《数字电子技术基础》第五版课件第六章_时序逻辑电路

合集下载

数字电子技术之时序逻辑电路介绍课件

数字电子技术之时序逻辑电路介绍课件
存储逻辑电路:具有记忆功能,输 出取决于当前输入和历史状态
时序逻辑电路的特点
STEP1
STEP2
STEP3
STEP4
存储功能:能够存储 输入信号的状态,并 在一定条件下输出相 应的信号
反馈机制:通过反馈 机制实现对输入信号 的响应和输出信号的 控制
定时功能:能够实现 对输入信号的定时控 制,并在一定条件下 输出相应的信号
设计思路:使用D 触发器构成计数器, 每个D触发器输出 连接到下一个D触 发器的输入
设计步骤:
确定触发器的个数 和类型
设计触发器的连接 方式
编写触发器的逻辑 方程
设计电路的仿真和 测试
设计结果:实现一 个4位二进制计数器, 能够正常计数并输 出正确的计数值
谢谢
设计原则
01
正确性:保证 电路的功能正 确,满足设计 要求
02
简洁性:尽量 减少电路的复 杂度,降低成 本
03
可靠性:保证 电路在各种情 况下都能正常 工作
04
灵活性:便于 修改和扩展, 适应不同的需 求
05
性能优化:提 高电路的速度、 功耗和面积等 性能指标
设计实例
设计要求:实现一 个4位二进制计数 器
04
状态图分析步骤:绘制状态图、分析状态转换、确定输出信号
05
状态图分析优点:直观、易于理解和分析复杂电路
状态表分析法
状态表:描 述时序逻辑 电路状态的 表格
状态转换: 状态表列出 了电路在各 种输入条件 下的状态转 换关系
状态方程: 描述状态转 换关系的数 学方程
状态图:用 图形方式表 示状态转换 关系的方法
组合逻辑电路与时序 逻辑电路的区别:组 合逻辑电路只对当前 的输入信号进行响应, 而时序逻辑电路对过 去的输入信号和当前 的输入信号进行响应。

第六章时序逻辑电路-丽水学院

第六章时序逻辑电路-丽水学院

第六章 时序逻辑电路(14课时)本章教学目的、要求:1.掌握时序逻辑电路的分析方法。

2.掌握常用时序逻辑部件:寄存器、移位寄存器、由触发器构成的同步二进制递 增计数器和异步十进制递减计数器,及由集成计数器构成任意进制计数器。

3.熟悉常用中规模集成时序逻辑电路的逻辑功能及使用方法。

4.掌握同步时序逻辑电路的设计方法。

重点:时序逻辑电路在电路结构和逻辑功能上的特点;同步时序逻辑电路的分析方法;常用中规模集成时序逻辑电路的逻辑功能及使用方法;由集成计数器构成任意进制计数器。

难点:同步时序逻辑电路的设计方法第一节 概述(0.5课时)一、定义:1.定义:任一时刻电路的稳定输出不仅取决于当时的输入信号,而且还取决于电路原来的状态。

2.例:串行加法器:指将两个多位数相加时,采取从低位到高位逐位相加的方式完成相加运算。

需具备两个功能:将两个加数和来自低位的进位相加, 记忆本位相加后的进位结果。

全加器执行三个数的相加运算, 存储电路记下每次相加后的运算结果。

CP a i b i c i-1(Q ) s i c i (D )0 a 0 b 0 0 s 0 c 0 1 a 1 b 1 c 0 s 1 c 1 2 a 2 b 2 c 1 s 2 c2 3.结构上的特点:①时序逻辑电路通常包含组合电路和存储电路两部分,存储电路(触发器)是必不可少的;②存储器的输出状态必须反馈到组合电路的输入端,与外部输入信号共同决定组合逻辑电路的输出。

∑CI COCLKC1<1DQ 'Qia ic i-1c ib is 串行加法器电路二、时序电路的功能描述原状态:q1, q2, …, q l新状态:q1*,q2 *,…,q l*1.逻辑表达式。

Y = F [X,Q] 输出方程。

Z = G [X,Q] 驱动方程(或激励方程)。

Q* = H [Z,Q] 状态方程。

2.状态表、状态图和时序图。

三、时序电路的分类1. 按逻辑功能划分有:计数器、寄存器、移位寄存器、读/写存储器、顺序脉冲发生器等。

数字电子技术基础-第六章_时序逻辑电路(完整版)

数字电子技术基础-第六章_时序逻辑电路(完整版)

T0 1
行修改,在0000 时减“1”后跳变 T1 Q0 Q0(Q3Q2Q1)
为1001,然后按
二进制减法计数
就行了。T2 Q1Q0 Q1Q0 (Q1Q2Q3 )
T3 Q2Q1Q0
50
能自启动
47
•时序图 5
分 频
10 分 频c
0
t
48
器件实例:74 160
CLK RD LD EP ET 工作状态 X 0 X X X 置 0(异步) 1 0 X X 预置数(同步) X 1 1 0 1 保持(包括C) X 1 1 X 0 保持(C=0) 1 1 1 1 计数
49
②减法计数器
基本原理:对二进 制减法计数器进
——74LS193
异步置数 异步清零
44
(采用T’触发器,即T=1)

CLKi
CLKU
i 1
Qj
j0
CLKD
i 1
Qj
j0

CLK0 CLKU CLKD
CLK 2 CLKU Q1Q0 CLK DQ1Q0
45
2. 同步十进制计数器 ①加法计数器
基本原理:在四位二进制 计数器基础上修改,当计 到1001时,则下一个CLK 电路状态回到0000。
EP ET 工作状态
X 0 X X X 置 0(异步)
1 0 X X 预置数(同步)
X 1 1 0 1 保持(包括C)
X 1 1 X 0 保持(C=0)
1 1 1 1 计数
39
同步二进制减法计数器 原理:根据二进制减法运算 规则可知:在多位二进制数 末位减1,若第i位以下皆为 0时,则第i位应翻转。
Y Q2Q3

数字电子技术课件 第六章 时序逻辑电路

数字电子技术课件 第六章 时序逻辑电路
第六章 时序逻辑电路
第一节 寄存器 第二节 计数器 第三节 一般时序电路
本章学习要求
数字逻辑电路 组合逻辑电路 —— 组合电路 时序逻辑电路 —— 时序电路
时序电路特点
功能上:任何时刻的稳定输出,不仅与该时刻输入 有关,还与电路原状态有关,即与以前的 输入有关。
结构上:由组合电路和存贮电路组成。
时序电路分类
×× ×× 1× 0× ×1 ×0 ××
××××
D0 D1 D2 D3
×××× ×××× ×××× ×××× ××××
Q00 Q10 Q20 保 持
Q30
并行置数
D0 D1 D2 串入左移
D3
串入左移
Q1n Q2n Q3n 1 串入右移
Q1n Q2n Q3n 0 串入右移
1 Q0n Q1n
保持
Q2n
触发器改变状态,因此译码时不会产生竞争冒险。 ②缺点:状态利用率低。24=16个状态中只用了8个状态
(2n-2n个没用)。
6、序列信号发生器
序列信号:一组特定的串行数字信号称为序列信 号,如00110111。
序列信号发生器:产生序列信号的电路称为序列 信号发生器。
作用:序列信号可以用来作为数字系统的同步信 号,也可以作为地址码等,在通信、遥控、遥测 等领域有非常广泛的应用。
Q2
Q3
1000 0100 0010 0001
特点: ①4个D触发器构成的右移移位寄存器,首尾相接即D0=Q3; ②优点:电路结构简单;有效状态只含一个1(或0),不需
要另加译码电路。 ③缺点:状态利用率低。24=16个状态中只用了4个状态
(2n-n个没用)。
(3)扭环形计数器
D0
Q0

数字电子技术第6章 时序逻辑电路

数字电子技术第6章 时序逻辑电路

RD—异步置0端(低电平有效) 1 DIR—右移串行输入 1 DIL—左移串行输入 S0、S1—控制端 1 D0D1 D2 D3—并行输入
《数字电子技术》多媒体课件
山东轻工业学院
4、扩展:两片74LS194A扩展一片8位双向移位寄存器
《数字电子技术》多媒体课件
山东轻工业学院
例6.3.1的电路 (P276) 74LS194功能 S1S0=00,保持 S1S0=01,右移 S1S0=10,左移 S1S0=11,并入
(5)状态转换图
《数字电子技术》多媒体课件
山东轻工业学院
小结
1、时序逻辑电路的特点、组成、分类及描述方法; 2、同步时序逻辑电路的分析方法; 课堂讨论: 6.1,6.4
《数字电子技术》多媒体课件
山东轻工业学院
6.3 若干常用的时序逻辑电路
寄存器和移位寄存器 时序 逻辑电路 计数器 顺序脉冲发生器 序列信号发生器
移位寄存器不仅具有存储功能,且还有移位功能。 可实现串、并行数据转换,数值运算以及数据处理。 所谓“移位”,就是将寄存器所存各位数据,在每个移 位脉冲的作用下,向左或向右移动一位。
2、类型: 根据移位方向,分成三种:
左移 寄存器 (a) 右移 寄存器 (b) 双向 移位 寄存器 (c)
《数字电子技术》多媒体课件
学习要求 :
* *
自学掌握
1. 掌握寄存器和移位寄存器的概念并会使用; 2. 掌握计数器概念,熟练掌握中规模集成计数器74161 和74160的功能,熟练掌握用160及161设计任意进制计 数器的方法。
《数字电子技术》多媒体课件
山东轻工业学院
6.3.1寄存器和移位寄存器
一、寄存器
寄存器是计算机的主要部件之一, 它用来暂时存放数据或指令。

数字电子技术基础时序逻辑电路共142页

数字电子技术基础时序逻辑电路共142页

33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。

66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
数字电子技术基础时序逻辑 电路
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。

数字电子技术 时序逻辑电路的分析与设计 国家精品课程课件

数字电子技术 时序逻辑电路的分析与设计 国家精品课程课件

《数字电子技术》精品课程——第6章
FF0
FF1
1J
Q0 1J
Q1
时序逻辑电路的分析与设计
&Z
FF2
1J
Q2
C1
C1
C1
1K
1K
1K
Q0
Q1
Q2
CP
➢驱动方程:
《数字电子技术》精品课程——第6章 时序逻辑电路的分析与设计
② 求状态方程
JK触发器的特性方程:
Qn1 JQ n KQn
将各触发器的驱动方程代入,即得电路的状态方程:
简化状态图(表)中各个状态。 (4)选择触发器的类型。
(5)根据编码状态表以及所采用的触发器的逻辑功能,导出待设计 电路的输出方程和驱动方程。
(6)根据输出方程和驱动方程画出逻辑图。
返回 (7)检查电路能否自启动。
《数字电子技术》精品课程——第6章 时序逻辑电路的分析与设计
2.同步计数器的设计举例
驱动方程: T1 = X T2 = XQ1n
输出方程: Z= XQ2nQ1n
(米利型)
2.写状态方程
T触发器的特性 方程为:
Qn1 TQn TQn
Q 1nQ1QX21nn TX1QQ1n1nXTQX11nQ1n X Q1n
Q1n
Qn1 2
T2 Q2n
T2Qn2
T Q n 将T1、 T2代入则得X到Q两1n Q2n XQ1nQn2
0T1 = X0 0 0 0 0 0
0
求T1、T2、Z
0T2
0
=ZX=01QX1nQ10 2nQ010n
0 0
0 1
1 0
0 0
由状态方程
求Q2n+1 、 Q1n+1

数字电子技术时序逻辑电路PPT

数字电子技术时序逻辑电路PPT
CP0 CP0 CP1 CP3 Q0 CP2 Q1
写驱动方程: J 0 K 0 1
J1 J2
Q3 K2
1
K1
1
J 3 Q1Q2
K3 1
写状态方程:
Q0n1 QQ1n2n11
n
Q0
Q3
n
Q2
n
Q1
(CP0 下降沿动作) (Q0 下降沿动作) (Q1下降沿动作)
Q3n 1
Q1Q2
画时序图: 该电路能够自启动。
5.1.2 异步时序逻辑电路的分析方法
异步时序电路的分析步骤:
① 写时钟方程; ② 写驱动方程; ③ 写状态方程; ④ 写输出方程。
[例5-2]试分析图示时序逻辑电路的逻辑功能,列出状态转换 表,并画出状态转换图。
解:图5-7所示电路为1个异步摩尔型时序逻辑电路。 写时钟方程:
Q3n(Q0
下降沿动作)
列状态转换表:
画状态转换图:
5.2 若干常用的时序逻辑电路 5.2.1寄存器
1. 基本寄存器
图5-2 双2位寄存器74LS75的逻辑图
图5-2所示为双2位寄存器74LS75的逻辑图。当 CPA = 1时,
送到数据输入端的数据被存入寄存器,当CPA =0时,存入
寄存器的数据将保持不变。
2n-1 M 2n
然后给电路的每一种状态分配与之对应的触发器状态组合。
4)确定触发器的类型,并求出电路的状态方程、驱动方程 和输出方程。 确定触发器类型后,可根据实际的状态转换图求出电路的状 态方程和输出方程,进而求出电路的驱动方程。
5)根据得到的驱动方程和输出方程,画出相应的逻辑图。
6) 判断所设计的电路能否自启动。
1.同步计数器 1)同步二进制计数器

数字电子技术第6章时序逻辑电路简明教程PPT课件

数字电子技术第6章时序逻辑电路简明教程PPT课件

6.2.2 同步时序逻辑电路分析举例 【例题6.1】 分析如图6-3所示的时序电路的逻辑功能。写出电路的驱动方程、状态 方程和输出方程,计算出状态转换表,画出状态转换图和时序图,说明电路能否自 启动。
图6-3 例题6.1的逻辑电路
解:该电路为同步时序电路 (1) 写出触发器的驱动方程。
J 1 K1 Q3 J 2 K 2 Q1 J Q Q ;K Q 1 2 3 3 3
n n n Q3 Q2 Q1
n 1 n 1 n 1 Y Q3 Q2 Q1
0 0 0 0 1
0 0 1 1 0
0 1 0 1 0
0 0 0 1 0
0 1 1 0 0
1 0 1 0 0
0 0 0 0 1 1 1 1
1 0 1 1 1 0 1 1 1
0 1 1 0 1 0 0 0 1
最后还要检查一下得到的状态转换表是否包含了电路所有可能出现的状态。由 于的状态组合共有8种,而根据上述计算过程列出的状态转换表中只有5种,缺少101、 110、111这3种状态。所以还需要将这3种状态分别代入状态方程和输出方程进行计 算,并将计算结果列入表中。至此,才得到完整的状态转换表。 (5) 画出状态转换图。 若以圆圈表示电路的各个状态,以箭头表示状态转换的方向,同时还在箭头旁注明 了状态转换前的输入信号的取值和输出值,这样便得到了时序电路的状态转换图。通常将 输入信号的取值写在斜线之上,将输出值写在斜线以下。
6.1.3 时序逻辑电路的功能描述 时序电路一般可以用驱动方程、状态方程和输出方程来描述。 图6-2中的X(x1,x2,…,xi)为时序逻辑电路的输入信号,Y(y1,y2,…,yj)为 输出信号,Z(z1,z2,…,zk)为存储电路的输入信号,Q(q1,q2,…,ql)为存储 电路的输出信号,也表示时序逻辑电路的状态。这些信号之间的逻辑关系可以用3 个方程组来描述。

《数字电子技术基础》第五版课件第六章_时序逻辑电路

《数字电子技术基础》第五版课件第六章_时序逻辑电路


J Q0 CP CP
K Q0
J Q1 CP
K Q1
J Q2 CP
K Q2
J Q3 CP K Q3
异步时序电路,时钟方程:
1
CP0 CP

CP1 CP3 Q0
均为下降沿触发
方 程
CP2 Q1 驱动方程: J 0 K 0 1

J1 Q3n
K1 1
J2 K2 1
J3 Q2nQ1n K3 1
《数字电子技术基础》第五版
第六章 时序逻辑电路
6.1 概述
《数字电子技术基础》第五版
一、时序逻辑电路的特点
1. 功能上:任一时刻的输出不仅取决于该时刻的输入,还 与电路原来的状态有关。
2. 电路结构上 ①包含存储电路和组合电路 ②存储器状态和输入变量共同决定输出
《数字电子技术基础》第五版
二、时序电路的一般结构形式与功能描述方法
0010
0011
0100
1101
1001 1000
0111
0110
0101
1100
CP
01 0 1 0 1 0 1 0 1 0 Q0
Q1 0 0
1
1
0
0
1
1
0
0
0
Q2 0 0 0 0 1 1 1 1 0 0 0
Q3 0 0 0 0 0 0 0 0 1 1 0
《数字电子技术基础》第五版
5
电路功能
从状态图和时序图可以看出,此电 路为异步十进制加法计数器。
Q3
Q0n1 Di、Q1n1 Q0n、Q2n1 Q1n、Q3n1 Q2n
输入 Di CP
现态
Q0n Q1n Q2n Q3n

数字电子技术基础6时序逻辑电路

数字电子技术基础6时序逻辑电路
Q* Q1 Q2 Q3 Q2Q3 3
Q1 Q3 * Q2 * Q1 * Y
输 出 方 程
Y Q2Q3
Q1 Y
CLK Q3 Q2
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 0 1 1 1 0 0
0 1 1 0 0 1 0 0
1 0 1 0 1 0 0 0
DI 串行 输入
D Q3 Q D Q2 Q D Q1 D Q0 Q
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 缺少111为 0 1 1 初态的情况 1 0 0 1 0 1 1 1 0 1 1 1
0 0 0 0 0 0 1 1
7进制计数器
其中Q3Q2Q1为计数状态,Y为进位
我们可以把状态转换表表示为状态转换图的形式
/Y /0 /0
CLK Q3 0 1 0 0
*
Q
* 3
Q Q Q (Q )
1 2 3 0
C Q0Q3
设初态为0000
作状态转换图
可以看出这是一个异步十进制加法计数器! 3. 检验其能否自动启动 ?
什么叫 “自动启动” ? 四个触发器本应有十六个稳定状态 ,可 上图电路的状态图中只有十个状态。如果由 于某种原因进入了其余的六个状态当中的任 一个状态,若电路能够自动返回到计数链 ( 即有效循环 ) ,人们就称其为能自动启动。
*6.2.3
异步时序逻辑电路的分析方法
例6.2.4 分析图6.2.10所示电路的逻辑功能。
1、写三大方程
驱 动 方 程 状 Q0 Q 0 cp0 Q 0 (cp0 ) * 态 Q1 Q 3 Q 1 (cp1 ) Q 3 Q 1 (Q0 ) * 方 Q2 Q 2 (cp2 ) Q 2 (Q1 ) 程 *

电子技术基础(数字部分)第五版课件第六章

电子技术基础(数字部分)第五版课件第六章

数字系统的设计举例
计数器设计
利用触发器和门电路设计一个计 数器,实现二进制数的加法运算。
序列检测器设计
利用寄存器和门电路设计一个序 列检测器,检测输入数据中是否
出现某一特定序列。
数字钟设计
利用计数器、寄存器、译码器等 设计一个数字钟,显示当前时间。
THANKS FOR WATCHING
感谢您的观看

译码器
将二进制码转换为输出信号的 电路,常用于数据解码和显示

数据选择器
根据输入信号选择输出信号的 电路,常用于多路复用和数据
选择。
加法器
实现二进制加法的电路,常用 于数字计算和数据处理。
03
时序逻辑电路
时序逻辑电路概述
时序逻辑电路是一种具有记忆功 能的电路,其输出不仅取决于当 前的输入,还与电路的过去状态
可编程阵列逻辑的应 用
可编程阵列逻辑在数字系统设计中也 具有广泛的应用,如数字信号处理、 图像处理、通信等领域。通过编程, 可编程阵列逻辑可以实现各种数字逻 辑功能,从而简化数字系统的设计过 程。与可编程逻辑器件相比,可编程 阵列逻辑的灵活性更高,可以实现更 复杂的数字逻辑功能。
05
数字系统设计初步
逻辑门电路的实现
介绍如何利用晶体管等元件实现逻辑门电路,包括基本元件的选择 和电路设计的基本原则。
逻辑函数的表示方法
01
02
03
真值表
通过真值表表示逻辑函数, 可以直观地看出函数的输 入和输出之间的关系。
逻辑表达式
使用逻辑代数的基本运算 来表示逻辑函数,可以方 便地进行函数的化简和分 析。
卡诺图
通过卡诺图来表示逻辑函 数,可以直观地看出函数 的最简形式,便于分析和 设计数字电路。

数字电子技术基础第五版阎石课件

数字电子技术基础第五版阎石课件

2006年
24
8.4 通用阵列逻辑GAL
要使用GAL器件,就要先进行设计。GAL器件的开发 工具包括硬件开发工具和软件开发工具。硬件开发工 具有编程器,软件开发工具有ABEL-HDL程序设计语言 和相应的编译程序。编程器的主要用途是将开发软件 生成的熔丝图文件按JEDEC格式的标准代码写入选定 的GAL器件。
8.1 概 述
图8.1.1 PLD电路中门电路的惯用画法 (a)与门
(b)输出恒等于0的与门 (c)或门 (d)互补输出的缓冲器 (e)三态输出的缓冲器
2006年
返回
1
图8.1.1 PLD电路中门电路的惯用画法
(a)与门(b)输出恒等于0的与门(c)或门 (d)互补输出的缓冲器(e)三态输出的缓冲器
辑模式(c)单乘积项模式 图8.8.7 输入/输出单元( IOC )的电路结构 图8.8.8 IOC的各种组态 图8.8.9 ispLSI器件的编程接口 图8.8.10 ispGDS22的结构框图 图8.8.11 ispGDS22的输入/输出单元( IOC )
支持不同厂家生产的,各种型号的PAL,GAL, EPLD,FPGA产品开发。
PLD开发系统包括软件和硬件俩部分。 开发系统软件是指PLD专用的编程语言和相 应的汇编程序或编译程序。开发系统软件大体
上可以分为汇编型,编译型和原理图收集型三
种。
2006年
58
8.8 在系统可编程逻辑器件(ISP-PLD)
图8.8.1 ispGAL16z8的电路结构框图 图8.8.2 ispGAL16z8编程操作流程图 图8.8.3 ispLSI1032的电路结构框图 图8.8.4 ispLSI1032的逻辑功能划分框图 图8.8.5 通用逻辑模块(GLB)的电路结构 图8.8.6 GLB的其它几种组态模式(a)高速旁路模式(b)异或逻

数字电子技术 第6章 时序逻辑电路的设计

数字电子技术 第6章 时序逻辑电路的设计

17
2.画出次态状态表 画出次态状态表
次态 y=0(down) Q2 Q1 Q0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 y=1(up) Q2 Q1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 Q0 1 1 0 0 1 1 0 0
为使电路能自启动,将卡诺图中的最小项 xxx取做有效状态例如010状态,这时Q2n+1 的卡诺图应修改为右图。化简后得到新状 态方程: Q1n+1= Q2n⊕Q3n Q2n+1= Q1n+ Q2nQ3n Q3n+1= Q2n 驱动方程:J1=Q2n⊕Q3n 输出方程:C= Q1n Q2n Q3n K1=Q2n⊕Q3n J2=Q1n+Q3n K2=Q1n J3= Q2n K3= Q2n
检查自启动:设初态为000,来第1个CP脉冲,将跳变为010,进入循环状态,该电路可 以自启动。
11
6.3同步时序逻辑电路设计 同步时序逻辑电路设计 (时钟同步状态机的设计)
1.用状态图设计同步时序逻辑电路 ①状态序有规则的时序电路; ②态序不规则的Moore型; ③Mealy型 2. 使用状态表设计时序逻辑电路 3.使用状态转换表设计时序状态机
8
例2:设计一个串行数据检测器。要求连续输入3个或3个以 上的1时,输出为1,其它情况下输出为0。
(1)因为输入多于3个1,有输出。设输入变量为x;检测 (5)最多连续输入m=3,可选用 结果为输出变量,定义为y;又因连续输入3个1以上有 (7)逻辑电路图: n=2,2个J-K FF,于是可画出次 输出,因此要求同步计数。 态及输出卡诺图。还可分解为3 个卡诺图。 (2)状态分析:初态S0为全0状态,设输入一个1时为S1 态,输入2个1时为S2,输入3个1及以上为S3。 Q1n+1 Q0n+1 y (3)状态转换图如图所示: (4)状态转换表。因为输入m>3和连续输入3个1(m=3)状态是相同的,都停留在S2上,故 (8)检查能否自启动: 状态转换图可以简化成如下。 当电路初态进入11状态后: (6)状态方程:Q1n+1=xQ0Q1+xQ 若x=1时,Q1n+1Q0n+1=10状态为 1 sn S S1 S2 S 0 X 次态;若x=0时,Q1n+1 Q0n+1=00 3 n 驱动方程:J1=xQ0 J0=xQ1 0 S0/0 S0/0 S0/0 S0/0 次态。 输出方程:y=xQ1n 1 S1/0 该电路可以自启动。S2/0 S3/1 S4/1 Q0n+1=xQ1Q0+1Q1 K1=x K0=1 自启动部分

数字电子技术_06时序逻辑电路方案

数字电子技术_06时序逻辑电路方案
当 Q1Q0= 11时,输出Z = 1;当Q1Q0取其他值时, 输出Z =0; 在Q1Q0变化一个循环过程中,Z = 1只出 现一次,故Z为进位输出信号。
综上所述,此电路是带进位输出的同步四进制加 法计数器电路。
2019/7/16
12
6.2.2 异步二进制加法计数器
必须满足二进制加法原则:逢二进一(1+1=10, 即Q由1→0时有进位。)
111→110 →100 → 000
2019/7/16
20
6.3 寄存器
1. 寄存器通常分为两大类:
数码寄存器:存储二进制数码、运算结果或指令等 信息的电路。
移位寄存器:不但可存放数码,而且在移位脉冲作 用下,寄存器中的数码可根据需要向左或向右移位。
2. 组成:触发器和门电路。 一个触发器能存放一位二进制数码; N个触发器可以存放N位二进制数码。
CP
Q1n
Q Q0n
Q n 1
n 1
1
0
Z

0
00
1
0

0
11
0
0

1
01
1
1

1
10
0
0
(4) 归纳上述分析结果, 确定该时序电路的逻辑功能。 从时钟方程可知该电路是同步时序电路。
2019/7/16
11
从图6.2(a)所示状态图可知:随着CP脉冲的 递增, 不论从电路输出的哪一个状态开始,触发器 输出Q1Q0的变化都会进入同一个循环过程, 而且 此循环过程中包括四个状态,并且状态之间是递增 变化的。
第6章 时序逻辑电路
6.1 时序逻辑电路概述 6.2 时序逻辑电路的分析 6.3 寄存器
6.3.1 数码寄存器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数字电子技术基础》第五版
可以用三个方程组来描述:
y1 f1( x1, x2 ,, xi , q1, q2 ,, ql )
y
j
f1( x1, x2 ,, xi , q1, q2 ,, ql )
输出方程Y F ( X ,Q)
z1 g1(x1, x2 ,, xi , q1, q2 ,, ql ) zk g1(x1, x2 ,, xi , q1, q2 ,, ql )
的格雷码,并且在时钟脉冲CP的作用下,这6个状态
电 是按递增规律变化的,即:

000→001→011→111→110→100→000→…
功 能
所以这是一个用格雷码表示的六进制同步加法计数器。 当对第6个脉冲计数时,计数器又重新从000开始计数, 并产生输出Y=1。
X
例2 “1”
CP
《数字电子技术基础》第五版
将各触发器的驱动方程代入,即得电路的状态方程:
QQ12nn
1 1
J 2Q2n J1Q1n
K 2Q2n K1Q1n
Q1nQ2n Q1nQ2n Q0nQ1n Q0nQ1n
Q1n Q0n
Q0n1 J0Q0n K0Q0n Q2nQ0n Q2nQ0n Q2n
《数字电子技术基础》第五版
6.2 时序电路的分析方法
《数字电子技术基础》第五版
6.2.1 同步时序电路的分析方法
分析:找出给定时序电路的逻辑功能,即找出在 输入和CLK作用下,电路的次态和输出。
6.2 时序电路的分析方法
《数字电子技术基础》第五版
时序电路的分析步骤:
将驱动方程代入相 应触发器的特征方程,
得各个触发器的次态方
《数字电子技术基础》第五版
第六章 时序逻辑电路
6.1 概述
《数字电子技术基础》第五版
一、时序逻辑电路的特点
1. 功能上:任一时刻的输出不仅取决于该时刻的输入,还 与电路原来的状态有关。
2. 电路结构上 ①包含存储电路和组合电路 ②存储器状态和输入变量共同决定输出
《数字电子技术基础》第五版
二、时序电路的一般结构形式与功能描述方法
Y
0/1
(a) 状态图
《数字电子技术基础》第五版 (b) 时序图
5
由状态图可以看出,当输入X =0时,在时钟脉冲CP的 作用下,电路的4个状态按递增规律循环变化,即:
电 路
00→01→10→11→00→… 当X=1时,在时钟脉冲CP的作用下,电路的4个状态按 递减规律循环变化,即:

00→11→10→01→00→…
同步时序电路的时钟 方程可省去不写。
写 输出方程: Y Q1nQ2n
输出仅与电路现态有关,为穆 尔型时序电路。
方 程 式
驱动方程:
J
2
J1
Q1n Q0n
J
0
Q2n
K2 Q1n K1 Q0n K0 Q2n
《数字电子技术基础》第五版
2 求状态方程
JK触发器的特性方程:
Qn1 JQ n KQn
0 1
YY 010101011110
1
1
1
现态
Q1n Q0n
00 01 10 11 00 01 10 11
次态
输出
Q Q n 1 n 1
1
0
Y
01
1
10
1
11
1
00
1
11
0
00
0
01
1
10
1
4
时 序 图
画 状 态 图
0/1
00
01 CP
1/0
X
0/1 1/0 1/1 0/1 Q0
1/1
Q1
11
10
FF0
FF1
&
Y
1T
Q0C1
Q0
Q1
1 同步时序电路,时钟方程省去。

输出方程:Y XQ1n X Q1n
输出与输入有关,为 米利型时序电路。

程 式
驱动方程: T1 X Q0n T0 1
《数字电子技术基础》第五版
2 求状态方程
T触发器的特性方程:
Qn1 T Qn
驱动方程Z F ( X ,Q)
q1* h1(z1, z2 ,, zi , q1, q2 ,, ql ) ql hl (z1, z2 ,, zi , q1, q2 ,, ql )
状态方程Q* H (Z ,Q )
《数字电子技术基础》第五版
三、时序电路的分类
1. 同步时序电路与异步时序电路 同步:存储电路中所有触发器的时钟使用统一的clk,状态变

可见,该电路既具有递增计数功能,又具有递减计数功 能,是一个2位二进制同步可逆计数器。

CP
J Q0 CP K Q0
《数字电子技术基础》第五版
J Q1 CP
K Q1
J Q2 CP
K Q2
3
计算、列状态表
QQ12nn
1 1
Q1n Q0n
Q0n1 Q2n
Y Q1nQ2n
现态
Q2n Q1n Q0n
000 00 1 010 011 100 101 110
111
次态
Q2n 1 Q1n 1 Q0n 1
001 011 101 111 000 010 100 110
输出
Y
0 0 0 0 1 1 0 0
《数字电子技术基础》第五版
4 画状态图、时序图
排列顺序:
Q2nQ1nQ0n /Y
000→/0 001/→0 011
/1↑ ↓/0
100←110←111 /0 /0
/0
010
101
/1
(a) 有效循环
(b) 无效循环
状态图
《数字电子技术基础》第五版
CP
时 Q0 序 Q1 图
Q2
Y
5
有效循环的6个状态分别是0~5这6个十进制数字
化发生在同一时刻 异步:没有统一的clk,触发器状态的变化有先有后
2. Mealy型和Moore型
Mealy型: Y F ( X , Q) Moore型:Y F (Q)
与X、Q有关 仅取决于电路状态
《数字电子技术基础》第五版
常见的时序逻辑电路:
寄存器 二进制计数器 任意进制计数器 移位寄存器 移存型计数器
程,也就是整个时序电
1 时钟方程、 2 路的状态方程。
电路图
驱动方程和
状态方程
输出方程
3
判断电路 逻辑功能
5 状态图、 状态表或 时序图
4
计算
例1
CP
《数字电子技术基础》第五版 &Y
FF0
FF1
FF2
1J
Q0 1J
Q1
1J
Q2
C1
C1
C1
1K
1K
1K
Q0
Q1
Q2
1
时钟方程:
CP2
CP1
CP0
CP
将各触发器的驱动方程代入,即得电路的状态方程:
QQ10nn
1
T1 Q1n T0 Q0n 1
X
Q0n Q0n Q0n
Q1n
《数字电子技术基础》第五版
3 计算、列状态表
输入
QQ10nn
1
X Q0n
Q0n
Q1n
X
0
Y X Q1n
0
0
QQQQ10101nn0nnnn1110101010111001010010101
相关文档
最新文档