轴对称图形,该图形的对称轴的条数为( )A.1B.2C.3D.58. 下面的三个问题都有两个变量:①汽车从A 地匀速行驶到B 地,汽车的剩余路程y 与行驶时间x ; ②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 与放水时间x ; ③用长度一定的绳子围成一个矩形,矩形的面积y 与一边长x.其中,变量y 与变量x 之间的函数关系可以用如图所示的图象表示的是 ( )A.①②B.①③C.②③D.①②③二、填空题(共16分,每题2分)9. 若√x −8在实数范围内有意义,则实数x 的取值范围是 . 10. 分解因式:xy 2―x = . 11. 方程2x+5=1x 的解为 .12. 在平面直角坐标系xOy 中,若点A (2,y 1),B (5,y 2)在反比例函数y =kx (k >0)的图象上,则y 1 y 2(填“>”“=”或“<”).13. 某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:根据以上数据,估计该商场进鞋号需求最多的滑冰鞋的数量为 双.14.如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S△ACD=.15.如图,在矩形ABCD中,若AB=3,AC=5,AFFC =14,则AE的长为.16.甲工厂将生产的Ⅰ号、Ⅱ号两种产品共打包成5个不同的包裹,编号分别为A,B,C,D,E,每个包裹的质量及包裹中Ⅰ号、Ⅱ号产品的质量如下:甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂. (1)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,写出一种满足条件的装运方案(写出要装运包裹的编号);(2)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,同时装运的Ⅱ号产品最多,写出满足条件的装运方案(写出要装运包裹的编号).三、解答题(共68分,第17―20题,每题5分,第21题6分,第22题5分,第23―24题,每题6分,第25题5分,第26题6分,第27―28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.( 5分)计算:(π―1)0+4×sin 45°―8+|―3|.18.( 5分)解不等式组:{2+x>7−4x,①x<4+x2.②19.( 5分)已知x2+2x―2=0,求代数式x(x+2)+(x+1)2的值.20.( 5分)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.180°,21.( 6分)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.22.( 5分)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点(4,3),(―2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.23.( 6分)某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是(填“甲”“乙”或“丙”).24.( 6分)如图,AB是☉O的直径,CD是☉O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F,若F为AC的中点,求证:直线CE为☉O的切线.25.( 5分)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台.运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x―h)2+k(a<0).示意图某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y=a(x―h)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=―0.04×(x―9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d1,第二次训练的着陆点的水平距离为d2,则d1d2(填“>”“=”或“<”).26.( 6分)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a>0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上,若m<n<c,求t的取值范围及x0的取值范围.27.( 7分)在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF,若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2,若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.图1图2 28.( 7分)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P',点P'关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上,若点P(―2,0),点Q为点P的“对应点”.①在图中画出点Q;OM.②连接PQ,交线段ON于点T,求证:NT=12(2)☉O的半径为1,M是☉O上一点,点N在线段OM上,且ON=t(1<t<21),若P为☉O外一点,点Q为点P的“对应点”,连接PQ.当点M在☉O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示).2022年北京中考数学试题及答案详解(答案详解)1.B通过观察可知,选项A是圆柱,选项B是圆锥,选项C是三棱锥,选项D是球.故选B.2.B262 883 000 000=2.628 83×1011.故选B.3.A根据对顶角相等可得∠1=30°.故选A.4.D根据题图可得―2<a<―1,1<b<2,所以a<b,所以选项A,B,C错误.根据题图可以判断―a在数轴上所对应的点位于b所对应的点的右侧,则―a>b,故选D.5.A列表如下:由表可知,共有4种等可能的结果,其中第一次摸到红球、第二次摸到绿球的结果有1种,所以第一次摸到红球、第二次摸到绿球的概率P=1,故选A.46.C∵该方程有两个相等的实数根,∴Δ=0,即1―4m=0,.故选C.解得m=147.D五角星是轴对称图形,它的对称轴是每条过顶点与中心的直线,而圆也是轴对称图形,它的对称轴是每一条直径所在的直线,故图中图形的对称轴就是五角星的五条对称轴.8.A①A、B两地的路程一定,由于汽车是匀速行驶,那么汽车在相同时间内走的路程也是相同的,则剩余路程的减少值也是相同的,所以汽车的剩余路程y与行驶时间x在一定范围内是一次函数关系,故①对;②由于水箱中原有的水量是固定的,而水箱的水是匀速放出,所以在相同时间内水的减少量也是相同的,所以剩余水量y与放水时间x在自变量的取值范围内是一次函数关系,故②对;③设矩形的周长为C,则由题意可知C是定值,所以矩形的另一边长为C−2x2,所以y=x·C−2x2=―x2+C2x,故y是关于x的二次函数,所以其对应的图象是抛物线,故③错.故选A.9.答案x≥8解析二次根式有意义的条件是被开方数是非负数,即x―8≥0,解得x≥8. 10.答案x(y+1)(y―1)解析xy2―x=x(y2―1)=x(y+1)(y―1).11.答案x=5解析方程两边同乘x(x+5),得2x=x+5,解得x=5.当x=5时,x(x+5)≠0,故x=5是原方程的解.12.答案>解析∵k>0,∴反比例函数的图象位于第一、三象限,∴当x>0时,y随x的增大而减小.∵2<5,∴y1>y2.13.答案120解析由题表可知需求最多的是39码滑冰鞋,有12双,所以估计该商场进39码滑冰鞋的数量为400×1240=120(双).14.答案 1解析 过点D 作DF ⊥AC 于F.∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DF =DE =1.∴S △ACD =12AC ·DF =12×2×1=1.15.答案 1解析 ∵四边形ABCD 是矩形, ∴∠ABC =90°,AD =BC ,AD ∥BC.在Rt △ABC 中,AC =5,AB =3,∴BC =√AC 2−AB 2=4.∴AD =BC =4. ∵AD ∥BC ,∴∠EAF =∠BCF ,∠AEF =∠CBF , ∴△AEF ∽△CBF.∴AE BC =AF FC =14,即AE 4=14,∴AE =1.16.答案 (1)ABC(答案不唯一) (2)ACE解析 (1)根据包裹的质量数据分析,若要满足载重不超过19.5吨的条件,则包裹数量不能超过3个,根据Ⅰ号产品质量的数据分析,若要装运的Ⅰ号产品不少于9吨,且不多于11吨,则满足条件的装运方案可以为AD ,ABC ,ABE ,ACD ,ACE ,BCD .(2)在满足Ⅰ号产品的装运条件下,要求Ⅱ号产品最多,首先选择E .由于载重不超过19.5吨,所以在Ⅱ号产品次多的C 和D 中选择C ,由于Ⅰ号产品不少于9吨,故第三个包裹选择A .所以满足条件的装运方案是ACE . 17.解析 原式=1+2√2―2√2+3 =1+3 =4.18.解析 解不等式①,得x >1, 解不等式②,得x <4.∴原不等式组的解集为1<x <4. 19.解析 x (x +2)+(x +1)2 =x 2+2x +x 2+2x +1=2x2+4x+1.∵x2+2x―2=0,∴2x2+4x=4,∴原式=4+1=5.20.证明选择方法一:过点A作DE∥BC,则∠B=∠DAB,∠C=∠EAC.∵点A在DE上,∴∠DAB+∠BAC+∠EAC=180°,∴∠B+∠BAC+∠C=180°.选择方法二:过点C作CD∥AB,则∠B+∠BCD=180°,∠A=∠ACD,∴∠B+∠ACB+∠ACD=180°,∴∠B+∠ACB+∠A=180°.21.证明(1)∵四边形ABCD是平行四边形,∴AO=CO,BO=DO.∵AE=CF,∴AO―AE=CO―CF,即OE=OF.∵BO=DO,∴四边形EBFD是平行四边形.(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAC=∠DCA.∵∠BAC=∠DAC,∴∠DCA=∠DAC,∴DA=DC,∴四边形ABCD是菱形.∴BD⊥AC,又∵四边形EBFD是平行四边形,∴四边形EBFD是菱形.22.解析(1)∵函数y=kx+b(k≠0)的图象经过点(4,3),(―2,0),∴{4k+b=3,−2k+b=0,解得{k=12,b=1.∴函数解析式为y=12x+1.当x=0时,y=1,∴点A的坐标为(0,1).(2)n≥1.提示:首先清楚函数y=x+n的图象是与直线y=x平行的一系列直线,通过题目中给定的范围x>0,可以找到临界点A(0,1),由y=x+n过点A可以求出n=1.当x=0时,函数y=x+1的值等于函数y=12x+1的值,将直线y=x+1向上平移能够保证当x>0时,直线y=x+1在直线y=12x+1的上方,所以当x>0时,对于x的每一个值,函数y=x+1的值大于函数y=12x+1的值.故n≥1.23.解析(1)m=(10+10+10+9+9+8+3+9+8+10)÷10=8.6.(2)甲.详解:从得分的折线图可以看出甲同学得分的波动明显小于乙同学,故甲同学得分的方差小于乙同学得分的方差.(3)丙.详解:三位同学的平均分相同,最高分也相同,但是丙的最低分3分远远低于甲、乙的最低分7分,所以去掉一个最高分和一个最低分后丙的平均分会高于甲、乙.24.证明(1)连接AD,∵AB是☉O的直径,AB⊥CD,∴BC=BD,∴∠BAC=∠BAD.∵BD=BD,∴∠BOD=2∠BAD,∴∠BOD=2∠BAC.(2)连接OC,∵AB是直径,AB⊥CD,∴AC=AD,∴AC=AD,∵O是圆心,F是AC的中点,∴OF⊥AC,∴DA=DC,∴△ACD是等边三角形,∴∠ADC=60°,∴∠ODC=30°,∵AB是直径,∴∠BDA=90°,∴∠BDC=30°,∴∠ODC=∠BDC,∵OC=OD,∴∠OCD=∠ODC,∴∠OCD=∠BDC,∴OC∥DE,又∵CE⊥DE,∴OC⊥CE,∵OC是☉O的半径,∴CE是☉O的切线.25.解析(1)通过题中表格可以得出顶点坐标为(8,23.20),竖直高度的最大值是23.20米,则解析式为y=a(x―8)2+23.2.∵抛物线过点(11,22.75),∴22.75=9a +23.2,解得a =―0.05.∴解析式为y =―0.05(x ―8)2+23.2.(2)<.提示:二次函数图象的开口大小与|a |有关,|a |越大抛物线开口越小,|a |越小抛物线开口越大.第一次训练|a 1|=0.05,第二次训练|a 2|=0.04,所以第二次训练的抛物线开口更大,同时第二次训练的抛物线顶点相对于第一次训练的抛物线顶点向右平移,再向上平移,所以第二次的着陆点的水平距离比第一次着陆点的水平距离更远.所以d 1 <d 2.26.解析 (1)∵c =2,∴抛物线的解析式为y =ax 2+bx +2.令x =0,则y =2,∴抛物线与y 轴交点的坐标是(0,2).∵点(1,m ),(3,n )在抛物线上,m =n ,∴对称轴为直线x =t =1+32=2.(2)解法一:∵a >0,∴抛物线开口向上,∵抛物线的表达式为y =ax 2+bx +c ,∴点(0,c )在抛物线上,∵点(1,m ),(3,n )在抛物线上,∴可得到三个点的示意图.∵m <n ,∴t <1+32,即t <2, ∵n <c ,∴t >0+32,即t >32,∴32<t <2.∵(x 0,m ),(1,m )都在抛物线上,∴x 0+1=2t ,∴x 0=2t ―1,∵32<t <2,∴3<2t <4,∴2<2t ―1<3,即2<x 0<3.解法二:∵点(1,m ),(3,n )在抛物线y =ax 2+bx +c 上,∴m =a +b +c ,n =9a +3b +c ,∵m <n <c ,∴{a +b +c <9a +3b +c,①9a +3b +c <c,②由①得b >―4a ,③由②得b <―3a ,④∵a >0,∴由③得―b 2a <−4a −2a ,即―b 2a <2,∴由④得―b 2a >−3a −2a ,即―b 2a >32,∴32<―b 2a <2,即32<t <2.∵点(x 0,m ),(1,m )在抛物线上,∴x 0+1=2t ,∴x 0=2t ―1,∵32<t <2,∴3<2t <4,∴2<2t ―1<3,即2<x 0<3.27.解析 (1)证明:在△BCD 和△FCE 中,{BC =FC,∠BCD =∠FCE,DC =EC,∴△BCD ≌△FCE ,∴∠BDC =∠E ,∴BD ∥EF.又∵AF ⊥EF ,∴BD ⊥AF.(2)CH =CD.证明:延长BC 至点F 使CF =BC ,连接AF ,EF ,∵BC =CF ,∠ACB =90°,∴AF =AB ,由(1)可得,BD =EF ,BD ∥EF.∵AB 2=AE 2+BD 2,∴AF 2=AE 2+EF 2.∴△AEF 是直角三角形,∠AEF =90°.∵BD ∥EF ,∴∠BHE =∠AEF =90°,在Rt △DEH 中,∵CD =CE ,∴CH =12DE ,∴CH =CD. 28.解析 (1)①点Q 如图所示.②证明:依题意可知P'的坐标为(―1,1),P 的坐标为(―2,0),∴∠P'PO =45°,PP'=√2,∵∠MOx =45°,∴∠P'PO =∠MOx ,∴PP'∥ON ,∴△QNT ∽△QP'P ,∴QN QP′=NT P′P ,∵P'和Q 关于点N 对称,∴NQ =NP',∴QN QP′=12,∴NT P′P =12,∴NT =√22,∵M (1,1),∴OM =√2,∴NT =12OM.(2)PQ 长的最大值与最小值的差为4t ―2.详解:∵M 是☉O 上一点,PP'∥OM ,∴P'在以点P为圆心,1为半径的圆上,作点P关于点O的对称点S,点P'关于点M的对称点T,则点Q在以点S为圆心的圆上,∵M、N分别为P'T,P'Q的中点,∴TQ=2MN,∵ON=t,∴MN=1―t,∴TQ=2―2t,∴SQ=ST―TQ=1―(2―2t)=2t―1,∵Q在以S为圆心,半径r=2t―1的圆上运动,∴PQ max=PS+r,PQ min=PS―r,∴PQ max―PQ min=(PS+r)―(PS―r)=2r=4t―2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年北京中考考试说明解读:数学
首先,考试说明在考试要求的变化。

在数学学科中考注重考查初中数学的基础知识、基本技能和基本思想方法;考查数感、符号感、空间观念、统计观念、运算能力、推理能力、发现问题和分析解决问题的能力,以及应用意识等,新说明又提出了一些,比如几何直观、模型思维、创新意识等。

反映考纲要求更强调能力与自主学习方面,同学们在平时的学习当中应该注重培养抽象思维和推理能力、创新意识和实践能力。

要练说,先练胆。

说话胆小是幼儿语言发展的障碍。

不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。

总之,说话时外部表现不自然。

我抓住练胆这个关键,面向全体,偏向差生。

一是和幼儿建立和谐的语言交流关系。

每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。

二是注重培养幼儿敢于当众说话的习惯。

或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。

三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。

对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。

长期坚持,不断训练,幼儿说话胆量也在不断提高。

其次,考试说明在考试内容的变化。

宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

删除的内容:①删除了会借助数轴比较有理数的大小,②删除了“有效数字”这个知识点及对应的知识的B层次要求:能对含有较大数值的信息做出合理的解释和推断;③删除了“方程”这个知识点的C层次要求:能运用方程解决有关问题④删除了“一元一次方程”这个知识点A层次要求:理解一元一次方程解法中的各个步骤B层次要求:会解含有字母系数(无需讨论)的一元一次方程(无需讨论)⑤删除了“中心投影与平
行投影”这个知识点的A层次要求:能根据光线的方向辨认物体的阴影,了解视点、视角的涵义,并能在简单的平面图和立体图中表示;⑥删除“多边形”这个知识点的B层次要求:能用正三角形、正方形、正六边形进行简单的镶嵌设计;⑦删除了“图形的轴对称”这个知识点A层次要求:了解物体的镜面对称。

第一点变化将““整数指数幂”知识点的B层要求:能用幂的性质解决简单问题改为能用幂的性质解决简单计算问题,这里相当于降低了幂的性质在中考中的考察难度,所以同学们在复习的时候,这部分幂的性质有关的简单计算问题就可以了。

家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高很快。

第二点变化是在“方程的解”知识点的A层要求:新增一条:能根据具体问题的实际意义,检验方程的解是否合理,那么对于方程应用题来说,相信很多同学应该都不会陌生。

今年考纲的变化当中,它既然是做了一个调整,要求检验方程的解是否合理。

对于应用题的话,希望同学们注意检查方程的解是否合理,是够满足实际意义。

相关文档
最新文档